JP6712902B2 - Waste treatment facility - Google Patents

Waste treatment facility Download PDF

Info

Publication number
JP6712902B2
JP6712902B2 JP2016102314A JP2016102314A JP6712902B2 JP 6712902 B2 JP6712902 B2 JP 6712902B2 JP 2016102314 A JP2016102314 A JP 2016102314A JP 2016102314 A JP2016102314 A JP 2016102314A JP 6712902 B2 JP6712902 B2 JP 6712902B2
Authority
JP
Japan
Prior art keywords
tube
heat transfer
tube plate
heat
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016102314A
Other languages
Japanese (ja)
Other versions
JP2017211098A (en
Inventor
晃治 坂田
晃治 坂田
良太 都築
良太 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2016102314A priority Critical patent/JP6712902B2/en
Publication of JP2017211098A publication Critical patent/JP2017211098A/en
Application granted granted Critical
Publication of JP6712902B2 publication Critical patent/JP6712902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、廃棄物処理設備に関する。 The present invention relates to waste treatment equipment.

微生物を用いた生物処理等で生じる有機性汚泥は、固液分離され任意の含水率に調整された後に焼却炉や溶融炉、シャフト炉等の熱処理炉を備えた廃棄物処理設備で焼却或いは溶融処理されている。このような熱処理炉で生じる排ガスの保有熱で熱処理炉に供給する燃焼用空気を予熱するため、熱処理炉の煙道には熱交換器が配置されている。 Organic sludge generated by biological treatment using microorganisms is incinerated or melted in a waste treatment facility equipped with heat treatment furnaces such as incinerators, melting furnaces and shaft furnaces after solid-liquid separation and adjustment to an arbitrary water content. Is being processed. A heat exchanger is arranged in the flue of the heat treatment furnace in order to preheat the combustion air supplied to the heat treatment furnace with the heat of the exhaust gas generated in the heat treatment furnace.

図12(a)には、このような用途に用いられる従来の熱交換器が示されている。受熱側流体となる燃焼用空気の流入部101及び流出部102を備えた筒状ケーシング100と、筒状ケーシング100の上端側及び下端側にそれぞれ溶着された上部管板103及び下部管板104と、上部管板103及び下部管板104に溶着支持されるとともに筒状ケーシング100に縦姿勢で配置され、放熱側流体である排ガスが流れる複数の伝熱管105とを備えたシェルアンドチューブ式の熱交換器である。 FIG. 12(a) shows a conventional heat exchanger used for such an application. A tubular casing 100 having an inflow portion 101 and an outflow portion 102 for the combustion air that serves as a heat receiving side fluid, and an upper tube sheet 103 and a lower tube sheet 104 welded to the upper end side and the lower end side of the tubular casing 100, respectively. , A shell-and-tube type heat exchanger including a plurality of heat transfer tubes 105 that are welded and supported by the upper tube sheet 103 and the lower tube sheet 104 and that are arranged in a vertical posture in the tubular casing 100 and through which exhaust gas that is a fluid on the heat radiation side flows. It is an exchange.

複数の伝熱管を束ねて支持する上下の管板103,104は、伝熱管105の荷重や高温の排ガスに起因する伝熱管105の熱膨張によって生じる反力を受ける重要な強度部材であり、特に伝熱管105の膨張によって管板103,104が歪み、破損すると、熱交換器の気密性が損なわれ、設備の安定稼働が妨げられる虞があった。特に、省エネルギー化を図るべく受熱側流体である燃焼用空気の出口温度を高く設定する場合には、放熱側流体である排ガスの入口温度も極力高いことが望ましく、管板103,104等の構造部材の熱負荷による損傷リスクが高くなる虞があった。 The upper and lower tube plates 103 and 104 that bundle and support a plurality of heat transfer tubes are important strength members that receive a reaction force generated by thermal expansion of the heat transfer tubes 105 caused by the load of the heat transfer tubes 105 and high-temperature exhaust gas. If the tube plates 103, 104 are distorted and damaged by the expansion of the heat transfer tube 105, the airtightness of the heat exchanger may be impaired, and stable operation of the equipment may be hindered. In particular, when the outlet temperature of the combustion air, which is the heat receiving fluid, is set to be high in order to save energy, it is desirable that the inlet temperature of the exhaust gas, which is the heat radiating fluid, is also as high as possible. There is a risk that the risk of damage due to the heat load on the members may increase.

そこで、図12(b)に示すように、特許文献1には、焼却炉等の熱源装置の高温排ガスを導入する排ガス導入室201と、外筒200内に形成されると共に上記高温排ガスと予熱空気を熱交換する熱交換室202と、熱交換された低温排ガスを排出する排ガス排出室203から成り、上記排ガス導入室201と熱交換室202を隔てる高温側管板204と、上記熱交換室202と排ガス排出室203を隔てる低温側管板205と、上下端部が上記高温側管板204と低温側管板205にそれぞれ接続されて、上記排ガス導入室201および上記排ガス排出室203に連通する複数の伝熱管206と、上記高温側管板204の上記熱交換室202側に設置される副室207と、該副室207に予熱用空気を導入する予熱空気導入口208と、上記副室207から上記熱交換室202に延設されて、上記予熱用空気を該熱交換室202の下方に流出せしめるリターンパイプ209と、上記熱交換室202から予熱用空気を排出して上記熱源装置に供給する予熱空気排出口210と、から構成される多管式熱交換器が提案されている。 Therefore, as shown in FIG. 12B, in Patent Document 1, an exhaust gas introduction chamber 201 for introducing the high temperature exhaust gas of a heat source device such as an incinerator, and the high temperature exhaust gas and preheating formed in the outer cylinder 200 A heat exchange chamber 202 for exchanging heat with air and an exhaust gas discharge chamber 203 for discharging the heat-exchanged low temperature exhaust gas, and a high temperature side tube sheet 204 separating the exhaust gas introduction chamber 201 and the heat exchange chamber 202, and the heat exchange chamber A low temperature side tube sheet 205 that separates 202 from the exhaust gas exhaust chamber 203, and upper and lower ends thereof are connected to the high temperature side tube sheet 204 and the low temperature side tube sheet 205, respectively, and communicate with the exhaust gas introduction chamber 201 and the exhaust gas exhaust chamber 203. A plurality of heat transfer tubes 206, a sub chamber 207 installed on the heat exchange chamber 202 side of the high temperature side tube sheet 204, a preheating air introduction port 208 for introducing preheating air into the sub chamber 207, and the sub chamber A return pipe 209 that extends from the chamber 207 to the heat exchange chamber 202 and allows the preheating air to flow out below the heat exchange chamber 202, and the heat source device that discharges the preheating air from the heat exchange chamber 202. A multi-tube heat exchanger including a preheated air discharge port 210 for supplying the heat to the air has been proposed.

また、図12(c)に示すように、特許文献2には、被加熱流体の流入口301と流出口302とを設けてある外筒部300と、熱源流体が流入する流入ヘッダ303と、熱源流体が流出する流出ヘッダ304と、前記流入ヘッダ303と前記流出ヘッダ304とを連通接続する複数の伝熱管305とを備え、前記外筒部300の一端側に、高温側管板部306を介して、前記流入ヘッダ303を接続するとともに、前記外筒部300の他端側に、低温側管板部307を介して、前記流出ヘッダ304を接続して、前記伝熱管305を前記外筒部300の内側に挿通し、前記高温側管板部306に、前記外筒部300側の第1管板310と前記流入ヘッダ303側の第2管板311とを設けて、前記第1管板310と前記第2管板311との間に、管板冷却用流体が通流可能な冷却用空間312を形成してある多管式熱交換器が提案されている。 Further, as shown in FIG. 12C, in Patent Document 2, an outer cylinder portion 300 provided with an inlet 301 and an outlet 302 of a fluid to be heated, an inflow header 303 into which a heat source fluid flows, An outflow header 304 through which the heat source fluid flows out, and a plurality of heat transfer tubes 305 that connect the inflow header 303 and the outflow header 304 to each other are communicatively provided, and a high temperature side tube sheet portion 306 is provided on one end side of the outer tubular portion 300. Through the low temperature side tube sheet part 307 to the other end side of the outer cylinder part 300 to connect the inflow header 303 to the heat transfer pipe 305. The first tube is provided by inserting the first tube sheet 310 on the outer tube section 300 side and the second tube sheet 311 on the inflow header 303 side into the high temperature side tube sheet section 306. A multi-tube heat exchanger has been proposed in which a cooling space 312 through which a tube plate cooling fluid can flow is formed between a plate 310 and the second tube plate 311.

当該多管式熱交換器は、前記冷却用空間312と前記外筒部300の内部とを連通する貫通孔313を前記第1管板310の略中央に設けて、圧力差を利用して、前記被加熱流体を前記管板冷却用流体として前記貫通孔313から前記冷却用空間に取り入れるとともに、前記冷却用空間312を通流させることで、前記高温側管板部を冷却可能に構成されている。 In the multi-tube heat exchanger, a through hole 313 that communicates the cooling space 312 and the inside of the outer tubular portion 300 is provided at substantially the center of the first tube sheet 310, and the pressure difference is utilized to The high temperature side tube sheet portion is configured to be cooled by taking the heated fluid as the tube sheet cooling fluid from the through hole 313 into the cooling space and flowing the cooling space 312. There is.

特開2010−144999号公報JP, 2010-144999, A 特許第4194595号公報Japanese Patent No. 4194595

特許文献1,2に開示された多管式熱交換器は何れも放熱側流体の入口側の管板を二重管板に構成し、二重管板で囲まれた領域に冷却空気を供給して管板を冷却する構成で、専用の送風ファンを用いて外部から冷却用空気を供給する構成(図12(b)参照)、または受熱側空気の一部を分岐して内部から冷却用空気を供給する構成(図12(c)参照)が採用されている。 In each of the multi-tube heat exchangers disclosed in Patent Documents 1 and 2, the tube plate on the inlet side of the heat radiation side fluid is configured as a double tube plate, and cooling air is supplied to the area surrounded by the double tube plate. In this configuration, the tube sheet is cooled to supply cooling air from the outside by using a dedicated blower fan (see FIG. 12(b)), or a part of the heat receiving side air is branched to cool the tube sheet from the inside. A structure that supplies air (see FIG. 12C) is adopted.

上述した従来のシェルアンドチューブ式の熱交換器によれば、上部管板の熱負荷が低減されるようになるため、高温の排ガスを熱源として用いることができるが、伝熱管が配列される中心部にリターンパイプ209(図12(b)参照)や貫通孔313(図12(c)参照)が設けられるため、伝熱管1本分の伝熱面積が減少していた。 According to the conventional shell-and-tube heat exchanger described above, the heat load on the upper tube sheet is reduced, so that high-temperature exhaust gas can be used as the heat source, but the center of the heat transfer tubes is arranged. Since the return pipe 209 (see FIG. 12B) and the through hole 313 (see FIG. 12C) are provided in the portion, the heat transfer area for one heat transfer tube is reduced.

