JP6719195B2 - Washing machine - Google Patents

Washing machine Download PDF

Info

Publication number
JP6719195B2
JP6719195B2 JP2015225256A JP2015225256A JP6719195B2 JP 6719195 B2 JP6719195 B2 JP 6719195B2 JP 2015225256 A JP2015225256 A JP 2015225256A JP 2015225256 A JP2015225256 A JP 2015225256A JP 6719195 B2 JP6719195 B2 JP 6719195B2
Authority
JP
Japan
Prior art keywords
washing machine
vibration
tub
washing
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015225256A
Other languages
Japanese (ja)
Other versions
JP2017093475A (en
Inventor
邦彦 法月
邦彦 法月
岩路 善尚
善尚 岩路
中津川 潤之介
潤之介 中津川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2015225256A priority Critical patent/JP6719195B2/en
Publication of JP2017093475A publication Critical patent/JP2017093475A/en
Application granted granted Critical
Publication of JP6719195B2 publication Critical patent/JP6719195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Washing Machine And Dryer (AREA)

Description

本発明は洗濯機に関するもで,エネルギー効率の改善および低振動化の技術に関する。 The present invention relates to a washing machine, and more particularly to a technique for improving energy efficiency and reducing vibration.

近年,温室効果ガスによる地球温暖化を抑制するために,化石燃料消費量の抑制や設備運用方法の改善・効率化等が促進されている。また,一般家庭においても光熱費削減を目的とした省エネルギー化の意識が向上し,エネルギー効率のより高い家庭用電気製品がよく好まれる。 In recent years, in order to suppress global warming due to greenhouse gases, suppression of fossil fuel consumption, improvement of equipment operation methods, efficiency improvement, etc. have been promoted. Further, even in general households, awareness of energy saving for the purpose of reducing utility costs is improved, and household appliances with higher energy efficiency are often preferred.

洗濯機,例えばドラム式洗濯乾燥機は,略水平もしくは前方(衣類投入口)を上に向けて傾斜させた洗濯槽内に衣類を投入して洗い,すすぎ,脱水,乾燥を行う。洗い,すすぎ,乾燥時にはドラムを低速で回転させ,ドラム下方に溜まった衣類を持ちあげて,ドラム上方から落下させるタンブリング動作を行う。このタンブリング動作により衣類に機械的な力を与えて洗浄を行っている。脱水時には洗濯槽を高速に回転させ,回転による遠心力の力で衣類から水分を衣類の外に押し出す遠心脱水を行う。 BACKGROUND ART A washing machine, for example, a drum type washer/dryer, puts clothes in a washing tub which is substantially horizontal or is inclined with its front (clothing inlet) facing upward, washing, rinsing, dehydrating and drying. At the time of washing, rinsing, and drying, the drum is rotated at a low speed, the clothing accumulated under the drum is lifted, and the tumbling operation is performed to drop it from above the drum. By this tumbling operation, the clothes are washed by applying a mechanical force. At the time of spin-drying, the washing tub is rotated at a high speed, and centrifugal water is pushed out of the clothes by the centrifugal force of the spin.

洗濯機は衣類の偏りにより回転アンバランスが発生する。特に脱水時に水を含んだ衣類が偏りによる回転アンバランスは,振動・騒音の発生源となり問題となっている。その対策として洗濯機,中でもドラム式洗濯機はバネとダンパを組み合わせたサスペンションで洗濯槽を弾性支持し,防振対策を行っている。 Rotational imbalance occurs in the washing machine due to uneven clothes. In particular, rotational imbalance due to uneven distribution of clothes containing water during dehydration is a source of vibration and noise, which is a problem. As a countermeasure, a washing machine, especially a drum type washing machine, uses a suspension that combines a spring and a damper to elastically support the washing tub to take measures against vibration.

さらなる対策として洗濯槽の振動に応じ,サスペンションの減衰率を可変制御して制振制御する技術が開発されている。例えば特開2012-245330号(特許文献1)はオイルダンパ内に磁性体を挿入し,外部コイルから磁場を発生することでダンパの減衰力を制御している。さらにオイルダンパ内の磁性体の振動により発電も可能なであることが示されている。また,特開2011-106571号(特許文献2)はリニアアクチュエータをモータとして適用し,さらにとバネを組み合わせ,洗濯槽の振動をアクティブ制御する技術が示されている。また運転状況によってはリニアモータを用いて振動エネルギーから発電し,電気エネルギーを回収可能であることが示されている。 As a further measure, technology has been developed to control the damping by variably controlling the damping rate of the suspension according to the vibration of the washing tub. For example, Japanese Patent Laid-Open No. 2012-245330 (Patent Document 1) controls a damping force of a damper by inserting a magnetic material into an oil damper and generating a magnetic field from an external coil. Further, it has been shown that it is possible to generate electricity by vibrating the magnetic material in the oil damper. Further, Japanese Patent Laid-Open No. 2011-106571 (Patent Document 2) discloses a technique in which a linear actuator is applied as a motor, and a spring is further combined to actively control vibration of a washing tub. In addition, it has been shown that electric energy can be recovered by generating power from vibration energy using a linear motor depending on the operating conditions.

