JP6720104B2 - Water intake method and water intake device - Google Patents

Water intake method and water intake device Download PDF

Info

Publication number
JP6720104B2
JP6720104B2 JP2017051726A JP2017051726A JP6720104B2 JP 6720104 B2 JP6720104 B2 JP 6720104B2 JP 2017051726 A JP2017051726 A JP 2017051726A JP 2017051726 A JP2017051726 A JP 2017051726A JP 6720104 B2 JP6720104 B2 JP 6720104B2
Authority
JP
Japan
Prior art keywords
water
intake
bubbles
water intake
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017051726A
Other languages
Japanese (ja)
Other versions
JP2018153742A (en
Inventor
良介 秦
良介 秦
島村 和彰
和彰 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2017051726A priority Critical patent/JP6720104B2/en
Publication of JP2018153742A publication Critical patent/JP2018153742A/en
Application granted granted Critical
Publication of JP6720104B2 publication Critical patent/JP6720104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Water Treatments (AREA)

Description

本発明は、取水方法、取水装置及び水処理方法に関する。 The present invention relates to a water intake method, a water intake device, and a water treatment method.

水を利用する上で何らかの水源から取水する操作は基本的に必須であり、海水、汽水又は淡水などを取水し、取水した水の水質に応じて且つ使用目的に応じて水処理をする必要がある。取水する水には様々な物質が存在しており、水処理をする上で障害となる物質も少なくない。 In order to use water, it is basically necessary to take in water from some source, and it is necessary to take in seawater, brackish water, fresh water, etc., and treat the water according to the quality of the water taken and the purpose of use. is there. There are various substances in the water that is taken in, and there are many substances that interfere with water treatment.

非特許文献1には、ろ過膜及び逆浸透膜の閉塞(ファウリング)の原因(ファウラント)として、全ての自然水域に含まれる透明で粘着性の高いゼリー状の有機物であるTEP(生体外分泌高分子粒子)の存在が認識されてきている。 In Non-Patent Document 1, as a cause (foulant) of clogging (fouling) of a filtration membrane and a reverse osmosis membrane, a transparent and highly adhesive jelly-like organic substance contained in all natural waters (TEP (high in vitro secretion)). The existence of molecular particles has been recognized.

特許文献1には、RO膜(逆浸透膜)を用いた海水淡水化装置において、海水取水設備から海水を取水した後、海水をRO膜に透過させる前に、膜の閉塞の原因となるTEPを除去するための種々の前処理を施すことが記載されている。 In Patent Document 1, in a seawater desalination apparatus using an RO membrane (reverse osmosis membrane), after the seawater is taken from the seawater intake facility, before the seawater is transmitted to the RO membrane, a TEP that causes clogging of the membrane. It is described to apply various pretreatments for removing the.

非特許文献2には、福岡都市圏の海水淡水化設備が記載されている。この海水淡水化設備では、取水方法として「浸透取水」方式が採用されており、海底の砂によってろ過した海水を陸上にくみ上げる仕組みになっている。これにより、陸上ではきれいな海水を安定して取水できるほか、取水管内に付着するフジツボやイガイの卵も海底の砂でろ過されるため、管内の清掃作業などの維持管理が簡略化できる。 Non-Patent Document 2 describes a seawater desalination facility in the Fukuoka metropolitan area. In this seawater desalination facility, the "infiltration water intake" method is adopted as the water intake method, and the seawater filtered by the seabed sand is pumped to the land. As a result, clean seawater can be stably taken on land, and barnacles and mussel eggs adhering to the intake pipe are also filtered by sand on the seabed, which simplifies maintenance such as cleaning work inside the pipe.

国際公開第2014/181583号International Publication No. 2014/181583

Transparent exopolymer particles: Potential agents for organic fouling and biofilm formation in desalination and water treatment plants,Edo Bar-Zeev et al., Desalination and Water Treatment 3 (2009) 136-142Transparent exopolymer particles: Potential agents for organic fouling and biofilm formation in desalination and water treatment plants,Edo Bar-Zeev et al., Desalination and Water Treatment 3 (2009) 136-142 守田幸雄,「福岡地区における海水淡水化プラントの運転事例」,学会誌「EICA」,2011年,第15巻第4号,P.48-51Yukio Morita, “Operating case of seawater desalination plant in Fukuoka area”, Academic journal “EICA”, 2011, Vol. 15, No. 4, P. 48-51

上述のように、海水、汽水、淡水には、目的とする処理水を得る上で不要となる様々な成分が含まれていることから、不要成分を前処理によって予め取り除くことは、その後の水処理技術の負担を小さくする上で重要な処理であるといえる。 As described above, seawater, brackish water, and fresh water contain various components that are unnecessary for obtaining the target treated water. It can be said that this is an important process for reducing the burden on the processing technology.

特許文献1に記載された発明では、海から取水した海水を陸上において除濁処理することが記載されているが、特許文献1のように逆浸透膜を用いて海水を脱塩する場合には、高度な水質を維持するために、陸上において砂ろ過の他、加圧浮上法や膜ろ過など高度な手法を組み合わせる複雑な前処理が必要となる。その結果、陸上で行う前処理の負担が大きくなるとともに前処理設備が大型化するという問題がある。 In the invention described in Patent Document 1, it is described that seawater taken from the sea is subjected to turbidity treatment on land, but when desalinating seawater using a reverse osmosis membrane as in Patent Document 1, In order to maintain high water quality, in addition to sand filtration on land, complicated pretreatment combining advanced techniques such as pressure flotation and membrane filtration is required. As a result, there is a problem that the burden of pretreatment performed on land increases and the size of the pretreatment facility increases.

