JP6716082B2 - Excitation method of longitudinal and torsional vibration of Langevin type ultrasonic transducer - Google Patents

Excitation method of longitudinal and torsional vibration of Langevin type ultrasonic transducer Download PDF

Info

Publication number
JP6716082B2
JP6716082B2 JP2017550390A JP2017550390A JP6716082B2 JP 6716082 B2 JP6716082 B2 JP 6716082B2 JP 2017550390 A JP2017550390 A JP 2017550390A JP 2017550390 A JP2017550390 A JP 2017550390A JP 6716082 B2 JP6716082 B2 JP 6716082B2
Authority
JP
Japan
Prior art keywords
vibration
ultrasonic
longitudinal
torsional
ultrasonic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017550390A
Other languages
Japanese (ja)
Other versions
JPWO2017082350A1 (en
Inventor
大西 一正
一正 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UWAVE CO., LTD.
Original Assignee
UWAVE CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UWAVE CO., LTD. filed Critical UWAVE CO., LTD.
Publication of JPWO2017082350A1 publication Critical patent/JPWO2017082350A1/en
Application granted granted Critical
Publication of JP6716082B2 publication Critical patent/JP6716082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction

Description

本発明は、ランジュバン型超音波振動子の縦・ねじり振動の励起方法に関し、特に新規な振動モードの超音波振動の縦・ねじり振動を励起する方法に関する。 The present invention relates to a method for exciting longitudinal/torsional vibration of a Langevin type ultrasonic transducer, and more particularly to a method for exciting longitudinal/torsional vibration of ultrasonic vibration of a novel vibration mode.

圧電素子を超音波発生源として利用する超音波振動子は各種の構成のものが知られているが、その代表的な構成として、一対の金属ブロックとこれらの金属ブロックの間に固定された分極処理済の圧電素子から構成されたランジュバン型超音波振動子が知られている。なかでも、分極処理済の圧電素子を一対の金属ブロックの間でボルトにより、高圧で締め付け固定した構造のボルト締めランジュバン型超音波振動子は、高エネルギーの超音波振動の発生が可能なため、各種材料の切削加工、塑性加工、砥粒加工などを行う工具に付設して用いる超音波加工での利用が検討されている。さらに、各種の超音波振動子については、その超音波振動子にて発生する超音波振動を振動板や振動手段を介して送信することによる、超音波洗浄、金属接合、プラスチック溶着、超音波霧化、乳化・分散などの超音波処理の用途、そして魚群探知機などの水中音響器(ソナー)、超音波探傷器、医療用エコー診断装置、流量計などの通信的応用機器への利用が検討され、多くの分野で実際に利用されている。 Ultrasonic transducers that use a piezoelectric element as an ultrasonic wave generation source are known to have various configurations. A typical configuration is a pair of metal blocks and a polarization fixed between these metal blocks. A Langevin-type ultrasonic transducer composed of a processed piezoelectric element is known. Among them, the bolted Langevin type ultrasonic vibrator having a structure in which a polarized piezoelectric element is clamped and fixed at a high pressure by a bolt between a pair of metal blocks is capable of generating high-energy ultrasonic vibration. The use of ultrasonic processing, which is attached to a tool for cutting, plastic working, and abrasive processing of various materials, is being studied. Furthermore, for various ultrasonic transducers, ultrasonic vibration generated by the ultrasonic transducers is transmitted through a diaphragm or vibrating means to perform ultrasonic cleaning, metal bonding, plastic welding, ultrasonic fog. Consideration of ultrasonic wave processing such as emulsification, emulsification and dispersion, and application to underwater acoustic equipment (sonar) such as fish finder, ultrasonic flaw detector, medical echo diagnostic device, flow meter and other communication application equipment. Have been used in many fields.

ボルト締めランジュバン型超音波振動子を含む各種の超音波振動子の構成は既に知られているが、念のため、代表的なボルト締めランジュバン型超音波振動子の構成とその利用形態の一例を添付の図1と図2を参照して以下に簡単に説明する。 The configuration of various ultrasonic transducers including the bolted Langevin type ultrasonic transducer is already known, but as a precaution, an example of the configuration of a typical bolted Langevin type ultrasonic transducer and its usage form A brief description is given below with reference to the accompanying FIGS. 1 and 2.

図1は、ボルト締めランジュバン型超音波振動子の代表的な構造の例を示す図である。ボルト締めランジュバン型超音波振動子1は、一対の金属ブロック2a、2bの間に分極済の圧電素子(例:PZTシートなどの圧電セラミックシート)3a、3bを挟み、ボルト4を用いて金属ブロック2a、2bを互いに締め付けた構造を有する。図1において、圧電素子に記入されている矢印は分極方向を示す。なお、圧電素子3a、3bには、電気エネルギーを印加するための端子として利用する電極片(通常はリン青銅などの電極片を用いる)5a、5bが接続されている。 FIG. 1 is a diagram showing an example of a typical structure of a bolted Langevin type ultrasonic transducer. The bolted Langevin type ultrasonic transducer 1 includes a pair of metal blocks 2a and 2b between which a polarized piezoelectric element (eg, a piezoelectric ceramic sheet such as a PZT sheet) 3a and 3b is sandwiched and a bolt 4 is used to form the metal block. It has a structure in which 2a and 2b are fastened together. In FIG. 1, the arrow on the piezoelectric element indicates the polarization direction. It should be noted that the piezoelectric elements 3a and 3b are connected to electrode pieces 5a and 5b (usually using an electrode piece such as phosphor bronze) used as terminals for applying electric energy.

図2は、ボルト締めランジュバン型超音波振動子を超音波振動源として用いる超音波加工装置としての超音波研磨機の構成例を示す図である。図2において、超音波研磨機10は、ハウジング11内に、下端部にホーン12を介して接続された研磨具13を備えた超音波振動子1を収容し、この超音波振動子1を軸受14により回転可能に支持している。超音波振動子1の回転は、サーボユニット15に接続された交流スピンドルモータ16により駆動される。図2の装置では、超音波振動子1の超音波振動のための電気エネルギーは、外部に設けた電気エネルギー供給源17に接続しているカーボンブラシとスリップリングとから構成されている接触型給電装置18を介して供給される。 FIG. 2 is a diagram showing a configuration example of an ultrasonic polishing machine as an ultrasonic processing device using a bolted Langevin type ultrasonic vibrator as an ultrasonic vibration source. In FIG. 2, an ultrasonic polishing machine 10 accommodates an ultrasonic transducer 1 having a polishing tool 13 connected to a lower end portion thereof via a horn 12 in a housing 11, and the ultrasonic transducer 1 is a bearing. It is rotatably supported by 14. The rotation of the ultrasonic transducer 1 is driven by an AC spindle motor 16 connected to the servo unit 15. In the apparatus of FIG. 2, the electric energy for ultrasonic vibration of the ultrasonic vibrator 1 is a contact type power supply including a carbon brush and a slip ring connected to an electric energy supply source 17 provided outside. It is supplied via the device 18.

図1に示したボルト締めランジュバン型超音波振動子1は、圧電素子2a、2bを素子平面に垂直な方向に分極させた構成としており、この場合には、超音波振動子は通常圧電素子2a、2bの位置の近傍に振動の節を持つ長さ方向(図1では縦方向に相当する)の振動(縦一次振動と呼ばれる)の振動モードを示す。図2に示した超音波加工装置や、超音波洗浄、魚群探知機などの水中音響器(ソナー)、超音波探傷器、医療用エコー診断装置、流量計などで一般的に利用されている振動は、この縦一次振動の振動モードの振動である。 The bolted Langevin type ultrasonic transducer 1 shown in FIG. 1 has a configuration in which piezoelectric elements 2a and 2b are polarized in a direction perpendicular to the element plane. In this case, the ultrasonic transducer is usually the piezoelectric element 2a. 2b shows a vibration mode in a longitudinal direction (corresponding to the longitudinal direction in FIG. 1) having vibration nodes near the position 2b (called longitudinal primary vibration). Vibrations commonly used in the ultrasonic processing equipment shown in Fig. 2, ultrasonic cleaning, underwater acoustic devices (sonar) such as fish finder, ultrasonic flaw detector, medical echo diagnostic device, flow meter, etc. Is the vibration of the vibration mode of this vertical primary vibration.

一方、円板状の圧電素子を図3に示すようにその円周方向に分極させたねじり振動用圧電素子3cも知られている。このねじり振動用圧電素子3cは、円板状の圧電素子を一旦分割して素子片とした後、各素子片を円板の平面方向(矢印の方向)に分極させ、次いで接着剤を用い、分極済素子片を円板状に再結合して作製することができる。 On the other hand, a piezoelectric element 3c for torsional vibration in which a disk-shaped piezoelectric element is polarized in the circumferential direction as shown in FIG. 3 is also known. In this torsional vibration piezoelectric element 3c, a disk-shaped piezoelectric element is once divided into element pieces, each element piece is polarized in the plane direction of the disk (the direction of the arrow), and then an adhesive is used. It can be manufactured by recombining the polarized element pieces into a disc shape.

図3に示した構成の円周方向に分極させたねじり振動用圧電素子は、それ自体をランジュバン型超音波振動子に組み込んで、ねじり振動モードの超音波振動を励起するために使用される。 The piezoelectric element for torsional vibration polarized in the circumferential direction having the configuration shown in FIG. 3 is incorporated in a Langevin type ultrasonic transducer and used to excite ultrasonic vibration in a torsional vibration mode.

また、ねじり振動用圧電素子は、図1に示した縦振動励起用の縦方向に分極した圧電素子と組み合わせてランジュバン型超音波振動子に組み込み、縦振動とねじり振動との複合振動(縦・ねじり振動)モードの超音波振動を励起するためにも使用される。このような縦・ねじり振動モードの超音波振動の代表的な利用形態としては超音波モータが知られている。 In addition, the piezoelectric element for torsional vibration is combined with the longitudinally polarized piezoelectric element for exciting longitudinal vibration shown in FIG. 1 and incorporated into a Langevin type ultrasonic vibrator, and a composite vibration of longitudinal vibration and torsional vibration (longitudinal It is also used to excite ultrasonic vibrations in the torsional vibration mode. An ultrasonic motor is known as a typical application of such ultrasonic vibrations in the longitudinal/torsional vibration mode.

特許文献1は、従来から知られている超音波振動子の縦・ねじり振動モードを利用する超音波モータの改良発明を開示しており、その改良の対象とされた従来型の超音波モータとして、図4の構成の超音波モータを示し、その説明を記載している。すなわち図4において、超音波モータ20は、ボトムナット22、ねじり振動用圧電素子24、中空のホルダ26、縦振動用圧電素子28、中空のステータヘッド30を連結して構成したステータ32、そのステータの軸芯部に回転可能に配置されたセンターボルト38、そしてセンターボルト38に支持されたロータ34を含む。この超音波モータ20には、更に別のセンターボルト40が備えられており、このセンターボルト40とセンタボルト38を連結させることにより、ステータ32のステータヘッド30とロータ34は摺動状態で接続することになる。ステータヘッド30とロータ34の間には摩擦材36が備えられている。センターボルト40には、バネ部材42が装着されていて、ロータ34をステータヘッド30に摩擦材36を介して押圧する。また、ロータ34の内部には、センターボルト40の周囲での円滑な回転を保証するためのベアリング44が組み込まれている。なお、超音波振動子の内部において、縦振動用圧電素子が励起する縦振動モードの節となる位置とねじり振動用圧電素子が励起するねじり振動モードの節となる位置とは略同一となるように設定され、この位置にフランジ48が設けられる。超音波モータ20を基台に設置する際には、このフランジ48を基台に固定する。 Patent Document 1 discloses an improved invention of an ultrasonic motor that utilizes the longitudinal/torsional vibration mode of a conventionally known ultrasonic vibrator, and discloses a conventional ultrasonic motor targeted for the improvement. The ultrasonic motor having the configuration shown in FIG. 4 is shown and its description is described. That is, referring to FIG. 4, the ultrasonic motor 20 includes a stator 32 having a bottom nut 22, a piezoelectric element 24 for torsional vibration, a hollow holder 26, a piezoelectric element 28 for longitudinal vibration, and a hollow stator head 30, and a stator 32 thereof. It includes a center bolt 38 rotatably arranged on the shaft center of the rotor and a rotor 34 supported by the center bolt 38. The ultrasonic motor 20 is further provided with another center bolt 40. By connecting the center bolt 40 and the center bolt 38, the stator head 30 of the stator 32 and the rotor 34 are connected in a sliding state. It will be. A friction material 36 is provided between the stator head 30 and the rotor 34. A spring member 42 is attached to the center bolt 40 and presses the rotor 34 against the stator head 30 via the friction material 36. A bearing 44 is incorporated inside the rotor 34 to ensure smooth rotation around the center bolt 40. In the inside of the ultrasonic vibrator, the position of the node of the longitudinal vibration mode excited by the piezoelectric element for longitudinal vibration and the position of the node of the torsional vibration mode excited by the piezoelectric element for torsional vibration are substantially the same. And a flange 48 is provided at this position. When the ultrasonic motor 20 is installed on the base, the flange 48 is fixed to the base.