特開2012-245330号JP2012-245330 特開2011-106571号JP 2011-106571

上記の従来技術を適用した洗濯機の問題点を説明し,本発明が解決しようとする課題について述べる。 The problems of the washing machine to which the above conventional technique is applied will be described, and the problems to be solved by the present invention will be described.

先ず特許文献1の場合,外部コイルからの磁場によってダンパ内の磁性体の流動性が変化するため,可変ダンパにはなる。しかし,ダンパの減衰力は磁場のOn-Offによる2段階切替レベルや,強中弱レベルの大雑把な制御となり,脱水時に短時間で高速まで回転する洗濯槽の振動を制御するには不十分であった。一方,発電能力に関してはシリンダ壁を介して外部コイルと磁性体が配置されているため,極間が広くなり,低効率の発電しかできない。 First, in the case of Patent Document 1, since the fluidity of the magnetic material in the damper changes due to the magnetic field from the external coil, the variable damper is obtained. However, the damping force of the damper is a rough control of two-step switching level by magnetic field on-off and strong, medium and weak level, and it is not sufficient to control the vibration of the washing tub which rotates at high speed in a short time during dehydration. there were. On the other hand, regarding the power generation capacity, since the external coil and the magnetic body are arranged via the cylinder wall, the gap between the electrodes is wide, and only low-efficiency power generation is possible.

次に,特許文献2の場合,商用交流電源から直流電源を生成して,振動を相殺するようにベクトル制御してリニアモータを能動的に制御している。具体的には制振対象物に位置センサを設置し,演算回路で速度と加速度を算出し,その情報をリニアモータの制御にフィードバックする複雑な回路構成とモータ構成となっている。そのため,システムのコストは高額となり,一般耐久消費財である洗濯機への適用は不向きである。 Next, in the case of Patent Document 2, a DC power source is generated from a commercial AC power source, and vector control is performed so as to cancel the vibration, thereby actively controlling the linear motor. Specifically, it has a complicated circuit configuration and motor configuration in which a position sensor is installed on an object to be damped, speed and acceleration are calculated by an arithmetic circuit, and the information is fed back to the control of the linear motor. Therefore, the system cost is high and it is not suitable for application to washing machines, which are general durable goods.

さらに,従来技術はいずれも振動により発電も可能としているが,得られる交流電流は商用電源(100V,50Hzまたは60Hz)と異なる特性の電気であるにもかかわらず,その電気をどのように変換して洗濯機で活用するのか,具体的な開示は一切示されていない。 Furthermore, all of the conventional techniques enable power generation by vibration, but how to convert the obtained AC current, even though the AC current obtained is electricity with characteristics different from those of the commercial power source (100V, 50Hz or 60Hz). There is no specific disclosure of whether to utilize it in a washing machine.

そこで、本発明の目的は、低コストかつ高エネルギー効率の洗濯機を提供することである。 Therefore, an object of the present invention is to provide a low-cost and highly energy-efficient washing machine.

上記の課題を解決するために、本発明の洗濯機ではその一例として、筐体と、前記筐体内において衣類を収容する洗濯槽と、前記洗濯槽を内包する外槽と、前記洗濯槽を回転駆動する駆動機構と、前記駆動機構を制御する主回路と、前記外槽を前記筐体に弾性支持する防振支持機構と、前記防振支持機構に結線された昇圧回生回路と、を有し、前記防振支持機構はバネとリニア発電機とで構成され、前記リニア発電機は巻線を備える固定子と、永久磁石を備える可動子とを有し、前記昇圧回生回路は、可変抵抗を有し、前記昇圧回生回路で前記リニア発電機において発電した交流電流を整流すると共に昇圧処理して、前記主回路に通電することにより、前記洗濯槽の回転による前記リニア発電機の磁束の変化に応じて前記可変抵抗を制御して回生する構成とする

In order to solve the above problems, in the washing machine of the present invention , as an example, a casing, a washing tub for containing clothes in the casing, an outer tub for enclosing the washing tub, and a rotating washing tub A drive mechanism for driving, a main circuit for controlling the drive mechanism, an anti-vibration support mechanism for elastically supporting the outer tub to the housing, and a step-up regenerative circuit connected to the anti-vibration support mechanism. The anti-vibration support mechanism is composed of a spring and a linear generator, the linear generator has a stator having windings and a mover having permanent magnets, and the step-up regenerative circuit has a variable resistance. And rectifying and boosting the alternating current generated in the linear generator by the boost regeneration circuit and energizing the main circuit to change the magnetic flux of the linear generator due to the rotation of the washing tub. a configuration in which the regeneration by controlling the variable resistor in accordance with the.

本発明によれば,低コストかつ高エネルギー効率の洗濯機を提供することが出来る。 According to the present invention, it is possible to provide a low-cost and highly energy-efficient washing machine.