非特許文献1に記載された技術は、全ての自然水に含まれるTEPと膜の閉塞の因果関係についての知見があるに留まり、効率の良い取水方法や前処理技術については何ら触れられていない。 The technology described in Non-Patent Document 1 has only knowledge about the causal relationship between TEP contained in all natural waters and membrane blockage, and does not mention any efficient water intake method or pretreatment technology. ..

一方、非特許文献2に記載された発明のような海底で砂ろ過処理を施す取水方法は、陸上での前処理の負担を軽減できる点で有利である。しかしながら、非特許文献2に記載される手法は、取水箇所に広く安定した海底面が必要であるため、処理設備が大型化し、工事費や維持費も膨大になるという問題がある。 On the other hand, the water intake method for performing sand filtration treatment on the seabed as in the invention described in Non-Patent Document 2 is advantageous in that the burden of pretreatment on land can be reduced. However, the method described in Non-Patent Document 2 has a problem that the treatment facility becomes large and construction cost and maintenance cost become enormous because a wide and stable sea bottom is required at the intake point.

上記課題を鑑み、本発明は、水中に含まれる濁質やTEPなどの界面活性物質を取水前に簡易且つ小型の設備で低減でき、陸上での前処理操作を軽減することが可能な取水方法及び取水装置及び水処理方法を提供する。 In view of the above problems, the present invention is a water intake method capable of reducing surface active substances such as suspended matter and TEP contained in water before water with a simple and small facility, and reducing pretreatment operations on land. And a water intake device and a water treatment method.

上記目的を達成するために、本発明者らが鋭意検討したところ、取水前に、取水対象とする水中に直接気体を送り込んで気泡を発生させ、水に含まれる汚染物質を気泡に吸着させて分離することが有効であるとの知見を得た。 In order to achieve the above object, the inventors of the present invention have diligently studied and, before water intake, generate gas bubbles by directly sending a gas into the water to be water intake, and adsorb pollutants contained in water to the air bubbles. We have found that separation is effective.

以上の知見を基礎として完成した本発明は一側面において、取水対象とする水中に気体を送り込んで気泡を発生させ、気泡と水とを接触させることにより水に含まれる汚染物質を気泡に吸着させて分離し、気泡を分離した後の水を採取することを含む取水方法が提供される。 In one aspect of the present invention completed based on the above knowledge, a gas is sent into water to be taken as water to generate bubbles, and the bubbles are brought into contact with each other to adsorb contaminants contained in the water to the bubbles. Is provided, and the water is collected after the air bubbles have been separated.

本発明に係る取水方法は一実施態様において、取水対象とする水中に水の導入口を備える取水升を配置し、導入口から取水升内に水を下向流で取り入れるとともに取水升の下部から気泡を発生させて気泡を上向流で流すことにより、気泡と水とを対向流で接触させることを含む。 In one embodiment of the water intake method according to the present invention, an intake box provided with a water inlet is placed in the water to be taken in, and the water is taken from the inlet into the intake box in a downward flow and from the bottom of the intake box. Generating bubbles and causing the bubbles to flow in an upward flow includes contacting the bubbles with water in a counter flow.

本発明に係る取水方法は別の一実施態様において、気泡と接触した後に気泡と分離した水を採取することが、取水升内において気泡が水と接触する領域よりも下方から取水升内の水を汲み上げることを含む。 In another embodiment of the water intake method according to the present invention, it is possible to collect water separated from the bubbles after contacting the bubbles with water in the intake chamber from below a region where the bubbles contact the water in the intake chamber. Including pumping up.

本発明に係る取水方法は別の一実施態様において、取水升内へ流入する水の下向流の流速が、取水升内を上昇する気泡の上昇速度よりも小さくなるように、取水升内から水を引き抜くことを含む。 In another embodiment of the water intake method according to the present invention, the downward flow velocity of the water flowing into the intake chamber is reduced from the intake chamber so as to be smaller than the rising speed of bubbles rising in the intake chamber. Includes drawing water.

本発明は別の一側面において、取水方法によって取水された水を陸上で前処理することを含む水処理方法が提供される。 According to another aspect of the present invention, there is provided a water treatment method including pretreatment on land of water taken by the water intake method.

本発明は更に別の一側面において、取水対象とする水中に配置され、水の導入口を備える取水升と、取水升内の水と接触することにより水に含まれる汚染物質を吸着させるための気泡を発生させる気泡発生手段と、気泡を分離した後の水を採取する取水手段とを備える取水装置が提供される。 In still another aspect, the present invention is for placing an intake chamber provided in water to be taken and having an inlet for water, and for adsorbing a contaminant contained in the water by contacting the water in the intake chamber. There is provided a water intake device including a bubble generation unit that generates bubbles and a water intake unit that collects water after separating the bubbles.

本発明に係る取水装置は一実施態様において、取水手段の取水口が、取水升内において気泡発生手段よりも下方に配置されている。 In one embodiment of the water intake device according to the present invention, the water intake port of the water intake means is arranged below the bubble generating means in the water intake chamber.

本発明に係る取水装置は別の一実施態様において、取水升が、導入口から水を下向流で導入するとともに取水升の下部から導入口へと気泡を上向流で流すことにより、気泡と水とを対向流で接触させる吸着分離部と、取水升の下部において吸着分離部と連通し、気泡と水がお互いの流れによって分離される脱気部と、脱気部内に配置された取水配管とを備える。 In another embodiment of the water intake device according to the present invention, the intake chamber introduces water in a downward flow from the introduction port and causes bubbles to flow in an upward flow from the lower part of the intake chamber to the introduction port to form bubbles. And the water that come into contact with each other in a counter flow, the degassing section that communicates with the adsorption and separation section in the lower part of the intake chamber, and the bubbles and water are separated by each other's flow, and the water intake placed in the degassing section. And piping.