図4に示した構成の超音波モータ20では、ねじり振動用圧電素子24がロータ34に回転駆動力を発生させ、縦振動用圧電素子28がステータ32とロータ34の接触制御を行う。詳しく云うと、バネ部材42のバネ力によってステータヘッド30とロータ34が押圧下に接触している状態でねじり振動用圧電素子に電圧を印加すると、ねじり振動用圧電素子24が発生するねじり振動によってロータ34は微小角にて回転する。この微小角の回転後に、縦振動用圧電素子28の励起によりロータ34のステータヘッド30に対する押圧力を弱めると、ねじり振動用圧電素子24のねじり振動は消失する。そして、次いでねじり振動用圧電素子24に再び電圧を印加すると、ロータ34は再び微小角の回転を行う。こうしたねじり振動用圧電素子24のねじり振動と縦振動用圧電素子28の縦振動との結合により発生する楕円振動を繰り返し行うことで、ロータ34を一定の方向に連続的に回転させることができる。そして、ロータ34に交差して穿孔形成されたカップリング孔46、56にスポークを差し込み、そのスポークに回転運動体を装着することにより、その回転運動体を回転運動させる。 In the ultrasonic motor 20 having the configuration shown in FIG. 4, the torsional vibration piezoelectric element 24 generates a rotational driving force in the rotor 34, and the vertical vibration piezoelectric element 28 controls contact between the stator 32 and the rotor 34. More specifically, when a voltage is applied to the piezoelectric element for torsional vibration while the stator head 30 and the rotor 34 are in contact with each other under pressure by the spring force of the spring member 42, the torsional vibration generated by the piezoelectric element for torsional vibration 24 causes The rotor 34 rotates at a minute angle. After the rotation of this minute angle, when the pressing force of the rotor 34 against the stator head 30 is weakened by exciting the longitudinal vibration piezoelectric element 28, the torsional vibration of the torsional vibration piezoelectric element 24 disappears. Then, when a voltage is again applied to the piezoelectric element 24 for torsional vibration, the rotor 34 rotates again at a minute angle. By repeating the elliptic vibration generated by the combination of the torsional vibration of the piezoelectric element for torsional vibration 24 and the longitudinal vibration of the piezoelectric element for longitudinal vibration 28, the rotor 34 can be continuously rotated in a fixed direction. Then, the spokes are inserted into the coupling holes 46 and 56 formed by intersecting the rotor 34, and the rotary motion bodies are attached to the spokes, thereby rotating the rotary motion bodies.

上述した構成の超音波モータは、低速で高トルクの回転が容易に実現し、また運転音が静かであるため、特に小型の精密機器や電気機器に装着するモータとして有用である。 The ultrasonic motor having the above-described configuration easily realizes low-speed and high-torque rotation, and the operation sound is quiet. Therefore, the ultrasonic motor is particularly useful as a motor to be mounted on small precision equipment and electric equipment.

ところで、前述の超音波加工装置において各種工具に超音波振動を与えることにより期待される効果は、当該工具による加工作業に必要な電気エネルギーの節減や加工精度の向上などであるが、これまでに製造され、実際の加工作業に使用されてきた超音波加工装置では、その期待された効果が充分に得られていない。このため、現在の時点では超音波加工装置の普及は十分進んでいるとは云えない。従って、超音波加工の更なる普及を進めるためには、超音波加工作業の実施において超音波振動子の振動の励起のため必要な電気エネルギー量の大幅な低減を実現し、さらに充分な加工精度の向上が得られるような改良が必要である。 By the way, the effects expected by applying ultrasonic vibrations to various tools in the above-mentioned ultrasonic processing apparatus are reduction of electric energy required for processing work by the tools and improvement of processing accuracy. With the ultrasonic processing apparatus that has been manufactured and used in actual processing operations, the expected effects have not been sufficiently obtained. For this reason, it cannot be said that the ultrasonic processing apparatus has been sufficiently spread at the present time. Therefore, in order to promote the further spread of ultrasonic machining, the amount of electrical energy required to excite the vibration of the ultrasonic transducer during the execution of ultrasonic machining work has been significantly reduced, and sufficient machining accuracy has been achieved. It is necessary to make improvements so that

本発明の発明者は、これまでに、超音波加工に際して超音波振動子の振動の励起に必要な電気エネルギー量に見合う加工精度の向上が期待できる様々な超音波振動子の改良発明を案出し、特許出願を行ってきた。たとえば、それらの改良発明の内で最近の発明としては特許文献2に開示されている発明を挙げることができる。 The inventor of the present invention has hitherto devised various improved inventions of ultrasonic vibrators, which can be expected to improve the processing accuracy commensurate with the amount of electric energy required to excite vibrations of the ultrasonic vibrators during ultrasonic processing. , Have applied for a patent. For example, among the improved inventions, the invention disclosed in Patent Document 2 can be given as the latest invention.

特許文献2には、工具と超音波振動体との振動複合体を高い安定性にて支持し、かつ超音波振動体において発生する超音波エネルギーの該振動複合体の支持体(固定支持体)への漏出を低いレベルに抑制することによって振動エネルギーの工具への高い効率での印加を可能にする支持構造として、工具を備えた超音波振動体にフランジを付設し、フランジの片側面を、別に用意した固定体に形成したフランジ支持面に応力を掛けた状態で接触させることにより係合支持する支持構造(但し、超音波振動体のフランジは、固定体のフランジ支持面には接合されてなく、また固定体の支持面に接触して係合支持された超音波振動体のフランジは、該超音波振動体が振動状態にある時にはフランジの厚み方向に超音波振動する構造とされる)が開示されている。 In Patent Document 2, a vibration complex of a tool and an ultrasonic vibration body is supported with high stability, and a support body (fixed support body) of the vibration complex of ultrasonic energy generated in the ultrasonic vibration body. As a support structure that enables application of vibration energy to the tool with high efficiency by suppressing leakage to the low level, a flange is attached to the ultrasonic vibrator equipped with the tool, and one side of the flange is A supporting structure that engages and supports by contacting a flange supporting surface formed on a separately prepared fixed body under stress (however, the flange of the ultrasonic vibrator is not joined to the flange supporting surface of the fixed body. And the flange of the ultrasonic vibrating body which is engaged with and supported by contacting the supporting surface of the fixed body is structured to vibrate ultrasonically in the thickness direction of the flange when the ultrasonic vibrating body is in a vibrating state). Is disclosed.

特開平5−146172号公報JP-A-5-146172 国際公開 WO 2014/017460 A1International publication WO 2014/017460 A1

特許文献2に記載の新たな超音波振動子の支持構造を利用する超音波加工装置により、従来知られていた構造の縦振動を励起する超音波振動子を用いる超音波加工装置の問題点については少なからずの解決が見られた。しかしながら、特許文献2に記載の超音波振動子の支持構造を利用した超音波加工装置についても、依然として実用的に充分に満足できるレベルの電気エネルギーの必要量の削減と加工精度の向上とが得られていない。 Regarding the problem of the ultrasonic machining apparatus using the ultrasonic transducer that excites the longitudinal vibration of the conventionally known structure by the ultrasonic machining apparatus that uses the new ultrasonic transducer support structure described in Patent Document 2 There were some resolutions. However, also in the ultrasonic processing apparatus using the support structure of the ultrasonic oscillator described in Patent Document 2, it is possible to reduce the required amount of electric energy and improve the processing accuracy at a level that is practically sufficiently satisfactory. Has not been done.

一方、ランジュバン型超音波振動子を、例えば前述の超音波モータで利用する縦・ねじり振動モードの超音波振動の励起手段として用いる場合には、その超音波振動の励起に必要な電気エネルギーの削減に加えて別の問題がある。この別の問題について以下に詳しく説明する。 On the other hand, when the Langevin type ultrasonic transducer is used as a means for exciting the ultrasonic vibrations in the longitudinal/torsional vibration modes used in the ultrasonic motors described above, for example, reduction of the electrical energy required for exciting the ultrasonic vibrations. In addition to that, there is another problem. This other problem will be described in detail below.

ランジュバン型超音波振動子に縦振動励起用の圧電素子とねじり振動励起用の圧電素子とを組み合わせ装着させて、ランジュバン型超音波振動子に縦・ねじり振動を起こさせる場合には、特許文献1に記載されているように、超音波振動子の内部において縦振動励起用圧電素子が励起する縦振動モードの節となる位置とねじり振動励起用圧電素子が励起するねじり振動モードの節となる位置とを略同一とする必要がある。また、縦・ねじり振動用のランジュバン型超音波振動子の小型化のためには、縦振動励起用圧電素子の振動励起とねじり振動励起用圧電素子の振動励起に用いる電気エネルギーは互いに共通する共振周波数の電圧の付与により実現されるのが望まれる。しかしながら、通常の縦振動励起用のランジュバン型超音波振動子に利用される縦一次振動(振動子内に一個の縦振動の節が現れる振動)の励起のための共振周波数とねじり一次振動(同じく振動子内に一個のねじり振動の節が現れる振動)の励起のための共振周波数とは一致することはなく、一般にねじり一次振動励起用の共振周波数は縦一次振動励起用の共振周波数の約2/3から約1/2となることが知られている。例えば、ランジュバン型超音波振動子を鋼材から製造する場合には、ねじり一次振動励起用の共振周波数は、縦一次振動励起用の共振周波数を1とすると約0.6〜0.65となる。従って、縦・ねじり振動用のランジュバン型超音波振動子において縦一次振動とねじり一次振動とを励起させるためには、原理的に二つの電気エネルギー供給システムを用いる必要があるが、このような複数の電気エネルギー供給システムの装着は実用的ではなく、実際には採用されていない。 When a Langevin type ultrasonic transducer is combined with a piezoelectric element for longitudinal vibration excitation and a piezoelectric element for torsional vibration excitation to cause longitudinal/torsional vibration in the Langevin type ultrasonic transducer, Patent Document 1 As described in, the position which becomes the node of the longitudinal vibration mode excited by the piezoelectric element for longitudinal vibration excitation and the position which becomes the node of the torsional vibration mode excited by the piezoelectric element for torsional vibration excitation inside the ultrasonic transducer. And should be approximately the same. In addition, in order to downsize the Langevin type ultrasonic transducer for longitudinal and torsional vibrations, the electrical energy used for the vibrational excitation of the piezoelectric element for longitudinal vibration excitation and the vibrational excitation of the piezoelectric element for torsional vibration excitation is the same resonance. It is desired to be realized by applying a frequency voltage. However, the resonance frequency and the torsional primary vibration (also the same as that for the excitation of longitudinal primary vibration (vibration in which a single node of longitudinal vibration appears in the oscillator) used in a Langevin-type ultrasonic transducer for ordinary longitudinal vibration excitation (also: The resonance frequency for excitation of vibration (where one torsional vibration node appears in the oscillator) does not match. Generally, the resonance frequency for torsional primary vibration excitation is about 2 times the resonance frequency for longitudinal primary vibration excitation. It is known that it becomes from /3 to about 1/2. For example, when the Langevin type ultrasonic transducer is manufactured from a steel material, the resonance frequency for exciting the torsional primary vibration is about 0.6 to 0.65 when the resonance frequency for exciting the longitudinal primary vibration is 1. Therefore, in order to excite the longitudinal primary vibration and the torsional primary vibration in the Langevin type ultrasonic transducer for longitudinal/torsional vibration, it is necessary to use two electric energy supply systems in principle. The installation of the electric energy supply system of is not practical and has not been adopted in practice.