本発明の実施例1に係る洗濯機を示す斜視図である。1 is a perspective view showing a washing machine according to a first embodiment of the present invention. 本発明の実施例1に係る洗濯機を示す右側面断面図である。1 is a right side sectional view showing a washing machine according to a first embodiment of the present invention. 本発明の実施例1に係る洗濯機の防振支持機構を示す図である。FIG. 3 is a diagram showing a vibration isolation support mechanism of the washing machine according to the first embodiment of the present invention. 本発明の実施例1に係る洗濯機のリニア発電機を示す図である。1 is a diagram showing a linear generator of a washing machine according to a first embodiment of the present invention. 本発明の実施例1に係る洗濯機の結線図である。1 is a wiring diagram of a washing machine according to a first embodiment of the present invention. 本発明の実施例1に係る洗濯機の回転数と振動を示すグラフである。3 is a graph showing the rotation speed and vibration of the washing machine according to the first embodiment of the present invention. 本発明の実施例2に係る洗濯機の結線図である。FIG. 6 is a wiring diagram of a washing machine according to a second embodiment of the present invention. 本発明の実施例3に係る洗濯機の結線図(その1)である。FIG. 6 is a wiring diagram (No. 1) of the washing machine according to the third embodiment of the present invention. 本発明の実施例3に係る洗濯機の結線図(その2)である。FIG. 6 is a wiring diagram (No. 2) of the washing machine according to the third embodiment of the present invention.

以下,本発明を実施するための形態の例について,添付図面を参照しながら説明する。なお,各図において共通の構成要素には,同一の符号を付して重複する説明を省略する。 Hereinafter, an example of a mode for carrying out the present invention will be described with reference to the accompanying drawings. In each figure, common components are designated by the same reference numerals, and redundant description will be omitted.

(実施例1)
図1は本発明の実施例1に係る洗濯機を示す斜視図である。図2は本発明の実施例1に係る洗濯機を示す右側断面図である。実施例では洗濯機としてドラム式洗濯乾燥機に適用した例を説明する。
(Example 1)
1 is a perspective view showing a washing machine according to a first embodiment of the present invention. FIG. 2 is a right side sectional view showing the washing machine according to the first embodiment of the present invention. In the embodiment, an example applied to a drum type washer/dryer as a washing machine will be described.

洗濯機の外郭を構成する筐体1は,ベース1aに上に取り付けられており,左右の側板1b,前面カバー1c,背面カバー(図示せず),上面カバー1d,下部前面カバー1eで構成し,箱形状となっている。 The casing 1 that constitutes the outer casing of the washing machine is mounted on the base 1a, and is composed of left and right side plates 1b, a front cover 1c, a rear cover (not shown), a top cover 1d, and a lower front cover 1e. ,It has a box shape.

ドア2は前面カバー1cの略中央部に設けた衣類を出し入れするための投入口を塞ぐものである。 The door 2 closes an entrance provided at a substantially central portion of the front cover 1c for putting in and taking out clothes.

筐体1の上部中央に設けた操作・表示パネル3は,電気スイッチ4,操作スイッチ5,表示器6を備える。 The operation/display panel 3 provided in the center of the upper part of the housing 1 includes an electric switch 4, an operation switch 5, and an indicator 6.

図2に示す洗濯槽7は回転可能に支持されており,その外周壁および底壁に通水および,通風のための多数の貫通孔を有し,前側端部に衣類を出し入れするための開口部7aを設けてある。洗濯槽7の内側には軸方向に伸びるリフタ7bが複数設けてあり,洗濯,乾燥時に洗濯槽7を回転すると,衣類はリフタ7bと遠心力で外周壁に沿って持ち上がり,重力で落下するような動きを繰り返す。洗濯槽7の回転中心軸は,水平または開口部7a側が高くなるように傾斜している。 The washing tub 7 shown in FIG. 2 is rotatably supported, has a large number of through holes for water and ventilation in its outer peripheral wall and bottom wall, and has an opening for taking clothes in and out at the front end. A part 7a is provided. A plurality of lifters 7b extending in the axial direction are provided inside the washing tub 7. When the washing tub 7 is rotated during washing and drying, the clothes are lifted along the outer peripheral wall by the centrifugal force with the lifter 7b and fall by gravity. Repeats such movements. The central axis of rotation of the washing tub 7 is inclined horizontally or so that the opening 7a side becomes higher.

円柱状の外槽8は,水槽8aと槽カバー8bで構成している。外槽8は洗濯槽7を同軸上に内包し,後側端面の外側中央に駆動機構9(モータ)が取り付けられている。駆動機構9の回転軸は外槽8を貫通し,洗濯槽7と結合している。 The cylindrical outer tank 8 is composed of a water tank 8a and a tank cover 8b. The outer tub 8 contains the washing tub 7 coaxially, and the drive mechanism 9 (motor) is attached to the outer center of the rear end face. The rotating shaft of the drive mechanism 9 penetrates the outer tub 8 and is connected to the washing tub 7.

