JP3943670B2 - Vibration isolator - Google Patents
Vibration isolator Download PDFInfo
- Publication number
- JP3943670B2 JP3943670B2 JP26259197A JP26259197A JP3943670B2 JP 3943670 B2 JP3943670 B2 JP 3943670B2 JP 26259197 A JP26259197 A JP 26259197A JP 26259197 A JP26259197 A JP 26259197A JP 3943670 B2 JP3943670 B2 JP 3943670B2
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- damper
- actuator
- capacitor
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Vibration Prevention Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は,外部からの振動の絶縁を目的とした防振装置に関わる技術である.
【0002】
【従来の技術】
ばねやダンパのみで構成されている受動的な制御装置よりも,アクチュエータを配置し防振対象に直接的に力を加えるアクティブ振動制御は,良好な振動絶縁能力を持つ.
【0003】
しかし,振動制御を行うために外部からエネルギーを供給する必要があり,そのことか,アクティブ振動制御の欠点にもなっている.
【0004】
【発明が解決しようとする課題】
本発明は,上記欠点を解消するもので,アクティブ振動制御に必要な全てのエネルギーを,系の中に配置されている発電機(ばね下(下側)のエネルギー回生ダンパ)から供給する.
【0005】
これにより外部からエネルギーを供給することなく,振動エネルギーを電気的なエネルギーとして蓄え,アクティブ振動制御を行う2自由度の,防振装置を実現することを目的とする.
【0006】
【課題を解決するための手段】
そのため,本発明の防振装置は,上側の質量及び上側のばねと下側の質量及び下側のばねとからなる2自由度の防振装置において,
前記下側の質量と前記下側のばねの外乱である振動ストロークの速度に比例した誘導電圧を発生して発電するばね下(下側)のエネルギー回生ダンパと,
その発電した電気を蓄えるコンデンサと,
該コンデンサによって蓄えられた電気により出力を発生させ,該出力により前記ばね上(上側)の質量と前記ばね上(上側)のばねの振動を制御するばね上(上側)のアクチュエータとを備えたものであることを特徴とする.
また,本発明の防振装置は,前記ばね下(下側)のエネルギー回生ダンパで発電された電圧が,前記コンデンサの電圧よりも低い場合は,前記コンデンサをはずし,抵抗のみを接続し,前記ばね下(下側)のエネルギー回生ダンパをダンパに切り替える第1のリレースイッチを備えたことを特徴とする.
また,本発明の防振装置は,前記ばね上(上側)のアクチュエータの誘導電圧の絶対値が,前記コンデンサの電圧よりも大きい場合は,前記上側の質量と前記上側のばねの振動制御をやめ,前記ばね上(上側)のアクチュエータをダンパに切り替える第2のリレースイッチを備えたことを特徴とする.
また,本発明の防振装置は,前記ばね下(下側)のエネルギー回生ダンパおよび前記ばね上(上側)のアクチュエータが,直流モーターであることを特徴とする.
本発明のシステムを図1に示す.2自由度の防振装置のモデルを採用し,ばね下およびばね上に1つづつ直流モーターを配置した.振動は外乱としてばね下に加えられ、ばね上質量を防振することが目的である.本発明は力加振および,変位外乱どちらにも適用が可能である.ばね下の直流モーターが振動エネルギーを利用して発電をする発電機(エネルギー回生ダンパ)として機能し,ばね上の直流モーターがアクティブ振動制御を行うサーボモーター(アクチュエータ)として機能する.今後,ばね下の直流モーターをエネルギー回生ダンパと呼び,ばね上の直流モーターをアクチュエータと呼ぶことにする.エネルギー回生ダンパによって回生された振動エネルギーは,コンデンサに電気的なエネルギーとして蓄えられ,アクチュエータがコンデンサの電圧を利用してアクティブ制御を行う.
【0007】
直流モーターがエネルギー回生ダンパおよびアクチュエータとして機能する.エネルギー回生ダンパとコンデンサを接続する電気回路には,リレースイッチが2つ配置されている.アクチュエータとコンデンサを接続する電気回路には,3つのリレースイッチと電圧制御器が配置されている.