一方、振動子内に二個、三個などの複数個のねじり振動の節が形成されるねじり二次振動、ねじり三次振動などのねじり振動も知られていて、このような振動を励起するのための共振周波数は、ねじり一次振動の励起のための共振周波数よりも高い周波数なる。そして、この知見を利用して、例えば、縦一次振動とねじり二次振動とを組み合わせて縦・ねじり振動を発生させる方法も考えられるが、それぞれの振動の節を振動子内の略同一の位置に現れるようにするためには、振動子の長さを長くする必要があり、超音波モータの小型化に不利となる。更にねじり二次振動あるいはねじり三次振動により発生するねじり振動の振幅はねじり一次振動により発生するねじり振動の振幅に比較すると小さくなることから、そのような組み合わせの振動モードを利用する超音波モータは性能が低下するため、これもまた実用的と云えない。 On the other hand, torsional vibrations such as torsional secondary vibrations and torsional tertiary vibrations in which a plurality of torsional vibration nodes such as two or three are formed in a vibrator are also known. Is higher than the resonance frequency for exciting the torsional primary vibration. Then, using this knowledge, for example, a method of generating longitudinal/torsional vibrations by combining longitudinal primary vibrations and torsional secondary vibrations can be considered. Therefore, it is necessary to increase the length of the vibrator, which is disadvantageous for downsizing the ultrasonic motor. Furthermore, the amplitude of the torsional vibration generated by the torsional secondary vibration or the torsional tertiary vibration is smaller than that of the torsional vibration generated by the torsional primary vibration. This is also not practical because it decreases.

従って、本発明の課題は、超音波振動励起システムが簡略化でき、さらに実用的に充分に満足できるレベルの小型化と電気エネルギーの必要量の削減とを共に実現できるランジュバン型超音波振動子の縦・ねじり振動の励起方法を提供することにある。 Therefore, an object of the present invention is to provide a Langevin-type ultrasonic transducer capable of simplifying the ultrasonic vibration excitation system and further realizing both practical miniaturization and a sufficient reduction in electric energy. It is to provide a method of exciting longitudinal/torsional vibration.

本発明の発明者は、実用的に充分に満足できるレベルの小型化と電気エネルギーの必要量の削減とを共に実現できるランジュバン型超音波振動子の縦・ねじり振動の励起方法の開発を目指して、先ず、改めて超音波振動子における縦振動の超音波振動発生のメカニズムの検討を行なった。そしてその検討に際して、超音波振動子を強固に支持する構造のモデルとして、図5に示す支持構造を案出した。すなわち、図5の支持構造では、ボルト締めランジュバン型超音波振動子1を組み立てるに際して、先ず、前方側に配置する金属ブロック(一般に「フロントマス」と呼ばれる)2bの上側端部の周囲に環状の支持枠体6を金属ブロックと一体として形成し、このフロントマス2bと後方側に配置する金属ブロック(一般に「リアマス」と呼ばれる)2aとの間に上下方向に分極処理済の平板状の圧電素子3a、3bをボルト4で締め付け固定させた。そして、このように構成したボルト締めランジュバン型超音波振動子1を用意した上で、環状の支持枠体6の縁部を、雄ネジを備えたハウジング11(このハウジング自体が図示しない支持構造体である基台に接続され、固定されている)と雌ネジを備えたナット7との嵌め合い構造により係合させ、拘束固定した。なお、ボルト締めランジュバン型超音波振動子1の圧電素子3への電気エネルギーの供給は、ハウジング11に形成した孔を介して、ハウジングの外部に設けた超音波発振回路8から予め決めた周波数を持つ電圧を印加するようにした。 The inventor of the present invention aims to develop a method for exciting longitudinal/torsional vibrations of a Langevin-type ultrasonic transducer, which can realize both miniaturization of a practically satisfactory level and reduction of the required amount of electric energy. First, the mechanism of ultrasonic vibration generation of longitudinal vibration in the ultrasonic vibrator was examined again. Then, at the time of the examination, a supporting structure shown in FIG. 5 was devised as a model of a structure for firmly supporting the ultrasonic transducer. That is, in the support structure of FIG. 5, when assembling the bolted Langevin type ultrasonic transducer 1, first, an annular shape is formed around the upper end of the metal block (generally called “front mass”) 2b arranged on the front side. The support frame 6 is integrally formed with a metal block, and a flat plate-shaped piezoelectric element vertically polarized between the front mass 2b and a metal block (generally called "rear mass") 2a arranged on the rear side. The bolts 4 were tightened to fix 3a and 3b. Then, after preparing the bolted Langevin type ultrasonic transducer 1 configured as described above, the edge portion of the annular support frame 6 is provided with a housing 11 having a male screw (a support structure not shown in the housing itself). (Which is connected to a base, which is fixed), and a nut 7 having a female screw are engaged with each other by a fitting structure, and restrained and fixed. The bolted Langevin type ultrasonic transducer 1 is supplied with electric energy to the piezoelectric element 3 through a hole formed in the housing 11 at a predetermined frequency from an ultrasonic oscillation circuit 8 provided outside the housing. The voltage which it has was applied.

次いで、図5に示した支持構造で支持固定する超音波振動子として、その振動特性を実験により観察するために、図6に示す形状とサイズ(単位:mm)の縦振動励起用のボルト締めランジュバン型超音波振動子1を作製した。図6のボルト締めランジュバン型超音波振動子1は、上下方向に分極処理済の平板状圧電素子(PZT圧電素子)3a、3bをステンレススチール製のリアマス2aと同じくステンレススチールを材料として環状の支持枠体6と共に一体的に成形したフロントマス2bとの間に配置し、同じくフロントマス2bと一体的に成形したボルト4で締め付け固定させる構成としている。そして、フロントマス2bの下部には工具を装着したコレットをはめ込むためのテーパ状の凹部を形成した。 Next, as an ultrasonic vibrator supported and fixed by the support structure shown in FIG. 5, in order to observe its vibration characteristics by experiments, bolt tightening for longitudinal vibration excitation of the shape and size (unit: mm) shown in FIG. The Langevin type ultrasonic transducer 1 was produced. In the bolted Langevin type ultrasonic transducer 1 shown in FIG. 6, the plate-shaped piezoelectric elements (PZT piezoelectric elements) 3a and 3b, which have been vertically polarized, are annularly supported by using stainless steel as the rear mass 2a. It is arranged between the frame body 6 and the front mass 2b integrally formed with the frame body 6, and is fixed by tightening with the bolt 4 also integrally formed with the front mass 2b. Then, a taper-shaped recess for fitting a collet with a tool is formed in the lower portion of the front mass 2b.

図6に示した形状とサイズを持つボルト締めランジュバン型超音波振動子の超音波振動特性を実験により観察するために、まずインピーダンスアナライザを用いて、超音波振動子を非拘束とした状態での周波数特性を測定し、次いで、同じ超音波振動子を、図5に示した支持構造にて支持固定(拘束)した状態として同様に周波数特性を測定した。図6のボルト締めランジュバン型超音波振動子の非拘束状態での周波数特性を表すアドミッタンス曲線を図7に、そして図5に示した支持構造で拘束した状態での周波数特性を表すアドミッタンス曲線を図8に示す。 In order to observe the ultrasonic vibration characteristics of the bolted Langevin type ultrasonic transducer having the shape and size shown in FIG. 6 by an experiment, first, using an impedance analyzer, the ultrasonic transducer in an unconstrained state The frequency characteristic was measured, and then the frequency characteristic was similarly measured with the same ultrasonic transducer supported and fixed (restricted) by the support structure shown in FIG. FIG. 7 shows an admittance curve showing the frequency characteristic of the bolted Langevin type ultrasonic transducer in the unconstrained state shown in FIG. 6, and an admittance curve showing the frequency characteristic of the bolted Langevin type ultrasonic transducer restrained by the support structure shown in FIG. 8 shows.

図7のアドミッタンス曲線では、測定対象のボルト締めランジュバン型超音波振動子が非拘束状態の場合には、一つのアドミッタンスピークが42.125KHzの周波数位置に現れる。このアドミッタンスピークの周波数(42.125KHz)は、非拘束状態にある図6の超音波振動子の縦一次振動を励起させる共振周波数であると理解される。 In the admittance curve of FIG. 7, one admittance peak appears at a frequency position of 42.125 KHz when the bolted Langevin type ultrasonic transducer to be measured is in an unrestrained state. The frequency of the admittance peak (42.125 KHz) is understood to be the resonance frequency that excites the first-order longitudinal vibration of the ultrasonic transducer of FIG. 6 in the unrestrained state.

一方、図8の拘束状態のボルト締めランジュバン型超音波振動子のアドミッタンス曲線には、図7のアドミッタンス曲線で見られた縦一次振動を励起させる共振周波数に近い周波数(44.375KHz)に一つのアドミッタンスピークが現れ、さらにそのアドミッタンスピークの周波数よりも低周波数側の領域の24.250KHzの周波数位置に、上記共振周波数におけるアドミッタンスピークよりも若干小さいアドミッタンスピークが現れることが判明した。 On the other hand, in the admittance curve of the bolted Langevin type ultrasonic transducer in the restrained state of FIG. 8, one at a frequency (44.375 KHz) close to the resonance frequency for exciting the longitudinal primary vibration seen in the admittance curve of FIG. It has been found that an admittance peak appears, and further, an admittance peak slightly smaller than the admittance peak at the resonance frequency appears at a frequency position of 24.250 KHz in a region on the lower frequency side than the frequency of the admittance peak.

図8のアドミッタンス曲線で現れた二つのアドミッタンスピークの存在は、いずれの周波数であっても、測定対象のボルト締めランジュバン型超音波振動子の超音波縦振動の励起が可能であることを意味すると理解される。すなわち、それらの二つの周波数はいずれも超音波縦振動の励起を可能にする共振周波数に相当すると考えられる。そして、拘束された超音波振動子についての図8のアドミッタンスカーブでは、超音波振動子が拘束状態であるところから、非拘束状態にある超音波振動子の図7のアドミッタンスカーブにおける縦一次振動を励起させる共振周波数に相当するピークからはシフトするものの、図8の高周波数側のアドミットタンスピークが縦一次振動励起用の共振周波数に相当するはずであると理解できる。次いで、本発明者はこれらの二つの互いに異なる周波数位置に現れるアドミッタンスピークの存在に注目して、図8のアドミッタンス曲線から判明した二つの共振周波数に近似した周波数を持つ電圧を、図5に示した拘束条件にある図6のボルト締めランジュバン型超音波振動子に印加し、超音波振動を励起させ、振動下にあるリアマス2aの上端面の縦方向の振動変位量をレーザードップラー振動計により測定した。 The existence of the two admittance peaks shown in the admittance curve in FIG. 8 means that the longitudinal ultrasonic vibration of the bolted Langevin type ultrasonic transducer to be measured can be excited at any frequency. To be understood. That is, both of these two frequencies are considered to correspond to the resonance frequency that enables the excitation of ultrasonic longitudinal vibration. In the admittance curve of the constrained ultrasonic transducer shown in FIG. 8, the longitudinal primary vibration in the admittance curve of the ultrasonic transducer in the unconstrained state shown in FIG. Although shifted from the peak corresponding to the resonance frequency to be excited, it can be understood that the admittance peak on the high frequency side in FIG. 8 should correspond to the resonance frequency for longitudinal primary vibration excitation. Next, the present inventor pays attention to the existence of admittance peaks appearing at these two different frequency positions, and shows in FIG. 5 a voltage having a frequency close to two resonance frequencies found from the admittance curve of FIG. Applying to the bolted Langevin type ultrasonic vibrator of Fig. 6 under the restraint conditions to excite ultrasonic vibration and measure the vertical vibration displacement amount of the upper end surface of the rear mass 2a under vibration with a laser Doppler vibrometer did.