また、伝熱管の両端が上下の管板に溶着されていたため、伝熱管が熱膨張することにより管板が曲げ応力を受ける構造に変わりなく、破損を招く虞が解消されるものではなかった。 In addition, since both ends of the heat transfer tube are welded to the upper and lower tube plates, the tube plate is subject to bending stress due to thermal expansion of the heat transfer tube, and the risk of breakage cannot be eliminated.

本発明の目的は、上述した問題点に鑑み、伝熱管の熱膨張により管板にかかる反力を低減することができ、さらには伝熱面積が減少することなく管板を効率的に冷却できる熱交換器を備えた廃棄物処理設備を提供する点にある。 In view of the above-mentioned problems, the object of the present invention is to reduce the reaction force applied to the tube sheet due to the thermal expansion of the heat transfer tube, and further to efficiently cool the tube sheet without reducing the heat transfer area. The point is to provide a waste treatment facility equipped with a heat exchanger.

上述の目的を達成するため、本発明による廃棄物処理設備の第一特徴構成は、熱処理炉と、当該熱処理炉の煙道に設置され排ガスの保有熱により前記熱処理炉の燃焼用空気を予熱する熱交換器と、を備えている廃棄物処理設備であって、前記熱交換器は、燃焼用空気の流入部及び流出部を備えたケーシングと、前記ケーシングの上端側及び下端側にそれぞれ固着された上部管板及び下部管板と、前記上部管板及び前記下部管板に支持されるとともに前記ケーシングに配置され排ガスが流れる複数の伝熱管と、を備えて構成され、前記伝熱管の一端部は前記上部管板または前記下部管板の何れか一方に固着されたガイド管と摺動するとともに、前記伝熱管の他端部は前記上部管板または前記下部管板の何れか他方に固着支持され、前記上部管板または前記下部管板のうち排ガスの流入側の管板に対向して前記ケーシングの内側に、前記伝熱管にのみ固着され前記伝熱管と一体で前記筒状ケーシングに対して相対移動可能な仕切管板が配置され、当該管板と前記仕切管板との間に冷却空間が構成され、前記冷却空間に供給された冷却用空気が、前記仕切管板の外周部と前記外周部に対向する前記筒状ケーシングの内壁面との間に形成される間隙から流出して前記ケーシング内で燃焼用空気に混入するように構成されている点にある。
In order to achieve the above-mentioned object, the first characteristic constitution of the waste treatment facility according to the present invention is to preheat the heat treatment furnace and the combustion air of the heat treatment furnace by the heat of exhaust gas installed in the flue of the heat treatment furnace. A waste treatment facility including a heat exchanger, wherein the heat exchanger is fixed to a casing having an inflow portion and an outflow portion of combustion air, and is fixed to an upper end side and a lower end side of the casing, respectively. An upper tube sheet and a lower tube sheet, and a plurality of heat transfer tubes supported by the upper tube sheet and the lower tube sheet and arranged in the casing, through which exhaust gas flows, one end of the heat transfer tube Slides with a guide tube fixed to either the upper tube sheet or the lower tube sheet, and the other end of the heat transfer tube is fixedly supported to the other of the upper tube sheet or the lower tube sheet. Of the upper tube plate or the lower tube plate, facing the tube plate on the exhaust gas inflow side, inside the casing, fixed only to the heat transfer tube, and integrally with the heat transfer tube with respect to the tubular casing. A relatively movable partition tube plate is arranged, a cooling space is formed between the tube plate and the partition tube plate, and cooling air supplied to the cooling space is the outer peripheral portion of the partition tube plate and the cooling air. It is configured to flow out from a gap formed between the inner wall surface of the cylindrical casing facing the outer peripheral portion and to be mixed with the combustion air in the casing.

上部管板または下部管板の何れか一方にガイド管が固着され、伝熱管の一端部が当該ガイド管との間で摺動可能に配置され、伝熱管の他端部が他方の管板に固着支持される。管板に固着支持された伝熱管が熱応力によって管軸方向に膨張する場合でも、ガイド管に対して伝熱管が摺動して、上部管板及び下部管板の何れにも直接的に大きな反力が作用することがないので、両管板に大きな歪みが発生することがない。従って、管板等の構造部材の熱的ストレスによる損傷リスクを低減しながらも、排熱の回収効率を上げて省エネルギー化を図ることができる廃棄物処理設備が得られる。 A guide tube is fixed to either the upper tube sheet or the lower tube sheet, one end of the heat transfer tube is slidably arranged with the guide tube, and the other end of the heat transfer tube is attached to the other tube sheet. It is fixedly supported. Even when the heat transfer tube fixedly supported by the tube plate expands in the tube axis direction due to thermal stress, the heat transfer tube slides against the guide tube, and the heat transfer tube is large directly on both the upper tube plate and the lower tube plate. Since no reaction force is applied, no large strain is generated in both tube sheets. Therefore, it is possible to obtain a waste treatment facility that can reduce the risk of damage to structural members such as the tube sheet due to thermal stress, while increasing the efficiency of exhaust heat recovery and energy saving.

そして、排ガスの流入側の管板と当該管板に対向して配置された仕切管板との間の空間が冷却用空間となり、当該冷却用空間に供給された冷却用空気によって排ガスの流入側の管板が効果的に冷却されるようになる。そして、冷却用空気は筒状ケーシングと仕切管板との間隙を介して受熱側流体となる燃焼用空気に合流するので、従来のリターンパイプ209(図12(b)参照)や貫通孔313(図12(c)参照)等といった特段の通流部を設けていた空間にも伝熱管を配することができるようになり、伝熱面積を増大することができるようになる。And, the space between the tube plate on the inflow side of the exhaust gas and the partition tube plate arranged facing the tube plate becomes a cooling space, and the inflow side of the exhaust gas is supplied by the cooling air supplied to the cooling space. The tube sheet will be cooled effectively. Then, the cooling air merges with the combustion air that becomes the heat receiving side fluid through the gap between the tubular casing and the partition tube plate, so that the conventional return pipe 209 (see FIG. 12B) and the through hole 313 (see FIG. The heat transfer tube can be arranged also in the space where the special flow passage part such as FIG. 12C) is provided, and the heat transfer area can be increased.

さらに、筒状ケーシングに対して間隙を隔てて仕切管板を配置する場合には、伝熱管に仕切り板を固着することができ、その場合には熱膨張によって伸びる伝熱管とともに筒状ケーシングに対して相対移動することになり仕切管板が異常に歪むようなこともない。Further, when arranging the partition tube plate with a gap to the cylindrical casing, the partition plate can be fixed to the heat transfer tube, and in that case, the heat transfer tube extending by thermal expansion and the tubular casing can be fixed to the cylindrical casing. As a result, the partition tube plate will not be abnormally distorted.

同第二の特徴構成は、熱処理炉と、当該熱処理炉の煙道に設置され排ガスの保有熱により前記熱処理炉の燃焼用空気を予熱する熱交換器と、を備えている廃棄物処理設備であって、前記熱交換器は、燃焼用空気の流入部及び流出部を備えたケーシングと、前記ケーシングの上端側及び下端側にそれぞれ固着された上部管板及び下部管板と、前記上部管板及び前記下部管板に支持されるとともに前記ケーシングに配置され排ガスが流れる複数の伝熱管と、を備えて構成され、前記伝熱管の一端部は前記上部管板または前記下部管板の何れか一方に固着されたガイド管と摺動するとともに、前記伝熱管の他端部は前記上部管板または前記下部管板の何れか他方に固着支持され、前記上部管板または前記下部管板のうち前記ガイド管を備えた管板に対向して前記ケーシングの内側に、前記伝熱管にのみ固着され前記伝熱管と一体で前記筒状ケーシングに対して相対移動可能な仕切管板が配置され、当該管板と前記仕切管板との間に冷却空間が構成され、前記冷却空間に供給された冷却用空気が、前記仕切管板の外周部と前記外周部に対向する前記筒状ケーシングの内壁面との間に形成される間隙から流出して前記ケーシング内で燃焼用空気に混入するように構成されている点にある。 The second characteristic configuration is a waste treatment facility equipped with a heat treatment furnace and a heat exchanger installed in a flue of the heat treatment furnace to preheat combustion air of the heat treatment furnace by heat retained by exhaust gas. The heat exchanger includes a casing having an inflow portion and an outflow portion for combustion air, an upper tube plate and a lower tube sheet fixed to upper and lower ends of the casing, and the upper tube sheet. And a plurality of heat transfer tubes supported by the lower tube sheet and arranged in the casing, through which exhaust gas flows, and one end of the heat transfer tube is one of the upper tube sheet and the lower tube sheet. The other end of the heat transfer tube is fixedly supported on the other of the upper tube plate or the lower tube plate while sliding with the guide tube fixed to the upper tube plate or the lower tube plate. A partition tube plate, which is fixed only to the heat transfer tube and is movable relative to the tubular casing integrally with the heat transfer tube, is arranged inside the casing so as to face the tube plate provided with the guide tube. A cooling space is formed between the plate and the partition tube plate, and cooling air supplied to the cooling space is an outer wall of the partition tube plate and an inner wall surface of the tubular casing facing the outer wall. It is configured so that it flows out from the gap formed between the two and mixes with the combustion air in the casing.

上部管板または下部管板の何れか一方にガイド管が固着され、伝熱管の一端部が当該ガイド管との間で摺動可能に配置され、伝熱管の他端部が他方の管板に固着支持される。管板に固着支持された伝熱管が熱応力によって管軸方向に膨張する場合でも、ガイド管に対して伝熱管が摺動して、上部管板及び下部管板の何れにも直接的に大きな反力が作用することがないので、両管板に大きな歪みが発生することがない。従って、管板等の構造部材の熱的ストレスによる損傷リスクを低減しながらも、排熱の回収効率を上げて省エネルギー化を図ることができる廃棄物処理設備が得られる。 A guide tube is fixed to either the upper tube sheet or the lower tube sheet, one end of the heat transfer tube is slidably arranged with the guide tube, and the other end of the heat transfer tube is attached to the other tube sheet. It is fixedly supported. Even when the heat transfer tube fixedly supported by the tube plate expands in the tube axis direction due to thermal stress, the heat transfer tube slides against the guide tube, and the heat transfer tube is large directly on both the upper tube plate and the lower tube plate. Since no reaction force is applied, no large strain is generated in both tube sheets. Therefore, it is possible to obtain a waste treatment facility that can reduce the risk of damage to structural members such as the tube sheet due to thermal stress, while increasing the efficiency of exhaust heat recovery and energy saving.