【0008】
エネルギー回生ダンパの回路の切り替え方法について説明する.振動は上下の方向が常に変化する.振動の方向によって常にコンデンサとの接続方向を切り替える必要がある.また,振動エネルギーが小さく,発電された電圧がコンデンサの電圧よりも低い場合は,電気が逆流することになる.その時は電気回路からコンデンサをはずし,直流モーターに抵抗のみを接続する.このようにすれば,エネルギー回生ダンパは通常のダンパとして機能する.エネルギー回生ダンパは振動エネルキーを蓄えることが不可能な時は,通常のダンパとして機能し,防振を行う.
【0009】
図1の1番のリレースイッチはエネルギー回生ダンパとコンデンサの接続の方向を切り替える,整流する機能を実現することを目的としている.2番のリレースイッチは,直流モーターとコンデンサとの接続と切り離しを,切り替えることを目的としている.
【0010】
図2から図4に具体的な回路の切り替え則を説明する.回路図はエネルギー回生ダンパに関係のあるリレースイッチ1と2についてのみ示した.図中において,E1はエネルギー回生ダンパの誘導電圧の絶対値,Ecはコンデンサの電圧,Vsはエネルギー回生ダンパのストロークの速度を示す.図2と図3は誘導電圧がコンデンサの電圧よりも高く,コンデンサに発電したエネルギーを供給しているところである.図4は誘導電圧がコンデンサの電圧よりも低く,振動エネルギーをコンデンサに回生するのをやめ,抵抗のみに接続しダンパとして機能させ,防振をしている時である.なお,図2から図14において,図中のiは回路の電流の流れを示している.
【0011】
アクチュエータの回路について説明をする前に,図5に示すような,直流モーターに抵抗と可変抵抗を接続した時に,直流モーターが出す減衰力について説明をする.
【0012】
直流モーターはストロークの速度Vに比例して誘導電圧eを発生し,電機子の電流iに比例して出力fを発生する.この時の比例定数をアクチュエータ係数と呼び,ここではPとおく.
【0013】
抵抗をRとおき,可変抵抗器の抵抗の値をRvarとおくと,直流モーターのストロークが速度Vで動いている時,回路には電圧P・Vが発生するため,電流P・V/(R+Rvar)が流れる.そのため,直流モーターは出力P・P・V/(R+Rvar)を発生する.これが,減衰力となり,直流モーターは減衰係数P・P/(R+Rvar)のダンパとして機能することになる.
【0014】
Rvarの値が小さいほど,減衰力は小さくなる.よって,最大の減衰係数は,Rvar=0の時の,P・P/Rとなる.この時の減衰係数をCmaxとおく.また,最小の減衰係数はRvarを無限大の値にした時,すなわち,回路を切断した時である.この時の減衰係数をCminとおくと,Cmin=0.0となる.
【0015】
アクチュエータの回路について説明する.回路図はアクチュエータに関係のあるリレースイッチ3と4と5と,可変抵抗器と,電圧制御器についてのみ示した.アクチュエータの回路は,3つのリレースイッチ,可変抵抗器および電圧制御器からなる.ばね上質量の速度をV2,ばね下質量の速度をV1とする.センサーによって検出された値に基づき,アクチュエータが出す力を決定する.その出力をuとする.uの値がアクチュエータに抵抗を接続し,ダンパとして機能させた時に出すことが可能な最大の減衰力と最小の減衰力の間にある場合,すなわちCmin・(V2−V1)≦u≦Cmax・(V2−V1)の時,アクチュエータはダンパとして機能し,可変抵抗器によって抵抗の値を変化させることによってダンパの粘性を変え,セミアクティブ制御を行う.図6にこの時の回路図を示す.
【0016】
Cmax・(V2−V1)<uの時,コンデンサの電圧を利用してアクティブ制御を行う.電圧制御器によって電圧を制御し,アクチュエータが出力uを発生するように制御する.しかし,アクチュエータの誘導電圧の絶対値E2がコンデンサの電圧Ecよりも大きい場合は,アクティブ制御をやめ,アクチュエータをCmaxの減衰係数を持つダンパに切り替える.図7〜10にこの時の回路図を示す.