レーザードップラー振動計を用いた上記のリアマス2aの上端面の縦方向の振動変位量の測定結果によれば、図8に見られる相対的に大きな高周波数側のアドミッタンスピークの周波数に近似した周波数(43.86KHz)の電圧を印加することにより超音波振動(いわゆる縦一次振動)を励起させた超音波振動子のフロントマスの2aの上端面の振動変位量は約33μmであり、その超音波振動に要する電力は約3.5Wであることが判明した。これに対して、図8に見られる相対的に小さい低周波数側のアドミッタンスピークの周波数に近似した周波数(23.64KHz)の電圧を印加して超音波振動を励起させた超音波振動子のリアマス2aの上端面の振動変位量は約30μmと若干小さくなり、さらにその超音波振動に要する電力は約0.5Wと顕著に低減することが判明した。 According to the measurement result of the vertical vibration displacement amount of the upper end surface of the rear mass 2a using the laser Doppler vibrometer, the frequency (approximate to the frequency of the admittance peak on the relatively high frequency side shown in FIG. The vibration displacement amount of the upper end surface 2a of the front mass 2a of the ultrasonic transducer excited by the application of a voltage of 43.86 KHz) (so-called longitudinal primary vibration) is about 33 μm. It was found that the power required for the power supply was about 3.5W. On the other hand, the rear mass of the ultrasonic transducer in which ultrasonic vibration is excited by applying a voltage of a frequency (23.64 KHz) that is similar to the frequency of the admittance peak on the relatively small low frequency side shown in FIG. It was found that the vibration displacement amount of the upper end surface of 2a was slightly small, about 30 μm, and the power required for the ultrasonic vibration was significantly reduced to about 0.5 W.

従って、図8のアドミッタンス曲線の高周波数側に現れている相対的に大きなアドミッタンスピークに相当する周波数の電圧印加により超音波振動子に現れる超音波振動(縦一次振動)と低周波数側に現れる相対的に小さなアドミッタンスピークに相当する周波数の電圧印加により超音波振動子に現れる超音波振動とを比較すると、その縦方向の振動変位量については後者が前者より若干小さくなり、さらに超音波振動を励起させるために必要な電力は、後者が前者の約1/7(0.5W/3.5W)となることが分かる。すなわち、図6に示した構成のボルト締めランジュバン型超音波振動子を図5に示した支持構造を利用して支持拘束した状態で超音波振動を励起させるために必要な電力は、後者の低周波数側の共振周波数の電圧の印加での振動を利用することにより、前者の高周波数側の共振周波数の電圧の印加での振動(縦一次振動)を利用した場合に比べて、大幅に低減することが判明した。 Therefore, the ultrasonic vibration (longitudinal primary vibration) appearing in the ultrasonic transducer and the relative appearing in the low frequency side due to the voltage application of the frequency corresponding to the relatively large admittance peak appearing on the high frequency side of the admittance curve in FIG. Comparing with the ultrasonic vibration that appears in the ultrasonic transducer by applying a voltage with a frequency corresponding to a small admittance peak, the latter is slightly smaller than the former in terms of the amount of longitudinal vibration displacement, and the ultrasonic vibration is further excited. It can be seen that the electric power required for this is about 1/7 of the former (0.5 W/3.5 W). That is, the power required to excite ultrasonic vibrations in the state where the bolted Langevin type ultrasonic transducer having the configuration shown in FIG. 6 is supported and restrained by using the support structure shown in FIG. By using the vibration when the voltage of the resonance frequency on the frequency side is applied, the vibration is significantly reduced compared to the former case where the vibration (the primary longitudinal vibration) when the voltage of the resonance frequency on the high frequency side is applied is used. It has been found.

次いで、図6に示した構成のボルト締めランジュバン型超音波振動子の下側のフロントマス2bの凹部に工具をそなえたコレットを装着して、その工具の先端部の振動変位量についても今度は縦方向と横方向の両方向で測定する実験を行った。この実験では、工具として想定したドリルのモデルとして、長さ40mm、直径3mmの断面が円形の棒体を選び、この棒体をコレット下端部に突き出し長さ14.8mmにて装着した超音波加工用工具モデルを作製し、この超音波加工用工具モデルを用いて円形棒体の先端部(下端部)の振動変位量の測定を行った。 Next, a collet equipped with a tool is attached to the recessed portion of the front mass 2b on the lower side of the bolted Langevin type ultrasonic transducer having the configuration shown in FIG. 6, and the vibration displacement amount of the tip of the tool is also measured. An experiment was conducted in which measurements were made in both the vertical and horizontal directions. In this experiment, as a model of a drill assumed as a tool, a rod body having a length of 40 mm and a diameter of 3 mm and a circular cross section was selected, and the rod body was protruded to the lower end of the collet and mounted with a length of 14.8 mm. A tool model was manufactured, and the amount of vibration displacement at the tip (lower end) of the circular rod was measured using this ultrasonic machining tool model.

上記の工具先端部の振動変位量の測定実験では、図6の構成のボルト締めランジュバン型超音波振動子にコレットと工具を装着して構成した超音波加工用工具モデルについてインピーダンスアナライザーを用いる測定により得られたアドミッタンス曲線に基づき、高周波数側の共振周波数を30.20KHz、そして低周波数側の共振周波数を21.09KHzとして、それぞれの周波数を持つ電圧をボルト締めランジュバン型超音波振動子に印加した。 In the above-mentioned measurement experiment of the vibration displacement amount of the tool tip part, by the measurement using the impedance analyzer for the ultrasonic machining tool model configured by mounting the collet and the tool on the bolted Langevin type ultrasonic vibrator of the configuration of FIG. Based on the obtained admittance curve, the resonance frequency on the high frequency side was set to 30.20 KHz and the resonance frequency on the low frequency side was set to 21.09 KHz, and a voltage having each frequency was applied to the Langevin type ultrasonic transducer by bolting. ..

上記の測定実験の結果、高周波数側の共振周波数の電圧の印加により振動させた超音波振動子に装着した工具の先端部の縦方向の振動変位量は8.33μmp−pであって、横方向の振動変位量は0.787μmp−pであること、そして当該振動に必要とした電力は1.17Wであることが判明した。一方、低周波数側の共振周波数の電圧の印加により振動させた超音波振動子に装着した工具の先端部の縦方向の振動変位量は7.70μmp−pであって、横方向の振動変位量は0.248μmp−pであること、そして当該振動に必要とした電力は0.31Wであることが判明した。 As a result of the above measurement experiment, the vertical vibration displacement amount of the tip of the tool mounted on the ultrasonic vibrator vibrated by applying the voltage of the resonance frequency on the high frequency side is 8.33 μmp-p, It was found that the amount of vibration displacement in the direction was 0.787 μmp-p, and the power required for the vibration was 1.17 W. On the other hand, the vertical vibration displacement amount of the tip of the tool mounted on the ultrasonic vibrator vibrated by applying the voltage of the resonance frequency on the low frequency side is 7.70 μmp-p, and the horizontal vibration displacement amount is Was 0.248 μmp-p, and the power required for the vibration was 0.31 W.

従って、上記の測定実験の結果から、低周波数側の共振周波数での超音波振動の縦方向の振動変位量は、高周波数側の共振周波数での超音波振動の縦方向の振動変位量に比較して若干小さくなり、一方、横方向の振動変位量については、低周波数側の共振周波数の電圧の印加による振動では、高周波数側の共振周波数の電圧の印加による振動(縦一次振動)に比べて、約1/3(0.248/0.787)となることが確認された。また、電力使用量も、低周波数側の共振周波数の電圧の印加による振動では、高周波数側の共振周波数の電圧の印加による振動(縦一次振動)に比べて、約1/4(0.31/1.17)となることから、超音波振動の励起に必要な電力使用量も顕著に低減することが確認された。 Therefore, from the results of the above measurement experiment, the longitudinal vibration displacement amount of ultrasonic vibration at the resonance frequency on the low frequency side is compared with the longitudinal vibration displacement amount of ultrasonic vibration at the resonance frequency on the high frequency side. On the other hand, with respect to the amount of vibration displacement in the horizontal direction, the vibration due to the application of the resonance frequency voltage on the low frequency side is higher than the vibration due to the application of the resonance frequency voltage on the high frequency side (longitudinal primary vibration). It was confirmed that it was about 1/3 (0.248/0.787). In addition, the amount of power consumption is about 1/4 (0.31) in the vibration due to the application of the voltage of the resonance frequency on the low frequency side, compared with the vibration due to the application of the voltage of the resonance frequency on the high frequency side (longitudinal primary vibration). /1.17), it was confirmed that the amount of power used to excite ultrasonic vibrations was significantly reduced.

以上に記載した実験結果から、上記の超音波振動子の縦一次振動を励起させる共振周波数よりも低周波数側に現れるアドミッタンスピークに相当する共振周波数の電圧の印加による超音波振動子の振動励起方法を利用することにより、振動励起に必要な電力の顕著な低減と共に、縦振動に付随して励起される横振動(横揺れ)の顕著な低減も実現することが判明した。 From the experimental results described above, a vibration excitation method for an ultrasonic transducer by applying a voltage having a resonance frequency corresponding to an admittance peak appearing on a lower frequency side than the resonance frequency for exciting longitudinal primary vibration of the ultrasonic transducer. It has been found that by utilizing the above, not only the electric power required for the vibration excitation but also the transverse vibration (horizontal vibration) excited accompanying the longitudinal vibration is significantly reduced.

本発明者は次いで、上記の超音波振動子の縦一次振動を励起させる共振周波数よりも低周波数側に現れるアドミッタンスピークに相当する共振周波数の電圧の印加により発生する超音波振動子の振動の性質を解明すべく、市販の有限要素法の解析ソフトウエアであるANSYS(登録商標、販売元:アンシス・ジャパン株式会社)を用い、図6のランジュバン型超音波振動子を図5の拘束条件(すなわち、図8のアドミッタンス曲線が得られた超音波振動子の拘束条件)にて拘束した場合に励起される超音波振動の解析を行った。 Next, the inventor of the present invention next investigates the nature of the vibration of the ultrasonic transducer generated by the application of the voltage of the resonance frequency corresponding to the admittance peak appearing on the lower frequency side than the resonance frequency for exciting the longitudinal primary vibration of the ultrasonic transducer. In order to clarify the above, using the commercially available finite element method analysis software ANSYS (registered trademark, distributor: Ansys Japan Co., Ltd.), the Langevin type ultrasonic transducer of FIG. The ultrasonic vibration excited when constrained under the constraint condition of the ultrasonic transducer for which the admittance curve of FIG. 8 was obtained was analyzed.