そして、ガイド管を備えた管板と当該管板に対向して配置された仕切管板との間の空間が冷却用空間となり、当該冷却用空間に供給された冷却用空気によって排ガスの流入側の管板が効果的に冷却されるようになる。そして、冷却用空気は筒状ケーシングと仕切管板との間隙を介して受熱側流体となる燃焼用空気に合流するので、従来のリターンパイプ209(図12(b)参照)や貫通孔313(図12(c)参照)等といった特段の通流部を設けていた空間にも伝熱管を配することができるようになり、伝熱面積を増大することができるようになる。Then, the space between the tube sheet provided with the guide tube and the partition tube sheet arranged so as to face the tube sheet becomes a cooling space, and the inflow side of the exhaust gas by the cooling air supplied to the cooling space. The tube sheet will be cooled effectively. Then, the cooling air merges with the combustion air that becomes the heat receiving side fluid through the gap between the tubular casing and the partition tube plate, so that the conventional return pipe 209 (see FIG. 12B) and the through hole 313 (see FIG. The heat transfer tube can be arranged also in the space where the special flow passage part such as FIG. 12C) is provided, and the heat transfer area can be increased.

さらに、筒状ケーシングに対して間隙を隔てて仕切管板を配置する場合には、伝熱管に仕切り板を固着することができ、その場合には熱膨張によって伸びる伝熱管とともに筒状ケーシングに対して相対移動することになり仕切管板が異常に歪むようなこともない。Further, when arranging the partition tube plate with a gap to the cylindrical casing, the partition plate can be fixed to the heat transfer tube, and in that case, the heat transfer tube extending by thermal expansion and the tubular casing can be fixed to the cylindrical casing. As a result, the partition tube plate will not be abnormally distorted.

同第の特徴構成は、上述の第一または第二の特徴構成に加えて、前記ガイド管は前記伝熱管を内挿または外挿可能なように構成されている点にある。 The third characteristic configuration is that, in addition to the above-described first or second characteristic configuration, the guide tube is configured such that the heat transfer tube can be inserted or externally inserted.

伝熱管がガイド管に内挿されると、ガイド管の内周壁に沿って伝熱管の外周壁が摺動し、伝熱管がガイド管に外挿されると、ガイド管の外周壁に沿って伝熱管の内周壁が摺動し、何れの構成であっても伝熱管の管軸方向への膨張に対して上部管板及び下部管板の何れにも直接的に大きな反力が作用することがない。 When the heat transfer tube is inserted into the guide tube, the outer peripheral wall of the heat transfer tube slides along the inner peripheral wall of the guide tube, and when the heat transfer tube is externally inserted into the guide tube, the heat transfer tube extends along the outer peripheral wall of the guide tube. The inner peripheral wall of the device slides, and no matter how the structure is applied, a large reaction force does not directly act on either the upper tube plate or the lower tube plate against the expansion of the heat transfer tube in the tube axis direction. ..

同第の特徴構成は、上述の第一から第三の何れかの特徴構成に加えて、前記ケーシングは略鉛直の筒状であり、前記伝熱管が当該ケーシングの軸線方向に配置されている点にある。 In the fourth characteristic configuration, in addition to any one of the first to third characteristic configurations described above, the casing has a substantially vertical cylindrical shape, and the heat transfer tubes are arranged in an axial direction of the casing. There is a point.

伝熱管がケーシングの軸線方向つまり略鉛直方向に配置されているため、伝熱管が自重によって軸線と交差する方向に撓むようなことがなく、その結果ガイド管と伝熱管との接触部が偏ることなく略均等に摺動するようになる。 Since the heat transfer tubes are arranged in the axial direction of the casing, that is, in a substantially vertical direction, the heat transfer tubes do not bend in the direction intersecting the axis due to their own weight, and as a result, the contact portion between the guide tube and the heat transfer tube is biased. Instead, it will slide substantially evenly.

同第の特徴構成は、上述の第一から第の何れかの特徴構成に加えて、前記ガイド管は前記上部管板または前記下部管板のうち排ガスの流入側の管板に設けられている点にある。 In the fifth characteristic configuration, in addition to any one of the first to fourth characteristic configurations described above, the guide tube is provided in a tube plate on an exhaust gas inflow side of the upper tube plate or the lower tube plate. There is a point.

放熱側流体となる高温の排ガスの流入側の管板にはそれだけ大きな熱負荷が掛かる。そのような管板に伝熱管が摺動可能なガイド管が設けられているので、伝熱管の熱膨張に起因する熱負荷が当該管板に直接作用することがなくなるので、破損の虞が大幅に低減されるようになる。 A large heat load is applied to the tube plate on the inflow side of the high-temperature exhaust gas that serves as the heat radiation side fluid. Since a guide tube on which the heat transfer tube can slide is provided on such a tube plate, the heat load due to the thermal expansion of the heat transfer tube does not directly act on the tube plate, so that there is a great risk of damage. Will be reduced to.

同第の特徴構成は、上述の第一から第の何れかの特徴構成に加えて、前記ガイド管は前記上部管板または前記下部管板のうち排ガスの流出側の管板に設けられ、前記燃焼用空気の流入部は排ガスの流入側に設けられている点にある。 In the sixth characteristic configuration, in addition to any one of the first to fourth characteristic configurations described above, the guide tube is provided in a tube plate on the exhaust gas outflow side of the upper tube plate or the lower tube plate. The inflow part of the combustion air is provided on the inflow side of the exhaust gas.

排ガスの流出側の管板にガイド管を設ける場合でも、熱膨張する伝熱管がガイド管に対して摺動するので、伝熱管の熱膨張に起因する熱負荷が排ガスの流入側の管板に直接作用することがなくなる。しかも、排ガスの流入側に設けられた流入部から流入した熱交換前の低温の燃焼用空気によって、高温の排ガスの流入側の管板も効果的に冷却されるようになる。 Even when a guide tube is provided on the tube plate on the exhaust gas outflow side, the heat transfer tube that thermally expands slides on the guide tube, so the heat load due to the thermal expansion of the heat transfer tube is applied to the tube plate on the exhaust gas inflow side. There is no direct action. Moreover, the low-temperature combustion air before heat exchange, which has flowed in from the inflow portion provided on the inflow side of the exhaust gas, also effectively cools the tube plate on the inflow side of the high temperature exhaust gas.

同第の特徴構成は、上述の第一から第六の何れかの特徴構成に加えて、前記排ガスの圧力をP1、前記燃焼用空気の圧力をP2、前記冷却用空気の圧力をP3とするとき、P1<P2<P3に設定されている点にある。 In the seventh characteristic configuration, in addition to any one of the first to sixth characteristic configurations described above, the exhaust gas pressure is P1, the combustion air pressure is P2, and the cooling air pressure is P3. In this case, P1<P2<P3 is set.

排ガスの圧力P1と燃焼用空気の圧力P2と冷却用空気の圧力P3との間に、少なくともP1<P2<P3の関係が成立すれば、冷却用空間に供給された冷却用空気が滞留することなく、筒状ケーシングと仕切管板との間隙または伝熱管と仕切管板との間隙を介して受熱側流体となる燃焼用空気に合流し、或いは摺動部を構成するガイド管を介して伝熱管に確実に流入するようになり、小量の冷却用空気であっても十分な冷却効果が得られるようになる。 If at least the relationship of P1<P2<P3 is established among the pressure P1 of the exhaust gas, the pressure P2 of the combustion air and the pressure P3 of the cooling air, the cooling air supplied to the cooling space is retained. Instead, it merges with the combustion air serving as the heat receiving side fluid through the gap between the tubular casing and the partition tube sheet or the gap between the heat transfer tube and the partition tube sheet, or is transferred through the guide tube that constitutes the sliding portion. As a result, the heat can be reliably introduced into the heat pipe, and a sufficient cooling effect can be obtained even with a small amount of cooling air.

以上説明した通り、本発明によれば、伝熱管の熱膨張により管板にかかる反力を低減することができ、さらには伝熱面積が減少することなく管板を効率的に冷却できる熱交換器を備えた廃棄物処理設備を提供することができるようになった。 As described above, according to the present invention, the heat exchange that can reduce the reaction force applied to the tube sheet due to the thermal expansion of the heat transfer tube, and further can efficiently cool the tube sheet without reducing the heat transfer area. It has become possible to provide a waste treatment facility equipped with a container.

(a)は本発明の熱交換器の縦断面図、(b)は図1(a)のB−B線で断面図1A is a vertical cross-sectional view of the heat exchanger of the present invention, and FIG. 1B is a cross-sectional view taken along the line BB of FIG. 1A. 本発明による熱交換器が組み込まれた廃棄物処理設備の説明図Explanatory drawing of a waste treatment facility incorporating a heat exchanger according to the present invention 下部支持、伝熱管内挿の向流熱交換器の実施例の説明図Explanatory drawing of an embodiment of a countercurrent heat exchanger with lower support and heat transfer tube insertion 下部支持、伝熱管外挿の向流熱交換器の実施例の説明図Explanatory drawing of an embodiment of a countercurrent heat exchanger with a lower support and a heat transfer tube extrapolation 下部支持、向流熱交換器の実施例の説明図Explanatory drawing of an embodiment of a lower support, countercurrent heat exchanger 上部支持、向流熱交換器の実施例の説明図Explanatory drawing of an embodiment of an upper support and countercurrent heat exchanger 上部支持、並流熱交換器の実施例の説明図Explanatory drawing of an embodiment of an upper support and a parallel flow heat exchanger 冷却空間を持たない熱交換器の別実施例で(a)は下部支持、向流熱交換器の説明図で(b)は上部支持、並流熱交換器の説明図In another embodiment of the heat exchanger having no cooling space, (a) is a lower support and an explanatory view of a countercurrent heat exchanger, and (b) is an upper support, an explanatory view of a cocurrent heat exchanger. 冷却空間を持たない熱交換器の別実施例で(a)は下部支持、並流熱交換器の説明図で(b)は上部支持、向流熱交換器の説明図In another embodiment of the heat exchanger having no cooling space, (a) is a lower support and an explanatory view of a co-current heat exchanger, and (b) is an upper support, an explanatory view of a countercurrent heat exchanger. 冷却空間を持たない熱交換器の別実施例で(a)は下部支持、向流熱交換器の説明図で(b)は上部支持、向流熱交換器の説明図In another embodiment of the heat exchanger having no cooling space, (a) is a lower support, and an explanatory view of the countercurrent heat exchanger, and (b) is an upper support, an explanatory view of the countercurrent heat exchanger. 別実施形態を示し、本発明による熱交換器が組み込まれた廃棄物処理設備の説明図Explanatory drawing of the waste treatment equipment which showed another embodiment and which incorporated the heat exchanger by this invention. 従来の熱交換器の説明図Illustration of conventional heat exchanger

以下、本発明による熱交換器及び廃棄物処理設備の実施形態を説明する。
図2には、汚泥等の廃棄物を焼却処理する廃棄物処理設備1が示されている。廃棄物処理炉の一例である流動床式焼却炉2と、流動床式焼却炉2で生じた排ガスの保有熱により燃焼用空気を予熱する熱交換器3と、煙道に沿って配置された集塵機9や排煙処理塔10等の排ガス処理設備と、処理後の排ガスを排気する煙突12等を備えている。排煙処理塔10の下流側には炉内を負圧に維持する誘引送風機11が設けられ、誘引送風機11によって誘引された排ガスが煙突12から排気される。
Hereinafter, embodiments of the heat exchanger and the waste treatment facility according to the present invention will be described.
FIG. 2 shows a waste treatment facility 1 that incinerates waste such as sludge. A fluidized bed incinerator 2 which is an example of a waste treatment furnace, a heat exchanger 3 which preheats combustion air by the retained heat of exhaust gas generated in the fluidized bed incinerator 2, and a flue gas are arranged. Exhaust gas treatment equipment such as a dust collector 9 and a smoke exhaust treatment tower 10 and a chimney 12 for exhausting the treated exhaust gas are provided. An induction blower 11 for maintaining a negative pressure in the furnace is provided on the downstream side of the smoke exhaust treatment tower 10, and the exhaust gas attracted by the induction blower 11 is exhausted from the chimney 12.