本発明によれば、水中に含まれる濁質やTEPなどの界面活性物質を取水前に簡易且つ小型の設備で低減でき、陸上での前処理操作を軽減することが可能な取水方法及び取水装置及び水処理方法が提供できる。 ADVANTAGE OF THE INVENTION According to this invention, surface-active substances, such as turbidity and TEP, contained in water can be reduced by simple and small equipment before water, and the pretreatment operation on land can be reduced and the water intake apparatus. And a water treatment method can be provided.

本発明の実施の形態に係る取水装置の一例を示す概略図である。It is a schematic diagram showing an example of a water intake device concerning an embodiment of the invention. 本発明の実施の形態の変形例に係る取水装置の一例を示す概略図である。It is a schematic diagram showing an example of a water intake device concerning a modification of an embodiment of the invention. 本発明の実施の形態の別の変形例に係る取水装置の一例を表す概略図である。It is a schematic diagram showing an example of a water intake device concerning another modification of an embodiment of the invention. 気泡の上昇速度と気泡径との関係を表すグラフである。It is a graph showing the relationship between the rising speed of bubbles and the bubble diameter. 実施例1及び比較例1の試験条件と取水した水中の汚染物質の濃度の推移を表すグラフであり、図5(a)は試験時間と散気時間との関係、図5(b)は試験時間と濁度との関係、図5(c)は試験時間と全有機炭素濃度(TOC)との関係、図5(d)は試験時間と溶存有機炭素濃度(DOC)との関係、図5(e)は試験時間とTEP濃度との関係をそれぞれ示す。It is a graph showing the transition of the concentration of pollutants in the water taken in and the test conditions of Example 1 and Comparative Example 1, FIG. 5 (a) is the relationship between the test time and aeration time, FIG. 5 (b) is a test Relationship between time and turbidity, FIG. 5(c) is a relationship between test time and total organic carbon concentration (TOC), FIG. 5(d) is a relationship between test time and dissolved organic carbon concentration (DOC), FIG. (E) shows the relationship between the test time and the TEP concentration. 実施例2及び比較例2の試験条件と取水した水中の汚染物質の濃度の推移を表すグラフであり、図6(a)は試験時間と散気時間との関係、図6(b)は試験時間と濁度との関係、図6(c)は試験時間と全有機炭素濃度(TOC)との関係、図6(d)は試験時間と溶存有機炭素濃度(DOC)との関係、図6(e)は試験時間と陰イオン界面活性剤濃度との関係、図6(f)は試験時間とTEP濃度との関係をそれぞれ示す。It is a graph showing the transition of the concentration of pollutants in the water taken in and the test conditions of Example 2 and Comparative Example 2, FIG. 6 (a) is the relationship between the test time and aeration time, FIG. 6 (b) is a test Relationship between time and turbidity, FIG. 6(c) is a relationship between test time and total organic carbon concentration (TOC), FIG. 6(d) is a relationship between test time and dissolved organic carbon concentration (DOC), FIG. 6E shows the relationship between the test time and the anionic surfactant concentration, and FIG. 6F shows the relationship between the test time and the TEP concentration.

以下、図面を参照しながら本発明の実施の形態について説明する。以下の図面の記載においては、同一又は類似の部分には同一又は類似の符号を付している。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar reference numerals are given to the same or similar parts. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is that the structure, arrangement, etc. of components are as follows. It is not specific to one.

図1に示すように、本発明の実施の形態に係る取水装置は、水の導入口2を備える取水升1と、取水升1内の水と接触することによりその水に含まれる汚染物質を吸着させるための気泡6を発生させる気泡発生手段3と、気泡6を分離した後の水を取水する取水手段4とを備える。 As shown in FIG. 1, the water intake device according to the embodiment of the present invention removes pollutants contained in the intake chamber 1 having a water inlet 2 and the water in the intake chamber 1 by contacting the intake chamber 1. A bubble generating means 3 for generating bubbles 6 for adsorption and a water intake means 4 for collecting water after the bubbles 6 are separated are provided.

取水升1は、取水対象とする水を内部へ導入するための導入口2を有し、この導入口2から取水升1内に流入水を下向流で流すような構造になっている。取水升1の具体的形状は特に制限されないが、例えば、取水対象とする海水、淡水又は汽水中にほぼ全面を浸漬させることが可能な細長い筒状の反応槽が利用可能である。図1の例においては、取水升1は水底から水面まで延在し、取水升1の一部が水底に埋設された例を示しているが、本発明の目的を達成できるような配置であればこの配置に限定されないことは勿論である。 The water intake 1 has an inlet 2 for introducing the water to be taken into the interior, and has a structure in which the inflow water flows from the inlet 2 into the water intake 1 in a downward flow. The specific shape of the water intake unit 1 is not particularly limited, but for example, a slender cylindrical reaction tank capable of immersing substantially the entire surface in seawater, fresh water, or brackish water to be taken in water can be used. In the example of FIG. 1, the intake box 1 extends from the water bottom to the water surface, and a part of the intake box 1 is buried in the water bottom, but the arrangement is such that the object of the present invention can be achieved. Of course, the arrangement is not limited to this.

気泡発生手段3は、取水升1中に水中に気体を送り込んで取水升1内に気泡6を発生させるための装置である。取水升1の下部に設けられた気泡発生手段3から気泡6を上向流で流し、気泡6を水面へ向けて上昇させることにより、導入口2から取水升1内に導入された水と気泡6とを対向流で接触させることができる。 The bubble generating means 3 is a device for sending gas into the water intake chamber 1 to generate bubbles 6 in the water intake chamber 1. Water bubbles introduced from the inlet 2 into the intake chamber 1 by causing the bubbles 6 to flow upward from the bubble generating means 3 provided in the lower part of the intake chamber 1 and raising the bubbles 6 toward the water surface. 6 can be contacted in counterflow.