上記の有限要素法による超音波振動の解析の結果、超音波振動子の縦一次振動を励起させる共振周波数よりも低周波数側に現れるアドミッタンスピークに相当する共振周波数の電圧の印加により発生する超音波振動子の振動は、図9のANSYS解析画像から明らかなように、超音波振動子の全体が同一の縦方向(超音波振動子の長軸方向)に振動する往復運動であって、超音波振動子の内部には振動の節となる部位が存在しない超音波振動(本明細書では、この振動を疑似縦零次振動あるいはパラ縦零次振動と呼ぶ)であることが判明した。なお、図9の画像によれば、この疑似縦零次振動では、環状の支持枠体が基台と接する部位に振動の節が現れ、環状の支持枠体自体もまた上記超音波振動と同位相の超音波振動を行うことも判明した。すなわち、この疑似縦零次振動の超音波振動は、超音波振動子全体が同一の縦方向に振動する往復運動であって、超音波振動子の内部に振動の節となる部位を一個持ち、その節となる部位を境にして縦方向に互いに逆方向となる振動を示すモードである縦一次振動とは明らかに異なる振動であり、このため、印加される電気エネルギーの損失が少なく、かつ必然的に横方向への振動が少なくなるという利点が発生する結果となるのであろうと推定される。 As a result of the analysis of ultrasonic vibrations by the finite element method described above, ultrasonic waves generated by applying a voltage of a resonance frequency corresponding to the admittance peak appearing on the lower frequency side than the resonance frequency for exciting the longitudinal primary vibration of the ultrasonic vibrator. As is clear from the ANSYS analysis image of FIG. 9, the vibration of the vibrator is a reciprocating motion in which the entire ultrasonic vibrator vibrates in the same vertical direction (long-axis direction of the ultrasonic vibrator). It has been found that this is ultrasonic vibration (in this specification, this vibration is referred to as pseudo-longitudinal zero-order vibration or para-longitudinal zero-order vibration) in which there is no portion that serves as a vibration node. According to the image of FIG. 9, in this pseudo-vertical zero-order vibration, a node of vibration appears at the portion where the annular support frame contacts the base, and the annular support frame itself also has the same ultrasonic vibration. It was also found to carry out ultrasonic vibration of the phase. That is, the ultrasonic vibration of the pseudo vertical zero-order vibration is a reciprocating motion in which the entire ultrasonic vibrator vibrates in the same vertical direction, and has one portion that serves as a node of vibration inside the ultrasonic vibrator. This is a vibration that is clearly different from the longitudinal primary vibration, which is a mode that shows vibrations that are opposite to each other in the longitudinal direction with the node serving as a boundary, and therefore the loss of applied electric energy is small and inevitable. It is presumed that this may result in the advantage of less lateral vibration.

一方、超音波振動子の縦一次振動を励起させる共振周波数の電圧により発生する振動は、図10のANSYS解析画像からも明らかなように、超音波振動子の内部のフランジに近接する部位に振動の節を一個持ち、その節となる部位を境にして縦方向に互いに逆方向となる振動を示すモードである。 On the other hand, the vibration generated by the voltage of the resonance frequency that excites the longitudinal primary vibration of the ultrasonic vibrator vibrates in a portion close to the flange inside the ultrasonic vibrator, as is clear from the ANSYS analysis image of FIG. This is a mode in which there is one node of, and vibrations in the vertical directions are opposite to each other with the node serving as a boundary.

本発明は、ランジュバン型超音波振動子における疑似縦零次振動の超音波縦振動の励起に関する上述の本発明者による新規な知見に基き、新たに見出された疑似縦零次振動による超音波振動に従来から知られているねじり一次振動による超音波振動を組み合わせることによって新規な縦・ねじり振動である超音波複合振動が得られるとの知見を得ることにより完成した発明である。 The present invention is based on the above-mentioned novel finding by the present inventor regarding excitation of ultrasonic longitudinal vibration of pseudo-longitudinal zero-order vibration in a Langevin type ultrasonic vibrator, and ultrasonic waves by newly discovered pseudo-longitudinal zero-order vibration This invention was completed by obtaining the knowledge that a new ultrasonic/composite vibration, which is a new longitudinal/torsional vibration, can be obtained by combining the vibration with ultrasonic vibration by the conventionally known torsional primary vibration.

従って、本発明により、金属ブロック、側面に環状に突出した支持枠体を備えた金属ブロック、そしてこれらの金属ブロックの間に固定された縦方向に分極処理された円板状圧電素子と円周方向に分極された円板状圧電素子とを含むランジュバン型超音波振動子を用意し、このランジュバン型超音波振動子を該支持枠体を介して基台に接続して拘束状態にて支持した後、該超音波振動子の縦方向に分極処理された円板状圧電素子と円周方向に分極された円板状圧電素子の双方に、該超音波振動子の内部に振動の節を持たない往復振動からなる縦振動とそして該超音波振動子の内部に振動の一つの節を持つねじり一次振動とを励起させることのできる周波数を持つ電圧を印加することによって、該ランジュバン型超音波振動子に、該圧電素子の平面に垂直な方向での該超音波振動子の内部に振動の節を持たない往復振動からなる超音波振動(疑似縦零次振動)とねじり一次振動との複合振動である縦・ねじり超音波振動を励起させることを特徴とするランジュバン型超音波振動子の新規な縦・ねじり振動励起方法が提供される。 Therefore, according to the present invention, a metal block, a metal block provided with a supporting frame body projecting annularly on the side surface, and a vertically polarized disk-shaped piezoelectric element fixed between these metal blocks and a circumference A Langevin type ultrasonic transducer including a disc-shaped piezoelectric element polarized in a direction was prepared, and the Langevin type ultrasonic transducer was connected to a base through the support frame and supported in a restrained state. After that, both the disk-shaped piezoelectric element polarized in the longitudinal direction and the disk-shaped piezoelectric element polarized in the circumferential direction of the ultrasonic vibrator have vibration nodes inside the ultrasonic vibrator. The Langevin-type ultrasonic vibration is applied by applying a voltage having a frequency capable of exciting longitudinal vibration consisting of non-reciprocating vibration and torsional primary vibration having one node of vibration inside the ultrasonic vibrator. A composite vibration of ultrasonic vibration (quasi-longitudinal zero-order vibration) and torsion primary vibration, which is a reciprocating vibration having no vibration node inside the ultrasonic vibrator in a direction perpendicular to the plane of the piezoelectric element The present invention provides a novel method for exciting a Langevin type ultrasonic transducer, which comprises exciting longitudinal/torsional ultrasonic vibrations.

また、本発明により、上記の超音波振動子の縦・ねじり振動励起方法において用いる周波数(共振周波数)が、該振動子の縦一次振動モードの振動を励起する共振周波数よりも低い周波数範囲に含まれる周波数である振動励起方法も提供される。 Further, according to the present invention, the frequency (resonance frequency) used in the method of exciting longitudinal and torsional vibrations of the ultrasonic vibrator is included in a frequency range lower than the resonance frequency for exciting the vibration of the vibrator in the first longitudinal vibration mode. Also provided is a vibrational excitation method, which is the frequency used.

さらに、本発明により、上記の超音波振動子の縦・ねじり振動励起方法において、環状の支持枠体が基台と接する部位に縦振動の節を持ち、上記超音波振動と同位相の超音波振動を行う振動励起方法も提供される。 Further, according to the present invention, in the method for exciting longitudinal/torsional vibration of an ultrasonic transducer as described above, an ultrasonic wave having the same phase as the ultrasonic vibration has a node of longitudinal vibration at a portion where the annular support frame is in contact with the base. A vibration excitation method for vibrating is also provided.

本発明のランジュバン型超音波振動子の縦・ねじり振動励起方法を利用することにより、超音波振動子の小型化、そして小型とされた超音波振動子であっても高出力の縦・ねじり振動の出力が可能となる。さらに、超音波振動子の縦・ねじり振動の励起に必要な電力エネルギーの大幅な低減ができる。さらにまた、利用するねじり振動が基本モードであるねじり一次振動であるため、スプリアス(不要振動)の発生が少ないねじり振動が実現し、従って、そのねじり一次振動と疑似縦零次振動との複合振動である本発明で利用する縦・ねじり振動においてもスプリアス(不要振動)の発生が少ない。
本発明のランジュバン型超音波振動子の縦・ねじり振動励起方法は特に小型の超音波モータの駆動に有効であるが、また、ドリルなどの研削具や研磨具を用いる超音波加工の実施においても、低電力エネルギーであって、高精度の加工ができるとの利点がある。そして、研削加工や,研磨加工において発生する切り屑の除去が、疑似縦零次振動に併せ発生するねじり振動の作用により研削加工や研磨加工の実施中に併行して行われるため、加工効率が向上するという利点もある。
By utilizing the method for exciting the Langevin type ultrasonic transducer in the longitudinal and torsional vibrations of the present invention, the ultrasonic transducer is miniaturized, and even if the ultrasonic transducer is made small, the output of the longitudinal and torsional vibrations is high. Can be output. Furthermore, the electric energy required to excite longitudinal and torsional vibrations of the ultrasonic vibrator can be significantly reduced. Furthermore, since the torsional vibration to be used is the torsional primary vibration, which is the basic mode, torsional vibration with less spurious (unnecessary vibration) is realized, and therefore, the combined vibration of the torsional primary vibration and the pseudo longitudinal zero-order vibration is realized. Even in the longitudinal and torsional vibrations used in the present invention, spurious (unnecessary vibration) is less likely to occur.
The method for exciting longitudinal-torsional vibration of the Langevin type ultrasonic transducer of the present invention is particularly effective for driving a small ultrasonic motor, but also in performing ultrasonic machining using a grinding tool or a polishing tool such as a drill. In addition, it has an advantage that it can be processed with high precision with low power energy. Then, the removal of chips generated during grinding or polishing is performed concurrently during the execution of grinding or polishing due to the action of the torsional vibration that is generated along with the pseudo vertical zero-order vibration, so that the processing efficiency is improved. There is also the advantage of improving.

代表的なボルト締めランジュバン型超音波振動子の構成を示す図である。It is a figure which shows the structure of a typical bolted Langevin type ultrasonic transducer. ボルト締めランジュバン型超音波振動子を利用する超音波加工装置の構成の例を示す図である。It is a figure which shows the example of a structure of the ultrasonic processing apparatus which utilizes a bolting Langevin type ultrasonic vibrator. ねじり振動励起用圧電素子の例を示す図である。It is a figure which shows the example of the piezoelectric element for torsional vibration excitation. 超音波モータの例を示す図である。It is a figure which shows the example of an ultrasonic motor. 本発明の超音波振動子の縦・ねじり振動の励起方法の基礎となる縦振動の励起に利用することのできる超音波振動子の支持固定(拘束)構造の例を示す図である。It is a figure which shows the example of the support fixing (restriction) structure of the ultrasonic transducer which can be utilized for the excitation of the longitudinal vibration which becomes the basis of the excitation method of the longitudinal-torsional vibration of the ultrasonic transducer of this invention. 本発明の超音波振動子の縦・ねじり振動の励起方法の基礎となる縦振動の励起に利用することのできる超音波振動子の構成の例を示す図である。It is a figure which shows the example of a structure of the ultrasonic transducer which can be utilized for the excitation of the longitudinal vibration which becomes the basis of the excitation method of the longitudinal-torsional vibration of the ultrasonic transducer of this invention. 図6に示した超音波振動子の非拘束状態における周波数特性を表すアドミッタンス曲線を示す図である。FIG. 7 is a diagram showing an admittance curve representing frequency characteristics of the ultrasonic transducer shown in FIG. 6 in an unrestrained state. 図5に示した支持構造にて拘束した図6の超音波振動子の周波数特性を表すアドミッタンス曲線を示す図である。It is a figure which shows the admittance curve showing the frequency characteristic of the ultrasonic transducer of FIG. 6 restrained by the support structure shown in FIG. 有限要素法による評価結果に基づく、本発明の超音波振動子の縦・ねじり振動の励起方法の基礎となる縦振動の励起方法で発生する振動モード(疑似縦零次振動)を示す図である。It is a figure which shows the vibration mode (quasi-longitudinal zero-order vibration) generated by the longitudinal vibration excitation method which is the basis of the longitudinal-torsional vibration excitation method of the ultrasonic oscillator of this invention based on the evaluation result by a finite element method. .. 有限要素法による評価結果に基づく、超音波振動子の縦一次振動で発生する振動モードを示す図である。It is a figure which shows the vibration mode generate|occur|produced by the longitudinal primary vibration of an ultrasonic transducer based on the evaluation result by the finite element method. 本発明の超音波振動子の縦・ねじり振動の励起方法で発生する縦・ねじり振動の基礎となる疑似縦零次振動の振動モードを模式的に示す図である。It is a figure which shows typically the vibration mode of the pseudo-longitudinal zero order vibration which becomes the basis of the longitudinal-torsional vibration generated by the excitation method of the longitudinal-torsional vibration of the ultrasonic vibrator of this invention. 超音波振動子の縦一次振動の振動モードを示す図(A)、そしてその圧電素子部分の挙動を表すために拡大して示した図(B)である。FIG. 6A is a diagram showing a vibration mode of longitudinal primary vibration of the ultrasonic transducer, and FIG. 7B is an enlarged diagram showing the behavior of the piezoelectric element portion. 本発明の超音波振動子の縦・ねじり振動の励起方法の基礎となる縦振動の励起に利用する超音波振動子の形状とサイズそして支持固定構造の他の例を示す図である。It is a figure which shows the other shape of the ultrasonic vibrator utilized for the excitation of the longitudinal vibration which becomes the basis of the excitation method of the longitudinal-torsional vibration of the ultrasonic oscillator of this invention, and other examples of a support fixing structure. 図13に示した超音波振動子の支持固定構造における励起により発生する超音波振動(疑似縦零次振動)を有限要素法による画像として示す図である。It is a figure which shows the ultrasonic vibration (pseudo vertical zero-order vibration) generated by the excitation in the support fixing structure of the ultrasonic vibrator shown in FIG. 13 as an image by the finite element method. 本発明のボルト締めランジュバン型超音波振動子の縦・ねじり振動の励起方法の実施に用いるにおける縦振動励起用圧電素子とねじり振動励起用圧電素子を組み込んだボルト締めランジュバン型超音波振動子の概念図である。Concept of a bolted Langevin-type ultrasonic transducer incorporating a piezoelectric element for longitudinal vibration excitation and a piezoelectric element for torsional vibration excitation used in carrying out a method for exciting longitudinal/torsional vibration of a bolted Langevin-type ultrasonic transducer of the present invention It is a figure. 本発明のボルト締めランジュバン型超音波振動子の縦・ねじり振動の励起方法の実施に用いる研磨装置の構成例を示す図である。It is a figure which shows the structural example of the grinding|polishing apparatus used for enforcing the longitudinal-torsion vibration excitation method of the bolting Langevin type ultrasonic vibrator of this invention.