外槽8の底面最下部には排水口8cが設けてあり,排水ホース10が接続している。排水ホース10の途中には排水弁(図示せず)が設けてあり,排水弁を閉じて給水することで外槽8に水をため,排水弁を開いて外槽8内の水を機外へ排出する。外槽8の下部には振動検出装置8dを設けており,外槽8の振動を測定している。測定した振動とあらかじめ設定した閾値を比較し,振幅が大きい時は洗濯槽7の回転を停止し安全な動作を行う。 A drain port 8c is provided at the bottom of the bottom of the outer tub 8, and a drain hose 10 is connected to the drain port 8c. A drain valve (not shown) is provided in the middle of the drain hose 10, and the drain valve is closed to supply water to the outer tub 8, and the drain valve is opened to remove the water in the outer tub 8 from the outside of the machine. To discharge. A vibration detector 8d is provided below the outer tank 8 to measure the vibration of the outer tank 8. The measured vibration is compared with a preset threshold value, and when the amplitude is large, the rotation of the washing tub 7 is stopped and safe operation is performed.

送風ユニット11は筐体1の上部に配置しており,送風用のファンやヒータ(いずれも図示せず),が組込まれている。発熱したヒータにファンで風を送り,洗濯槽7に温風を吹き付けることで乾燥を行う。 The blower unit 11 is arranged in the upper part of the housing 1, and has a blower fan and a heater (neither shown) incorporated therein. Air is blown by a fan to the heater that has generated heat, and hot air is blown to the washing tub 7 for drying.

外槽8は,下側をベース1aに固定された左右一対の防振支持機構12によって防振支持している。図3に防振支持機構12の拡大図を示す。防振支持機構12はバネ13とリニア発電機14で構成される。ここで,弾性部はバネに限定されるものではなく,弾性を有する部材であればゴムや油圧を利用する機構などを適用してもよい。 The lower portion of the outer tub 8 is supported by a pair of left and right anti-vibration support mechanisms 12 fixed to the base 1a. FIG. 3 shows an enlarged view of the vibration isolation support mechanism 12. The vibration isolation support mechanism 12 is composed of a spring 13 and a linear generator 14. Here, the elastic part is not limited to the spring, and a mechanism using rubber or hydraulic pressure may be applied as long as it has elasticity.

図4にリニア発電機14の拡大図を示す。リニア発電機14は固定子15と可動子16とから構成される。固定子15はコア17(電磁鋼板の積層体)に巻線18を備え,通電することで電磁石となる。可動子16は金属板19に永久磁石20が添付または勘合している。可動子16の一端は外槽8に,もう一端はバネ13と固定する。これにより可動子16は外槽8の振動によって往復運動し,リニア発電機14は発電する。 FIG. 4 shows an enlarged view of the linear generator 14. The linear generator 14 is composed of a stator 15 and a mover 16. The stator 15 is provided with a winding 18 on a core 17 (a laminated body of electromagnetic steel plates) and becomes an electromagnet when energized. The mover 16 has a permanent magnet 20 attached to or fitted to a metal plate 19. One end of the mover 16 is fixed to the outer tank 8 and the other end is fixed to the spring 13. As a result, the mover 16 reciprocates due to the vibration of the outer tub 8, and the linear generator 14 generates electricity.

図5に実施例1における結線図を示す。リニア発電機14は昇圧回生回路21と結線されており,その先には駆動機構9を制御する主回路22と結線している。昇圧回生回路21は整流回路23,昇圧回路24,抵抗回路25からなっている。リニア発電機14の可動子16は外槽8の振動で受動的に往復運動するため,一般的なモータの制御に必要な位置センサもインバータも結線されていない。さらに,昇圧回生回路21は安価な素子を組み合わせたものであり,低コストで生産できる。一般に駆動機構9は商用電源(100V)よりも高電圧な200-300Vで駆動している。よって主回路22へ通電するには,昇圧回生回路21はリニア発電機で発電された電力を整流し,さらに例えば200-300Vまで昇圧して回生している。 FIG. 5 shows a connection diagram in the first embodiment. The linear generator 14 is connected to the step-up regenerative circuit 21, and is further connected to the main circuit 22 that controls the drive mechanism 9. The boost regeneration circuit 21 includes a rectifier circuit 23, a boost circuit 24, and a resistance circuit 25. Since the mover 16 of the linear generator 14 passively reciprocates due to the vibration of the outer tub 8, neither a position sensor nor an inverter required for general motor control is connected. Further, the boost regeneration circuit 21 is a combination of inexpensive elements, and can be manufactured at low cost. Generally, the drive mechanism 9 is driven by 200-300V, which is a higher voltage than the commercial power supply (100V). Therefore, in order to energize the main circuit 22, the step-up regenerative circuit 21 rectifies the electric power generated by the linear generator and further boosts the voltage to 200-300 V for regeneration.