流動床式焼却炉2は、空気供給機構Aとなる押込み送風機6から供給される高温空気によって形成される流動床で、炉内に投入された汚泥を加熱し、ガス化された汚泥をフリーボード部で燃焼させる処理炉である。 The fluidized bed incinerator 2 is a fluidized bed formed by high temperature air supplied from a forced air blower 6 serving as an air supply mechanism A, which heats the sludge put in the furnace and freeboards the gasified sludge. It is a processing furnace that is burned in a part.

押込み送風機6から供給された燃焼用空気が、熱交換器3で800〜1000℃の排ガスと熱交換されて500〜750℃に予熱された後に、流動床式焼却炉2に供給されて流動床が形成される。 The combustion air supplied from the forced air blower 6 is heat-exchanged with the exhaust gas at 800 to 1000° C. by the heat exchanger 3 and preheated to 500 to 750° C., and then supplied to the fluidized bed incinerator 2 to be fluidized bed. Is formed.

熱交換器3で燃焼用空気を高温化するために、より高温の排ガスを導入すると、熱交換器3に極めて大きな熱負荷がかかるという問題がある。本発明による廃棄物処理設備は、この様な熱負荷に対する対策が施された熱交換器3が組み込まれている。 If a higher temperature exhaust gas is introduced in order to raise the temperature of the combustion air in the heat exchanger 3, there is a problem that an extremely large heat load is applied to the heat exchanger 3. The waste treatment facility according to the present invention incorporates the heat exchanger 3 provided with measures against such heat load.

図1(a),(b)には本発明による熱交換器3の断面が示されている。熱交換器3は、燃焼用空気流入部50及び燃焼用空気流出部43を備えた断面円形の筒状ケーシング39と、筒状ケーシング39の上端側及び下端側にそれぞれ固着、具体的には溶着(以下の説明でも、「溶着」と表現する)された上部管板34及び下部管板35と、上部管板34及び下部管板35に支持されるとともに筒状ケーシング39に縦姿勢、具体的には鉛直姿勢で配置され排ガスCが流れる複数の伝熱管36とを備えている。 1(a) and 1(b) show a cross section of a heat exchanger 3 according to the present invention. The heat exchanger 3 is fixed to, and specifically welded to, a tubular casing 39 having a combustion air inflow portion 50 and a combustion air outflow portion 43 and having a circular cross section, and an upper end side and a lower end side of the tubular casing 39, respectively. (Also referred to as “welding” in the following description), the upper tube plate 34 and the lower tube plate 35 are supported by the upper tube plate 34 and the lower tube plate 35, and a vertical posture in the tubular casing 39, specifically, Is provided with a plurality of heat transfer tubes 36 arranged in a vertical posture and through which the exhaust gas C flows.

伝熱管36の上端部は上部管板34に溶着されたガイド管37に内挿された摺動部38を有するとともに、伝熱管36の他端部は下部管板35に溶着支持されている。 The upper end of the heat transfer tube 36 has a sliding portion 38 inserted in a guide tube 37 welded to the upper tube sheet 34, and the other end of the heat transfer tube 36 is welded to and supported by the lower tube sheet 35.

筒状ケーシング39の上端側には伝熱管36に排ガスCを流入する排ガス流入ヘッダ部48が設けられ、下端側には伝熱管36を通った排ガスCを集めて流出する排ガス流出ヘッダ部47が設けられている。 An exhaust gas inflow header section 48 for inflowing the exhaust gas C into the heat transfer tube 36 is provided on the upper end side of the cylindrical casing 39, and an exhaust gas outflow header section 47 for collecting and discharging the exhaust gas C passing through the heat transfer tube 36 is provided at the lower end side. It is provided.

筒状ケーシング39の内側は、伝熱管36の長手方向に沿って互い違いに複数枚のバッフルプレート40が配設されている。通風路であるジャケット部33に設けられた燃焼用空気流入路31から流入した燃焼用空気Dは、バッフルプレート40に沿って蛇行しながら上昇し、燃焼用空気流出部32へ流出する。すなわち、この蛇行流路が空気流路41を形成している。 Inside the cylindrical casing 39, a plurality of baffle plates 40 are arranged alternately along the longitudinal direction of the heat transfer tube 36. The combustion air D that has flowed in from the combustion air inflow passage 31 provided in the jacket portion 33 that is a ventilation path rises while meandering along the baffle plate 40, and flows out to the combustion air outflow portion 32. That is, this meandering flow path forms the air flow path 41.

排ガス流入ヘッダ部48から流入した排ガスCは、摺動部38を経て伝熱管36を流下し、流出ヘッダ部47に流出する。筒状ケーシング39の下部に形成されたジャケット部33の燃焼用空気流入部31から流入した燃焼用空気Dは、空気流路41を流れて筒状ケーシング39の上部に配置されたジャケット部33の燃焼用空気流出部32から流出する。伝熱管36を流下する放熱側流体である排ガスと、空気流路41を上昇する受熱側流体である燃焼用空気との間で熱交換が行なわれる向流方式の熱交換器3が構成されている。 The exhaust gas C that has flowed in from the exhaust gas inflow header portion 48 flows down the heat transfer pipe 36 through the sliding portion 38, and flows out to the outflow header portion 47. Combustion air D flowing from the combustion air inflow portion 31 of the jacket portion 33 formed in the lower portion of the tubular casing 39 flows through the air flow path 41, and the combustion air D of the jacket portion 33 disposed in the upper portion of the tubular casing 39. It flows out from the combustion air outflow portion 32. A countercurrent heat exchanger 3 is configured in which heat is exchanged between exhaust gas, which is a heat-radiating fluid that flows down the heat transfer tube 36, and combustion air, which is a heat-receiving fluid that rises in the air flow path 41. There is.

上部管板34に対向して間隔を空けて仕切管板49が配置され、上部管板34と仕切管板49との間に冷却空間44が形成されている。冷却空間44に備えた開口部42から燃焼用空気Dが供給され、熱交換前の高温の排ガスで加熱される上部管板34及び上部管板34の近傍が冷却されるように構成されている。 A partition tube plate 49 is arranged facing the upper tube plate 34 with a space therebetween, and a cooling space 44 is formed between the upper tube plate 34 and the partition tube plate 49. Combustion air D is supplied from the opening 42 provided in the cooling space 44, and the upper tube sheet 34 and the vicinity of the upper tube sheet 34 heated by the high-temperature exhaust gas before heat exchange are configured to be cooled. ..

本実施形態では、熱交換器3は全長約12m、直径約2mの筒状ケーシング39の中に直径約70mmの伝熱管36が120本収納されている。伝熱管36は軸心方向約10mの長さに形成され、熱膨張時には約100mm前後の伸張が許容される。 In this embodiment, the heat exchanger 3 accommodates 120 heat transfer tubes 36 having a diameter of about 70 mm in a cylindrical casing 39 having a length of about 12 m and a diameter of about 2 m. The heat transfer tube 36 is formed to have a length of about 10 m in the axial direction, and can be stretched by about 100 mm during thermal expansion.

図3に基づいて、摺動部38及び冷却機構について詳述する。
上部管板34には伝熱管36の挿通位置と対応する位置に複数の開孔が形成され、各開孔に短尺のガイド管37が挿通され、ガイド管37の周部が上部管板34の各開孔で溶着固定されている。
The sliding portion 38 and the cooling mechanism will be described in detail with reference to FIG.
A plurality of openings are formed in the upper tube plate 34 at positions corresponding to the insertion positions of the heat transfer tubes 36, and short guide tubes 37 are inserted into the respective openings. It is welded and fixed at each opening.

下部管板35に下端側が溶着固定された伝熱管36の上端側がガイド管37に内挿されて摺動部38が構成されている。伝熱管36に排ガスが流入して加熱され、軸心方向に伝熱管36が伸長すると、伝熱管36の上端側がガイド管37に沿って上方に伸長するため、上部管板34及び下部管板35が伝熱管36の熱膨張による反力を受けることがなく、従って上部管板34及び下部管板35に発生する歪みが軽減される。図3には、熱により膨張(伸長)した伝熱管36が破線で示されている。 The upper end side of the heat transfer tube 36 whose lower end side is welded and fixed to the lower tube sheet 35 is inserted into the guide tube 37 to form the sliding portion 38. When the exhaust gas flows into the heat transfer tube 36 and is heated, and the heat transfer tube 36 extends in the axial direction, the upper end side of the heat transfer tube 36 extends upward along the guide tube 37, and thus the upper tube sheet 34 and the lower tube sheet 35. Does not receive a reaction force due to the thermal expansion of the heat transfer tube 36, so that the strain generated in the upper tube sheet 34 and the lower tube sheet 35 is reduced. In FIG. 3, the heat transfer tube 36 expanded (expanded) by heat is shown by a broken line.

ガイド管37は、伝熱管36が常温状態の収縮時であっても加熱状態の伸張時であっても、伝熱管36が内挿された状態が保持できるような長さに形成されていればよい。また、ガイド管37の内径は伝熱管36の外径と略同サイズか、僅かに大きなサイズに形成され、伝熱管36の伸張時にガイド管37の内周部と摺動して伸長できるようなサイズに形成されていればよい。 The guide tube 37 is formed in such a length that it can maintain the inserted state of the heat transfer tube 36 regardless of whether the heat transfer tube 36 is contracted in a normal temperature state or expanded in a heated state. Good. In addition, the inner diameter of the guide tube 37 is formed to be substantially the same as or slightly larger than the outer diameter of the heat transfer tube 36, so that when the heat transfer tube 36 is extended, it can be slid and extended with the inner peripheral portion of the guide tube 37. It only needs to be formed to the size.

上部管板34との間で冷却空間44を形成する仕切管板49には各伝熱管36を挿通する複数の開孔が形成され、各開孔と各伝熱管36とが互いに溶着されている。また、仕切管板49の外周部は筒状ケーシング39と溶着されることなく非常に僅かな隙間が形成された状態で開放されている。 A plurality of openings for inserting the heat transfer tubes 36 are formed in a partition tube plate 49 that forms a cooling space 44 with the upper tube sheet 34, and the openings and the heat transfer tubes 36 are welded to each other. .. Further, the outer peripheral portion of the partition tube plate 49 is opened without being welded to the tubular casing 39 and forming a very small gap.