本発明の超音波振動子の縦・ねじり振動の励起方法の基礎となる疑似縦零次振動の励起に利用する共振周波数(超音波振動子の縦一次振動モードの振動を励起する共振周波数に対応するアドミッタンスピークよりも低周波数側に現れるアドミッタンスピークに対応する共振周波数:本明細書では疑似縦零次振動を励起する共振周波数と表現する)の存在は、本発明者の知る限りにおいて、これまでに当業者に認識されたことはない。また、上記疑似縦零次振動を利用する超音波振動子の振動励起方法は、本発明者の知る限りにおいて、これまでに実施されたことはない。 The resonance frequency used to excite the pseudo longitudinal zero-order vibration, which is the basis of the method for exciting the longitudinal and torsional vibrations of the ultrasonic oscillator of the present invention (corresponding to the resonance frequency for exciting the vibration of the ultrasonic oscillator in the longitudinal first-order vibration mode) The resonance frequency corresponding to the admittance peak appearing on the lower frequency side than the admittance peak is expressed as a resonance frequency for exciting the pseudo longitudinal zero-order vibration in the present specification. Has never been recognized by a person skilled in the art. Further, as far as the present inventor knows, the vibration excitation method for the ultrasonic vibrator utilizing the pseudo vertical zeroth order vibration has never been implemented so far.

本発明者の発見になる疑似縦零次振動を励起する共振周波数を利用して本発明の超音波振動子の縦・ねじり振動の励起方法を実施するためには、先ず、図15に示すような基本構成を持つ縦振動励起用圧電素子とねじり振動励起用圧電素子を組み込んだボルト締めランジュバン型超音波振動子を作製する必要がある。 In order to carry out the method for exciting longitudinal and torsional vibrations of an ultrasonic vibrator of the present invention by utilizing the resonance frequency for exciting the pseudo longitudinal zero-order vibration, which is discovered by the present inventor, first, as shown in FIG. It is necessary to fabricate a bolted Langevin type ultrasonic transducer incorporating a piezoelectric element for longitudinal vibration excitation and a piezoelectric element for torsional vibration excitation, which have various basic configurations.

図15に示したボルト締めランジュバン型超音波振動子1aは、底部の周囲に環状の支持枠体(フランジ)6が形成されたリアマス2aとフロントマス2bの間に、上下方向に分極された縦振動励起用圧電素子3a、3bと円周方向に分極されたねじり振動励起用圧電素子3c、3dを挟み込み、ボルト締めにより高圧下に積層固定することにより作製する。 The bolted Langevin type ultrasonic transducer 1a shown in FIG. 15 has a vertically polarized vertical space between a rear mass 2a and a front mass 2b each having an annular support frame (flange) 6 formed around the bottom. It is manufactured by sandwiching the vibration exciting piezoelectric elements 3a, 3b and the circumferentially polarized torsion vibration exciting piezoelectric elements 3c, 3d, and stacking and fixing under high pressure by bolting.

なお、図15では、環状の支持枠体6は、リアマス2aに形成されているが、環状の支持枠体は、フロントマスに形成されていてもよい。また、環状の支持枠体はフロントマスあるいはリアマスに一体的に形成することが望ましいが、独立して形成した環状あるいは円盤状の支持枠体をフロントマスあるいはリアマスに装着固定するか、あるいはフロントマスとリアマスとの間に装着固定することもできる。 In addition, in FIG. 15, the annular support frame body 6 is formed on the rear mass 2a, but the annular support frame body may be formed on the front mass. Further, it is desirable that the annular support frame is formed integrally with the front mass or the rear mass, but the independently formed annular or disc-shaped support frame is mounted and fixed to the front mass or the rear mass, or It can also be attached and fixed between the rear and the rear mass.

図15に示した基本構成を持つボルト締めランジュバン型超音波振動子1aを組み込んだ超音波研磨装置の構成例を図16に示す。図16において、超音波研磨装置10aは、ハウジング(兼支持体)8の内側に、下端部にコレット12aを介して接続された研磨具13aを備えた超音波振動子1aを収容し、この超音波振動子1aを軸受(図示せず)により回転可能に支持している。なお、図16の超音波研磨装置10aのハウジング(兼支持体)8の内部には、電源となる電池50とその電池から得られる電気エネルギーを利用する超音波発振回路51が備えられていて、超音波振動子のリード線(図示せず)を介して、縦振動励起用圧電素子3a、3bとねじり振動励起用圧電素子3c、3dに共通の共振周波数の電圧を印加するようにされている。なお、研磨具13aの先端に楕円軌跡の振動を励起するためには、縦振動励起用圧電素子に印加する電圧とねじり振動励起用圧電素子に印加する電圧の位相差は90°とする。 FIG. 16 shows a structural example of an ultrasonic polishing apparatus incorporating the bolted Langevin type ultrasonic vibrator 1a having the basic structure shown in FIG. In FIG. 16, an ultrasonic polishing apparatus 10a accommodates an ultrasonic vibrator 1a having a polishing tool 13a, which is connected to a lower end portion thereof via a collet 12a, inside a housing (also a supporting body) 8. The sound wave oscillator 1a is rotatably supported by a bearing (not shown). In addition, inside the housing (also supporting body) 8 of the ultrasonic polishing apparatus 10a of FIG. 16, a battery 50 serving as a power source and an ultrasonic oscillation circuit 51 utilizing electric energy obtained from the battery are provided. A voltage having a common resonance frequency is applied to the piezoelectric elements 3a and 3b for exciting longitudinal vibration and the piezoelectric elements 3c and 3d for exciting torsional vibration through a lead wire (not shown) of the ultrasonic vibrator. .. In order to excite the vibration of an elliptical locus at the tip of the polishing tool 13a, the phase difference between the voltage applied to the longitudinal vibration excitation piezoelectric element and the voltage applied to the torsional vibration excitation piezoelectric element is 90°.

次に、図16のように環状の支持枠体を利用して支持固定した超音波振動子の振動特性をインピーダンスアナライザにより測定し、図8に示すようなアドミッタンス曲線を得る。そのアドミッタンス曲線に図8のような二つのピーク(アドミッタンスピーク)が現れれば、通常、高周波側に現れるピークの周波数が縦一次振動励起の共振周波数であり、低周波数側に現れるピークの周波数が疑似縦零次振動の励起に利用できるの共振周波数であると判断できる。なお、必要であれば、その超音波振動子を非拘束状態とした上でインピーダンスアナライザを利用してアドミッタンス曲線を得て、そのアドミッタンス曲線に現れるアドミッタンスピークに相当する周波数(縦一次振動を励起する共振周波数に相当する)と、前記の高周波数側のアドミッタンスピークの周波数との比較に基づき、その高周波数側の共振周波数が縦一次振動励起の共振周波数に相当することを確認することもできる。 Next, as shown in FIG. 16, the vibration characteristics of the ultrasonic transducer supported and fixed by using an annular support frame are measured by an impedance analyzer to obtain an admittance curve as shown in FIG. If two peaks (admittance peaks) as shown in FIG. 8 appear on the admittance curve, the frequency of the peak appearing on the high frequency side is usually the resonance frequency of the longitudinal primary vibration excitation, and the frequency of the peak appearing on the low frequency side is pseudo. It can be determined that this is a resonance frequency that can be used to excite longitudinal zero-order vibration. If necessary, obtain the admittance curve by using an impedance analyzer after making the ultrasonic transducer unconstrained, and then the frequency corresponding to the admittance peak appearing in the admittance curve (exciting the longitudinal primary vibration). It is also possible to confirm that the resonance frequency on the high frequency side corresponds to the resonance frequency of longitudinal primary vibration excitation based on the comparison between the resonance frequency) and the frequency of the admittance peak on the high frequency side.

超音波振動子の形状によっては、アドミッタンス曲線に明確な縦一次振動のアドミッタンスピークが現れないこともある。その場合には公知の計算式を利用する方法に従って、縦一次振動を励起する共振周波数を推定し、その共振周波数よりも低波長側の領域に現れるアドミッタンスピークの周波数を疑似縦零次振動の周波数と決め、この疑似縦零次振動の周波数を持つ電圧の印加により目的の疑似縦零次振動を含む縦・ねじり複合超音波振動を励起させることもできる。 Depending on the shape of the ultrasonic transducer, a clear admittance peak of the longitudinal primary vibration may not appear in the admittance curve. In that case, according to a method using a known calculation formula, the resonance frequency for exciting the longitudinal primary vibration is estimated, and the frequency of the admittance peak appearing in the region on the lower wavelength side than the resonance frequency is the frequency of the pseudo longitudinal zero-order vibration. It is also possible to excite the longitudinal/torsional composite ultrasonic vibration including the intended pseudo longitudinal zero-order vibration by applying a voltage having the frequency of the pseudo longitudinal zero-order vibration.

一方、アドミッタンス曲線に三つ以上のアドミッタンスピークが現れた場合においても、上記の方法により縦一次振動を励起する共振周波数を推定し、その共振周波数よりも低波長側の領域の隣接する位置に現れるアドミッタンスピークの周波数を疑似縦零次振動の周波数として、この疑似縦零次振動の周波数を持つ電圧の印加により目的の疑似縦零次振動を含む縦・ねじり複合超音波振動を励起させることもできる。 On the other hand, even when three or more admittance peaks appear on the admittance curve, the resonance frequency that excites the longitudinal primary vibration is estimated by the above method, and appears at adjacent positions in the region on the lower wavelength side than the resonance frequency. With the admittance peak frequency as the frequency of the pseudo longitudinal zero-order vibration, it is possible to excite the longitudinal and torsion composite ultrasonic vibration including the target pseudo longitudinal zero-order vibration by applying a voltage having the frequency of the pseudo longitudinal zero-order vibration. ..