次に,防振支持機構12の減衰率制御と昇圧回生回路21の抵抗制御の関係について述べる。ここで(リニア発電機)=(オイルダンパ)と仮定する。バネとオイルダンパとからなる防振支持機構の場合,減衰率を可変するには,オイルダンパの粘性係数Cを可変すればよい。オイルダンパの運動方程式は式(1)となる。次に,リニア発電機の推力の運動方程式は式(2)となる。リニア発電機を昇圧回生回路21に適用するには(1)と(2)が等価であり,式(3)となる。つまり,リニア発電機の磁束の変化に応じて抵抗Rを制御すれば減衰率を可変できる。具体的には,外槽8の振動によるリニア発電機14内の可動子16の運動に応じて,昇圧回生回路21の抵抗回路25を制御すれば減衰率を可変できる。 Next, the relationship between the damping rate control of the anti-vibration support mechanism 12 and the resistance control of the boost regeneration circuit 21 will be described. Here, it is assumed that (linear generator) = (oil damper). In the case of the anti-vibration support mechanism including the spring and the oil damper, the damping coefficient can be varied by varying the viscosity coefficient C of the oil damper. The equation of motion of the oil damper is equation (1). Next, the equation of motion for the thrust of the linear generator is given by equation (2). To apply the linear generator to the step-up regenerative circuit 21, (1) and (2) are equivalent and formula (3) is obtained. In other words, the damping factor can be varied by controlling the resistance R according to the change in the magnetic flux of the linear generator. Specifically, the damping rate can be changed by controlling the resistance circuit 25 of the step-up regenerative circuit 21 according to the movement of the mover 16 in the linear generator 14 due to the vibration of the outer tub 8.

Figure 0006719195
……(1)

ここに,FD:ダンパの力(N),C:粘性係数(Ns/m)。
Figure 0006719195
……(1)

Where F D : Damper force (N), C: Viscosity coefficient (Ns/m).

Figure 0006719195
……(2)

ここに,FL:リニア発電機の受ける力(N),Ke:モータ定数(N/A),I:電流(A),
V:電圧(V),R(抵抗),φ:リニア発電機の磁束(T)。
Figure 0006719195
……(2)

Here, F L: Power received by the linear generator (N), Ke: motor constant (N / A), I: current (A),
V: Voltage (V), R (resistance), φ: Linear generator magnetic flux (T).

Figure 0006719195
……(3)
Figure 0006719195
……(3)

次に,粘性係数を変化させた時の制振制御の効果について述べる。図6は1Kgのアンバランス時の外槽8の回転数と振動(変位)の一例である。従来品はバネ+オイルダンパの構成であり,オイルダンパの粘性係数C=400で一定である。最大振幅幅は約20mmであり,振動は回転に対し複数のモードで振動している。スタート直後に揺れ始め50回転ほどで一旦減少するものの,100回転あたりで急峻に変化し最大振幅となり,再度減少後,150-200回転にかけて増加し,400回転あたりまで10mm程度の振動後,500回転以上では約5mmの振動をしている。可変制御するには回転数に応じ,粘性抵抗Cを制御すればよいことがわかる。さらに,振動を精度よく制御するには粘性係数Cも複数または随時変化させることが重要であることがわかる。 Next, the effect of damping control when the viscosity coefficient is changed is described. FIG. 6 shows an example of the rotation speed and vibration (displacement) of the outer tub 8 when unbalanced at 1 kg. The conventional product has a spring + oil damper configuration and the viscosity of the oil damper is constant at C=400. The maximum amplitude width is about 20 mm, and vibration vibrates in multiple modes with respect to rotation. Although it started shaking immediately after the start and decreased once at about 50 rotations, it suddenly changed around 100 rotations and reached the maximum amplitude, then decreased again and increased over 150 to 200 rotations, and after about 10mm vibration up to 400 rotations, 500 rotations. Above, it vibrates about 5 mm. It is clear that variable control can be achieved by controlling the viscous resistance C according to the number of revolutions. Furthermore, it is important to change the viscosity coefficient C more than once or to change it as needed to control vibration accurately.

本実施例では、リニア発電機14の往復運動によって発電した電力を、昇圧回生回路21で整流すると共に、昇圧して、主回路22へ回生させている。これにより、例えば、商用電源(100V,50Hzまたは60Hz)を用いる場合であっても、異なる電気特性のリニア発電機14の往復運動によって発電した電力を回生させることが可能となる。また、リニア発電機14は、能動的に振動を抑制するモータ制御(可動子が伸長する制御)ではないため、低コストで生産できる。 In the present embodiment, the electric power generated by the reciprocating motion of the linear generator 14 is rectified by the step-up regenerative circuit 21, boosted, and regenerated to the main circuit 22. Thereby, for example, even when a commercial power source (100V, 50Hz or 60Hz) is used, it is possible to regenerate the electric power generated by the reciprocating motion of the linear generator 14 having different electric characteristics. Further, the linear generator 14 can be produced at low cost because it is not a motor control (control in which the mover extends) that actively suppresses vibration.