気泡6の表面は、OH-、Cl-、COO-が濃縮して負電荷に帯電しているため、取水升1に導入される濁質成分、有機物及び油などの汚染成分で疎水基を持つ物質が、電気的に中和あるいは反発し、若しくはイオン交換されることにより、気泡6の表面に吸着されやくなる。このような性質を利用して水に含まれる汚染物質を気泡6に吸着させて分離することができる。 Since OH , Cl , and COO are concentrated and are negatively charged on the surface of the air bubble 6, contaminants such as turbid components, organic substances, and oil introduced into the intake chamber 1 have hydrophobic groups. The substance is electrically neutralized, repelled, or ion-exchanged, so that the substance is easily adsorbed on the surface of the bubble 6. By utilizing such a property, the pollutants contained in water can be adsorbed to the bubbles 6 and separated.

気泡発生手段3としては、メンブレン式散気装置やセラミック製散気装置でブロワなどの送風機により散気するか、又はエジェクタ等で空気を吸引させて散気することが好適である。使用する気体としては一般的に空気が用いられるが、窒素や他のガスを供給してもよい。即ち、気泡とするガスは空気を用いるのが安価であるが、窒素ガスや酸素ガス、オゾンガスなどのあらゆるガスに限定されない。 As the air bubble generating means 3, it is preferable to use a membrane type air diffuser or a ceramic air diffuser to diffuse air by a blower such as a blower, or to suck air by an ejector or the like to diffuse air. Air is generally used as the gas to be used, but nitrogen or another gas may be supplied. That is, it is cheap to use air as the gas for forming bubbles, but the gas is not limited to any gas such as nitrogen gas, oxygen gas, and ozone gas.

気泡発生手段3が発生させる気泡6の直径(気泡径)としては、取水対象とする水の性状及びその水に含まれる汚染物質の濃度や種類に応じて異なるが、気泡径10μm〜5mmとすることが好ましい。気泡径が10μm未満であると、気泡の上昇速度が遅く、気泡6を用いた固液分離がうまく進まない場合がある。一方、気泡径が5mmを越えると、気泡による固液分離に十分な気泡表面積を確保することができず、固液分離の効率が低下する場合がある。 The diameter (bubble diameter) of the bubble 6 generated by the bubble generating means 3 varies depending on the nature of the water to be taken in and the concentration and type of the contaminant contained in the water, but the bubble diameter is 10 μm to 5 mm. It is preferable. If the bubble diameter is less than 10 μm, the rising speed of the bubbles may be slow, and solid-liquid separation using the bubbles 6 may not proceed well. On the other hand, when the bubble diameter exceeds 5 mm, it is not possible to secure a sufficient bubble surface area for solid-liquid separation by bubbles, and the efficiency of solid-liquid separation may decrease.

更に、取水対象とする水の性状に応じて、予備気泡発生手段(図示せず)を併用し、予備気泡発生手段によって取水升1内に対流を生じさせたり気泡発生手段3とは異なる気泡径の気泡を発生させたりしてもよい。これにより、水中の汚染物質の吸着効率を更に向上させることが可能となる。 Furthermore, depending on the nature of the water to be taken in, a preliminary bubble generating means (not shown) is also used to generate convection in the intake chamber 1 by the preliminary bubble generating means, or a bubble diameter different from that of the bubble generating means 3. The bubbles may be generated. This makes it possible to further improve the adsorption efficiency of pollutants in water.

取水手段4としては、例えば取水升1の長手方向に沿って延在する取水配管などが用いられる。図3に示すように、取水手段4の取水口41は、気泡発生手段3よりも下方に設けられており、取水口41を介して、取水升1内において気泡6が水と接触する領域よりも下方(気泡発生手段3よりも下方)から、取水升1内の水を汲み上げることが好ましい。 As the water intake means 4, for example, a water intake pipe extending along the longitudinal direction of the water intake box 1 is used. As shown in FIG. 3, the water intake 41 of the water intake means 4 is provided below the air bubble generation means 3, and the area in which the air bubbles 6 come into contact with water in the water intake chamber 1 through the water intake 41. Also, it is preferable to pump up the water in the intake chamber 1 from below (below the bubble generating means 3).

図3に示す取水装置によれば、気泡を取水升1内の水から分離するために特別の装置を利用することなく、簡便かつ小型の装置で気泡と接触した後の水を取水することができる。 According to the water intake device shown in FIG. 3, it is possible to take in the water after contacting the air bubbles with a simple and small device without using a special device for separating the air bubbles from the water in the water container 1. it can.

取水升1内での気泡6の上昇速度は、例えば、水温20℃の時、ストークス定理により図4に示すような関係を有する。例えば気泡径が1mm(1000μm)のときは、気泡6の上昇速度は32m/minとなる。取水升1内の下部で流入水と気泡6とを効率良く分離するには、流入水の下向流の流速が、気泡6の上昇速度よりも小さくなるように、取水手段4から水を引き抜くことが好ましい。 The rising speed of the bubbles 6 in the water intake chamber 1 has a relationship as shown in FIG. 4 by the Stokes theorem when the water temperature is 20° C., for example. For example, when the bubble diameter is 1 mm (1000 μm), the rising speed of the bubble 6 is 32 m/min. In order to efficiently separate the inflow water and the bubbles 6 in the lower portion of the intake chamber 1, the water is drawn from the intake means 4 so that the downward flow velocity of the inflow water becomes smaller than the rising speed of the bubbles 6. It is preferable.