従って、各伝熱管36に排ガスが流下して昇温し、伝熱管36が熱膨張して軸心方向に伸びると、伝熱管36の熱膨張に伴って仕切管板49が伝熱管36と一体で筒状ケーシング39に対して相対移動するように構成されている。従って、伝熱管36の熱膨張に伴って仕切管板49に反力が生じることもない。 Therefore, when the exhaust gas flows down into each heat transfer tube 36 to raise the temperature and the heat transfer tube 36 thermally expands and extends in the axial direction, the partition tube plate 49 is integrated with the heat transfer tube 36 as the heat transfer tube 36 thermally expands. Is configured to move relative to the tubular casing 39. Therefore, no reaction force is generated in the partition tube plate 49 due to the thermal expansion of the heat transfer tube 36.

図1に示すように、燃焼用空気供給用のジャケット部33に冷却用空気供給用のジャケットが連接形成されている。冷却用空気供給用のジャケットに形成された冷却用空気流入部30から供給された冷却用空気が筒状ケーシング39の上端側に形成された開口部42から冷却空間44に供給され、上部管板34及びその周辺が冷却され、以て上部管板34に掛かる熱負荷を軽減するように構成されている。 As shown in FIG. 1, a jacket for supplying cooling air is connected to a jacket portion 33 for supplying combustion air. The cooling air supplied from the cooling air inflow portion 30 formed in the cooling air supply jacket is supplied to the cooling space 44 through the opening 42 formed on the upper end side of the tubular casing 39, and the upper tube sheet is formed. 34 and its surroundings are cooled, thereby reducing the heat load on the upper tube sheet 34.

つまり、上部管板34と仕切管板49とで仕切られる冷却空間44及び冷却用空気供給用のジャケットによって冷却機構が構成されている。 In other words, the cooling mechanism is configured by the cooling space 44 partitioned by the upper tube sheet 34 and the partition tube sheet 49 and the cooling air supply jacket.

冷却空間44に供給された冷却用空気は、上部管板34を冷却した後に、仕切管板49の外周部と筒状ケーシング39との間に形成された微小な隙間を通って空気流路41を流れる燃焼用空気に混入して流出し、或いは摺動部38を構成するガイド管37と伝熱管36との間の微小な隙間を通って排ガス側に流出する。冷却用空間44に供給される冷却用空気の流量は相対的に微量であるため、熱交換前の排ガスに混入しても排ガスの温度低下を引き起こすようなことはない。 The cooling air supplied to the cooling space 44 cools the upper tube sheet 34, and then passes through a minute gap formed between the outer peripheral portion of the partition tube sheet 49 and the cylindrical casing 39, and the air flow path 41. And flows out into the exhaust gas side through a minute gap between the guide tube 37 and the heat transfer tube 36 forming the sliding portion 38. Since the flow rate of the cooling air supplied to the cooling space 44 is relatively small, even if mixed with the exhaust gas before heat exchange, the temperature of the exhaust gas does not decrease.

図4には、摺動部38及び冷却機構の他の例が示されている。
図3と同様に、上部管板34には伝熱管36の挿通位置と対応する位置に複数の開孔が形成され、各開孔に短尺のガイド管37が挿通され、ガイド管37の周部が上部管板34の各開孔で溶着固定されている。以下、図3と相違する点を詳述する。
FIG. 4 shows another example of the sliding portion 38 and the cooling mechanism.
Similar to FIG. 3, a plurality of openings are formed in the upper tube sheet 34 at positions corresponding to the insertion positions of the heat transfer tubes 36, and short guide tubes 37 are inserted into the respective openings, and a peripheral portion of the guide tube 37 is formed. Are welded and fixed in the respective openings of the upper tube sheet 34. Hereinafter, points different from FIG. 3 will be described in detail.

下部管板35に下端側が溶着固定された伝熱管36の上端側がガイド管37に外挿されて摺動部38が構成されている。伝熱管36に排ガスが流入して加熱され、軸心方向に伝熱管36が伸長すると、伝熱管36の上端側がガイド管37に沿って上方に伸長するため、上部管板34及び下部管板35が伝熱管36の熱膨張による反力を受けることがなく、従って図3と同様に、上部管板34及び下部管板35に発生する歪みが軽減される。 The upper end side of the heat transfer tube 36, the lower end side of which is welded and fixed to the lower tube sheet 35, is externally inserted into the guide tube 37 to form a sliding portion 38. When the exhaust gas flows into the heat transfer tube 36 and is heated, and the heat transfer tube 36 extends in the axial direction, the upper end side of the heat transfer tube 36 extends upward along the guide tube 37, so that the upper tube sheet 34 and the lower tube sheet 35. Does not receive a reaction force due to thermal expansion of the heat transfer tube 36, and therefore, similarly to FIG. 3, the strain generated in the upper tube sheet 34 and the lower tube sheet 35 is reduced.

ガイド管37は、伝熱管36が常温状態の収縮時であっても加熱状態の伸張時であっても、伝熱管36が外挿された状態が保持できるような長さに形成されていればよい。また、ガイド管37の外径は伝熱管36の内径と略同サイズか、僅かに小さなサイズに形成され、伝熱管36の伸張時にガイド管37の外周部と摺動して伸長できるようなサイズに形成されていればよい。図4には、熱により膨張(伸長)した伝熱管36が破線で示されている。 The guide tube 37 is formed in such a length that the heat transfer tube 36 can be kept in the inserted state regardless of whether the heat transfer tube 36 is contracted at room temperature or when it is heated. Good. Further, the outer diameter of the guide tube 37 is formed to be approximately the same size as or slightly smaller than the inner diameter of the heat transfer tube 36, and the guide tube 37 can be slid and extended with the outer peripheral portion of the guide tube 37 when the heat transfer tube 36 is extended. It may be formed on. In FIG. 4, the heat transfer tube 36 expanded (expanded) by heat is shown by a broken line.

図5には、摺動部38及び冷却機構のさらに他の例が示されている。
図3と同様に、上部管板34には伝熱管36の挿通位置と対応する位置に複数の開孔が形成され、各開孔に短尺のガイド管37が挿通され、ガイド管37の周部が上部管板34の各開孔で溶着固定されている。以下、図3と相違する点を詳述する。
FIG. 5 shows still another example of the sliding portion 38 and the cooling mechanism.
Similar to FIG. 3, a plurality of openings are formed in the upper tube sheet 34 at positions corresponding to the insertion positions of the heat transfer tubes 36, and short guide tubes 37 are inserted into the respective openings, and a peripheral portion of the guide tube 37 is formed. Are welded and fixed in the respective openings of the upper tube sheet 34. Hereinafter, points different from FIG. 3 will be described in detail.

上部管板34との間で冷却空間44を形成する仕切管板49には各伝熱管36を挿通する複数の開孔が形成され、各開孔と各伝熱管36とが互いに僅かな隙間を隔てて開放されている。また、仕切管板49の外周部は筒状ケーシング39の内周部に溶着されている。 A plurality of openings through which the heat transfer tubes 36 are inserted are formed in the partition tube plate 49 that forms the cooling space 44 with the upper tube sheet 34, and each opening and each heat transfer tube 36 have a slight gap therebetween. It is open apart. The outer peripheral portion of the partition tube plate 49 is welded to the inner peripheral portion of the tubular casing 39.

従って、各伝熱管36に排ガスが流下して昇温し、伝熱管36が熱膨張して軸心方向に伸びると、伝熱管36の熱膨張に伴って仕切管板49と伝熱管36とが相対移動するように構成されている。従って、伝熱管36の熱膨張に伴って仕切管板49に反力が生じることもない。図5には、熱により膨張(伸長)した伝熱管36が破線で示されている。 Therefore, when the exhaust gas flows down into each heat transfer tube 36 to raise the temperature and the heat transfer tube 36 thermally expands and extends in the axial direction, the partition tube plate 49 and the heat transfer tube 36 are separated by the thermal expansion of the heat transfer tube 36. It is configured to move relative to each other. Therefore, no reaction force is generated in the partition tube plate 49 due to the thermal expansion of the heat transfer tube 36. In FIG. 5, the heat transfer tube 36 expanded (expanded) by heat is shown by a broken line.

図6には、摺動部38及び冷却機構のさらに他の例が示されている。
下部管板35には伝熱管36の挿通位置と対応する位置に複数の開孔が形成され、各開孔に短尺のガイド管37が挿通され、ガイド管37の周部が下部管板35の各開孔で溶着固定されている。
FIG. 6 shows still another example of the sliding portion 38 and the cooling mechanism.
A plurality of openings are formed in the lower tube plate 35 at positions corresponding to the insertion positions of the heat transfer tubes 36, and short guide tubes 37 are inserted into the respective openings. It is welded and fixed at each opening.

上部管板34に下端側が溶着固定された伝熱管36の下端側がガイド管37に内挿されて摺動部38が構成されている。伝熱管36に排ガスが流入して加熱され、軸方向に伝熱管36が伸長すると、伝熱管36の下端側がガイド管37に沿って下方に伸長するため、下部管板35及び上部管板34が伝熱管36の熱膨張による反力を受けることがなく、従って下部管板35及び上部管板34に発生する歪みが軽減される。 The lower end side of the heat transfer tube 36 whose lower end side is welded and fixed to the upper tube sheet 34 is inserted into the guide tube 37 to form the sliding portion 38. When the exhaust gas flows into the heat transfer tube 36 and is heated and the heat transfer tube 36 extends in the axial direction, the lower end side of the heat transfer tube 36 extends downward along the guide tube 37, so that the lower tube sheet 35 and the upper tube sheet 34 are There is no reaction force due to the thermal expansion of the heat transfer tube 36, so that the strain generated in the lower tube sheet 35 and the upper tube sheet 34 is reduced.

伝熱管36の上端側を上部管板34で吊り下げ支持する構成であるため、伝熱管36が熱膨張により下方に伸長するのを許容すればよく、摺動部38で伝熱管36を安定した姿勢で支持できるようになる。この点で、下方で持ち上げ支持する図3から図5の態様と比較して有利となる。 Since the upper end side of the heat transfer tube 36 is suspended and supported by the upper tube sheet 34, it is sufficient to allow the heat transfer tube 36 to expand downward due to thermal expansion, and the sliding portion 38 stabilizes the heat transfer tube 36. You will be able to support your posture. In this respect, it is advantageous in comparison with the embodiment of FIGS.

以上、向流の熱交換器を説明したが、本発明による熱交換器は向流に限るものではなく、並流で実現することもできる。 Although the countercurrent heat exchanger has been described above, the heat exchanger according to the present invention is not limited to the countercurrent, and may be realized in parallel.