また、本実施例は,回転数に応じリニア発電機14の粘性係数Cを2000~0(Ns/m)へ減少する様に,昇圧回生回路21内に可変抵抗器を配置して抵抗値を変化させた。外槽8の回転数の検知は駆動機構9を制御する主回路22で検知している信号を流用でき,センサを増やさず低コストで簡単に制御が出来る。昇圧回生回路21の抵抗値を制御した結果,波形の形状は変化している。特に100回あたりの最大振幅は約10mmと半減するとともに,500回転以上では振幅1mmに制御できた。制振制御の有効性が可能であることを確認した。なお,ここでは制振制御に回転数を用いたが,振動検出装置8dの信号を活用してもよい。抵抗値の変化は可変抵抗器に限らず同様の効果がある素子ならばよい。 Further, in this embodiment, a variable resistor is arranged in the boost regeneration circuit 21 so that the viscosity value C of the linear generator 14 is reduced to 2000 to 0 (Ns/m) according to the rotation speed, and the resistance value is changed. Changed. The rotation speed of the outer tub 8 can be detected by using the signal detected by the main circuit 22 that controls the drive mechanism 9, and can be easily controlled at low cost without increasing the number of sensors. As a result of controlling the resistance value of the boost regenerative circuit 21, the shape of the waveform has changed. In particular, the maximum amplitude per 100 times was reduced to about 10 mm, and the amplitude could be controlled to 1 mm at 500 rotations or more. It was confirmed that the damping control was effective. Although the rotation speed is used for the damping control here, the signal of the vibration detection device 8d may be used. The change of the resistance value is not limited to the variable resistor and may be any element having the same effect.

(実施例2)
実施例2について図6を用いて説明する。実施例2と実施例1の違いは,昇圧回生回路21の通電先である。実施例2では昇圧回生回路21から操作表示パネル3に結線し通電している。上で述べたように,主回路22に通電するには200V以上に昇圧しなければならない。一方で制振効果目的に,昇圧回生回路21の抵抗値を制御すると,場合によって低圧の発電しかできない場合がある。低圧の電圧を200V以上まで昇圧するにはシステム効率が悪い。そのため,洗濯機内で比較的低圧で駆動している操作パネル3(なかでも表示器6)へ通電している。表示器6は液晶パネルやランプの点灯といったものであり,その素子は電球やLEDである。そのため数Vの発電エネルギーでも有効的にエネルギーを回生できる。場合によっては昇圧回路23を省略することも可能である。なお,ここでは操作パネル3へ通電したが,洗濯機内には送風ユニット11や給水システム,アラーム,タイマーなど,様々な電圧値で駆動するシステムを有しており,発電エネルギーに応じて最適のシステムに通電すればよい。さらに,発電時にリアルタイムで通電するのではなく,コンデンサや小型電池などの蓄電システムに充電後,洗濯機の運転モードに合わせて放電しても問題ない。
(Example 2)
Example 2 will be described with reference to FIG. The difference between the second embodiment and the first embodiment lies in the energization destination of the step-up regenerative circuit 21. In the second embodiment, the step-up regenerative circuit 21 is connected to the operation display panel 3 to energize it. As mentioned above, in order to energize the main circuit 22, the voltage must be boosted to 200 V or higher. On the other hand, if the resistance value of the step-up regenerative circuit 21 is controlled for the purpose of damping effect, only low-voltage power generation may be possible in some cases. System efficiency is low for boosting low voltage up to over 200V. Therefore, the operation panel 3 (in particular, the display 6) that is driven at a relatively low voltage in the washing machine is energized. The display 6 is for turning on a liquid crystal panel or a lamp, and its element is a light bulb or an LED. Therefore, energy can be effectively regenerated even with power generation energy of several V. In some cases, the booster circuit 23 can be omitted. Although the operation panel 3 is energized here, the washing machine has a system that drives at various voltage values such as a blower unit 11, a water supply system, an alarm, and a timer. Just energize. Furthermore, there is no problem if the electricity storage system such as a capacitor or a small battery is charged and then discharged according to the operation mode of the washing machine, rather than being energized in real time during power generation.

(実施例3)
図8に実施例3に係る洗濯機の結線図を示す。洗濯機は
に示した通り,複数個の防振支持機構12で外槽8を支持している。実施例3では,防振支持機構12と昇圧回生回路21の個数が異なっている場合である。具体的には1つの昇圧回生回路21に2つの防振支持機構12を制御した。つまり1つの昇圧回生回路21に2つのリニア発電機14を結線している。これにより昇圧回生回路21を省略でき,システムの低コスト化が可能である。
(Example 3)
FIG. 8 shows a wiring diagram of the washing machine according to the third embodiment. As shown in, the washing machine supports the outer tub 8 with a plurality of anti-vibration support mechanisms 12. In the third embodiment, the number of the vibration isolation support mechanism 12 and the number of the step-up regenerative circuits 21 are different. Specifically, two boosting support mechanisms 12 were controlled by one boost regeneration circuit 21. That is, two linear generators 14 are connected to one boosting regenerative circuit 21. As a result, the boost regenerative circuit 21 can be omitted, and the cost of the system can be reduced.

図9に実施例3に係る洗濯機の結線図(その2)を示す。2つのリニア発電機の電圧が大きく異なる場合は,昇圧回生回路21内の素子を適宜組換えることで制御することが可能である。なお,ここに示した回路図は一例であり限定するものでない。 FIG. 9 shows a wiring diagram (No. 2) of the washing machine according to the third embodiment. When the voltages of the two linear generators are significantly different, it is possible to control them by appropriately rearranging the elements in the boost regeneration circuit 21. It should be noted that the circuit diagram shown here is an example and not a limitation.