取水手段4へ気泡6を巻き込まないようにするために、図1に示すように、取水升1内に仕切板5を配置し、仕切板5で気泡6が多数存在する領域から分離された領域内に取水手段4を配置してもよい。図2に示すように、取水升1を、仕切板5を介して吸着分離部10と脱気部11とに分け、脱気部11内に取水手段4を配置するようにしてもよい。仕切板5の最下端を気泡発生手段3よりも下に配置することで、気泡6の脱気部11への混入を抑制することができる。また、吸着分離部10の容積を脱気部11の容積よりも大きくとることで、気泡6による吸着分離処理の効率をより高めることができる。 In order to prevent the air bubbles 6 from being trapped in the water intake means 4, as shown in FIG. 1, a partition plate 5 is arranged in the water intake means 1, and the partition plate 5 separates a region where a large number of air bubbles 6 exist. The water intake means 4 may be arranged inside. As shown in FIG. 2, the water intake chamber 1 may be divided into an adsorption/separation unit 10 and a deaeration unit 11 via a partition plate 5, and the water intake means 4 may be arranged in the deaeration unit 11. By arranging the lowermost end of the partition plate 5 below the bubble generating means 3, it is possible to prevent the bubbles 6 from mixing into the degassing section 11. Further, by making the volume of the adsorption/separation unit 10 larger than that of the degassing unit 11, the efficiency of the adsorption/separation process by the bubbles 6 can be further enhanced.

吸着分離部10においては、導入口2から水を下向流で導入するとともに取水升1の下部にある気泡発生手段3から気泡を発生させて、気泡6を上向流で流すことにより、気泡6と水とを対向流で接触させる。これにより、流入水中の汚染物質を気泡6に吸着させる。 In the adsorption/separation unit 10, water is introduced from the inlet 2 in a downward flow, and bubbles are generated from the bubble generating means 3 in the lower part of the intake chamber 1 to cause the bubbles 6 to flow in an upward flow. 6 and water are brought into contact with each other in counterflow. As a result, the contaminants in the inflow water are adsorbed by the bubbles 6.

脱気部11は、吸着分離部10と取水升1の下部において連通している。脱気部11においては、汚染物質が気泡6に吸着除去された後の処理水を受け入れて、この処理水を上向流で流し、処理水に随伴する気泡を上昇させて水面へと送る。即ち、気泡6と処理水がお互いの流れによって分離されることにより、水中から気泡6をより完全に除去するための領域として機能する。 The degassing section 11 communicates with the adsorption/separation section 10 in the lower part of the intake chamber 1. In the degassing section 11, the treated water after the contaminants have been adsorbed and removed by the bubbles 6 is received, the treated water is caused to flow upward, and the bubbles accompanying the treated water are raised and sent to the water surface. That is, the bubbles 6 and the treated water are separated from each other by the flow of each other, thereby functioning as a region for more completely removing the bubbles 6 from the water.

脱気部11では、気泡6の浮上速度を下回るように脱気部11内の水の流速が調整されており、気泡6は水面へ浮上することで分離される。このような構成を採用することにより、気泡6の分離効率が高まり、取水手段4から水を汲み上げる際に極力気泡6を巻き込まないようにすることができる。気泡6の巻き込みを防ぐために、取水手段4の取水口41周辺には、気泡の侵入を防ぐための気泡侵入抑制部12が形成されていてもよい。気泡侵入抑制部12の構成は特に制限されない。気泡侵入抑制部12が気泡6を消泡するような機能を有していても構わない。 In the degassing unit 11, the flow velocity of water in the degassing unit 11 is adjusted so as to be lower than the floating speed of the bubbles 6, and the bubbles 6 are separated by floating on the water surface. By adopting such a configuration, the separation efficiency of the bubbles 6 is improved, and it is possible to prevent the bubbles 6 from being caught as much as possible when the water is drawn from the water intake means 4. In order to prevent the entrainment of the bubbles 6, a bubble invasion suppressing portion 12 for preventing invasion of bubbles may be formed around the water intake 41 of the water intake means 4. The structure of the bubble invasion suppressing unit 12 is not particularly limited. The bubble invasion suppressor 12 may have a function of eliminating the bubbles 6.

本発明が処理対象とする水は、海水、淡水、汽水などが好適に利用されるが、汚染物質を含む液体で気泡分離によりその汚染物質が除去できるような液体であればこれに限定されるものではない。 The water to be treated by the present invention is preferably seawater, fresh water, brackish water, etc., but is not limited to this as long as it is a liquid containing a pollutant and capable of removing the pollutant by air bubble separation. Not a thing.

例えば、随伴水などの含油排水、藻類を含む湖沼水、工場排水なども処理対象として利用することが可能である。取水対象とする水に含まれる汚染物質としては、例えば、膜分離における膜の閉塞の原因となる濁質、TEPなどの有機成分などが挙げられるが、これらに限定されるものではない。 For example, oil-containing wastewater such as produced water, lake water containing algae, factory wastewater, and the like can also be used as treatment targets. Examples of pollutants contained in the water to be taken in include, but are not limited to, turbid substances that cause clogging of the membrane during membrane separation, organic components such as TEP, and the like.

本発明の実施の形態に係る取水装置及び取水方法によれば、取水対象とする水中に取水升1を浸漬させ、取水升1内で気泡6を用いた汚染物質の分離を行った後、気泡6を分離した後の処理水を取水する。このように、取水対象とする水を、陸上へ汲み上げる前に本実施形態に係る処理を行うことにより、その後の陸上で行う水処理のための前処理の負担を小さくできる。 According to the water intake device and the water intake method according to the embodiment of the present invention, after the water intake 1 is immersed in the water to be water intake and the contaminants are separated using the air bubbles 6 in the water intake 1, The treated water after separating 6 is taken up. As described above, by performing the treatment according to the present embodiment before pumping the water to be taken in to the land, it is possible to reduce the burden of the pretreatment for the subsequent water treatment performed on land.