【0017】
Cmin・(V2−V1)>uの時,コンデンサの電圧を利用してアクティブ制御を行う.電圧制御器によって電圧を制御し,アクチュエータが出力uを発生するように制御する.しかし,アクチュエータの誘導電圧の絶対値E2がコンデンサの電圧Ecよりも大きい場合は,アクティブ制御をやめ,アクチュエータをCminの減衰係数を持つダンパに切り替える.図11〜14にこの時の回路図を示す.
【0018】
【実施例】
次に実施例について説明をする.自然界の外乱を模擬したランダム波を作成し,本発明のシステムの制振性能(周波数応答)をコンピュータによる数値シミュレーションによって計算した.
【0019】
図1などに示される電圧制御器としては,可変抵抗器を利用することを想定した.
【0020】
比較の対象として,パッシブ制御とセミアクティブ制御による方法を挙げた.パッシブ制御は,アクチュエータの存在しないバネとダンパのみによって行う制御である.セミアクティブ制御は,アクチュエータの可変抵抗器の抵抗値を変化させることによってのみ行う制御である.
【0021】
表1に数値シミュレーションに使用した諸元値を示す.
【0022】
【表1】
【0023】
図15にFFT解析をすることによって求めた周波数応答を示す.
【0024】
本発明のシステムと同様に制御に外部エネルギーを必要としないパッシブ制御やセミアクティブ制御よりも,1次共振点付近の制振性能が向上していることがわかる.本発明の有効性を十分に証明する結果である.
【図面の簡単な説明】
【図1】 本発明の説明図である.
【図2】 Vs≧0かつE1≧Ecの時のエネルギー回生ダンパの電気回路の説明図である.
【図3】 Vs<0かつE1≧Ecの時のエネルギー回生ダンパの電気回路の説明図である.
【図4】 E1<Ecの時のエネルギー回生ダンパの電気回路の説明図である.
【図5】 直流モーターに抵抗と可変抵抗器を接続した時の図である.
【図6】 Cmin・(V2−V1)≦u≦Cmax・(V2−V1)の時のアクチュエータの電気回路の説明図である.
【図7】 u>Cmax・(V2−V1)かつ,u≧0かつ,Ec≧E2の時のアクチュエータの電気回路の説明図である.
【図8】 u>Cmax・(V2−V1)かつ,u≧0かつ,Ec<E2の時のアクチュエータの電気回路の説明図である.
【図9】 u>Cmax・(V2−V1)かつ,u<0かつ,Ec≧E2の時のアクチュエータの電気回路の説明図である.
【図10】 u>Cmax・(V2−V1)かつ,u<0かつ,Ec<E2の時のアクチュエータの電気回路の説明図である.
【図11】 u<Cmin・(V2−V1)かつ,u≧0かつ,Ec≧E2の時のアクチュエータの電気回路の説明図である.
【図12】 u<Cmin・(V2−V1)かつ,u≧0かつ,Ec<E2の時のアクチュエータの電気回路の説明図である.
【図13】 u<Cmin・(V2−V1)かつ,u<0かつ,Ec≧E2の時のアクチュエータの電気回路の説明図である.
【図14】 u<Cmin・(V2−V1)かつ,u<0かつ,Ec<E2の時のアクチュエータの電気回路の説明図である.
【図15】 実施例のランダム派入力に対する振動伝達率の計算結果のグラフである.[0001]
BACKGROUND OF THE INVENTION
The present invention is a technology related to a vibration isolator for the purpose of insulating external vibration.
[0002]
[Prior art]
Active vibration control, in which actuators are placed and force is applied directly to the object of vibration isolation, has better vibration isolation capability than passive control devices that consist only of springs and dampers.
[0003]
However, it is necessary to supply energy from the outside in order to perform vibration control, which is also a drawback of active vibration control.
[0004]
[Problems to be solved by the invention]
The present invention eliminates the above-mentioned drawbacks and supplies all energy necessary for active vibration control from a generator (unsprung (lower) energy regenerative damper) arranged in the system.
[0005]
The aim is to realize a vibration control device with two degrees of freedom that stores vibration energy as electrical energy and performs active vibration control without supplying energy from the outside.