(実施例4)
実施例4は防振支持機構12の減衰率(リニア発電機14の粘性係数)を左右で異ならせている。例えば図1,図2において,洗濯槽7が左回転する場合,左の防振支持機構12の減衰率を大きくした方が振動は少なくなる。実施例1と2に記載の防振支持機構12はリニア発電機14の個数と昇圧回生回路21の個数が同数のため,左右それぞれの昇圧回生回路21の抵抗値を制御すればよい。実施例3の様に,1つの昇圧回生回路21で複数のリニア発電機14を制御する場合,リニア発電機14内の巻線18の巻数を異ならせたり,異なる磁気特性(残留磁束密度)の永久磁石20を適用することで制御可能である。これは式(3)中の磁束の変化dφを左右で異ならせることで,同一の抵抗値Rでも左右のリニア発電機14の粘性係数Cを変化させている。
(Example 4)
In the fourth embodiment, the damping ratio of the anti-vibration support mechanism 12 (viscosity coefficient of the linear generator 14) is different between the left and right. For example, in FIG. 1 and FIG. 2, when the washing tub 7 rotates counterclockwise, vibration is reduced by increasing the damping rate of the left vibration isolation support mechanism 12. Since the number of the linear generators 14 and the number of the step-up regenerative circuits 21 of the vibration isolation support mechanism 12 described in the first and second embodiments are the same, the resistance values of the left and right step-up regenerative circuits 21 may be controlled. When a plurality of linear generators 14 are controlled by one step-up regenerative circuit 21 as in the third embodiment, the number of windings of the windings 18 in the linear generator 14 is made different, and different magnetic characteristics (residual magnetic flux density) are obtained. It can be controlled by applying the permanent magnet 20. This is to change the viscosity coefficient C of the left and right linear generators 14 with the same resistance value R by making the change dφ of the magnetic flux in equation (3) different between the left and right.

1 筐体
1a ベース
1b 左右の側板
1c 前面カバー
1d 上面カバー
1e 下部前面カバー
2 ドア
3 操作・表示パネル
4 電気スイッチ
5 操作スイッチ
6 表示器
7 洗濯槽
7a 開口部
7b リフタ
8 外槽
8a 水槽
8b 槽カバー
8c 排水口
8d 振動検出装置
9 駆動機構
10 排水ホース
11 送風ユニット
12 防振支持機構
13 バネ
14 リニア発電機
15 固定子
16 可動子
17 コア
18 巻線
19 金属板
20 永久磁石
21 昇圧回生回路
22 主回路
22-3 操作表示パネル回路
23 整流回路
24 昇圧回路
25 抵抗回路
1 case
1a base
1b Left and right side plates
1c front cover
1d top cover
1e Lower front cover
2 doors
3 Operation/display panel
4 electrical switch
5 Operation switch
6 Indicator
7 washing tub
7a opening
7b lifter
8 outer tank
8a water tank
8b tank cover
8c drain
8d vibration detector
9 Drive mechanism
10 drain hose
11 Blower unit
12 Anti-vibration support mechanism
13 spring
14 linear generator
15 Stator
16 mover
17 core
18 windings
19 metal plate
20 permanent magnet
21 Step-up regenerative circuit
22 Main circuit
22-3 Operation display panel circuit
23 Rectifier circuit
24 Step-up circuit
25 resistor circuit

Claims (7)