図15の構成の超音波振動子に図16に示したように工具を装着して超音波加工用振動工具を構成し、その超音波加工用振動工具に前記の方法により決定した疑似縦零次振動励起用の共振周波数の電圧を印加することにより、その工具に疑似縦零次振動を含む縦・ねじり複合超音波振動を励起することができる。但し、前記の方法により決定した疑似縦零次振動励起用の共振周波数は、工具およびコレットなどの工具装着具を装着していない状態での測定により確認した共振周波数であるため、工具の疑似縦零次振動を励起することができる最適な共振周波数とは若干のずれが生じる可能性がある。また、超音波加工用振動工具の拘束条件(支持固定条件)の僅かなずれによっても、最適な共振周波数のずれが発生することがある。従って、工具を装着させ、基台に拘束した超音波振動子の疑似縦零次振動励起用の共振周波数の決定は、励起される超音波振動を確認しながら最適な共振周波数を決定できるような共振周波数の追尾が可能な超音波発振回路を利用することにより行うことが望ましい。 The ultrasonic vibrator having the configuration shown in FIG. 15 is equipped with a tool as shown in FIG. 16 to form an ultrasonic machining vibration tool, and the ultrasonic machining vibration tool has the pseudo-vertical zero-order determined by the above method. By applying the voltage of the resonance frequency for vibration excitation, it is possible to excite the longitudinal/torsional composite ultrasonic vibration including the pseudo longitudinal zero-order vibration in the tool. However, the resonance frequency for the pseudo longitudinal zero-order vibration excitation determined by the above method is the resonance frequency confirmed by the measurement without the tool and the tool mounting tool such as the collet, so the pseudo longitudinal There may be some deviation from the optimum resonance frequency at which the zero-order vibration can be excited. Further, even a slight deviation of the constraint condition (supporting and fixing condition) of the ultrasonic machining vibration tool may cause an optimum resonance frequency deviation. Therefore, in determining the resonance frequency for the pseudo longitudinal zero-order vibration excitation of the ultrasonic vibrator with the tool attached and constrained to the base, the optimum resonance frequency can be determined while checking the ultrasonic vibration to be excited. It is desirable to use an ultrasonic oscillator circuit capable of tracking the resonance frequency.

なお、図15のような構成の超音波振動子を製造し、図5に示したような支持固定構造により超音波振動子を拘束した状態でインピーダンスアナライザを利用してアドミッタンス曲線を得ても、図8に示したような複数(通常は二つ)のアドミッタンスピークが現れない場合には、超音波振動子の拘束条件を調整することにより、図8に示したような二つのピークを有するアドミッタンス曲線が得られるようになることもある。しかしながら、そのような超音波振動子の拘束条件の調整によっても、図8に示したような二つのピークを有するアドミッタンス曲線が得られない場合には、超音波振動子の形状の設定や、超音波振動子の支持固定構造が、目的とする疑似縦零次振動の励起には不適切であると考えられるため、改めて図5の超音波振動子の拘束条件と図15の超音波振動子の形状とサイズを参考にして、超音波振動子の設計変更と支持固定構造の再検討を行う必要がある。なお、図5の超音波振動子の拘束条件と図6の超音波振動子の形状とサイズは、本発明の実施方法の代表的な態様を示したものに過ぎず、本発明の超音波振動子の疑似縦零次振動の励起方法の実施の態様を限定する条件ではない。 Even if an ultrasonic transducer having a structure as shown in FIG. 15 is manufactured, and an admittance curve is obtained using an impedance analyzer in a state where the ultrasonic transducer is constrained by the supporting and fixing structure as shown in FIG. When a plurality of (usually two) admittance peaks as shown in FIG. 8 do not appear, the constraint condition of the ultrasonic transducer is adjusted so that the admittance having two peaks as shown in FIG. Sometimes a curve can be obtained. However, if the admittance curve having two peaks as shown in FIG. 8 cannot be obtained even by adjusting the constraint conditions of the ultrasonic transducer, setting of the shape of the ultrasonic transducer or Since the supporting and fixing structure of the ultrasonic transducer is considered to be unsuitable for the excitation of the intended pseudo longitudinal zero-order vibration, the constraint conditions of the ultrasonic transducer of FIG. 5 and the ultrasonic transducer of FIG. It is necessary to redesign the ultrasonic transducer and reconsider the supporting and fixing structure, referring to the shape and size. It should be noted that the constraint conditions of the ultrasonic transducer of FIG. 5 and the shape and size of the ultrasonic transducer of FIG. 6 are merely representative examples of the method for carrying out the present invention, and the ultrasonic vibration of the present invention is not limited thereto. This is not a condition for limiting the embodiment of the method for exciting the pseudo vertical zero-order vibration of the child.

また、図15のように構成した縦・ねじり振動励起用の超音波振動子を、図4に示したような超音波モータに組み込んで、本発明の方法に従って縦・ねじり振動(縦・ねじり複合振動)を発生させることにより小型で高性能の超音波モータが得られる。 Further, by incorporating the ultrasonic transducer for exciting longitudinal/torsional vibration configured as shown in FIG. 15 into the ultrasonic motor as shown in FIG. 4, the longitudinal/torsional vibration (longitudinal/torsional composite) is combined according to the method of the present invention. (Vibration) makes it possible to obtain a compact and high-performance ultrasonic motor.

前記のように、本発明者は、本発明の超音波振動子の振動励起方法により発生する縦・ねじり複合超音波振動を構成する縦振動が、「圧電素子の平面に垂直な方向での該振動子の内部に振動の節を持たない往復振動からなる超音波振動」であるとした。次に、この結論の根拠となったデータについて改めて説明する。 As described above, the present inventor has found that the longitudinal vibration that constitutes the combined longitudinal/torsional ultrasonic vibration generated by the vibration excitation method for the ultrasonic vibrator of the present invention is “the vertical vibration in the direction perpendicular to the plane of the piezoelectric element. It is an ultrasonic vibration consisting of reciprocating vibration without vibration nodes inside the vibrator." Next, the data on which this conclusion was based will be explained again.

前述のように、図8のアドミッタンス曲線の低周波数側に現れているアドミッタンスピークの存在は、本発明者が知る限りにおいては、知られていない。このため、この低周波数側のアドミッタンスピークが現れる周波数位置に相当する周波数が何を意味するかの点については、本発明者は最初は判断できなかった。しかしながら、これまでに説明した実験事実から明らかなように、この低周波数側のアドミッタンスピークが現れる周波数位置に相当する周波数も当該超音波振動子の共振周波数であって、当該共振周波数の電圧の印加により拘束状態にある超音波振動子で励起される縦方向の超音波振動は少ない消費電力で発生し、さらに横方向の振動は少ないことが確かめられた。 As described above, the existence of the admittance peak appearing on the low frequency side of the admittance curve of FIG. 8 is not known to the inventor of the present invention. For this reason, the present inventors could not initially determine what the frequency corresponding to the frequency position where the admittance peak on the low frequency side appears is. However, as is clear from the experimental facts described so far, the frequency corresponding to the frequency position where the admittance peak on the low frequency side appears is also the resonance frequency of the ultrasonic transducer, and the voltage of the resonance frequency is applied. It was confirmed that the longitudinal ultrasonic vibration excited by the ultrasonic transducer in the restrained state was generated with low power consumption, and the horizontal vibration was small.

このため、本発明者は、今回確認された超音波振動の振動モードを解析するために、前述のように、市販の有限要素法に基づく計算ソフトであるANSYSを用い、実験に使用した超音波振動子の形状、サイズ、材料そして超音波振動子の支持固定条件(拘束条件)において超音波振動子に発生する超音波振動の振動モードの解析を行った。その振動モードの解析結果が図9と図10に示されている。 Therefore, in order to analyze the vibration mode of the ultrasonic vibration confirmed this time, the inventor uses the commercially available calculation software based on the finite element method, ANSYS, and uses the ultrasonic wave used in the experiment. The vibration mode of the ultrasonic vibration generated in the ultrasonic transducer was analyzed under the conditions of the shape, size, material of the transducer and the fixed condition (constraint condition) of the ultrasonic transducer. The analysis results of the vibration mode are shown in FIGS. 9 and 10.

前述のように、図9が、拘束条件での超音波振動子に、低周波数側の共振周波数の電圧を印加した場合に現れる振動モードを表す画像であり、この画像から、超音波振動子に現れる振動は超音波振動子全体が一方の方向に向かう振動であって、その振動の節は、超音波振動子の内部には存在せず、超音波振動子の環状支持枠体の外側端部(基台への接続部に相当する)に存在することが分かる。次に、図10は、拘束条件での超音波振動子に、高周波数側の共振周波数の電圧を印加した場合に現れる振動モードを表す画像であり、この画像から、超音波振動子に現れる振動は、超音波振動子内部に節を有し、その節を境界として、上下に振動する伸縮振動であることが分かる。 As described above, FIG. 9 is an image showing a vibration mode that appears when a voltage having a resonance frequency on the low frequency side is applied to the ultrasonic transducer under the constraint condition. The vibration that appears is a vibration in which the entire ultrasonic transducer is directed in one direction, and the node of the vibration does not exist inside the ultrasonic transducer, but the outer end of the annular support frame of the ultrasonic transducer. It can be seen that it exists (corresponding to the connection part to the base). Next, FIG. 10 is an image showing a vibration mode that appears when a voltage having a resonance frequency on the high frequency side is applied to the ultrasonic transducer under the constraint condition. From this image, the vibration that appears in the ultrasonic transducer is shown. Is a stretching vibration that has a node inside the ultrasonic transducer and vibrates up and down with the node as a boundary.

図11は、図9に示した画像が表す振動モードを模式的に説明する図である。すなわち、本発明に従う振動モードの超音波振動では、超音波振動子は、全体として一方の方向に振動する往復振動を繰り返す。超音波振動子を基台に支持固定する環状の支持枠体は、基台との接続部(環状支持枠体の周縁部に相当)に節を持ち、超音波振動子の接続部に相当する環状支持枠体の内周部もまた、超音波振動子と同期する往復運動を繰り返す振動を示す。この振動モードが本明細書で説明している疑似縦零次振動モードに相当する。 FIG. 11 is a diagram schematically illustrating the vibration mode represented by the image shown in FIG. That is, in the ultrasonic vibration of the vibration mode according to the present invention, the ultrasonic vibrator as a whole repeats the reciprocating vibration vibrating in one direction. The annular support frame that supports and fixes the ultrasonic transducer to the base has a node at the connection portion with the base (corresponding to the peripheral portion of the annular support frame) and corresponds to the connection portion of the ultrasonic transducer. The inner peripheral portion of the annular support frame also exhibits a reciprocating vibration in synchronization with the ultrasonic transducer. This vibration mode corresponds to the pseudo longitudinal zeroth order vibration mode described in this specification.

図12の(A)は、図10に示した画像が表す振動モードを模式的に説明する図である。すなわち、図10の超音波振動では、超音波振動子は、その圧電素子が存在する略中央部(圧電素子が存在する位置)に節を持ち、上下に伸縮する振動(縦一次振動)を繰り返す。縦一次振動がこのような伸縮振動であるため、工具が装着される一方の側の面(下側面)の縦振動の励起に際して、図11に示した疑似縦零次振動モードで実現する下側面の縦振動と同等の振動量(変位量)を得るためには相対的に大きな電力が必要となるものと推定される。 12A is a diagram schematically illustrating the vibration mode represented by the image shown in FIG. That is, in the ultrasonic vibration of FIG. 10, the ultrasonic vibrator has a node at a substantially central portion where the piezoelectric element exists (a position where the piezoelectric element exists), and repeats a vibration that vertically expands and contracts (longitudinal primary vibration). .. Since the longitudinal primary vibration is such a stretching vibration, when exciting the longitudinal vibration of the surface (lower side surface) on one side where the tool is mounted, the lower side surface realized in the pseudo longitudinal zero-order vibration mode shown in FIG. It is estimated that relatively large electric power is required to obtain a vibration amount (displacement amount) equivalent to the longitudinal vibration of.