[0006]
[Means for Solving the Problems]
Therefore, the vibration isolator of the present invention is a two-degree-of-freedom vibration isolator composed of an upper mass and an upper spring and a lower mass and a lower spring.
An unsprung (lower) energy regenerative damper that generates electric power by generating an induced voltage proportional to the speed of a vibration stroke that is a disturbance of the lower mass and the lower spring ;
A capacitor for storing the generated electricity,
To generate output by electricity stored by the capacitor, which comprises an actuator that on the spring by the output on the mass of the (upper) sprung to control the vibration of the spring (upper side) (upper side) It is characterized by.
Moreover, anti-vibration device of the present invention, voltage generated by energy recovery damper of the unsprung (bottom) is lower than the voltage of the capacitor, remove the condenser, and a resistor only, the A first relay switch is provided to switch the unsprung (lower) energy regenerative damper to a damper.
The vibration isolator of the present invention stops vibration control of the upper mass and the upper spring when the absolute value of the induced voltage of the upper (upper) actuator is larger than the voltage of the capacitor. And a second relay switch for switching the sprung (upper) actuator to a damper.
The vibration isolator according to the present invention is characterized in that the unsprung (lower) energy regeneration damper and the unsprung (upper) actuator are DC motors.
Figure 1 shows the system of the present invention. A two-degree-of-freedom vibration isolator model was adopted, and one DC motor was placed on the unsprung and one on the spring. The vibration is applied to the unsprung state as a disturbance, and the purpose is to prevent the sprung mass. The present invention can be applied to both force excitation and displacement disturbance. The unsprung DC motor functions as a generator (energy regeneration damper) that generates power using vibration energy, and the DC motor on the spring functions as a servo motor (actuator) that performs active vibration control. In the future, the unsprung DC motor will be called an energy regeneration damper, and the unsprung DC motor will be called an actuator. The vibration energy regenerated by the energy regenerative damper is stored as electrical energy in the capacitor, and the actuator performs active control using the voltage of the capacitor.
[0007]
The DC motor functions as an energy regenerative damper and actuator. Two relay switches are arranged in the electric circuit connecting the energy regenerative damper and the capacitor. Three relay switches and a voltage controller are arranged in the electric circuit connecting the actuator and the capacitor.
[0008]
This section explains how to switch the circuit of the energy regenerative damper. The vibration always changes in the vertical direction. It is necessary to always switch the connection direction with the capacitor according to the direction of vibration. Also, if the vibration energy is small and the generated voltage is lower than the capacitor voltage, electricity will flow backward. At that time, remove the capacitor from the electrical circuit and connect only the resistor to the DC motor. In this way, the energy regenerative damper functions as a normal damper. When it is impossible to store the vibration energy, the energy regenerative damper functions as a normal damper and performs vibration isolation.
[0009]
The first relay switch in Fig. 1 aims to realize the function of switching and rectifying the direction of connection between the energy regenerative damper and the capacitor. The second relay switch is intended to switch the connection and disconnection between the DC motor and the capacitor.
[0010]
The specific circuit switching rules are explained in Figs. The circuit diagram shows only
[0011]
Before explaining the actuator circuit, let us explain the damping force that the DC motor produces when a resistor and a variable resistor are connected to the DC motor as shown in Fig. 5.
[0012]
The DC motor generates an induced voltage e in proportion to the stroke speed V and an output f in proportion to the armature current i. The proportional constant at this time is called the actuator coefficient, and here it is set to P.
[0013]
If the resistance is R and the resistance value of the variable resistor is Rvar, the voltage P · V is generated in the circuit when the stroke of the DC motor is moving at the speed V. Therefore, the current P · V / ( R + Rvar) flows. Therefore, the DC motor generates the output P · P · V / (R + Rvar). This is the damping force, and the DC motor functions as a damper with a damping coefficient P · P / (R + Rvar).
[0014]
The smaller the value of Rvar, the smaller the damping force. Therefore, the maximum attenuation coefficient is P · P / R when Rvar = 0. The attenuation coefficient at this time is Cmax. The minimum attenuation coefficient is when Rvar is set to an infinite value, that is, when the circuit is disconnected. If the attenuation coefficient at this time is Cmin, then Cmin = 0.0.