筐体と、
前記筐体内において衣類を収容する洗濯槽と、
前記洗濯槽を内包する外槽と、
前記洗濯槽を回転駆動する駆動機構と、
前記駆動機構を制御する主回路と、
前記外槽を前記筐体に弾性支持する防振支持機構と、
前記防振支持機構に結線された昇圧回生回路と、を有し、
前記防振支持機構はバネとリニア発電機とで構成され、
前記リニア発電機は巻線を備える固定子と、永久磁石を備える可動子と、を有し、
前記昇圧回生回路は、可変抵抗を有し、
前記昇圧回生回路で前記リニア発電機において発電した交流電流を整流すると共に昇圧処理して、前記主回路に通電することにより、前記洗濯槽の回転による前記リニア発電機の磁束の変化に応じて前記可変抵抗を制御して回生することを特徴とする洗濯機。
A housing,
A washing tub for containing clothes in the housing,
An outer tub containing the washing tub,
A drive mechanism for rotationally driving the washing tub,
A main circuit for controlling the drive mechanism,
An anti-vibration support mechanism that elastically supports the outer tank on the housing,
A step-up regenerative circuit connected to the anti-vibration support mechanism,
The anti-vibration support mechanism is composed of a spring and a linear generator,
The linear generator has a stator including windings and a mover including permanent magnets,
The boost regenerative circuit has a variable resistance,
By rectifying and boosting the alternating current generated in the linear generator by the step-up regenerative circuit, and energizing the main circuit, the change in the magnetic flux of the linear generator due to the rotation of the washing tub is performed according to the change. A washing machine characterized by controlling a variable resistance for regeneration.
請求項1に記載の洗濯機において、
記洗濯槽の振動に応じて前記抵抗を制御することで、前記防振支持機構の減衰率を可変させることを特徴とする洗濯機。
The washing machine according to claim 1,
By controlling the resistance in response to vibration of the prior SL tub, a washing machine, characterized in that for varying the attenuation factor of the vibration isolating support mechanism.
請求項1又は2に記載の洗濯機において、
前記昇圧回生回路の個数が、リニア発電機の個数よりも少ないことを特徴とする洗濯機。
The washing machine according to claim 1 or 2,
The washing machine characterized in that the number of the booster regenerative circuits is smaller than the number of linear generators.
請求項3に記載の洗濯機において、
各々の前記リニア発電機のコイル巻数が異なっていることを特徴とする洗濯機。
The washing machine according to claim 3,
A washing machine in which the number of coil turns of each of the linear generators is different.
請求項3又は4に記載の洗濯機において、
各々の前記リニア発電機の磁石の種類が異なっていることを特徴とする洗濯機。
The washing machine according to claim 3 or 4,
A washing machine in which the types of magnets of the respective linear generators are different.
請求項2に記載の洗濯機において、
前記外槽の振動を検出する振動検出部を有し、
前記洗濯槽の振動は、前記振動検出部で検出した信号を用いることを特徴とする洗濯機。
The washing machine according to claim 2,
A vibration detection unit for detecting the vibration of the outer tank,
The vibration of the washing tub uses a signal detected by the vibration detection unit.
請求項1から6のいずれか1項に記載の洗濯機において、
前記リニア発電機により発電された電力を蓄える蓄電装置を備えることを特徴とする洗濯機。
The washing machine according to any one of claims 1 to 6,
A washing machine comprising a power storage device for storing electric power generated by the linear generator.
JP2015225256A 2015-11-18 2015-11-18 Washing machine Active JP6719195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015225256A JP6719195B2 (en) 2015-11-18 2015-11-18 Washing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015225256A JP6719195B2 (en) 2015-11-18 2015-11-18 Washing machine

Publications (2)

Publication Number Publication Date
JP2017093475A JP2017093475A (en) 2017-06-01
JP6719195B2 true JP6719195B2 (en) 2020-07-08

Family

ID=58804120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015225256A Active JP6719195B2 (en) 2015-11-18 2015-11-18 Washing machine

Country Status (1)

Country Link
JP (1) JP6719195B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6875249B2 (en) * 2017-10-16 2021-05-19 東芝三菱電機産業システム株式会社 Wave power generation system
CN113445268A (en) * 2020-03-26 2021-09-28 青岛海尔滚筒洗衣机有限公司 Clothes treating apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3943670B2 (en) * 1997-08-22 2007-07-11 義大 須田 Vibration isolator
JP3558914B2 (en) * 1999-03-10 2004-08-25 独立行政法人 科学技術振興機構 Energy recovery method and device using boost chopper
JP2001170389A (en) * 1999-12-20 2001-06-26 Sharp Corp Drum type washing machine
JP2011062346A (en) * 2009-09-17 2011-03-31 Toshiba Corp Damping device for drum washing machine and the drum washing machine
JP2011106571A (en) * 2009-11-17 2011-06-02 Toshiba Corp Vibration damping control system and electric equipment
JP2012148033A (en) * 2011-01-21 2012-08-09 Toshiba Corp Washing machine
JP5541230B2 (en) * 2011-05-31 2014-07-09 日立アプライアンス株式会社 Washing machine
JP5967396B2 (en) * 2013-06-21 2016-08-10 株式会社レック制御 Power generation device and shock absorber for generating power

Also Published As

Publication number Publication date
JP2017093475A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
TWI321176B (en) Drum type washing machine
TWI300103B (en) Drum type washing machine
KR20130014058A (en) Washing machine
JP2011062346A (en) Damping device for drum washing machine and the drum washing machine
JP4674601B2 (en) Drum washing machine
JP6719195B2 (en) Washing machine
JP2017093535A (en) Washing machine
US20120086383A1 (en) Dephasing control
JP2012223491A (en) Drum-type washing machine
JP4398889B2 (en) Motor drive device and washing machine
KR101258341B1 (en) Washing machine
JP5541230B2 (en) Washing machine
KR20170096381A (en) Control apparatus and method for regenerative energy of motor
JP4851910B2 (en) Drum washing machine
JP2011104141A (en) Washing machine
JP4935764B2 (en) Drum washing machine
JP2016146983A (en) Washing machine
JP2023154139A (en) washing machine
KR102281345B1 (en) A control circuit for driving a motor and a control method of a laundry treating apparatus including the control circuit.
JP2019143780A (en) Vibration control system and washing machine
JP2022012604A (en) washing machine
JP4665709B2 (en) Drum washing machine
JP2009100793A (en) Washing machine
JP2022044870A (en) washing machine
JP2024003865A (en) washing machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200616

R150 Certificate of patent or registration of utility model

Ref document number: 6719195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150