図7には並流の熱交換器3の例が示されている。
排ガスCが下方から流入して上方に向かって流れ、燃焼用空気Dも熱交換器3の下部から流入して熱交換器3の上部へ蛇行しながら流れて熱交換を行うように構成されている。並流の熱交換器3の場合には冷却機構を用いた冷却用空気による冷却に加えて、燃焼用空気Dによる冷却効果も表れるので、高温の下部管板35を効果的に冷却することができるようになる。
FIG. 7 shows an example of the co-flow heat exchanger 3.
The exhaust gas C flows in from below and flows upward, and the combustion air D also flows in from the lower part of the heat exchanger 3 and meanders toward the upper part of the heat exchanger 3 to perform heat exchange. There is. In the case of the parallel flow heat exchanger 3, in addition to the cooling by the cooling air using the cooling mechanism, the cooling effect by the combustion air D also appears, so that the high temperature lower tube sheet 35 can be effectively cooled. become able to.

以上説明した各態様を適時組み合わせて熱交換器を構成することも可能である。即ち、熱交換器は、燃焼用空気の流入部及び流出部を備えた筒状ケーシングと、筒状ケーシングの上端側及び下端側にそれぞれ固着された上部管板及び下部管板と、上部管板及び下部管板に支持されるとともに筒状ケーシングに縦姿勢で配置され排ガスが流れる複数の伝熱管と、を備えて構成され、伝熱管の一端部は上部管板または下部管板の何れか一方に固着されたガイド管に内挿または外挿可能な摺動部で支持されるとともに、伝熱管の他端部は上部管板または下部管板の何れか他方に固着支持されている。 It is also possible to configure the heat exchanger by appropriately combining the respective aspects described above. That is, the heat exchanger includes a tubular casing having an inflow portion and an outflow portion for combustion air, an upper tube sheet and a lower tube sheet fixed to upper and lower ends of the tubular casing, and an upper tube sheet. And a plurality of heat transfer tubes which are supported by the lower tube sheet and are vertically arranged in a cylindrical casing and through which exhaust gas flows, one end of the heat transfer tube being either the upper tube sheet or the lower tube sheet. The guide tube is fixed to the guide tube by a sliding portion that can be inserted or inserted, and the other end of the heat transfer tube is fixedly supported by either the upper tube plate or the lower tube plate.

そして、上部管板または下部管板のうち排ガスの流入側の管板に対向して筒状ケーシングの内側に、当該筒状ケーシングまたは伝熱管に対して間隙が形成されるように仕切管板が配置され、当該管板と仕切管板との間に冷却用空気が供給される冷却空間が形成されていることが好ましい。 The partition tube plate is formed inside the tubular casing so as to face the exhaust gas inflow side tube sheet of the upper tube sheet or the lower tube sheet, so that a gap is formed with respect to the tubular casing or the heat transfer tube. It is preferable that a cooling space, which is arranged and to which cooling air is supplied, be formed between the tube sheet and the partition tube sheet.

また、上部管板または下部管板のうち摺動部を備えた管板に対向して筒状ケーシングの内側に、当該筒状ケーシングまたは伝熱管に対して間隙が形成されるように仕切管板が配置され、当該管板と仕切管板との間に冷却用空気が供給される冷却空間が形成されていることが好ましい。 In addition, the partition tube plate is formed inside the cylindrical casing so as to face the tube plate having the sliding portion of the upper tube plate or the lower tube plate so that a gap is formed with respect to the cylindrical casing or the heat transfer tube. Is preferably provided, and a cooling space to which cooling air is supplied is formed between the tube sheet and the partition tube sheet.

排ガスの圧力をP1、燃焼用空気の圧力をP2、冷却用空気の圧力をP3とするとき、P1<P2<P3に設定されていることが好ましい。排ガスの圧力P1と燃焼用空気の圧力P2と冷却用空気の圧力P3との間に、少なくともP1<P2<P3の関係が成立すれば、冷却用空間に供給された冷却用空気が滞留することなく、筒状ケーシングと仕切管板との間隙または伝熱管と仕切管板との間隙を介して受熱側流体となる燃焼用空気に合流し、或いは摺動部を構成するガイド管を介して伝熱管に確実に流入するようになり、小量の冷却用空気であっても十分な冷却効果が得られるようになる。 When the exhaust gas pressure is P1, the combustion air pressure is P2, and the cooling air pressure is P3, P1<P2<P3 is preferably set. If at least the relationship of P1<P2<P3 is established among the pressure P1 of the exhaust gas, the pressure P2 of the combustion air and the pressure P3 of the cooling air, the cooling air supplied to the cooling space is retained. Instead, it merges with the combustion air serving as the heat receiving side fluid through the gap between the tubular casing and the partition tube sheet or the gap between the heat transfer tube and the partition tube sheet, or is transferred through the guide tube that constitutes the sliding portion. As a result, the heat can be reliably introduced into the heat pipe, and a sufficient cooling effect can be obtained even with a small amount of cooling air.

尚、少なくとも冷却空間44に供給された冷却用空気が燃焼用空気側または排ガス側に混入して流れるような圧力関係に設定しておけばよく、必ずしもP1<P2<P3の関係が成立する必要があるわけではない。 It should be noted that the pressure relationship may be set so that at least the cooling air supplied to the cooling space 44 mixes with the combustion air side or the exhaust gas side and flows, and the relationship of P1<P2<P3 is necessarily established. There is not.

このように、冷却空間44に供給された冷却用空気を流すための特段の流路を仕切管板49の中央部に形成する必要が無いので、筒状ケーシング39の内部に伝熱管36を密に配置することができ、熱交換効率が高くしかも高温域に迄燃焼用空気を予熱できる熱交換器3を実現できるようになる。 As described above, since it is not necessary to form a special flow path for flowing the cooling air supplied to the cooling space 44 in the central portion of the partition tube plate 49, the heat transfer tube 36 is sealed inside the tubular casing 39. Therefore, it is possible to realize the heat exchanger 3 which can be arranged in a high temperature and has a high heat exchange efficiency and can preheat the combustion air to a high temperature range.

上述した実施形態は、図11に示した煙道上流側の熱交換器3及び下流側の熱交換5の何れにも同様の構成を採用することができる。 The above-described embodiment can employ the same configuration for both the heat exchanger 3 on the upstream side of the flue and the heat exchange 5 on the downstream side shown in FIG. 11.

さらに本発明の熱交換器の別実施形態を説明する。上述した実施形態では高温の管板側に冷却機構を設けた実施形態を示したが、冷却機構を備えていなくてもよい。すなわち、伝熱管36の一端部は上部管板34または下部管板35の何れか一方に固着されたガイド管37に内挿または外挿可能な摺動部38で支持されるとともに、伝熱管36の他端部は上部管板34または下部管板35の何れか他方に固着支持されていればよい。 Further, another embodiment of the heat exchanger of the present invention will be described. In the above-described embodiment, the cooling mechanism is provided on the high temperature tube sheet side, but the cooling mechanism may not be provided. That is, one end of the heat transfer tube 36 is supported by a guide tube 37 fixed to either the upper tube plate 34 or the lower tube plate 35 by a sliding portion 38 that can be inserted or inserted, and the heat transfer tube 36 is also attached. The other end may be fixedly supported on either the upper tube sheet 34 or the lower tube sheet 35.

例えば、図8(a)に示すように、上部管板34に摺動部38が設けられ、排ガスCが上部管板34側から流入し、下部管板35側から燃焼用空気Dが流入する向流の熱交換器であってもよい。向流のため、排ガスC、燃焼用空気Dともに出入口の温度差が大きく、上部管板34には大きな熱負荷がかかるため、摺動部38を上部管板34側に配置する。また、図8(b)に示すように、下部管板35に摺動部38が設けられ、排ガスCが上部管板34側から流入し、上部管板34側から燃焼用空気Dが流入する並流の熱交換器3であってもよい。高温側排ガスCが流入する上部管板34は伝熱管36と溶着されているが、低温側燃焼空気Dを流入させることで上部管板34の熱負荷が緩和される。 For example, as shown in FIG. 8A, a sliding portion 38 is provided on the upper tube sheet 34, the exhaust gas C flows in from the upper tube sheet 34 side, and the combustion air D flows in from the lower tube sheet 35 side. It may be a countercurrent heat exchanger. Because of the counterflow, the temperature difference between the exhaust gas C and the combustion air D at the inlet and outlet is large, and a large heat load is applied to the upper tube sheet 34. Therefore, the sliding portion 38 is arranged on the upper tube sheet 34 side. Further, as shown in FIG. 8B, a sliding portion 38 is provided on the lower tube sheet 35, the exhaust gas C flows in from the upper tube sheet 34 side, and the combustion air D flows in from the upper tube sheet 34 side. The heat exchanger 3 may be a parallel flow. The upper tube sheet 34 into which the high temperature side exhaust gas C flows is welded to the heat transfer tube 36, but the heat load on the upper tube sheet 34 is eased by allowing the low temperature side combustion air D to flow in.

摺動部38が設けられているので、熱膨張する伝熱管36がガイド管37に対して摺動し、伝熱管36の熱膨張に起因する反力が各管板に直接作用することがなくなる。 Since the sliding portion 38 is provided, the heat transfer tube 36 that thermally expands slides on the guide tube 37, and the reaction force due to the thermal expansion of the heat transfer tube 36 does not directly act on each tube sheet. ..

また、図9(a)に示すように、上部管板34に摺動部38が設けられ、排ガスCが下部管板35側から流入し、下部管板35側から燃焼用空気Dが流入する並流の熱交換器3であってもよい。高温側排ガスCが流入する下部管板35は伝熱管36と溶着されているが、低温側燃焼空気Dを流入させることで下部管板35の熱負荷が緩和される。また、図9(b)に示すように、下部管板35に摺動部38が設けられ、排ガスCが下部管板35側から流入し、上部管板34側から燃焼用空気Dが流入する向流の熱交換器3であってもよい。向流のため排ガスC、燃焼用空気Dともに出入口の温度差が大きく、下部管板35には大きな熱負荷がかかるため、摺動部38を下部管板35側に配置する。摺動部38により各管板に伝熱管36の熱膨張による反力が直接作用することもないという効果は上記別実施形態と同様である。 Further, as shown in FIG. 9A, a sliding portion 38 is provided on the upper tube sheet 34, the exhaust gas C flows in from the lower tube sheet 35 side, and the combustion air D flows in from the lower tube sheet 35 side. The heat exchanger 3 may be a parallel flow. The lower tube sheet 35 into which the high temperature side exhaust gas C flows is welded to the heat transfer tube 36, but the heat load on the lower tube sheet 35 is relaxed by allowing the low temperature side combustion air D to flow in. Further, as shown in FIG. 9B, a sliding portion 38 is provided on the lower tube sheet 35, the exhaust gas C flows in from the lower tube sheet 35 side, and the combustion air D flows in from the upper tube sheet 34 side. It may be a countercurrent heat exchanger 3. Since the exhaust gas C and the combustion air D have a large difference in temperature at the inlet and outlet due to the counterflow and a large heat load is applied to the lower tube sheet 35, the sliding portion 38 is arranged on the lower tube sheet 35 side. The effect that the reaction force due to the thermal expansion of the heat transfer tube 36 does not directly act on each tube sheet by the sliding portion 38 is the same as in the other embodiment.