図12の(B)は、図12(A)に示した超音波振動子の振動の様子を模式的に拡大して示す図であって、電気エネルギーの印加による圧電素子3に現れるの変形の状況(推定状況)を模式的に示す図である。すなわち、圧電素子3は、印加される電気エネルギーの変動により膨張と収縮を繰り返すが、その膨張時には、図に示すように、圧電素子に付与されている圧力に抗する形で、中央部が膨出するように変形すると考えられる。従って、この圧電素子の変形がその中心に完全に対称な形状で発生しなければ、超音波振動子の上下の端面は伸縮振動の中心面とは完全な平行面とならず、このため、超音波振動子の上下の端面における横振動が発生しやすくなると推定される。 FIG. 12(B) is a diagram schematically showing an enlarged view of the vibration of the ultrasonic transducer shown in FIG. 12(A), showing the deformation of the piezoelectric element 3 caused by the application of electric energy. It is a figure which shows a condition (estimated condition) typically. That is, the piezoelectric element 3 repeats expansion and contraction due to fluctuations in the applied electric energy, but at the time of expansion, as shown in the figure, the central portion expands against the pressure applied to the piezoelectric element. It is thought that it transforms so that it appears. Therefore, if the deformation of this piezoelectric element does not occur in a completely symmetrical shape at its center, the upper and lower end faces of the ultrasonic transducer are not completely parallel to the center plane of the stretching vibration, and therefore It is presumed that lateral vibration is likely to occur on the upper and lower end faces of the sound wave vibrator.

図13は、本発明の超音波振動子の縦・ねじり振動の励起方法で発生する縦・ねじり振動の基礎となる超音波振動子の振動励起方法に利用できる超音波振動子の形状とサイズ(単位:mm)そして支持固定構造の他の例を示す図であり、図14は、図13に示した超音波振動子の支持固定構造における励起により発生する超音波振動(疑似縦零次振動)を有限要素法により得られた画像として示す図である。図9に示した画像と同様に、超音波振動子に現れる振動が超音波振動子全体が一方の方向に向かう往復振動であり、その振動の節は、超音波振動子の内部には存在せず、超音波振動子の環状支持枠体の外側端部(基台への接続部に相当する)に存在する。 FIG. 13 shows the shape and size of an ultrasonic vibrator that can be used in the vibration exciting method of the ultrasonic vibrator, which is the basis of the longitudinal/torsional vibration generated by the method of exciting longitudinal/torsional vibration of the ultrasonic vibrator of the present invention ( FIG. 14 is a diagram showing another example of the supporting and fixing structure (unit: mm), and FIG. 14 is an ultrasonic vibration (quasi-longitudinal zero-order vibration) generated by excitation in the supporting and fixing structure of the ultrasonic vibrator shown in FIG. It is a figure which shows as an image obtained by the finite element method. Similar to the image shown in FIG. 9, the vibration that appears in the ultrasonic vibrator is reciprocating vibration in which the entire ultrasonic vibrator moves in one direction, and the node of the vibration must not exist inside the ultrasonic vibrator. Instead, it exists at the outer end (corresponding to the connection to the base) of the annular support frame of the ultrasonic transducer.

1 ボルト締めランジュバン型超音波振動子
2a 金属ブロック(リアマス)
2b 金属ブロック(フロントマス)
3a、3b 縦振動励起用圧電素子
3c、3d ねじり振動励起用圧電素子
4 ボルト
5a 銅電極
5b 銅電極
6 環状の支持枠体
7 ナット
10 超音波研削加工装置
11 ハウジング
12 ホーン
13 研磨具
20 超音波モータ
22 ボトムナット
24 ねじり振動用圧電素子
26 ホルダ
28 縦振動用圧電素子
30 ステータヘッド
32 ステータ
34 ロータ
36 摩擦材
38 センターボルト
40 センターボルト
42 バネ部材
44 ベアリング
48 フランジ

1 Bolting Langevin type ultrasonic transducer 2a Metal block (rear mass)
2b Metal block (front mass)
3a, 3b Piezoelectric element for exciting longitudinal vibration 3c, 3d Piezoelectric element for exciting torsional vibration 4 Bolt 5a Copper electrode 5b Copper electrode 6 Annular support frame 7 Nut 10 Ultrasonic grinding machine 11 Housing 12 Horn 13 Polishing tool 20 Ultrasonic wave Motor 22 Bottom nut 24 Piezoelectric element for torsional vibration 26 Holder 28 Piezoelectric element for longitudinal vibration 30 Stator head 32 Stator 34 Rotor 36 Friction material 38 Center bolt 40 Center bolt 42 Spring member 44 Bearing 48 Flange

Claims (3)

金属ブロック、側面に環状に突出した支持枠体を備えた金属ブロック、そしてこれらの金属ブロックの間に固定された縦方向に分極処理された円板状圧電素子と円周方向に分極された円板状圧電素子とを含むランジュバン型超音波振動子を用意し、このランジュバン型超音波振動子を該支持枠体を介して基台に接続して拘束状態にて支持した後、該超音波振動子の縦方向に分極処理された円板状圧電素子と円周方向に分極された円板状圧電素子の双方に、該超音波振動子の内部に振動の節を持たない往復振動からなる縦振動とそして該超音波振動子の内部に振動の一つの節を持つねじり一次振動とを励起させることのできる周波数を持つ電圧を印加することによって、該ランジュバン型超音波振動子に、該圧電素子の平面に垂直な方向での該超音波振動子の内部に振動の節を持たない往復振動からなる超音波振動とねじり一次振動との複合振動である縦・ねじり超音波振動を励起させることを特徴とするランジュバン型超音波振動子の縦・ねじり振動励起方法。 A metal block, a metal block with a support frame protruding in a ring shape on the side surface, and a vertically polarized disk-shaped piezoelectric element fixed between these metal blocks and a circle polarized in the circumferential direction. A Langevin-type ultrasonic transducer including a plate-shaped piezoelectric element is prepared, the Langevin-type ultrasonic transducer is connected to a base through the support frame and supported in a restrained state, and then the ultrasonic vibration is applied. Both the longitudinally polarized disk-shaped piezoelectric element and the circumferentially polarized disk-shaped piezoelectric element are composed of reciprocating vibrations without vibration nodes inside the ultrasonic vibrator. By applying a voltage having a frequency capable of exciting the vibration and the torsional primary vibration having one node of the vibration inside the ultrasonic vibrator, the piezoelectric element is applied to the Langevin type ultrasonic vibrator. To excite longitudinal and torsional ultrasonic vibrations, which are composite vibrations of ultrasonic vibrations consisting of reciprocating vibrations without vibration nodes inside the ultrasonic vibrators in a direction perpendicular to the plane of A method for exciting longitudinal/torsional vibration of a Langevin type ultrasonic transducer. 上記の超音波振動子の縦・ねじり振動励起方法において用いる周波数が、該振動子の縦一次振動モードの振動を励起する共振周波数よりも低い周波数範囲に含まれる周波数であるランジュバン型超音波振動子の新規な縦・ねじり振動励起方法。 A Langevin type ultrasonic vibrator in which the frequency used in the method for exciting longitudinal and torsional vibrations of the ultrasonic vibrator is a frequency included in a frequency range lower than a resonance frequency for exciting the vibration of the vibrator in the first longitudinal vibration mode. A new method of exciting longitudinal and torsional vibrations. 上記の超音波振動子の縦・ねじり振動励起方法において、環状の支持枠体が基台と接する部位に縦振動の節を持ち、上記超音波振動と同位相の超音波振動を行うランジュバン型超音波振動子の新規な縦・ねじり振動励起方法。 In the method of exciting longitudinal and torsional vibrations of the ultrasonic vibrator, a Langevin type supersonic wave having a longitudinal vibration node at a portion where the annular support frame is in contact with the base and performing ultrasonic vibration in the same phase as the ultrasonic vibration A new method for exciting longitudinal and torsional vibrations of acoustic wave oscillators.
JP2017550390A 2015-11-10 2016-11-10 Excitation method of longitudinal and torsional vibration of Langevin type ultrasonic transducer Active JP6716082B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2015232362 2015-11-10
JP2015232362 2015-11-10
JP2016040472 2016-02-15
JP2016040472 2016-02-15
JP2016097209 2016-05-13
JP2016097209 2016-05-13
JP2016144892 2016-07-05
JP2016144892 2016-07-05
PCT/JP2016/083374 WO2017082350A1 (en) 2015-11-10 2016-11-10 Method for exciting longitudinal/torsional vibration of langevin-type ultrasonic vibrator

Publications (2)

Publication Number Publication Date
JPWO2017082350A1 JPWO2017082350A1 (en) 2018-08-23
JP6716082B2 true JP6716082B2 (en) 2020-07-01

Family

ID=58696145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017550390A Active JP6716082B2 (en) 2015-11-10 2016-11-10 Excitation method of longitudinal and torsional vibration of Langevin type ultrasonic transducer

Country Status (2)

Country Link
JP (1) JP6716082B2 (en)
WO (1) WO2017082350A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870126B1 (en) * 2017-05-25 2018-06-25 이문현 A Juicer Having An Improved Juicing Capability
US11193354B2 (en) 2018-12-07 2021-12-07 Baker Hughes Holdings Llc Motors for downhole tools devices and related methods
KR102250715B1 (en) * 2019-11-13 2021-05-11 선문대학교 산학협력단 2-axis vibratory cutting tool device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529316Y2 (en) * 1988-11-28 1997-03-19 オリンパス光学工業株式会社 Vibration wave motor
JP5767120B2 (en) * 2010-02-04 2015-08-19 森田 剛 Drive device

Also Published As

Publication number Publication date
WO2017082350A1 (en) 2017-05-18
JPWO2017082350A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6758715B2 (en) Vibration excitation method, ultrasonic processing method and ultrasonic transmission method of Langevin type ultrasonic oscillator
JP6863613B2 (en) Ultrasonic vibration imparting tool and ultrasonic processing equipment
JP6716082B2 (en) Excitation method of longitudinal and torsional vibration of Langevin type ultrasonic transducer
WO2009101987A1 (en) Cutting or grinding apparatus
WO2014017460A1 (en) Support structure for ultrasonic vibrator equipped with tool
JP2012505083A5 (en)
JP2017221932A (en) Ultrasonic vibrator and vibration excitation method thereof
JP2007111803A (en) Ultrasonic vibration cutting device
JP4261894B2 (en) Vibration type driving device
JP6831138B2 (en) Vibration excitation method of Langevin type ultrasonic oscillator and ultrasonic processing method of work material
JP2008212916A (en) Apparatus for generating ultrasonic complex vibration
JP6884363B2 (en) Langevin type ultrasonic vibration generator for ultrasonic processing
JP2020028873A (en) Langevin type ultrasonic vibrator and method of supporting the same
JP2020073274A (en) Oscillation excitation method for langevin ultrasonic transducer, and ultrasonic machining method for material to be machined
WO2019230883A1 (en) Ultrasonic vibration application tool, traveling wave generation device, and ultrasonic machining device
JP2005001096A (en) Ultrasonic vibrating table
JP4754874B2 (en) Ultrasonic vibration cutting equipment
JP6821187B2 (en) Support structure of Langevin type ultrasonic oscillator
JP4740697B2 (en) Ultrasonic vibration cutting equipment
JP2006198758A (en) Ultrasonic vibration table
JP2022034487A (en) Ultrasonic cutting device
JP2020137104A (en) Flat ultrasonic transducer and supporting method thereof
JP2006062069A (en) Ultrasonic vibration table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200515

R150 Certificate of patent or registration of utility model

Ref document number: 6716082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250