[0015]
The actuator circuit is explained. The circuit diagram shows only relay
[0016]
When Cmax · (V2−V1) <u, active control is performed using the capacitor voltage. The voltage is controlled by the voltage controller, and the actuator is controlled to generate the output u. However, if the absolute value E2 of the induced voltage of the actuator is larger than the voltage Ec of the capacitor, the active control is stopped and the actuator is switched to a damper having a Cmax damping coefficient. Figures 7 to 10 show circuit diagrams at this time.
[0017]
When Cmin · (V2−V1)> u, active control is performed using the capacitor voltage. The voltage is controlled by the voltage controller, and the actuator is controlled to generate the output u. However, when the absolute value E2 of the induced voltage of the actuator is larger than the voltage Ec of the capacitor, the active control is stopped and the actuator is switched to a damper having a Cmin damping coefficient. Figures 11-14 show circuit diagrams at this time.
[0018]
【Example】
Next, an example will be described. Random waves were created to simulate natural disturbances, and the damping performance (frequency response) of the system of the present invention was calculated by computer simulation.
[0019]
As the voltage controller shown in Fig. 1 etc., it was assumed that a variable resistor was used.
[0020]
As a comparison, passive control and semi-active control methods were cited. Passive control is control that uses only springs and dampers without actuators. Semi-active control is control performed only by changing the resistance value of the variable resistor of the actuator.
[0021]
Table 1 shows the specifications used in the numerical simulation.
[0022]
[Table 1]
[0023]
Figure 15 shows the frequency response obtained by FFT analysis.
[0024]
As with the system of the present invention, it can be seen that the damping performance near the primary resonance point is improved compared to passive control and semi-active control that do not require external energy for control. This is a result that sufficiently proves the effectiveness of the present invention.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the present invention.
FIG. 2 is an explanatory diagram of an electric circuit of an energy regenerative damper when Vs ≧ 0 and E1 ≧ Ec.
FIG. 3 is an explanatory diagram of an electric circuit of an energy regenerative damper when Vs <0 and E1 ≧ Ec.
FIG. 4 is an explanatory diagram of an electric circuit of an energy regenerative damper when E1 <Ec.
FIG. 5 is a diagram when a resistor and a variable resistor are connected to the DC motor.
FIG. 6 is an explanatory diagram of an electric circuit of the actuator when Cmin · (V2−V1) ≦ u ≦ Cmax · (V2−V1).
FIG. 7 is an explanatory diagram of an electric circuit of an actuator when u> Cmax · (V2−V1), u ≧ 0, and Ec ≧ E2.
FIG. 8 is an explanatory diagram of an electric circuit of the actuator when u> Cmax · (V2−V1), u ≧ 0, and Ec <E2.
FIG. 9 is an explanatory diagram of an electric circuit of the actuator when u> Cmax · (V2−V1), u <0, and Ec ≧ E2.
FIG. 10 is an explanatory diagram of an electric circuit of an actuator when u> Cmax · (V2−V1), u <0, and Ec <E2.
FIG. 11 is an explanatory diagram of an electric circuit of the actuator when u <Cmin · (V2−V1), u ≧ 0, and Ec ≧ E2.
FIG. 12 is an explanatory diagram of an electric circuit of the actuator when u <Cmin · (V2−V1), u ≧ 0, and Ec <E2.
FIG. 13 is an explanatory diagram of an electric circuit of the actuator when u <Cmin · (V2−V1), u <0, and Ec ≧ E2.
FIG. 14 is an explanatory diagram of an electric circuit of an actuator when u <Cmin · (V2−V1), u <0, and Ec <E2.
FIG. 15 is a graph showing a calculation result of vibration transmissibility with respect to random input according to the embodiment.