さらに、図10(a)に示すように、上部管板34に摺動部38が設けられ、排ガスCが下部管板35側から流入し、上部管板34側から燃焼用空気Dが流入する向流の熱交換器3であってもよい。また、図10(b)に示すように、下部管板35に摺動部38が設けられ、排ガスCが上部管板34側から流入し、下部管板35側から燃焼用空気Dが流入する向流の熱交換器3であってもよい。 Further, as shown in FIG. 10A, the sliding portion 38 is provided on the upper tube sheet 34, the exhaust gas C flows in from the lower tube sheet 35 side, and the combustion air D flows in from the upper tube sheet 34 side. It may be a countercurrent heat exchanger 3. Further, as shown in FIG. 10B, a sliding portion 38 is provided in the lower tube sheet 35, the exhaust gas C flows in from the upper tube sheet 34 side, and the combustion air D flows in from the lower tube sheet 35 side. It may be a countercurrent heat exchanger 3.

但し、高温排ガスCの入口側であることと、高温側燃焼用空気Dの出口側であることから、図10(a)に示すような実施形態では下部管板35に、図10(b)に示すような実施形態では上部管板34に大きな熱負荷がかかる。そこで、このような実施形態の場合には、大きな熱負荷がかかる管板側に冷却機構を備えた方が好ましい。 However, since it is on the inlet side of the high temperature exhaust gas C and on the outlet side of the high temperature side combustion air D, in the embodiment as shown in FIG. In the embodiment as shown in (1), a large heat load is applied to the upper tube sheet 34. Therefore, in the case of such an embodiment, it is preferable to provide a cooling mechanism on the tube sheet side to which a large heat load is applied.

すなわち、本願発明の冷却機構が上部管板34または下部管板35のうち排ガスCの流入側の管板に対向して筒状ケーシング39の内側に、筒状ケーシング39または伝熱管36に対して間隙が形成されるように仕切管板が配置され、当該管板と仕切管板との間に冷却用空気が供給される冷却空間を形成されていればよい。 That is, the cooling mechanism of the present invention faces the tube plate on the inflow side of the exhaust gas C of the upper tube sheet 34 or the lower tube sheet 35, inside the tubular casing 39, and with respect to the tubular casing 39 or the heat transfer tube 36. It suffices that the partition tube plate is arranged so as to form a gap, and a cooling space to which cooling air is supplied is formed between the tube plate and the partition tube plate.

以上のような構成の廃棄物処理設備によれば、管板等の構造部材の熱負荷による損傷リスクを低減しながらも、排熱の回収効率を上げて省エネルギー化を図ることができるようになる。上記実施例では伝熱管36等は溶着による固着を行っていたが必ずしも溶着に限らず固定支持する構成になっていればよい。また、伝熱管36は完全な鉛直姿勢でなくても多少垂直方向に対して傾きを持っていてもよい。 According to the waste treatment facility configured as described above, it is possible to reduce the risk of damage to structural members such as the tube sheet due to the heat load, while increasing the efficiency of recovering exhaust heat to save energy. .. Although the heat transfer tube 36 and the like are fixed by welding in the above-described embodiment, the structure is not limited to welding but may be fixed and supported. Further, the heat transfer tube 36 may not be in a completely vertical posture but may be slightly inclined with respect to the vertical direction.

図11には、上述した何れかの構造を採用した熱交換器が組み込まれた廃棄物処理設備1の他の例が示されている。廃棄物処理設備1は、汚泥が貯留された汚泥貯留槽20と、汚泥投入機構21と、流動床式焼却炉2と、排ガス処理設備等を備えている。 FIG. 11 shows another example of the waste treatment facility 1 in which the heat exchanger adopting any of the above-mentioned structures is incorporated. The waste treatment facility 1 includes a sludge storage tank 20 in which sludge is stored, a sludge charging mechanism 21, a fluidized bed incinerator 2, an exhaust gas treatment facility, and the like.

流動床式焼却炉2は、空気供給機構Aから供給される高温空気によって形成される流動床に汚泥投入機構21から供給される汚泥を投入して加熱し、ガス化された汚泥をフリーボード部で燃焼させる処理炉である。符号14aは、立上げ時に炉内を加熱する昇温バーナで、炉が昇温した後には符号14bの補助バーナで燃焼に必要な熱量を補って操炉される。 The fluidized bed incinerator 2 throws the sludge supplied from the sludge feeding mechanism 21 into the fluidized bed formed by the high temperature air supplied from the air feeding mechanism A and heats the sludge gasified to the freeboard section. It is a processing furnace that burns at. Reference numeral 14a is a temperature rising burner that heats the inside of the furnace at startup, and after the temperature of the furnace is raised, an auxiliary burner 14b is used to supplement the amount of heat required for combustion to operate the furnace.

流動床式焼却炉2の煙道に沿って、排ガスの保有熱により燃焼用空気を予熱する二つの熱交換器3,5、煤塵を捕集する集塵装置9、アルカリ剤を噴霧して排ガス中の酸性ガス成分を中和する排煙処理塔10等が順に配置されている。 Along the flue of the fluidized bed incinerator 2, two heat exchangers 3, 5 that preheat combustion air by the heat of the exhaust gas, a dust collector 9 that collects soot and dust, and an exhaust gas that sprays an alkaline agent. A flue gas treatment tower 10 and the like for neutralizing the acidic gas components therein are sequentially arranged.

排煙処理塔10の下流側には炉内を負圧に維持する誘引送風機11が設けられ、誘引送風機11によって誘引された排ガスが煙突12から排気される。 An induction blower 11 for maintaining a negative pressure in the furnace is provided on the downstream side of the smoke exhaust treatment tower 10, and the exhaust gas attracted by the induction blower 11 is exhausted from the chimney 12.

空気供給機構Aは、押込み送風機6と、タービン4a及びコンプレッサ4bを備えた過給機4と、熱交換器3,5とを備えて構成されている。押込み送風機6により予備圧縮された燃焼用空気がコンプレッサ4bの給気口に供給され、コンプレッサ4bで圧縮された空気が下流側の熱交換器5で予熱された後にタービン4aに供給され、タービン4aから排気された圧縮空気がさらに上流側の熱交換器3で予熱された後に流動床式焼却炉2に供給される。 The air supply mechanism A includes a forced air blower 6, a supercharger 4 including a turbine 4a and a compressor 4b, and heat exchangers 3 and 5. The combustion air pre-compressed by the forced air blower 6 is supplied to the air supply port of the compressor 4b, and the air compressed by the compressor 4b is preheated by the heat exchanger 5 on the downstream side and then supplied to the turbine 4a. The compressed air exhausted from is further preheated by the heat exchanger 3 on the upstream side and then supplied to the fluidized bed incinerator 2.

コンプレッサ4bで圧縮された空気は、熱交換器5で700〜1000℃の排ガスと熱交換されて500〜750℃に予熱された後にタービン4aに供給される。 The air compressed by the compressor 4b is heat-exchanged with the exhaust gas at 700 to 1000° C. by the heat exchanger 5 to be preheated at 500 to 750° C. and then supplied to the turbine 4a.

熱交換器5で予熱された圧縮空気がタービン4aに供給されることによってタービン4aが回転駆動され、さらに駆動軸と連結されたコンプレッサ4bが駆動されるようになる。タービン4aから排出された400〜650℃の圧縮空気はさらに熱交換器3で500〜700℃に予熱された後に、流動用空気つまり燃焼用空気として流動床式焼却炉2に供給されて流動床が形成される。 By supplying the compressed air preheated by the heat exchanger 5 to the turbine 4a, the turbine 4a is rotationally driven, and the compressor 4b connected to the drive shaft is also driven. The compressed air of 400 to 650° C. discharged from the turbine 4a is further preheated to 500 to 700° C. by the heat exchanger 3 and then supplied to the fluidized bed incinerator 2 as fluidizing air, that is, combustion air to be fluidized bed. Is formed.

タービン4aから排出された高温の燃焼用空気が熱交換器3でさらに加熱されて流動床式焼却炉に供給されるので、補助バーナ14bで燃焼される化石燃料の使用量が低減されるようになる。被燃焼物が有機性汚泥であれば、化石燃料を用いることなく自燃できるようになる。 Since the hot combustion air discharged from the turbine 4a is further heated by the heat exchanger 3 and supplied to the fluidized bed incinerator, the amount of fossil fuel burned by the auxiliary burner 14b is reduced. Become. If the material to be burned is organic sludge, it becomes possible to burn itself without using fossil fuel.

燃焼用空気を高温化するためにより高温の排ガスを導入すると、熱交換器3,5に極めて大きな熱負荷がかかるようになる。特に熱交換器3ではそれが顕著である。そのような熱交換器3,5として、上述した構造を備えた熱交換器を好適に用いることができるようになり、管板等の構造部材の熱的ストレスによる損傷リスクを低減しながらも、排熱の回収効率を上げて省エネルギー化を図ることができる廃棄物処理設備が実現できる。 If a higher temperature exhaust gas is introduced to raise the temperature of the combustion air, an extremely large heat load will be applied to the heat exchangers 3, 5. This is particularly noticeable in the heat exchanger 3. As such heat exchangers 3 and 5, the heat exchanger having the above-described structure can be preferably used, and while reducing the risk of damage to structural members such as the tube sheet due to thermal stress, It is possible to realize a waste treatment facility that can improve the efficiency of collecting waste heat and save energy.

上述した実施形態は、熱処理炉として流動床式焼却炉2を採用した場合について説明したが、本発明が適用される焼却炉は流動床式焼却炉2に限らず、流動床式焼却炉2と同様に通気圧損が大きいシャフト炉等の他の形式の工業炉にも適用可能である。例えば、底部にコークスベッドが形成され、当該コークスベッドに燃焼用空気を供給する羽口が形成されたシャフト炉の上方から汚泥を投入して溶融するような熱処理炉やスクラップを投入して溶解するキュポラ等であっても、本発明が適用可能である。 Although the above-mentioned embodiment explained the case where fluidized bed type incinerator 2 was adopted as a heat treatment furnace, the incinerator to which the present invention is applied is not limited to fluidized bed type incinerator 2 and fluidized bed type incinerator 2 is used. Similarly, it can be applied to other types of industrial furnaces such as a shaft furnace having a large ventilation pressure loss. For example, a coke bed is formed in the bottom part, and a heat treatment furnace or scrap is put into the coke bed to melt the sludge from above the shaft furnace where the tuyere for supplying combustion air is formed. The present invention can be applied to a cupola or the like.

上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、それぞれの実施形態を適宜組み合わせてもよい。また、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。 The above-described embodiments are all examples of the present invention, and the present invention is not limited to the description, and the respective embodiments may be appropriately combined. Further, it goes without saying that the specific configuration of each part can be appropriately modified and designed within the range in which the effects of the present invention are exhibited.

1:廃棄物処理設備
2:流動床式焼却炉
3,5:熱交換器
4:過給機
4a:タービン
4b:コンプレッサ
6:押込み送風機
9:集塵装置
10:排煙処理塔
11:誘引送風機
12:煙突
14a:昇温バーナ
14b:補助バーナ
20:汚泥貯留槽
21:汚泥投入機構
30,31:燃焼用空気流入部
32:燃焼用空気流出部
33:ジャケット部
34:上部管板
35:下部管板
36:伝熱管
37:ガイド管
38:摺動部
39:筒状ケーシング
40:バッフルプレート
41:空気流路
42:冷却空気流入部
43:燃焼用空気流出部
44:冷却空間
45:排ガス流入口
46:排ガス流出口
47:流入ヘッダ部
48:流出ヘッダ部
49:仕切管板
50:燃焼用空気流入部
A:空気供給機構
C:排ガス
D:燃焼用空気

1: Waste treatment facility 2: Fluidized bed type incinerator 3, 5: Heat exchanger 4: Supercharger 4a: Turbine 4b: Compressor 6: Push blower 9: Dust collector 10: Smoke treatment tower 11: Induction blower 12: Chimney 14a: Temperature rising burner 14b: Auxiliary burner 20: Sludge storage tank 21: Sludge charging mechanism 30, 31: Combustion air inflow part 32: Combustion air outflow part 33: Jacket part 34: Upper tube sheet 35: Lower part Tube plate 36: Heat transfer tube 37: Guide tube 38: Sliding part 39: Cylindrical casing 40: Baffle plate 41: Air flow path 42: Cooling air inflow part 43: Combustion air outflow part 44: Cooling space 45: Exhaust gas flow Inlet 46: Exhaust gas outlet 47: Inflow header part 48: Outflow header part 49: Partition tube plate 50: Combustion air inflow part A: Air supply mechanism C: Exhaust gas D: Combustion air

Claims (7)

熱処理炉と、当該熱処理炉の煙道に設置され排ガスの保有熱により前記熱処理炉の燃焼用空気を予熱する熱交換器と、を備えている廃棄物処理設備であって、
前記熱交換器は、燃焼用空気の流入部及び流出部を備えたケーシングと、前記ケーシングの上端側及び下端側にそれぞれ固着された上部管板及び下部管板と、前記上部管板及び前記下部管板に支持されるとともに前記ケーシングに配置され排ガスが流れる複数の伝熱管と、を備えて構成され、
前記伝熱管の一端部は前記上部管板または前記下部管板の何れか一方に固着されたガイド管と摺動するとともに、前記伝熱管の他端部は前記上部管板または前記下部管板の何れか他方に固着支持され、
前記上部管板または前記下部管板のうち排ガスの流入側の管板に対向して前記ケーシングの内側に、前記伝熱管にのみ固着され前記伝熱管と一体で前記筒状ケーシングに対して相対移動可能な仕切管板が配置され、当該管板と前記仕切管板との間に冷却空間が構成され、
前記冷却空間に供給された冷却用空気が、前記仕切管板の外周部と前記外周部に対向する前記筒状ケーシングの内壁面との間に形成される間隙から流出して前記ケーシング内で燃焼用空気に混入するように構成されている廃棄物処理設備。
A waste treatment facility comprising a heat treatment furnace and a heat exchanger installed in a flue of the heat treatment furnace to preheat combustion air of the heat treatment furnace by heat retained by exhaust gas,
The heat exchanger includes a casing having an inlet and an outlet for combustion air, an upper tube sheet and a lower tube sheet fixed to upper and lower ends of the casing, the upper tube sheet and the lower tube sheet, respectively. A plurality of heat transfer tubes supported by a tube plate and arranged in the casing, through which exhaust gas flows, and
One end of the heat transfer tube slides with a guide tube fixed to one of the upper tube plate or the lower tube plate, and the other end of the heat transfer tube has an upper tube plate or a lower tube plate. Fixedly supported on either side,
Of the upper tube plate or the lower tube plate, facing the tube plate on the exhaust gas inflow side, inside the casing, is fixed only to the heat transfer tube and moves relative to the tubular casing integrally with the heat transfer tube. A possible partition tube plate is arranged, a cooling space is configured between the tube plate and the partition tube plate,
The cooling air supplied to the cooling space flows out from a gap formed between the outer peripheral portion of the partition tube plate and the inner wall surface of the cylindrical casing facing the outer peripheral portion, and burns in the casing. A waste treatment facility that is configured to be mixed into commercial air.
熱処理炉と、当該熱処理炉の煙道に設置され排ガスの保有熱により前記熱処理炉の燃焼用空気を予熱する熱交換器と、を備えている廃棄物処理設備であって、
前記熱交換器は、燃焼用空気の流入部及び流出部を備えたケーシングと、前記ケーシングの上端側及び下端側にそれぞれ固着された上部管板及び下部管板と、前記上部管板及び前記下部管板に支持されるとともに前記ケーシングに配置され排ガスが流れる複数の伝熱管と、を備えて構成され、
前記伝熱管の一端部は前記上部管板または前記下部管板の何れか一方に固着されたガイド管と摺動するとともに、前記伝熱管の他端部は前記上部管板または前記下部管板の何れか他方に固着支持され、
前記上部管板または前記下部管板のうち前記ガイド管を備えた管板に対向して前記ケーシングの内側に、前記伝熱管にのみ固着され前記伝熱管と一体で前記筒状ケーシングに対して相対移動可能な仕切管板が配置され、当該管板と前記仕切管板との間に冷却空間が構成され、
前記冷却空間に供給された冷却用空気が、前記仕切管板の外周部と前記外周部に対向する前記筒状ケーシングの内壁面との間に形成される間隙から流出して前記ケーシング内で燃焼用空気に混入するように構成されている廃棄物処理設備。
A waste treatment facility comprising a heat treatment furnace and a heat exchanger installed in a flue of the heat treatment furnace to preheat combustion air of the heat treatment furnace by heat retained by exhaust gas,
The heat exchanger includes a casing having an inlet and an outlet for combustion air, an upper tube sheet and a lower tube sheet fixed to upper and lower ends of the casing, the upper tube sheet and the lower tube sheet, respectively. A plurality of heat transfer tubes supported by a tube plate and arranged in the casing, through which exhaust gas flows, and
One end of the heat transfer tube slides with a guide tube fixed to one of the upper tube plate or the lower tube plate, and the other end of the heat transfer tube has an upper tube plate or a lower tube plate. Fixedly supported on either side,
The upper tube plate or the lower tube plate is opposed to a tube plate provided with the guide tube, and is fixed inside the casing only to the heat transfer tube and integrally with the heat transfer tube relative to the tubular casing. A movable partition tube plate is arranged, a cooling space is configured between the tube plate and the partition tube plate,
The cooling air supplied to the cooling space flows out from a gap formed between the outer peripheral portion of the partition tube plate and the inner wall surface of the cylindrical casing facing the outer peripheral portion, and burns in the casing. A waste treatment facility that is configured to be mixed into commercial air.
前記ガイド管は前記伝熱管を内挿または外挿可能なように構成されている請求項1または2記載の廃棄物処理設備。 The waste treatment facility according to claim 1 or 2, wherein the guide tube is configured so that the heat transfer tube can be inserted or inserted therein. 前記ケーシングは略鉛直の筒状であり、前記伝熱管が当該ケーシングの軸線方向に配置されている請求項1から3の何れかに記載の廃棄物処理設備。 The waste treatment facility according to any one of claims 1 to 3, wherein the casing has a substantially vertical tubular shape, and the heat transfer tubes are arranged in an axial direction of the casing. 前記ガイド管は前記上部管板または前記下部管板のうち排ガスの流入側の管板に設けられている請求項1からの何れかに記載の廃棄物処理設備。 The waste treatment facility according to any one of claims 1 to 4 , wherein the guide tube is provided on a tube plate on the exhaust gas inflow side of the upper tube plate or the lower tube plate. 前記ガイド管は前記上部管板または前記下部管板のうち排ガスの流出側の管板に設けられ、前記燃焼用空気の流入部は排ガスの流入側に設けられている請求項1からの何れかに記載の廃棄物処理設備。 The guide tube is provided on the outflow side of the tube plate of the exhaust gas of the upper tube sheet or the lower tube plate, the inlet of the combustion air to any of claims 1 is provided on the inflow side of exhaust gas 4 Waste treatment facility described in Crab. 前記排ガスの圧力をP1、前記燃焼用空気の圧力をP2、前記冷却用空気の圧力をP3とするとき、P1<P2<P3に設定されている請求項1から6の何れかに記載の廃棄物処理設備。 The discard according to any one of claims 1 to 6 , wherein P1<P2<P3 is set when the pressure of the exhaust gas is P1, the pressure of the combustion air is P2, and the pressure of the cooling air is P3. Material processing equipment.
JP2016102314A 2016-05-23 2016-05-23 Waste treatment facility Active JP6712902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016102314A JP6712902B2 (en) 2016-05-23 2016-05-23 Waste treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016102314A JP6712902B2 (en) 2016-05-23 2016-05-23 Waste treatment facility

Publications (2)

Publication Number Publication Date
JP2017211098A JP2017211098A (en) 2017-11-30
JP6712902B2 true JP6712902B2 (en) 2020-06-24

Family

ID=60474597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102314A Active JP6712902B2 (en) 2016-05-23 2016-05-23 Waste treatment facility

Country Status (1)

Country Link
JP (1) JP6712902B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117469997B (en) * 2023-10-30 2024-07-26 天华院(南京)智能制造有限公司 Heat exchanger and heat exchange equipment for cracking furnace

Also Published As

Publication number Publication date
JP2017211098A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
US8622736B2 (en) Recuperator burner having flattened heat exchanger pipes
JP5563098B2 (en) Method and apparatus for recovering heat from bottom ash
JP3112831U (en) Thermal storage exhaust gas combustion system
JP5765620B2 (en) Heat recovery system for multi-layer combustion fluidized furnace
KR102357468B1 (en) Recuperator burner with auxiliary heat exchanger
JP6712902B2 (en) Waste treatment facility
JP2008224173A (en) Two-tower type exhaust heat recovery system
JP5965170B2 (en) Radiant tube heating device
US20110180023A1 (en) Burner for the Combustion of Hydrogen on a Catalyst and Boiler for said Burners
CN209726512U (en) Conduction oil heating system
JP2008292035A (en) Boiler
RU2493526C2 (en) Heat-exchanger of annealing furnace for heat exchange between two fluid media
PT2011972E (en) Method and device for generating an overheated medium
JP2010144999A (en) Multitubular heat exchanger
CN2655113Y (en) Indirect hot air stove
JP6821274B2 (en) Recuperator and radiant tube type heating device
JP2011112003A (en) Co2 heater
JP2018077025A (en) Multistage type boiler heat exchange device
JP3218482U (en) Multistage boiler heat exchanger
CN2498542Y (en) Horizontal sleeved hot air furnace
JP4128120B2 (en) Steam reforming furnace
JP3720905B2 (en) Industrial furnace combustion equipment
CN118391916A (en) Heating furnace system
PL72431Y1 (en) Recuperative burner
KR20180053837A (en) Multistage boiler heat exchange apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200602

R150 Certificate of patent or registration of utility model

Ref document number: 6712902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150