例えば、TEPなどの低減目的のために泡沫分離処理を陸上で採用する場合には、泡沫分離処理により発生した泡沫を分離して処理しなければならない。本発明によれば、水中の汚染物質を吸着した気泡6を浮力によって、導入口2から取水対象とする水自体へそのまま戻すことができるため、汚染物質を吸着した気泡6を別途処理するための手段を設ける必要がなく、より効率良く処理を行うことができる。また、取水升1は、非特許文献2に記載されるような水中でろ過を行う場合のように、広く安定した海底面を必要としないため、設置の簡便性と汚染物質の除去に優れた取水装置を提供することができる。 For example, when the foam separation treatment is adopted on land for the purpose of reducing TEP and the like, the foam generated by the foam separation treatment must be separated and treated. According to the present invention, the bubbles 6 adsorbing contaminants in water can be directly returned to the water itself to be taken from the inlet 2 by buoyancy, so that the bubbles 6 adsorbing contaminants can be treated separately. It is possible to perform the processing more efficiently without providing any means. In addition, the intake chamber 1 does not require a wide and stable sea bottom as in the case of performing filtration in water as described in Non-Patent Document 2, and thus is excellent in ease of installation and removal of pollutants. A water intake device can be provided.

膜のファウリング物質として、溶存有機物や取水箇所の水質が影響を及ぼし、高濁度の原水が膜の閉塞の原因になる場合がある。本実施形態に係る取水装置及び取水方法によれば、取水前に膜のファウリング物質となる汚染物質を予め除去することができるため、取水して陸上で前処理を行う場合においても前処理の負担を小さくすることができる。 As a fouling substance of the membrane, dissolved organic matter and water quality at the intake point may affect, and high turbidity raw water may cause clogging of the membrane. According to the water intake device and the water intake method according to the present embodiment, it is possible to previously remove the contaminants that become the fouling substances of the membrane before water intake, so that even when water is taken and pretreatment is performed on land, The burden can be reduced.

よって、取水された水を前処理し、前処理を行った処理水を膜分離等を用いて水処理するような水処理設備へ導入することにより、特に安定的に水処理を進めることができる。また、本実施形態に係る取水装置及び取水方法は、海水淡水化、製塩事業、養殖、水族館などの魚類など市域事業分野、浄水場などの各種取水を必要とする施設に好適に用いられるものである。 Therefore, by pretreating the taken-in water and introducing the pretreated water into a water treatment facility that uses water treatment such as membrane separation, the water treatment can be carried out particularly stably. .. In addition, the water intake device and the water intake method according to the present embodiment are preferably used for seawater desalination, salt production, aquaculture, urban areas such as fish such as aquariums, water purification plants, and other facilities that require water intake. is there.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Hereinafter, examples of the present invention will be shown together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the present invention.

(実施例1)
図3に示す取水装置を海水中に浸漬して取水操作を行った。図3に示すように、基準面(A.P:荒川工事基準面)から4.0mの深さまで開口部を設け、これを導入口2として、海水を取水升1内へ流入させた。基準面から7.0mの深さに底面がくるように取水升1を配置し、基準面6.0mの深さに気泡発生手段3を配置した。取水手段4の取水口41が、気泡発生手段3よりも0.5mほど下(基準面から6.5mの深さ)になるように配置した。気泡発生手段3として気泡径100μm(製品仕様)の気泡を発生させるセラミック製散気管を使用し、取水手段4からの取水量を20L/分とし、気泡発生手段3からの散気量を10L/分とした。取水配管径は50mm、取水升1の断面積は1m2とした。
(Example 1)
The water intake device shown in FIG. 3 was immersed in seawater to perform water intake operation. As shown in FIG. 3, an opening was provided to a depth of 4.0 m from the reference surface (AP: Arakawa construction reference surface), and this was used as an inlet 2, and seawater was introduced into the water chamber 1. The water intake 1 was arranged so that the bottom surface came to a depth of 7.0 m from the reference surface, and the bubble generating means 3 was arranged to a depth of 6.0 m from the reference surface. The water intake 41 of the water intake means 4 was arranged to be 0.5 m below the bubble generating means 3 (depth of 6.5 m from the reference plane). As the bubble generating means 3, a ceramic air diffusing tube for generating bubbles having a bubble diameter of 100 μm (product specification) is used, the amount of water taken from the water taking means 4 is 20 L/min, and the amount of air taken from the bubble generating means 3 is 10 L/min. Minutes The diameter of the water intake pipe was 50 mm, and the cross-sectional area of the water intake chamber 1 was 1 m 2 .

図5(a)に示すように、散気を1時間毎に繰り返し、散気した場合としない場合の濁度、全炭素濃度(TOC)、溶存有機炭素濃度(DOC)、生体外分泌高分子粒子(TEP)濃度の時間毎の変化を観察した。結果を図5(b)〜図5(e)に示す。なお、本実施例においては、取水した水中のTOCは燃焼酸化方式によるTOC分析法によって、DOCは孔径1μmのガラスフィルターにてろ過したろ過液を上述のTOC分析法で分析した。TEPは、海水試料を孔径0.4μmのポリカーボネート製の濾紙で濾過し、濾紙表面に捕捉された試料をアルシアンブルーにて染色し、分光光度計によりキサンタンガム(XG)を標準として測定し、単位はμg−XG/Lで示した。本分析方法によって定量したTEPは、酸性ムコ多糖類である。散気を行った場合を実施例1とし、散気を行わなかった場合を比較例1として、実施例1と比較例1の水質平均値を表1に示す。 As shown in FIG. 5(a), air diffusion is repeated every hour, and turbidity with and without air diffusion, total carbon concentration (TOC), dissolved organic carbon concentration (DOC), ex vivo secretory polymer particles The change in (TEP) concentration with time was observed. The results are shown in FIGS. 5(b) to 5(e). In this example, TOC in the taken-in water was analyzed by the TOC analysis method by the combustion oxidation method, and DOC was filtered by a glass filter having a pore size of 1 μm, and the filtrate was analyzed by the above-mentioned TOC analysis method. TEP is a unit measured by filtering a seawater sample with a filter paper made of polycarbonate having a pore size of 0.4 μm, staining the sample captured on the filter paper surface with alcian blue, and measuring with xanthan gum (XG) as a standard by a spectrophotometer. Is shown in μg-XG/L. TEP quantified by this analysis method is an acidic mucopolysaccharide. Table 1 shows the water quality average values of Example 1 and Comparative Example 1, where the case of performing air diffusion is Example 1 and the case of not performing air diffusion is Comparative Example 1.

表1に示すように、実施例1によって、海水中の濁度が低減するともに有機物量であるTOC、DOCも低下するという結果が得られた。また、実施例1では平均値で濁度が51%、TEPが37%に低減された。 As shown in Table 1, the results obtained in Example 1 show that the turbidity in seawater is reduced and the TOC and DOC, which are organic matter amounts, are also reduced. In Example 1, the turbidity was reduced to 51% and the TEP was reduced to 37% on average.

(実施例2)
図3に示す取水装置を浄水用の取水に適用した。実施例2では、図6(a)に示すように、散気を24時間毎に繰り返し、散気した場合としない場合の濁度、全炭素濃度(TOC)、溶存有機炭素濃度(DOC)、陰イオン界面活性剤濃度、生体外分泌高分子粒子(TEP)濃度の時間毎の変化を観察した。結果を図6(b)〜図6(f)に示す。実施例2においては、取水量を10L/分とし、気泡発生手段3からの散気量を5L/分とした。取水配管径は25mm、取水升1の断面積は0.5m2とした。他の条件は実施例1と同様である。
(Example 2)
The water intake device shown in FIG. 3 was applied to water intake for water purification. In Example 2, as shown in FIG. 6( a ), air diffusion was repeated every 24 hours, and turbidity with and without air diffusion, total carbon concentration (TOC), dissolved organic carbon concentration (DOC), Changes in the anionic surfactant concentration and the in vitro secretory polymer particle (TEP) concentration over time were observed. The results are shown in FIGS. 6(b) to 6(f). In Example 2, the amount of water taken in was 10 L/min, and the amount of air diffused from the bubble generating means 3 was 5 L/min. The diameter of the water intake pipe was 25 mm, and the cross-sectional area of the water intake chamber 1 was 0.5 m 2 . Other conditions are the same as those in the first embodiment.

散気を行った場合を実施例2とし、散気を行わなかった場合を比較例2として、実施例2と比較例2の水質平均値を表2に示す。 Table 2 shows the water quality average values of Example 2 and Comparative Example 2, where the case of performing air diffusion is Example 2 and the case of not performing air diffusion is Comparative Example 2.

表2に示すように、実施例2によって、濁度、TOC、DOC、陰イオン界面活性剤、TEPのいずれも低減した。また、実施例2では、平均値で濁度が45%、TOCが58%、DOCが41%、TEPが40%に低減された。陰イオン界面活性剤は、比較例2においては期間中6日間検出されたが、実施例2では一度も検出されなかった。 As shown in Table 2, Example 2 reduced turbidity, TOC, DOC, anionic surfactant, and TEP. In Example 2, the turbidity was reduced to 45%, the TOC was reduced to 58%, the DOC was reduced to 41%, and the TEP was reduced to 40% on average. The anionic surfactant was detected in Comparative Example 2 for 6 days during the period, but was never detected in Example 2.

1…取水升
2…導入口
3…気泡発生手段
4…取水手段
5…仕切板
6…気泡
10…吸着分離部
11…脱気部
12…気泡侵入抑制部
41…取水口
DESCRIPTION OF SYMBOLS 1... Water intake 2... Inlet port 3... Air bubble generating means 4... Water intake means 5... Partition plate 6... Air bubble 10... Adsorption separation part 11... Degassing part 12... Air bubble invasion suppression part 41... Water intake

Claims (7)

取水対象とする水中に水の導入口を備える取水升を配置し、前記導入口から前記取水升内に前記水を下向流で取り入れるとともに前記取水升の下部から気体を送り込んで気泡を発生させて前記気泡を上向流で流し、前記気泡と前記水とを対向流で接触させることにより前記水に含まれる汚染物質を前記気泡に吸着させて分離し、前記水中の前記汚染物質を吸着した前記気泡を浮力によって前記導入口から前記取水対象とする水中へ放出するとともに、前記気泡を分離した後の水を採取することを特徴とする取水方法。 An intake box having a water inlet is placed in the water to be taken in, and the water is taken in a downward flow from the inlet into the intake box and a gas is sent from the lower part of the intake box to generate bubbles. The bubbles are caused to flow in an upward flow, and the bubbles and the water are brought into contact with each other in an opposite flow to adsorb and separate the pollutants contained in the water from the bubbles, thereby adsorbing the pollutants in the water. A method of water intake, characterized in that the air bubbles are discharged from the inlet into the water to be water intake by buoyancy, and the water after the air bubbles are separated is collected. 前記気泡と接触した後に気泡と分離した水を採取することが、前記取水升内において前記気泡が前記水と接触する領域よりも下方から前記取水升内の水を汲み上げることを含む請求項1に記載の取水方法。 Taking a water separated from the bubbles after contact with the bubbles, to claim 1, wherein the bubble in said intake masses comprises pumping water in the water intake boxes from below the region in contact with the water Water intake method described. 前記取水升内へ流入する水の下向流の流速が、前記取水升内を上昇する気泡の上昇速度よりも小さくなるように、前記取水升内から水を引き抜くことを含む請求項1又は2に記載の取水方法。 The flow rate of the downward flow of the water flowing into the water intake in trout, the intake as squares in smaller than the rising speed of the bubbles rise, according to claim 1 or 2 comprising withdrawing the water from the water intake inside boxes Water intake method described in. 請求項1〜のいずれか1項に記載の取水方法によって取水された水を陸上で前処理することを含む水処理方法。 Water treatment method comprising pretreatment on land the intake water by intake process according to any one of claims 1-3. 取水対象とする水中に配置され、水の導入口を備える取水升と、
前記取水升内の水と対向流で接触することにより前記水に含まれる汚染物質を吸着させるための気泡を発生させる気泡発生手段と、
前記水中の前記汚染物質を吸着した前記気泡を浮力によって前記導入口から前記取水対象とする水中へ放出させて前記気泡を分離した後の水を採取する取水手段と
を備えることを特徴とする取水装置。
An intake box that is placed in the water to be taken and has a water inlet,
Bubble generating means for generating bubbles for adsorbing contaminants contained in the water by contacting with water in the water intake in a counter flow ,
Water intake means for releasing the air bubbles adsorbing the contaminants in the water from the inlet into the water to be water intake by buoyancy and collecting water after separating the air bubbles. apparatus.
前記取水手段の取水口が、前記取水升内において前記気泡発生手段よりも下方に配置されていることを特徴とする請求項に記載の取水装置。 The water intake device according to claim 5 , wherein the water intake port of the water intake unit is arranged below the bubble generating unit in the water intake chamber. 前記取水升が、
前記導入口から前記水を下向流で導入するとともに前記取水升の下部から前記導入口へと前記気泡を上向流で流すことにより、前記気泡と前記水とを対向流で接触させる吸着分離部と、
前記取水升の下部において前記吸着分離部と連通し、前記気泡と前記水がお互いの流れによって分離する脱気部と、
前記脱気部内に配置された取水配管と
を備えることを特徴とする請求項またはに記載の取水装置。
The water intake is
Adsorption separation in which the water and the water are brought into contact with each other in a countercurrent manner by introducing the water in a downward flow from the introduction port and causing the bubbles to flow in an upward flow from the lower part of the water intake chamber to the introduction port. Department,
A deaeration part that communicates with the adsorption separation part in the lower part of the water intake box and separates the bubbles and the water by mutual flow;
The intake system according to claim 5 or 6 , further comprising: an intake pipe arranged in the deaerator.
JP2017051726A 2017-03-16 2017-03-16 Water intake method and water intake device Active JP6720104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017051726A JP6720104B2 (en) 2017-03-16 2017-03-16 Water intake method and water intake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017051726A JP6720104B2 (en) 2017-03-16 2017-03-16 Water intake method and water intake device

Publications (2)

Publication Number Publication Date
JP2018153742A JP2018153742A (en) 2018-10-04
JP6720104B2 true JP6720104B2 (en) 2020-07-08

Family

ID=63717027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017051726A Active JP6720104B2 (en) 2017-03-16 2017-03-16 Water intake method and water intake device

Country Status (1)

Country Link
JP (1) JP6720104B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801536A (en) * 2007-07-31 2010-08-11 水之纤技术公司 Water remediation and biosolids collection system and associated methods
JP6170552B2 (en) * 2013-05-10 2017-08-02 水ing株式会社 Seawater desalination apparatus and method
JP6381412B2 (en) * 2014-11-07 2018-08-29 水ing株式会社 Seawater desalination apparatus and method

Also Published As

Publication number Publication date
JP2018153742A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US20130264254A1 (en) Oil-containing wastewater treatment system
JP6170552B2 (en) Seawater desalination apparatus and method
EA023276B1 (en) Suction device movable along water body bottom for water filtering from said water body
RU2630541C2 (en) Saline water treatment device and method
US20210001273A1 (en) Methods, systems, and compositions for delivery of nanobubbles in water treatment systems
RU2410336C2 (en) Apparatus for purifying liquid, method of washing hollow-fibre filter and application of method of washing hollow-fibre filter
JP2014057931A (en) Water production method
JP6381412B2 (en) Seawater desalination apparatus and method
JP2019209241A (en) Device and method of decontaminating scrubber effluent, and salinity difference power generation system
CN203360216U (en) Self-cleaning ultrasonic MBR (membrane bioreactor) system
JP6720104B2 (en) Water intake method and water intake device
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
KR100999945B1 (en) Air relif device for membrane filter pipe
JP2012101154A (en) Sewage cleaning apparatus and sewage cleaning method
CN110078175A (en) A kind of ultrafiltration and air-floating integral unit and application
KR102230178B1 (en) Wastewater Treatment System used Booster Bubble For Dairy Farming
RU2547498C1 (en) Physicochemical membrane bioreactor
CN108128848A (en) A kind of novel water purification processing method
KR101779119B1 (en) Ballast water treatment system and method
CN205999228U (en) Garbage percolation liquid treating system
JP2007268415A (en) Immersion type membrane separation apparatus and water producing method
CN203728671U (en) Emission reduction system after washing with ultrapure water in clean production
KR102151055B1 (en) Complex-type water treatment apparatus using submersed membrane modules
KR102315906B1 (en) Membrane filtration for advanced water treatment device using hydraulic head differential
CN109650600B (en) Industrial wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200617

R150 Certificate of patent or registration of utility model

Ref document number: 6720104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250