Claims (4)
前記下側の質量と前記下側のばねの外乱である振動ストロークの速度に比例した誘導電圧を発生して発電する下側のエネルギー回生ダンパと,
その発電した電気を蓄えるコンデンサと,
該コンデンサによって蓄えられた電気により出力を発生させ,該出力により前記上側の質量と前記上側のばねの振動を制御する上側のアクチュエータとを備えたことを特徴とする2自由度の防振装置。 In an anti-vibration device having two degrees of freedom consisting of an upper mass and upper spring and a lower mass and lower spring,
A lower energy regeneration damper you power to generate an induced voltage proportional to the speed of the vibration stroke the a lower mass and disturbance of the lower spring,
A capacitor for storing the generated electricity,
To generate output by electricity stored by the capacitor, the two-degree-of-freedom vibration isolation apparatus being characterized in that an actuator of the upper side that controls the vibration of the upper spring and the upper mass by output .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26259197A JP3943670B2 (en) | 1997-08-22 | 1997-08-22 | Vibration isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26259197A JP3943670B2 (en) | 1997-08-22 | 1997-08-22 | Vibration isolator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1165679A JPH1165679A (en) | 1999-03-09 |
JP3943670B2 true JP3943670B2 (en) | 2007-07-11 |
Family
ID=17377935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26259197A Expired - Lifetime JP3943670B2 (en) | 1997-08-22 | 1997-08-22 | Vibration isolator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3943670B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2425160B (en) * | 2005-04-12 | 2010-11-17 | Perpetuum Ltd | An Electromechanical Generator for, and method of, Converting Mechanical Vibrational Energy into Electrical Energy |
JP4846439B2 (en) * | 2006-05-15 | 2011-12-28 | トヨタ自動車株式会社 | Vehicle suspension system |
JP4846438B2 (en) * | 2006-05-15 | 2011-12-28 | トヨタ自動車株式会社 | Vehicle suspension system |
EP2573640B1 (en) * | 2011-09-26 | 2014-06-18 | Siemens Aktiengesellschaft | Spring-loaded drive with active recovery in direct current circuit |
JP6308518B2 (en) * | 2013-11-14 | 2018-04-11 | 学校法人慶應義塾 | Energy self-supply type active vibration control system |
JP6719195B2 (en) * | 2015-11-18 | 2020-07-08 | 日立グローバルライフソリューションズ株式会社 | Washing machine |
-
1997
- 1997-08-22 JP JP26259197A patent/JP3943670B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1165679A (en) | 1999-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gonzalez‐Buelga et al. | An optimised tuned mass damper/harvester device | |
JP5293821B2 (en) | Damper system for vehicles | |
Suda et al. | Hybrid suspension system with skyhook control and energy regeneration (development of self-powered active suspension) | |
Scruggs et al. | Structural control with regenerative force actuation networks | |
Hsieh et al. | Regenerative skyhook control for an electromechanical suspension system using a switch-mode rectifier | |
US20130161921A1 (en) | Active suspension system and method | |
JP3943670B2 (en) | Vibration isolator | |
JP2007071238A (en) | Vibration control device of structure | |
Okada et al. | Active and regenerative control of an electrodynamic-type suspension | |
CN106286666A (en) | Reluctance type electromagnetism active vibration absorber | |
Sabzehgar et al. | A boost-type power converter for energy-regenerative damping | |
Louganski | Modeling and analysis of a dc power distribution system in 21st century airlifters | |
Suda et al. | Study on the self-powered active vibration control | |
Son et al. | Experiment of shock vibration control using active momentum exchange impact damper | |
JP3741227B2 (en) | Structure damping device | |
JP3558914B2 (en) | Energy recovery method and device using boost chopper | |
Morgan et al. | An integrated active-parametric control approach for active-passive hybrid piezoelectric network with variable resistance | |
Kamali et al. | Power electronic shunt control for increasing the maximum available damping force in electromagnetic dampers | |
Warkentin et al. | Nonlinear piezoelectric shunting for structural damping | |
KR102019372B1 (en) | Energy harvesting damper with variable damping coefficient and vibration control system having the same | |
Adachi et al. | Analysis and measurement of damping characteristics of linear generator | |
CN105221372A (en) | Damper of vehicle | |
Hung et al. | Vibration control of seismic structures using electromagnetic multiple tuned mass dampers with rotary transducers | |
Lekić et al. | Control of half-bridge resonant PWM converter for electromagnetic vibratory actuator | |
Hsieh et al. | Sky-hook control for a regenerative suspension system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040427 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20060130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070320 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070406 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |