JP6712482B2 - Substrate processing method and substrate processing apparatus - Google Patents

Substrate processing method and substrate processing apparatus Download PDF

Info

Publication number
JP6712482B2
JP6712482B2 JP2016070403A JP2016070403A JP6712482B2 JP 6712482 B2 JP6712482 B2 JP 6712482B2 JP 2016070403 A JP2016070403 A JP 2016070403A JP 2016070403 A JP2016070403 A JP 2016070403A JP 6712482 B2 JP6712482 B2 JP 6712482B2
Authority
JP
Japan
Prior art keywords
substrate
filler
solvent
substrate processing
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016070403A
Other languages
Japanese (ja)
Other versions
JP2017183576A (en
Inventor
泰範 金松
泰範 金松
仁司 中井
仁司 中井
岩田 智巳
智巳 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2016070403A priority Critical patent/JP6712482B2/en
Priority to KR1020187024342A priority patent/KR102110065B1/en
Priority to CN201780013898.8A priority patent/CN108701605B/en
Priority to PCT/JP2017/002403 priority patent/WO2017169019A1/en
Priority to TW106104898A priority patent/TWI637434B/en
Publication of JP2017183576A publication Critical patent/JP2017183576A/en
Application granted granted Critical
Publication of JP6712482B2 publication Critical patent/JP6712482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02343Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)

Description

本発明は、基板処理方法および基板処理装置に関する。 The present invention relates to a substrate processing method and a substrate processing apparatus.

従来、半導体基板(以下、単に「基板」という。)の製造工程では、基板処理装置を用いて基板に対して様々な処理が施される。例えば、表面上にレジストのパターンが形成された基板に薬液を供給することにより、基板の表面に対してエッチング等の処理が行われる。薬液の供給後には、基板に純水を供給して表面の薬液を除去するリンス処理や、基板を高速に回転して表面の純水を除去する乾燥処理がさらに行われる。 2. Description of the Related Art Conventionally, in a manufacturing process of a semiconductor substrate (hereinafter, simply referred to as “substrate”), a substrate processing apparatus is used to perform various processes on the substrate. For example, a treatment such as etching is performed on the surface of the substrate by supplying a chemical solution to the substrate having a resist pattern formed on the surface. After the supply of the chemical liquid, a rinse treatment for supplying pure water to the substrate to remove the chemical liquid on the surface and a drying treatment for rotating the substrate at a high speed to remove the pure water on the surface are further performed.

多数の微細な構造体要素の集合である構造体が基板の表面に形成されている場合に、上記リンス処理および乾燥処理を順に行うと、乾燥途上において、隣接する2つの構造体要素の間に純水の液面が形成される。この場合に、構造体要素に作用する純水の表面張力に起因して、構造体要素が倒壊する虞がある。そこで、構造体における隙間(構造体要素の間)に充填剤を充填し、固化した充填剤をドライエッチング等により昇華させることにより、乾燥処理における構造体要素の倒壊を防止する手法が提案されている。 When a structure, which is a set of a large number of fine structure elements, is formed on the surface of the substrate, if the rinsing process and the drying process are performed in sequence, the two structure elements adjacent to each other may be separated during the drying process. A pure water surface is formed. In this case, the structure element may collapse due to the surface tension of pure water acting on the structure element. Therefore, there has been proposed a method for preventing collapse of the structure element in the drying process by filling the gap in the structure (between the structure elements) with the filler and sublimating the solidified filler by dry etching or the like. There is.

なお、特許文献1では、基板の周囲を囲むカップに、ファンフィルタユニットによってダウンフロー(下降気流)が供給される基板現像装置において、基板に現像液を供給する際に、吸排気を停止する手法が開示されている。当該手法により、基板の主面上に形成された現像液層が波立つことがなくなり、現像処理の均一性が向上する。 Note that in Patent Document 1, in a substrate developing device in which a downflow (downdraft) is supplied to a cup surrounding a substrate by a fan filter unit, a method of stopping intake and exhaust when supplying a developing solution to the substrate Is disclosed. By this method, the developer layer formed on the main surface of the substrate is prevented from waviness, and the uniformity of the developing process is improved.

特開平11−87226号公報JP, 11-87226, A

ところで、基板処理装置において、基板の表面上の構造体における隙間に充填剤を充填する際には、筒状のガード部により基板の周囲を囲んだ状態で、表面に充填剤が供給される。また、構造体における隙間に充填剤を適切に充填するには、基板の表面において充填剤等の液膜を一定時間保持させる必要がある。このとき、パーティクル等の付着を防止するための下降気流が基板の外縁部とガード部との間の間隙を通過することに起因して、基板の外縁部において、表面近傍を流れるガスの流速が過度に高くなることがある。この場合、液膜の崩壊(粘性が高い充填剤では、液膜の部分的な剥がれと捉えられる。)や、厚さの均一性の低下が生じてしまう。 By the way, in the substrate processing apparatus, when filling the gap in the structure on the surface of the substrate with the filler, the filler is supplied to the surface in a state where the periphery of the substrate is surrounded by the cylindrical guard portion. Further, in order to properly fill the gap in the structure with the filler, it is necessary to hold a liquid film of the filler or the like on the surface of the substrate for a certain period of time. At this time, due to the downward airflow for preventing the adhesion of particles and the like passing through the gap between the outer edge portion of the substrate and the guard portion, the flow velocity of the gas flowing near the surface is increased at the outer edge portion of the substrate. It can be too high. In this case, the liquid film collapses (with a highly viscous filler, it is considered as partial peeling of the liquid film) and the uniformity of the thickness decreases.

一方、基板の外縁部に付着した不要な充填剤は、搬送機構を汚すため、外縁部のみに洗浄液を供給することにより除去される。このとき、基板を高速に回転するため、洗浄液等が飛散する際に、ミストとなって浮遊しやすくなる。このような洗浄液等のミストが、基板に戻ることを抑制することも求められる。 On the other hand, unnecessary filler adhering to the outer edge of the substrate stains the transport mechanism, and is removed by supplying the cleaning liquid only to the outer edge. At this time, since the substrate is rotated at a high speed, when the cleaning liquid or the like scatters, it becomes a mist and easily floats. It is also required to prevent the mist such as the cleaning liquid from returning to the substrate.

本発明は上記課題に鑑みなされたものであり、基板上において液膜を保持する際に、液膜の崩壊等を抑制するとともに、基板の外縁部を洗浄する際に、基板から飛散した洗浄液等が基板に戻ることを抑制することを目的としている。 The present invention has been made in view of the above problems, when holding the liquid film on the substrate, while suppressing the collapse of the liquid film, while cleaning the outer edge of the substrate, the cleaning liquid and the like scattered from the substrate The purpose is to suppress the return of the substrate to the substrate.

請求項1に記載の発明は、表面に構造体が形成された基板を処理する基板処理方法であって、a)上下方向に沿って直径が異なる部位を有する筒状のガード部の内側に設けられた基板保持回転機構により、表面に構造体が形成された基板を、前記表面を上方に向けて実質的に水平な姿勢で保持する工程と、b)所定の溶剤を前記基板の前記表面に供給して、前記表面上において前記溶剤の液膜を保持させて、前記表面の前記構造体における隙間を前記溶剤で満たす工程と、c)前記b)工程において形成された前記液膜に所定の充填剤を供給して、前記構造体における前記隙間に存在する前記溶剤を前記充填剤で置換する工程と、d)前記基板を回転させて、前記基板から前記溶剤および前記充填剤の余剰を除去する工程と、e)前記基板を回転させつつ、前記基板の外縁部に所定の洗浄液を供給して、前記外縁部に付着した前記充填剤を除去する工程とを備え、前記c)工程において前記ガード部の内側面と前記基板の前記外縁部との間に形成されている環状の最小間隙の幅が、前記e)工程における前記最小間隙の幅よりも大きくなるように、前記ガード部が前記基板保回転機構に対して相対的に昇降される。 The invention according to claim 1 is a substrate processing method for processing a substrate having a structure formed on a surface thereof, the method comprising: a) being provided inside a tubular guard portion having portions having different diameters in a vertical direction. Holding the substrate having the structure formed on the surface thereof in a substantially horizontal posture with the surface facing upward by the substrate holding/rotating mechanism, and b) applying a predetermined solvent to the surface of the substrate. A step of supplying and holding a liquid film of the solvent on the surface to fill the gaps in the structure on the surface with the solvent; and c) a predetermined amount of the liquid film formed in the step b). supplying a filler, a step of replacing the solvent present in the gap by the filler in the structure, d) by rotating the substrate, removing the excess of the solvent and the filler from the substrate And e) rotating the substrate to supply a predetermined cleaning liquid to the outer edge of the substrate to remove the filler adhering to the outer edge, and in the step c), The guard portion is configured such that the width of the annular minimum gap formed between the inner surface of the guard portion and the outer edge portion of the substrate is larger than the width of the minimum gap in the step e). It is down relatively with respect to the base Itaho lifting rotation mechanism.

請求項2に記載の発明は、請求項1に記載の基板処理方法であって、前記c)工程が、c1)前記充填剤を前記表面に供給する工程と、c2)前記充填剤の供給を停止した状態で、前記表面上において前記充填剤を含む液膜を保持させて、前記構造体における前記隙間に存在する前記溶剤を前記充填剤で置換する工程とを備える。 The invention according to claim 2 is the substrate processing method according to claim 1, wherein the step c) comprises c1) supplying the filler to the surface, and c2) supplying the filler. Holding the liquid film containing the filler on the surface in a stopped state, and replacing the solvent present in the gap in the structure with the filler .

請求項3に記載の発明は、請求項2に記載の基板処理方法であって、前記充填剤の比重が、前記溶剤の比重よりも大きい。 The invention according to claim 3 is the substrate processing method according to claim 2, wherein the specific gravity of the filler is larger than the specific gravity of the solvent.

請求項4に記載の発明は、請求項2または3に記載の基板処理方法であって、前記c1)工程においては前記基板を第1回転速度で回転させ、前記c2)工程においては前記基板を前記第1回転速度よりも低速の第2回転速度で回転させるかあるいは前記基板を停止させる。 The invention according to claim 4 is the substrate processing method according to claim 2 or 3, wherein the substrate is rotated at a first rotation speed in the step c1), and the substrate is rotated in the step c2). The substrate is rotated at a second rotation speed lower than the first rotation speed or the substrate is stopped.

請求項5に記載の発明は、請求項1ないし4のいずれかに記載の基板処理方法であって、前記b)工程における前記最小間隙の幅が、前記e)工程における前記最小間隙の幅よりも大きくなるように、前記ガード部が前記基板保回転機構に対して相対的に昇降される。 The invention according to claim 5 is the substrate processing method according to any one of claims 1 to 4, wherein the width of the minimum gap in the step b) is smaller than the width of the minimum gap in the step e). as is also increased, the guard portion is up and down relatively with respect to the base Itaho lifting rotation mechanism.

請求項6に記載の発明は、請求項1ないし5のいずれかに記載の基板処理方法であって、前記ガード部および前記基板保持回転機構の上方において、下降気流を形成する気流形成部が設けられる。 The invention according to claim 6 is the substrate processing method according to any one of claims 1 to 5, wherein an airflow forming portion that forms a descending airflow is provided above the guard portion and the substrate holding/rotating mechanism. To be

請求項7に記載の発明は、請求項6に記載の基板処理方法であって、前記c)工程において前記気流形成部により形成されている前記下降気流の流量が、前記e)工程における前記下降気流の流量よりも小さい。 The invention according to claim 7 is the substrate processing method according to claim 6, wherein the flow rate of the descending airflow formed by the airflow forming unit in the step c) is the descending flow in the step e). It is smaller than the flow rate of the air flow.

請求項8に記載の発明は、表面に構造体が形成された基板を処理する基板処理装置であって、上下方向に沿って直径が異なる部位を有する筒状のガード部と、前記ガード部の内側に設けられ、表面に構造体が形成された基板を、前記表面を上方に向けて実質的に水平な姿勢で保持する基板保持回転機構と、前記表面に所定の溶剤を供給する溶剤供給部と、前記表面に所定の充填剤を供給する充填剤供給部と、前記基板の外縁部に所定の洗浄液を供給する洗浄液供給部と、前記ガード部を前記基板保持回転機構に対して相対的に昇降することにより、前記ガード部の内側面と前記基板の前記外縁部との間に形成されている環状の最小間隙の幅を変更する昇降機構と、前記溶剤供給部により前記基板の前記表面に前記溶剤を供給して、前記表面上において前記溶剤の液膜を保持させて、前記表面の前記構造体における隙間を前記溶剤で満たし、前記最小間隙の幅が第1の幅である状態で、前記充填剤供給部により前記液膜に前記充填剤を供給して、前記構造体における前記隙間に存在する前記溶剤を前記充填剤で置換し、前記基板を回転させて、前記基板から前記溶剤および前記充填剤の余剰を除去し、前記最小間隙の幅が前記第1の幅よりも小さい第2の幅である状態で、前記基板を回転させつつ、前記洗浄液供給部により前記基板の前記外縁部に前記洗浄液を供給して、前記外縁部に付着した前記充填剤を除去する制御部とを備える。 According to an eighth aspect of the present invention, there is provided a substrate processing apparatus for processing a substrate having a structure formed on a surface thereof, wherein a tubular guard portion having portions having different diameters along a vertical direction, and the guard portion A substrate holding and rotating mechanism that is provided inside and holds a substrate having a structure formed on its surface in a substantially horizontal posture with the surface facing upward, and a solvent supply unit that supplies a predetermined solvent to the surface. A filler supply unit for supplying a predetermined filler to the surface, a cleaning liquid supply unit for supplying a predetermined cleaning liquid to the outer edge of the substrate, and the guard unit relative to the substrate holding/rotating mechanism. An elevating mechanism for changing the width of the annular minimum gap formed between the inner side surface of the guard part and the outer edge part of the substrate by elevating and lowering, and the solvent supply part on the surface of the substrate In the state where the solvent is supplied, the liquid film of the solvent is retained on the surface, the gap in the structure of the surface is filled with the solvent, and the width of the minimum gap is the first width, by supplying the filler to the liquid film by the filler supply unit, the solvents present in the gap in the structure and replaced by the filler, by rotating the substrate, the solvent and from the substrate The excess of the filler is removed, and the outer edge of the substrate is rotated by the cleaning liquid supply unit while rotating the substrate in a state where the width of the minimum gap is the second width smaller than the first width. And a control unit for supplying the cleaning liquid to remove the filler adhering to the outer edge portion.

本発明によれば、基板上において液膜を保持する際に、液膜の崩壊や部分的な剥がれ等を抑制することができる。また、基板の外縁部を洗浄する際に、基板から飛散した洗浄液等が基板に戻ることを抑制することができる。 ADVANTAGE OF THE INVENTION According to this invention, when hold|maintaining a liquid film on a board|substrate, collapse of a liquid film, partial peeling, etc. can be suppressed. Further, when cleaning the outer edge portion of the substrate, it is possible to prevent the cleaning liquid or the like scattered from the substrate from returning to the substrate.

基板処理装置の構成を示す図である。It is a figure which shows the structure of a substrate processing apparatus. 基板の処理の流れを示す図である。It is a figure which shows the flow of a process of a board|substrate. 基板の処理の流れを示す図である。It is a figure which shows the flow of a process of a board|substrate. 基板処理装置を示す断面図である。It is sectional drawing which shows a substrate processing apparatus. 基板の処理を説明するための図である。It is a figure for demonstrating the process of a board|substrate. 基板処理装置を示す断面図である。It is sectional drawing which shows a substrate processing apparatus. 基板処理装置を示す断面図である。It is sectional drawing which shows a substrate processing apparatus.

図1は、本発明の一の実施の形態に係る基板処理装置1の構成を示す図である。基板処理装置1における各構成要素は、制御部10により制御される。基板処理装置1は、スピンチャック22と、スピンモータ21と、カップ部23と、チャンバ5とを備える。基板保持部であるスピンチャック22は、円板状の基板9の周縁に複数の挟持部材を接触させることにより、基板9を挟持する。これにより、基板9が水平な姿勢にてスピンチャック22により保持される。以下の説明では、上方を向く基板9の表面(主面)91を「上面91」という。上面91には、所定の構造体が形成されており、当該構造体は、例えば直立する多数の構造体要素を含む。 FIG. 1 is a diagram showing a configuration of a substrate processing apparatus 1 according to an embodiment of the present invention. Each component of the substrate processing apparatus 1 is controlled by the controller 10. The substrate processing apparatus 1 includes a spin chuck 22, a spin motor 21, a cup portion 23, and a chamber 5. The spin chuck 22 serving as a substrate holding unit holds the substrate 9 by bringing a plurality of holding members into contact with the peripheral edge of the disk-shaped substrate 9. As a result, the substrate 9 is held by the spin chuck 22 in a horizontal posture. In the following description, the surface (main surface) 91 of the substrate 9 that faces upward is referred to as “upper surface 91”. A predetermined structure is formed on the upper surface 91, and the structure includes, for example, a large number of upright structure elements.

スピンチャック22には、上下方向(鉛直方向)に伸びるシャフト221が接続される。シャフト221は、基板9の上面91に垂直であり、シャフト221の中心軸J1は、基板9の中心を通る。基板回転機構であるスピンモータ21は、シャフト221を回転する。これにより、スピンチャック22および基板9が、上下方向を向く中心軸J1を中心として回転する。スピンチャック22およびスピンモータ21は、基板保持回転機構である。シャフト221およびスピンモータ21は共に中空状であり、後述の下部ノズル34が内部に配置される。 A shaft 221 extending in the vertical direction (vertical direction) is connected to the spin chuck 22. The shaft 221 is perpendicular to the upper surface 91 of the substrate 9, and the central axis J1 of the shaft 221 passes through the center of the substrate 9. The spin motor 21, which is a substrate rotating mechanism, rotates the shaft 221. As a result, the spin chuck 22 and the substrate 9 rotate about the central axis J1 that faces the vertical direction. The spin chuck 22 and the spin motor 21 are a substrate holding/rotating mechanism. Both the shaft 221 and the spin motor 21 are hollow, and a lower nozzle 34, which will be described later, is arranged inside.

カップ部23は、液受け部24と、ガード部25とを備える。液受け部24は、ベース部241と、環状底部242と、周壁部243とを備える。ベース部241は、中心軸J1を中心とする筒状である。ベース部241は、後述のチャンバ内側壁部53に嵌め込まれて、チャンバ内側壁部53の外側面に取り付けられる。環状底部242は、中心軸J1を中心とする円環板状であり、ベース部241の下端部から外側に広がる。周壁部243は、中心軸J1を中心とする筒状であり、環状底部242の外周部から上方に突出する。ベース部241、環状底部242および周壁部243は、好ましくは1つの部材として一体的に形成される。 The cup part 23 includes a liquid receiving part 24 and a guard part 25. The liquid receiving portion 24 includes a base portion 241, an annular bottom portion 242, and a peripheral wall portion 243. The base portion 241 has a tubular shape centered on the central axis J1. The base portion 241 is fitted into the chamber inner side wall portion 53, which will be described later, and attached to the outer side surface of the chamber inner side wall portion 53. The annular bottom portion 242 has an annular plate shape centered on the central axis J1 and extends outward from the lower end portion of the base portion 241. The peripheral wall portion 243 has a tubular shape centered on the central axis J1 and projects upward from the outer peripheral portion of the annular bottom portion 242. The base portion 241, the annular bottom portion 242 and the peripheral wall portion 243 are preferably integrally formed as one member.

ガード部25は、中心軸J1を中心とする略円筒状であり、上下方向に沿って直径が異なる部位を有する。具体的には、ガード部25は、ガード中央部251と、ガード上部252と、ガード下部253とを備える。ガード中央部251は、スピンチャック22の周囲を囲む円筒状である。ガード上部252は、ガード中央部251の上端部から上方に向かうに従って直径が漸次減少する部位である。ガード下部253は、ガード中央部251の下端部から液受け部24の周壁部243に向かって広がる部位である。ガード下部253には、周壁部243との間にて微小な間隙を形成する係合部254が設けられる。係合部254と、周壁部243とは、非接触状態が維持される。ガード部25は、ガード昇降機構26により、上下方向に移動(昇降)可能である。カップ部23は、同心の複数のガード部を含んでもよい。 The guard portion 25 has a substantially cylindrical shape centered on the central axis J1 and has portions having different diameters in the vertical direction. Specifically, the guard portion 25 includes a guard central portion 251, a guard upper portion 252, and a guard lower portion 253. The guard central portion 251 has a cylindrical shape that surrounds the spin chuck 22. The guard upper portion 252 is a portion whose diameter gradually decreases from the upper end of the guard central portion 251 toward the upper side. The lower guard portion 253 is a portion that spreads from the lower end portion of the central guard portion 251 toward the peripheral wall portion 243 of the liquid receiving portion 24. The lower guard portion 253 is provided with an engaging portion 254 that forms a minute gap with the peripheral wall portion 243. The engagement portion 254 and the peripheral wall portion 243 are maintained in a non-contact state. The guard portion 25 can be moved (elevated) in the vertical direction by a guard elevating mechanism 26. The cup portion 23 may include a plurality of concentric guard portions.

チャンバ5は、チャンバ底部51と、チャンバ上底部52と、チャンバ内側壁部53と、チャンバ外側壁部54と、チャンバ天蓋部55とを備える。チャンバ底部51は、板状であり、スピンモータ21およびカップ部23の下方を覆う。チャンバ上底部52は、中心軸J1を中心とする略円環板状である。チャンバ上底部52は、チャンバ底部51の上方にて、スピンモータ21の上方を覆うとともにスピンチャック22の下方を覆う。チャンバ内側壁部53は、中心軸J1を中心とする略円筒状である。チャンバ内側壁部53は、チャンバ上底部52の外周部から下方に広がり、チャンバ底部51に至る。チャンバ内側壁部53は、カップ部23の径方向内側に位置する。 The chamber 5 includes a chamber bottom portion 51, a chamber upper bottom portion 52, a chamber inner side wall portion 53, a chamber outer side wall portion 54, and a chamber canopy portion 55. The chamber bottom 51 has a plate shape and covers the spin motor 21 and the cup 23 below. The chamber upper bottom portion 52 has a substantially annular plate shape centered on the central axis J1. The chamber upper bottom portion 52 covers the upper portion of the chamber bottom portion 51, the upper portion of the spin motor 21, and the lower portion of the spin chuck 22. The chamber inner wall portion 53 has a substantially cylindrical shape centered on the central axis J1. The chamber inner side wall portion 53 extends downward from the outer peripheral portion of the chamber upper bottom portion 52 and reaches the chamber bottom portion 51. The chamber inner wall portion 53 is located on the radially inner side of the cup portion 23.

チャンバ外側壁部54は、略筒状であり、カップ部23の径方向外側に位置する。チャンバ外側壁部54は、チャンバ底部51の外周部から上方に広がり、チャンバ天蓋部55の外周部に至る。チャンバ天蓋部55は、板状であり、カップ部23およびスピンチャック22の上方を覆う。チャンバ外側壁部54には、基板9をチャンバ5内に搬入および搬出するための搬出入口(図示省略)が設けられる。搬出入口が、蓋部により閉塞されることにより、チャンバ5の内部空間50が密閉された空間となる。 The chamber outer side wall portion 54 has a substantially cylindrical shape and is located outside the cup portion 23 in the radial direction. The chamber outer side wall portion 54 extends upward from the outer peripheral portion of the chamber bottom portion 51 and reaches the outer peripheral portion of the chamber canopy portion 55. The chamber canopy 55 is plate-shaped and covers the cup 23 and the spin chuck 22 from above. The chamber outer wall portion 54 is provided with a loading/unloading port (not shown) for loading/unloading the substrate 9 into/from the chamber 5. By closing the loading/unloading port with the lid, the internal space 50 of the chamber 5 becomes a sealed space.

チャンバ天蓋部55には、気流形成部61が取り付けられる。気流形成部61は、ガード部25およびスピンチャック22の上方に設けられる。気流形成部61は、例えばファンフィルタユニット(FFU)であり、ファン611と、フィルタ612とを有する。ファン611は、チャンバ5外の空気をフィルタ612を介してチャンバ5内に送る。フィルタ612は、例えばHEPAフィルタであり、空気中のパーティクルを除去する。気流形成部61により、チャンバ5内において上部から下方に向かうガス(ここでは、清浄空気)の流れ、すなわち、下降気流が形成される。気流形成部61では、窒素ガス等により下降気流が形成されてもよい。制御部10の制御により、ファン611が有するモータの回転速度は可変である。したがって、気流形成部61からチャンバ5内へのガスの供給流量が調整可能である。 An airflow forming unit 61 is attached to the chamber canopy 55. The airflow forming part 61 is provided above the guard part 25 and the spin chuck 22. The airflow forming unit 61 is, for example, a fan filter unit (FFU), and has a fan 611 and a filter 612. The fan 611 sends the air outside the chamber 5 into the chamber 5 through the filter 612. The filter 612 is, for example, a HEPA filter and removes particles in the air. The gas flow forming unit 61 forms a gas (here, clean air) flow from the upper part to the lower part in the chamber 5, that is, a descending air flow. In the airflow forming unit 61, a descending airflow may be formed by nitrogen gas or the like. The rotation speed of the motor of the fan 611 is variable under the control of the control unit 10. Therefore, the supply flow rate of gas from the air flow forming unit 61 into the chamber 5 can be adjusted.

チャンバ5には、排気流路62が設けられる。排気流路62は、チャンバ外側壁部54の下部にて開口する。詳細には、上下方向においてガード部25およびスピンチャック22よりも下方にて、排気流路62が、チャンバ5の内部空間50と接続する。チャンバ5内のガスは、排気流路62を介してチャンバ5外に排出される。排気流路62には、ガスの排出流量を調整する排出流量調整部621が設けられる。排出流量調整部621は、例えば排気ダンパーである。制御部10の制御により、排気ダンパーの開度は可変であり、排出流量調整部621を介したガスの排出流量が調整可能である。 An exhaust passage 62 is provided in the chamber 5. The exhaust flow path 62 opens at a lower portion of the chamber outer wall portion 54. Specifically, the exhaust passage 62 is connected to the internal space 50 of the chamber 5 below the guard portion 25 and the spin chuck 22 in the vertical direction. The gas in the chamber 5 is exhausted to the outside of the chamber 5 through the exhaust passage 62. The exhaust flow path 62 is provided with an exhaust flow rate adjusting unit 621 that adjusts the exhaust flow rate of gas. The discharge flow rate adjusting unit 621 is, for example, an exhaust damper. By the control of the control unit 10, the opening degree of the exhaust damper is variable, and the discharge flow rate of gas via the discharge flow rate adjustment unit 621 can be adjusted.

基板処理装置1は、薬液ノズル30と、純水・溶剤ノズル31と、充填剤ノズル32と、外縁部洗浄ノズル33と、下部ノズル34と、薬液供給部41と、純水供給部42と、有機溶剤供給部43と、充填剤供給部44とをさらに備える。薬液ノズル30、純水・溶剤ノズル31、充填剤ノズル32および外縁部洗浄ノズル33は、例えばストレートノズルであり、各ノズル30〜33は、図示省略のノズル移動機構により、基板9の上面91に対向する対向位置と、上面91の上方から外れた待機位置とに選択的に配置される。薬液ノズル30、純水・溶剤ノズル31および充填剤ノズル32の対向位置は、上面91の中央部に対向する位置であり、外縁部洗浄ノズル33の対向位置は、上面91の外縁部に対向する位置である。ノズル30〜33の待機位置は、水平方向において基板9から離れた位置である。ノズル移動機構は、ノズル30〜33を上下方向に昇降することも可能である。上下方向に伸びる下部ノズル34は、中空状のシャフト221およびスピンモータ21の内部に配置される。下部ノズル34の上端は、基板9の下面の中央部に対向する。 The substrate processing apparatus 1 includes a chemical solution nozzle 30, a pure water/solvent nozzle 31, a filler nozzle 32, an outer edge cleaning nozzle 33, a lower nozzle 34, a chemical solution supply unit 41, and a pure water supply unit 42. An organic solvent supply unit 43 and a filler supply unit 44 are further provided. The chemical nozzle 30, the pure water/solvent nozzle 31, the filler nozzle 32, and the outer edge cleaning nozzle 33 are, for example, straight nozzles, and each of the nozzles 30 to 33 is located on the upper surface 91 of the substrate 9 by a nozzle moving mechanism (not shown). It is selectively arranged at a facing position facing each other and a standby position which is separated from above the upper surface 91. The chemical liquid nozzle 30, the pure water/solvent nozzle 31, and the filler nozzle 32 face each other at a position facing the center of the upper surface 91, and the outer edge cleaning nozzle 33 faces the outer edge of the upper surface 91. The position. The standby positions of the nozzles 30 to 33 are positions separated from the substrate 9 in the horizontal direction. The nozzle moving mechanism can also move the nozzles 30 to 33 up and down. The lower nozzle 34 extending in the vertical direction is arranged inside the hollow shaft 221 and the spin motor 21. The upper end of the lower nozzle 34 faces the central portion of the lower surface of the substrate 9.

薬液供給部41は、薬液ノズル30に弁を介して接続され、純水供給部42および有機溶剤供給部43は、共に純水・溶剤ノズル31に弁を介して接続される。純水供給部42は、下部ノズル34にも弁を介して接続される。有機溶剤供給部43は、外縁部洗浄ノズル33にも弁を介して接続される。充填剤供給部44は、充填剤ノズル32に弁を介して接続される。薬液供給部41、純水供給部42、有機溶剤供給部43および充填剤供給部44により、処理液である薬液、純水、有機溶剤および充填剤が基板9にそれぞれ供給される。 The chemical liquid supply unit 41 is connected to the chemical liquid nozzle 30 via a valve, and the pure water supply unit 42 and the organic solvent supply unit 43 are both connected to the pure water/solvent nozzle 31 via a valve. The pure water supply unit 42 is also connected to the lower nozzle 34 via a valve. The organic solvent supply unit 43 is also connected to the outer edge cleaning nozzle 33 via a valve. The filler supply unit 44 is connected to the filler nozzle 32 via a valve. The chemical liquid, the pure water, the organic solvent, and the filler, which are processing liquids, are supplied to the substrate 9 by the chemical liquid supply unit 41, the pure water supply unit 42, the organic solvent supply unit 43, and the filler supply unit 44, respectively.

図2Aおよび図2Bは、基板処理装置1における基板9の処理の流れを示す図である。基板処理装置1では、気流形成部61がONとされ、チャンバ5内において上部から下方に向かうガスの流れ(すなわち、下降気流)が形成される(ステップS11)。基板処理装置1では、原則として、常時、下降気流が形成されている。したがって、以下の処理は、上記下降気流の形成に並行して行われる。また、本処理例では、基板9の処理中において下降気流の流量が、定常状態である「高」、または、非定常状態である「低」のいずれかに設定される。ステップS11では、下降気流の流量が「高」に設定される。排出流量調整部621を介したガスの排出流量も、「高」に設定される。 2A and 2B are diagrams showing the flow of processing of the substrate 9 in the substrate processing apparatus 1. In the substrate processing apparatus 1, the air flow forming unit 61 is turned on, and a gas flow from the upper part to the lower part (that is, a descending air flow) is formed in the chamber 5 (step S11). In the substrate processing apparatus 1, as a rule, a downward airflow is always formed. Therefore, the following processing is performed in parallel with the formation of the downdraft. Further, in this processing example, the flow rate of the descending airflow during the processing of the substrate 9 is set to either “high” which is a steady state or “low” which is an unsteady state. In step S11, the flow rate of the descending airflow is set to "high". The gas discharge flow rate through the discharge flow rate adjusting unit 621 is also set to “high”.

チャンバ5内には、外部の搬送機構により処理対象の基板9が搬入され、ガード部25の内側に設けられたスピンチャック22にて保持される(ステップS12)。基板9の搬入の際には、ガード昇降機構26がガード部25を下降することにより、搬入される基板9がガード部25に接触することが防止される(後述の基板9の搬出において同様)。搬送機構がチャンバ5外に移動すると、制御部10の制御により、ガード昇降機構26がガード部25を図3に示す位置まで上昇する(ステップS13)。本処理例では、基板9の処理中においてガード部25が上段、中段および下段のいずれかに配置され、図3に示す位置は中段である。中段に配置されたガード部25では、ガード上部252の下部が基板9と同じ高さに配置される。なお、図3では、長い矢印A1により、流量が「高」に設定された下降気流を示している(後述の図6において同様)。 The substrate 9 to be processed is loaded into the chamber 5 by an external transport mechanism and held by the spin chuck 22 provided inside the guard portion 25 (step S12). When the substrate 9 is carried in, the guard elevating mechanism 26 lowers the guard part 25, so that the substrate 9 to be carried in is prevented from coming into contact with the guard part 25 (the same applies when carrying out the substrate 9 described later). .. When the transport mechanism moves to the outside of the chamber 5, the guard elevating mechanism 26 raises the guard unit 25 to the position shown in FIG. 3 under the control of the control unit 10 (step S13). In this processing example, the guard part 25 is arranged in any one of the upper stage, the middle stage, and the lower stage during the processing of the substrate 9, and the position shown in FIG. 3 is the middle stage. In the guard part 25 arranged in the middle stage, the lower part of the guard upper part 252 is arranged at the same height as the substrate 9. In addition, in FIG. 3, a long arrow A1 indicates the descending air flow in which the flow rate is set to “high” (similar in FIG. 6 described later).

既述のように、円板状の基板9の周囲に略円筒状のガード部25が配置され、両者の中心軸は一致する。したがって、ガード部25の内側面と基板9の外縁部との間に環状の間隙が形成される。以下の説明では、ガード部25の内側面と基板9の外縁部との間に形成される環状の最小間隙(すなわち、中心軸J1を中心とする周方向に沿って両者間の最小幅D1の間隙が全周に亘って連続している環状間隙)Gを、単に「環状間隙G」という。気流形成部61から基板9へと向かうガスは、環状間隙Gを介してカップ部23内に流入する。カップ部23内のガスは、スピンチャック22の下側へと移動し、ガード部25と液受け部24との間の微小な間隙、すなわち、図1の周壁部243と係合部254との間の微小な間隙を介してカップ部23外に流れる。チャンバ5の内部空間50の下部において、カップ部23の周囲のガスは、排気流路62を介してチャンバ5外に排出される。 As described above, the substantially cylindrical guard portion 25 is arranged around the disk-shaped substrate 9, and the central axes of both are coincident with each other. Therefore, an annular gap is formed between the inner side surface of the guard portion 25 and the outer edge portion of the substrate 9. In the following description, the annular minimum gap formed between the inner side surface of the guard portion 25 and the outer edge portion of the substrate 9 (that is, the minimum width D1 between the two along the circumferential direction around the central axis J1). The annular gap) G in which the gap is continuous over the entire circumference is simply referred to as “annular gap G”. The gas flowing from the air flow forming portion 61 toward the substrate 9 flows into the cup portion 23 via the annular gap G. The gas in the cup portion 23 moves to the lower side of the spin chuck 22, and a minute gap between the guard portion 25 and the liquid receiving portion 24, that is, between the peripheral wall portion 243 and the engaging portion 254 in FIG. It flows out of the cup portion 23 through a minute gap therebetween. In the lower part of the internal space 50 of the chamber 5, the gas around the cup portion 23 is exhausted to the outside of the chamber 5 through the exhaust flow path 62.

続いて、図示省略のノズル移動機構により、薬液ノズル30が、基板9の上面91の中央部に対向する対向位置に配置される。また、スピンモータ21により、基板9の回転が開始される。基板9の回転速度(回転数)は、比較的高い回転速度(後述の純水保持回転速度よりも高速な回転速度)に設定される。そして、薬液供給部41により薬液が薬液ノズル30を介して上面91に連続的に供給される(ステップS14)。上面91上の薬液は基板9の回転により外縁部へと広がり、上面91の全体に薬液が供給される。また、外縁部から飛散する薬液は、ガード部25の内側面にて受けられて回収される。薬液は、例えば、希フッ酸(DHF)またはアンモニア水を含む洗浄用の処理液である。薬液は、基板9上の酸化膜の除去や現像、あるいは、エッチング等、洗浄以外の処理に用いられるものであってもよい。 Subsequently, the chemical solution nozzle 30 is arranged at a facing position facing the central portion of the upper surface 91 of the substrate 9 by a nozzle moving mechanism (not shown). Further, the spin motor 21 starts the rotation of the substrate 9. The rotation speed (rotation speed) of the substrate 9 is set to a relatively high rotation speed (a rotation speed higher than a pure water holding rotation speed described later). Then, the chemical liquid supply unit 41 continuously supplies the chemical liquid to the upper surface 91 via the chemical liquid nozzle 30 (step S14). The chemical liquid on the upper surface 91 spreads to the outer edge portion by the rotation of the substrate 9, and the chemical liquid is supplied to the entire upper surface 91. Further, the chemical liquid scattered from the outer edge portion is received and collected by the inner side surface of the guard portion 25. The chemical liquid is, for example, a treatment liquid for cleaning containing dilute hydrofluoric acid (DHF) or aqueous ammonia. The chemical solution may be used for removing or developing the oxide film on the substrate 9 or for processing other than cleaning such as etching.

図4は、基板9の処理を説明するための図である。図4の上段では、各処理における基板9の上面91上の様子を示し、中段では下降気流の流量を示し、下段では、ガード部25の位置を示す。また、各処理のステップと同じ符号を付す矢印により、当該処理が行われる期間を示している。図4中の上段において、矢印S14が示す期間に対応する最も左側に示すように、ステップS14では、上面91の全体に薬液が満たされる。薬液の供給は所定時間継続され、その後、停止される。薬液による処理では、ノズル移動機構により、薬液ノズル30が水平方向に揺動してもよい。ステップS14に並行して、純水供給部42により純水が下部ノズル34を介して基板9の下面に供給されてもよい(基板9の上面91に処理液を供給する他の処理において同様)。 FIG. 4 is a diagram for explaining the processing of the substrate 9. The upper part of FIG. 4 shows the state on the upper surface 91 of the substrate 9 in each process, the middle part shows the flow rate of the downdraft, and the lower part shows the position of the guard part 25. Further, an arrow having the same reference numeral as each step of each process indicates a period in which the process is performed. In the upper part of FIG. 4, as shown on the leftmost side corresponding to the period indicated by the arrow S14, the entire upper surface 91 is filled with the chemical liquid in step S14. The supply of the chemical liquid is continued for a predetermined time and then stopped. In the treatment with the chemical liquid, the chemical liquid nozzle 30 may be horizontally swung by the nozzle moving mechanism. In parallel with step S14, pure water may be supplied to the lower surface of the substrate 9 via the lower nozzle 34 by the pure water supply unit 42 (similar to other processing in which the processing liquid is supplied to the upper surface 91 of the substrate 9). ..

薬液による処理が完了すると、薬液ノズル30が待機位置に移動し、純水・溶剤ノズル31が対向位置に配置される。そして、純水供給部42により、リンス液である純水が純水・溶剤ノズル31を介して上面91に連続的に供給される(ステップS15)。これにより、上面91上の薬液が純水により洗い流されるリンス処理が行われる。リンス処理中は、図4中の上段の左から2番目に示すように、上面91の全体が純水により覆われる。純水の供給中も、比較的高い回転速度で基板9が回転される。基板9から飛散する純水は、ガード部25の内側面により受けられて、外部に排出される。純水の供給は所定時間継続され、その間、基板9の回転速度が徐々に、上記回転速度よりも十分に低い回転速度(以下、「純水保持回転速度」という。)に下げられる。純水保持回転速度は例えば10[rpm]であるが、0[rpm]であってもよい。この状態で、図4中の上段の左から2番目に示すように、上面91上において純水の液膜80が形成されて保持される。純水の供給は、その液膜80の形成後、停止される。 When the treatment with the chemical liquid is completed, the chemical liquid nozzle 30 moves to the standby position, and the pure water/solvent nozzle 31 is arranged at the facing position. Then, the pure water supply unit 42 continuously supplies pure water as a rinse liquid to the upper surface 91 via the pure water/solvent nozzle 31 (step S15). As a result, a rinse process is performed in which the chemical liquid on the upper surface 91 is washed away with pure water. During the rinse process, the entire upper surface 91 is covered with pure water, as shown in the second row from the left in the upper part of FIG. The substrate 9 is rotated at a relatively high rotation speed even while supplying pure water. The pure water scattered from the substrate 9 is received by the inner surface of the guard portion 25 and discharged to the outside. The supply of pure water is continued for a predetermined time, and during that time, the rotation speed of the substrate 9 is gradually reduced to a rotation speed sufficiently lower than the above rotation speed (hereinafter referred to as “pure water holding rotation speed”). The pure water holding rotation speed is, for example, 10 [rpm], but may be 0 [rpm]. In this state, a pure water liquid film 80 is formed and held on the upper surface 91, as shown in the second position from the left in the upper part of FIG. The supply of pure water is stopped after the liquid film 80 is formed.

所定時間、純水の液膜80を保持した後に、基板9を純水保持回転速度で回転させたままの状態で、図1の有機溶剤供給部43により、有機溶剤が純水・溶剤ノズル31を介して上面91に供給開始される(ステップS16)。有機溶剤は、例えばIPA(イソプロピルアルコール)、メタノール、エタノール、アセトン等であり、純水よりも表面張力が低い。本実施の形態では、有機溶剤としてIPAが利用される。そしてこの有機溶剤の供給を継続しつつ、基板9の回転速度は純水保持回転速度から徐々に増速されて、比較的高い回転速度(純水保持回転速度よりも高速な回転速度)で基板9が回転される。これにより、上面91上の有機溶剤は、直ぐに外縁部へと広がり、上面91の純水は有機溶剤に置換される。このとき、図4中の上段の左から3番目に示すように、上面91上において有機溶剤の薄い液膜81が形成されて保持される。表面張力が低い(例えば、純水および充填剤よりも低い)有機溶剤は、上面91の構造体910において互いに隣接する構造体要素911の間に入り込みやすく、構造体910における隙間が、有機溶剤により満たされる。なお、図4では基板9上面91の構造体910の大きさは誇張して描いているが、実際には半導体デバイスの構造レベルの非常に微細な構造である。液膜81は少なくとも構造体910の高さをほぼ覆う程度かまたはそれ以上の厚みがある。所定量の有機溶剤が供給されて純水の置換が終了すると、有機溶剤の供給が停止される。 After the liquid film 80 of pure water is held for a predetermined time, the organic solvent is supplied from the pure water/solvent nozzle 31 by the organic solvent supply unit 43 in FIG. 1 while the substrate 9 is still rotated at the pure water holding rotation speed. Supply to the upper surface 91 is started via (step S16). The organic solvent is, for example, IPA (isopropyl alcohol), methanol, ethanol, acetone, etc., and has a lower surface tension than pure water. In this embodiment, IPA is used as the organic solvent. While continuing the supply of the organic solvent, the rotation speed of the substrate 9 is gradually increased from the pure water holding rotation speed, and the substrate is rotated at a relatively high rotation speed (higher rotation speed than the pure water holding rotation speed). 9 is rotated. As a result, the organic solvent on the upper surface 91 immediately spreads to the outer edge portion, and the pure water on the upper surface 91 is replaced with the organic solvent. At this time, a thin liquid film 81 of the organic solvent is formed and held on the upper surface 91, as shown in the third position from the left in the upper part of FIG. An organic solvent having a low surface tension (for example, lower than pure water and a filler) easily enters between the structure elements 911 which are adjacent to each other in the structure 910 of the upper surface 91, and a gap in the structure 910 is caused by the organic solvent. It is filled. Although the size of the structure 910 on the upper surface 91 of the substrate 9 is exaggerated in FIG. 4, it is actually a very fine structure at the structure level of the semiconductor device. The liquid film 81 is thick enough to cover at least the height of the structure 910 or more. When a predetermined amount of the organic solvent is supplied and the replacement of the pure water is completed, the supply of the organic solvent is stopped.

有機溶剤の供給が完了すると、それと同時に制御部10により気流形成部61における下降気流の流量の設定が「低」に変更され、上記薬液および純水の供給時における流量よりも小さくされる(ステップS17)。図5では、短い矢印A2により、流量が「低」に設定された下降気流を示している。実際には、排出流量調整部621(図1参照)におけるガスの排出流量の設定も「低」に変更され、上記薬液および純水の供給時における排出流量よりも小さくされる。また、図5に示すように、ガード部25がガード昇降機構26により上段に配置される(ステップS18)。上段は、図3に示す位置(中段)よりも上方の位置である。上段に配置されたガード部25では、ガード中央部251の上部が基板9と同じ高さに配置され、環状間隙Gの幅D2は、図3に示す環状間隙Gの幅D1よりも大きい。 When the supply of the organic solvent is completed, at the same time, the control unit 10 changes the setting of the flow rate of the descending air flow in the air flow forming section 61 to "low", which is smaller than the flow rate at the time of supplying the chemical liquid and pure water (step S17). In FIG. 5, a short arrow A2 indicates the descending air flow in which the flow rate is set to “low”. In practice, the setting of the gas discharge flow rate in the discharge flow rate adjusting unit 621 (see FIG. 1) is also changed to “low”, which is smaller than the discharge flow rate at the time of supplying the chemical liquid and pure water. Further, as shown in FIG. 5, the guard portion 25 is arranged in the upper stage by the guard lifting mechanism 26 (step S18). The upper stage is a position above the position (middle stage) shown in FIG. In the guard part 25 arranged in the upper stage, the upper part of the guard central part 251 is arranged at the same height as the substrate 9, and the width D2 of the annular gap G is larger than the width D1 of the annular gap G shown in FIG.

さらに、有機溶剤の供給が停止された後、上述したステップS17,S18とともに、基板処理装置1では、純水・溶剤ノズル31が、待機位置へと移動し、充填剤ノズル32が、上面91の中央部に対向する対向位置に配置される。そして、ステップS16における比較的高い回転速度を保った状態で、処理液供給部である充填剤供給部44により、充填剤が充填剤ノズル32を介して上面91の中央部の有機溶剤の液膜81の上に所定量だけ供給される(ステップS19)。有機溶剤の液膜81の上に供給される充填剤は、基板9の回転により上面91の中央部から外周部へと拡がり、図4中の上段の左から4番目に示すように、有機溶剤の液膜81上に充填剤の液膜82が積層される。図4では、液膜における有機溶剤の層と充填剤の層とに異なるハッチングを付している。なお、基板9の回転が停止した状態で、充填剤が上面91に供給され、その後、基板9の回転が開始されてもよい。充填剤は、例えばアクリル樹脂等のポリマー(樹脂)を含む。また充填剤の比重は有機溶剤(ここではIPA)よりも大きい。充填剤における溶媒として、水やアルコール等が例示される。ポリマーは、当該溶媒に対して溶解性を有し、例えば、所定温度以上に加熱することにより架橋反応が生じる。所定時間が経過し、所定量の充填剤が供給されて液膜82が形成されると充填剤の供給が停止され、基板処理装置1では、基板9の回転速度はステップS16における比較的高い回転速度から徐々に減速されて、比較的低い回転速度(例えば前述の純水保持回転速度)で基板9が回転される。 Further, after the supply of the organic solvent is stopped, in the substrate processing apparatus 1, the pure water/solvent nozzle 31 is moved to the standby position and the filler nozzle 32 is moved to the upper surface 91 together with the above steps S17 and S18. It is arranged at a facing position facing the central portion. Then, in the state where the relatively high rotation speed is maintained in step S16, the filler is supplied by the filler supply unit 44, which is the processing liquid supply unit, through the filler nozzle 32, and the liquid film of the organic solvent in the central portion of the upper surface 91 is formed. A predetermined amount is supplied onto 81 (step S19). The filler supplied on the liquid film 81 of the organic solvent spreads from the central portion of the upper surface 91 to the outer peripheral portion by the rotation of the substrate 9, and as shown in the fourth from the left in the upper part of FIG. The liquid film 82 of the filler is laminated on the liquid film 81. In FIG. 4, the organic solvent layer and the filler layer in the liquid film are hatched differently. The filler may be supplied to the upper surface 91 with the rotation of the substrate 9 stopped, and then the rotation of the substrate 9 may be started. The filler contains a polymer (resin) such as an acrylic resin. Further, the specific gravity of the filler is larger than that of the organic solvent (here, IPA). Water, alcohol, etc. are illustrated as a solvent in a filler. The polymer has a solubility in the solvent and, for example, a crosslinking reaction occurs when it is heated to a predetermined temperature or higher. The supply of the filler is stopped when a predetermined amount of the filler is supplied and the liquid film 82 is formed after the predetermined time has elapsed, and in the substrate processing apparatus 1, the rotation speed of the substrate 9 is relatively high in step S16. The substrate 9 is gradually decelerated from the speed, and the substrate 9 is rotated at a relatively low rotation speed (for example, the pure water holding rotation speed described above).

ここで、上記液膜81,82は、上面91の全体を覆う一連の液層である。充填剤の供給の停止により、液膜81,82では、基板9と、液膜81を構成する液体(主として、有機溶剤)と、液膜82を構成する液体(主として充填剤)の上面91に沿う相対移動がほぼない状態(いわゆる、パドル状態であり、以下、「液静止状態」という。)が形成されている。ステップS19では、気流形成部61による下降気流の流量、および、排出流量調整部621によるガスの排出流量が小さく、かつ、上段に配置されたガード部25では、環状間隙Gの幅D2も比較的大きい。したがって、基板9の外縁部近傍におけるガスの流速が低減され、液静止状態の液膜81,82の崩壊(すなわち、基板9外縁部近傍において液膜が崩れて基板9から流出してしまうこと)や、厚さの均一性の低下が抑制される。また、純水保持回転速度での基板9の回転では、上面91から有機溶剤や充填剤が飛散して、ミストとなって浮遊することもほとんどない。充填剤が不所望に乾燥したり剥がれたりしてしまうことも抑制できる。 Here, the liquid films 81 and 82 are a series of liquid layers covering the entire upper surface 91. When the supply of the filler is stopped, in the liquid films 81 and 82, the substrate 9, the liquid (mainly the organic solvent) forming the liquid film 81, and the upper surface 91 of the liquid forming the liquid film 82 (mainly the filler) are formed. A state in which there is almost no relative movement along it (a so-called paddle state, hereinafter referred to as a “liquid stationary state”) is formed. In step S19, the flow rate of the descending airflow by the airflow forming section 61 and the discharge flow rate of the gas by the discharge flow rate adjusting section 621 are small, and in the guard section 25 arranged in the upper stage, the width D2 of the annular gap G is relatively large. large. Therefore, the flow velocity of the gas near the outer edge of the substrate 9 is reduced, and the liquid films 81 and 82 in the liquid stationary state collapse (that is, the liquid film collapses near the outer edge of the substrate 9 and flows out from the substrate 9). In addition, reduction in thickness uniformity is suppressed. Further, when the substrate 9 is rotated at the pure water holding rotation speed, the organic solvent and the filler hardly scatter from the upper surface 91 to become a mist and float. It is also possible to prevent the filler from undesirably drying or peeling.

基板9の回転速度が低い状態(前述の純水保持回転速度程度)では、各位置における液膜81,82の厚さは、上面91に沿うガスの流れの影響を強く受けるが、基板9の外縁部近傍におけるガスの流速が低減されていることにより、液膜81の厚さの均一性が確保される。上記回転速度での基板9の回転(または、基板9の回転を停止した状態)は所定時間だけ継続される。充填剤の比重は、有機溶剤の比重よりも大きいため、充填剤の供給を停止した状態で、上面91上において有機溶剤を含む液膜81および充填剤を含む液膜82を保持させることにより、図4中の上段の左から4番目および5番目に示すように、上面91上の液膜81,82において有機溶剤の液膜81の層と充填剤の液膜82の層との上下が入れ替わる。このようにして、構造体910における隙間に存在する有機溶剤が充填剤で置換され、互いに隣接する構造体要素911の間に、充填剤が入り込む(ステップS20)。ステップS20は、構造体910における隙間に充填剤を埋め込む処理である。ステップS20における液膜81,82においても、液膜81,82を構成する液体が上面91上を水平方向にはほとんど流動しておらず、液静止状態が形成されている。 When the rotation speed of the substrate 9 is low (about the pure water holding rotation speed described above), the thickness of the liquid films 81 and 82 at each position is strongly affected by the gas flow along the upper surface 91, but Since the flow velocity of the gas near the outer edge is reduced, the thickness uniformity of the liquid film 81 is ensured. The rotation of the substrate 9 at the above rotation speed (or the state where the rotation of the substrate 9 is stopped) is continued for a predetermined time. Since the specific gravity of the filler is higher than the specific gravity of the organic solvent, by holding the liquid film 81 containing the organic solvent and the liquid film 82 containing the filler on the upper surface 91 while the supply of the filler is stopped, As shown in the fourth and fifth from the left in the upper part of FIG. 4, the layers of the liquid film 81 of the organic solvent and the layer of the liquid film 82 of the filler are interchanged in the liquid films 81 and 82 on the upper surface 91. .. In this way, the organic solvent existing in the gaps in the structure 910 is replaced with the filler, and the filler enters between the structure elements 911 adjacent to each other (step S20). Step S20 is a process of embedding a filler in the gap in the structure 910. Also in the liquid films 81 and 82 in step S20, the liquid forming the liquid films 81 and 82 hardly flows in the horizontal direction on the upper surface 91, and the liquid stationary state is formed.

充填剤の埋込処理が完了すると(充填剤の供給停止から所定時間経過すると)、気流形成部61における下降気流の流量の設定が「高」に変更され、下降気流の流量が埋込処理時よりも大きくされる(ステップS21)。また、排出流量調整部621におけるガスの排出流量の設定も「高」に変更され、ガスの排出流量が埋込処理時よりも大きくされる。本処理例では、下降気流の流量およびガスの排出流量は、薬液および純水の供給時と同程度に戻される。さらに、図3に示すように、ガード部25がガード昇降機構26により中段に配置される(戻される)(ステップS22)。 When the embedding process of the filler is completed (when a predetermined time has elapsed from the stop of the supply of the filler), the setting of the flow rate of the descending air flow in the air flow forming unit 61 is changed to “high”, and the flow rate of the descending air flow is set during the embedding process. (Step S21). Further, the setting of the gas discharge flow rate in the discharge flow rate adjusting unit 621 is also changed to “high”, and the gas discharge flow rate is made higher than that during the embedding process. In this processing example, the flow rate of the descending air flow and the discharge flow rate of the gas are returned to the same level as when supplying the chemical liquid and the pure water. Further, as shown in FIG. 3, the guard portion 25 is arranged (returned) to the middle stage by the guard lifting mechanism 26 (step S22).

続いて、基板9の回転速度が、純水保持回転速度よりも高速な回転速度まで上げられる。これにより、図4中の上段の左から5番目および6番目に示すように、有機溶剤の液膜81、および、充填剤の余剰が基板9から除去される(いわゆるスピンオフ)(ステップS23)。基板9から飛散する液(有機溶剤および充填剤)は、ガード部25の内側面により受けられる。有機溶剤および充填剤の余剰が除去された液膜82では、構造体910の全体を覆うために必要な厚さの充填剤が残存する。 Then, the rotation speed of the substrate 9 is increased to a rotation speed higher than the pure water holding rotation speed. As a result, the liquid film 81 of the organic solvent and the surplus of the filler are removed from the substrate 9 (so-called spin-off), as shown in the fifth and sixth from the left in the upper part of FIG. 4 (step S23). The liquid (organic solvent and filler) scattered from the substrate 9 is received by the inner surface of the guard portion 25. In the liquid film 82 from which the excess of the organic solvent and the filler has been removed, the filler having a thickness necessary to cover the entire structure 910 remains.

その後、図6に示すように、ガード昇降機構26によりガード部25が下段に配置される(ステップS24)。下段は、図3に示す位置(中段)よりも下方の位置である。下段に配置されたガード部25では、ガード上部252の上部が基板9とおよそ同じ高さに配置され、環状間隙Gの幅D3は、図3に示す環状間隙Gの幅D1、および、図5に示す環状間隙Gの幅D2よりも小さい。 After that, as shown in FIG. 6, the guard elevating mechanism 26 arranges the guard portion 25 in the lower stage (step S24). The lower stage is a position below the position (middle stage) shown in FIG. In the lower guard part 25, the upper part of the guard upper part 252 is arranged at approximately the same height as the substrate 9, and the width D3 of the annular gap G is the width D1 of the annular gap G shown in FIG. It is smaller than the width D2 of the annular gap G shown in FIG.

基板処理装置1では、ステップS20〜S24に並行して、充填剤ノズル32が待機位置へと移動し、外縁部洗浄ノズル33が、上面91の外縁部に対向する対向位置に配置される。ガード部25が下段に配置されると、有機溶剤供給部43により、上面91の外縁部に有機溶剤が外縁部洗浄ノズル33を介して連続的に供給される(いわゆる、ベベル洗浄)(ステップS25)。外縁部洗浄ノズル33から噴出される有機溶剤は、基板9の外縁部を洗浄するためのものであり、以下、「洗浄液」という。 In the substrate processing apparatus 1, the filler nozzle 32 is moved to the standby position in parallel with steps S20 to S24, and the outer edge cleaning nozzle 33 is arranged at a position facing the outer edge of the upper surface 91. When the guard part 25 is arranged in the lower stage, the organic solvent supply part 43 continuously supplies the organic solvent to the outer edge part of the upper surface 91 through the outer edge part cleaning nozzle 33 (so-called bevel cleaning) (step S25). ). The organic solvent ejected from the outer edge cleaning nozzle 33 is for cleaning the outer edge of the substrate 9 and is hereinafter referred to as “cleaning liquid”.

外縁部洗浄ノズル33における洗浄液の噴出方向は、上下方向の下向きから外側(中心軸J1から離れる方向)に傾斜しており、上面91の外縁部のみに洗浄液が供給される。また、薬液および純水の供給時と同様に、純水保持回転速度よりも高速な回転速度で基板9が回転される。これにより、構造体910が形成されていない上面91の外縁部や、基板9の端面(縁面)に付着した充填剤が、全周に亘って除去される。このように、外縁部や端面に付着する不要な充填剤を除去することにより、後続の処理において基板9を搬送する際に、搬送機構のアームが汚れることが防止される。有機溶剤供給部43は、外縁部に洗浄液を供給する洗浄液供給部としての役割も果たす。 The spouting direction of the cleaning liquid in the outer edge cleaning nozzle 33 is inclined from the downward direction in the vertical direction to the outside (the direction away from the central axis J1), and the cleaning liquid is supplied only to the outer edge of the upper surface 91. Further, as in the case of supplying the chemical liquid and the pure water, the substrate 9 is rotated at a rotation speed higher than the pure water holding rotation speed. As a result, the outer edge portion of the upper surface 91 where the structure 910 is not formed and the filler attached to the end surface (edge surface) of the substrate 9 are removed over the entire circumference. In this way, by removing the unnecessary filler adhering to the outer edge portion and the end surface, it is possible to prevent the arm of the transfer mechanism from becoming dirty when the substrate 9 is transferred in the subsequent processing. The organic solvent supply unit 43 also serves as a cleaning liquid supply unit that supplies the cleaning liquid to the outer edge portion.

ここで、外縁部洗浄ノズル33は、上面91の外縁部の一部分に対向する。したがって、外縁部洗浄ノズル33から噴出される洗浄液や除去される充填剤は、外縁部における当該部分近傍のみから集中して飛散し、多くのミストとなって浮遊しやすい。洗浄液の供給時では、薬液および純水の供給時に比べて、環状間隙Gの幅が小さいため、環状間隙Gを通過するガスの流速が大きくなる。したがって、基板9の外縁部近傍のミストは当該ガスの流れによりカップ部23内に導かれやすくなる。また、環状間隙Gを通過したミストが、ガスの流れに逆らって、幅が狭い環状間隙Gを再度通過して基板9の上面91側に戻ることも防止される。以上のように、下段に配置されたガード部25により、洗浄液の供給時において、基板9の上面91から飛散した洗浄液等のミストが上面91に付着することが抑制される。なお、この時点では、充填剤は仮硬化しており、または、構造体910における隙間に埋め込まれており、上記ガスの流れにより充填剤の剥がれが生じることはない。 Here, the outer edge cleaning nozzle 33 faces a part of the outer edge of the upper surface 91. Therefore, the cleaning liquid ejected from the outer edge cleaning nozzle 33 and the filler to be removed are concentrated and scattered only from the vicinity of the relevant portion in the outer edge, and are likely to become a lot of mist and float. Since the width of the annular gap G is smaller when the cleaning liquid is supplied than when the chemical liquid and the pure water are supplied, the flow velocity of the gas passing through the annular gap G becomes higher. Therefore, the mist near the outer edge of the substrate 9 is easily guided into the cup portion 23 by the flow of the gas. Further, the mist that has passed through the annular gap G is prevented from returning to the upper surface 91 side of the substrate 9 by passing through the narrow annular gap G again against the gas flow. As described above, the guard portion 25 arranged in the lower stage suppresses the mist of the cleaning liquid or the like scattered from the upper surface 91 of the substrate 9 from adhering to the upper surface 91 when the cleaning liquid is supplied. At this point, the filler is temporarily hardened or is embedded in the gap in the structure 910, so that the filler does not peel off due to the flow of the gas.

外縁部洗浄ノズル33からの洗浄液の噴出完了後、基板9の回転を所定時間継続することにより、外縁部の洗浄液が除去される。その後、基板9の回転が停止され、外部の搬送機構により基板9がチャンバ5外に搬出される(ステップS26)。基板9は、外部のホットプレートにてベークされ、充填剤の液膜82における溶媒成分が除去されるとともに、充填剤に含まれるポリマーが本硬化(固化)する。これにより、隣接する構造体要素911間に固化したポリマーが充填された状態となる。基板9は、外部のドライエッチング装置へと搬送され、ドライエッチングによりポリマーが除去される。 After the ejection of the cleaning liquid from the outer edge cleaning nozzle 33 is completed, the rotation of the substrate 9 is continued for a predetermined time to remove the outer edge cleaning liquid. After that, the rotation of the substrate 9 is stopped, and the substrate 9 is carried out of the chamber 5 by the external transport mechanism (step S26). The substrate 9 is baked on an external hot plate to remove the solvent component in the liquid film 82 of the filler, and the polymer contained in the filler is fully cured (solidified). As a result, the solidified polymer is filled between the adjacent structure elements 911. The substrate 9 is conveyed to an external dry etching device, and the polymer is removed by dry etching.

このとき、隣接する構造体要素911間に介在する介在物(ポリマー)が固体であるため、構造体要素911に対して介在物の表面張力が作用しない状態で当該介在物が除去される。リンス処理後における上記一連の処理は、上面91に付着する純水(リンス液)の乾燥処理と捉えることができ、当該乾燥処理により、乾燥途上の純水の表面張力による構造体要素911の変形が防止される。ポリマーの除去は、液体を用いない他の手法により行われてもよい。例えば、ポリマーの種類によっては、減圧下にてポリマーを加熱することにより、ポリマーの昇華による除去が行われる。 At this time, since the inclusion (polymer) interposed between the adjacent structure elements 911 is solid, the inclusion is removed in a state where the surface tension of the inclusion does not act on the structure element 911. The above-described series of treatments after the rinsing treatment can be regarded as a drying treatment of pure water (rinsing liquid) adhering to the upper surface 91, and the drying treatment deforms the structural element 911 due to the surface tension of the pure water in the process of being dried. Is prevented. Removal of the polymer may be performed by other liquid-free techniques. For example, depending on the type of polymer, the polymer is removed by sublimation by heating the polymer under reduced pressure.

以上に説明したように、基板処理装置1では、上面91の構造体910における隙間を有機溶剤で満たす処理(ステップS16)と、構造体910の隙間に存在する有機溶剤を充填剤で置換する処理(ステップS20)とが行われる。両処理では、上面91上において液膜81,82が保持(維持)される。その後、基板9を高速に回転させつつ、基板9の外縁部に付着した充填剤を除去する処理(ステップS25)が行われる。また、ステップS16,S20における環状間隙Gの幅が、ステップS25における環状間隙Gの幅よりも大きくなるように、ガード部25が昇降される。これにより、液膜81,82を保持する際に、基板9の外縁部近傍におけるガスの流速を低減させることができ、液膜81,82の崩壊や部分的な剥がれ、厚さの均一性の低下を抑制することができる。また、基板9の外縁部を洗浄する際に、外縁部近傍から環状間隙Gに向かうガスの流速を増大させることができ、基板9から飛散した洗浄液等(のミスト)が基板9に戻ることを抑制することができる。 As described above, in the substrate processing apparatus 1, the process of filling the gap in the structure 910 on the upper surface 91 with the organic solvent (step S16) and the process of replacing the organic solvent existing in the gap of the structure 910 with the filler. (Step S20) is performed. In both processes, the liquid films 81 and 82 are held (maintained) on the upper surface 91. Then, a process of removing the filler adhering to the outer edge of the substrate 9 while rotating the substrate 9 at high speed (step S25) is performed. Further, the guard portion 25 is moved up and down such that the width of the annular gap G in steps S16 and S20 is larger than the width of the annular gap G in step S25. Accordingly, when holding the liquid films 81 and 82, the flow velocity of the gas in the vicinity of the outer edge portion of the substrate 9 can be reduced, and the liquid films 81 and 82 can be collapsed or partially peeled, and the thickness uniformity can be improved. The decrease can be suppressed. Further, when cleaning the outer edge of the substrate 9, it is possible to increase the flow velocity of the gas from the vicinity of the outer edge toward the annular gap G, and to prevent the cleaning liquid or the like (mist) scattered from the substrate 9 from returning to the substrate 9. Can be suppressed.

また、液膜81,82を保持する際に、気流形成部61により形成されている下降気流の流量が、外縁部の洗浄時における当該流量よりも小さくされる。これにより、外縁部近傍におけるガスの流速をさらに低減させることができ、液膜81,82の崩壊等をさらに抑制することができる。さらに、液膜81,82を保持する際に、排出流量調整部621を介したガスの排出流量が、外縁部の洗浄時における当該排出流量よりも小さくされる。これにより、基板9の外縁部近傍におけるガスの流速をより一層低減させることができる。 Further, when holding the liquid films 81 and 82, the flow rate of the descending airflow formed by the airflow forming section 61 is set to be smaller than the flow rate at the time of cleaning the outer edge portion. As a result, the gas flow velocity near the outer edge can be further reduced, and the collapse of the liquid films 81 and 82 can be further suppressed. Further, when holding the liquid films 81 and 82, the gas discharge flow rate through the discharge flow rate adjusting unit 621 is made smaller than the discharge flow rate when cleaning the outer edge portion. Thereby, the flow velocity of the gas near the outer edge of the substrate 9 can be further reduced.

基板処理装置1では、構造体910の隙間に存在する有機溶剤を充填剤で置換する際に、基板9の上面91上への充填剤の供給を停止した状態が維持される。これにより、当該有機溶剤をより確実に充填剤で置換することができる。また、他の処理液(薬液や純水)を上面91に供給する際における環状間隙Gの幅が、充填剤の液膜82を保持する際における環状間隙Gの幅よりも小さく、かつ、外縁部を洗浄する際における環状間隙Gの幅よりも大きくされる。これにより、基板9から飛散する当該他の処理液をより確実にガード部25にて受けつつ、外縁部におけるガスのある程度の流量を確保して、飛散した当該他の処理液(のミスト)が基板9に戻ることを抑制することが可能となる。 In the substrate processing apparatus 1, when the organic solvent existing in the gap of the structure 910 is replaced with the filler, the state where the supply of the filler onto the upper surface 91 of the substrate 9 is stopped is maintained. Thereby, the organic solvent can be more surely replaced with the filler. In addition, the width of the annular gap G when supplying another processing liquid (chemical solution or pure water) to the upper surface 91 is smaller than the width of the annular gap G when holding the liquid film 82 of the filler, and the outer edge It is made larger than the width of the annular gap G when cleaning the portion. As a result, while the other processing liquid scattered from the substrate 9 is more reliably received by the guard portion 25, a certain flow rate of the gas at the outer edge portion is secured, and the scattered other processing liquid (mist thereof) is It is possible to suppress returning to the substrate 9.

基板処理装置1では、ガード部25の上段および中段が同じ位置であってもよい。この場合、図2Aおよび図2Bの処理において、ステップS18,S22におけるガード部25の昇降動作が省略され、基板9の処理を簡素化することが可能となる。基板処理装置1の設計によっては、ガード部25の中段および下段を同じ位置とすることも可能である。 In the substrate processing apparatus 1, the upper part and the middle part of the guard part 25 may be at the same position. In this case, in the processing of FIGS. 2A and 2B, the raising/lowering operation of the guard portion 25 in steps S18 and S22 is omitted, and the processing of the substrate 9 can be simplified. Depending on the design of the substrate processing apparatus 1, the middle part and the lower part of the guard part 25 may be located at the same position.

上記基板処理装置1では様々な変形が可能である。 The substrate processing apparatus 1 can be modified in various ways.

上記実施の形態では、気流形成部61により、常時、下降気流が形成されるが、例えば、図4中の下降気流が「低」に設定される期間において、気流形成部61がOFF、すなわち、気流形成部61によるガスの供給流量が0とされてもよい。この場合も、排気流路62を介したガスの排出に起因して下降気流が発生するため、環状間隙Gの幅を変更する上記手法が有効となる。基板処理装置1の設計によっては、気流形成部61を省略することも可能である。 In the above-described embodiment, the airflow forming unit 61 always forms a descending airflow. For example, in the period in which the descending airflow is set to “low” in FIG. 4, the airflow forming unit 61 is OFF, that is, The gas supply flow rate by the air flow forming unit 61 may be zero. Also in this case, a downward airflow is generated due to the exhaust of the gas through the exhaust passage 62, and therefore the above method of changing the width of the annular gap G is effective. Depending on the design of the substrate processing apparatus 1, the airflow forming unit 61 can be omitted.

一方、下降気流が過度に低くなると、カップ部23内において、基板9よりも下方に存在するパーティクルや薬液雰囲気等が上方に向かって移動し(すなわち、パーティクル等が逆流し)、パーティクル等が基板9の上面91に付着して、基板9が汚染されてしまう。したがって、パーティクル等の逆流による基板9の汚染をより確実に防止するという観点では、液膜81,82を保持する際に、気流形成部61からのチャンバ5内へのガスの供給が維持されることが好ましい。 On the other hand, when the descending air flow becomes excessively low, the particles, the chemical liquid atmosphere, and the like existing below the substrate 9 move upward in the cup portion 23 (that is, the particles and the like flow backward), and the particles and the like are generated on the substrate. It adheres to the upper surface 91 of 9 and contaminates the substrate 9. Therefore, from the viewpoint of more reliably preventing the substrate 9 from being contaminated by the backflow of particles or the like, the gas supply from the airflow forming unit 61 to the chamber 5 is maintained when the liquid films 81 and 82 are held. It is preferable.

外縁部洗浄ノズル33が、純水供給部42に接続され、ステップS25における基板9の外縁部の洗浄において、純水が洗浄液として利用されてもよい。この場合、純水供給部42が洗浄液供給部としての役割を果たす。また、スピンチャック22の構造等によっては、基板9の下面の外縁部に向かって洗浄液を供給する外縁部洗浄ノズルが設けられてもよい。この場合も、当該外縁部洗浄ノズルから処理液を噴出する際に、環状間隙Gの幅を小さくすることにより、環状間隙Gを通過するガスの流速を増大させ、基板9から飛散した洗浄液等が基板9に戻ることを抑制することができる。 The outer edge cleaning nozzle 33 may be connected to the pure water supply unit 42, and pure water may be used as a cleaning liquid in the cleaning of the outer edge of the substrate 9 in step S25. In this case, the pure water supply unit 42 functions as a cleaning liquid supply unit. Further, depending on the structure of the spin chuck 22 and the like, an outer edge cleaning nozzle that supplies a cleaning liquid toward the outer edge of the lower surface of the substrate 9 may be provided. Also in this case, when the processing liquid is ejected from the outer edge cleaning nozzle, the width of the annular gap G is reduced to increase the flow velocity of the gas passing through the annular gap G, so that the cleaning liquid or the like scattered from the substrate 9 is removed. It is possible to suppress returning to the substrate 9.

基板保持回転機構は、様々な態様にて実現されてよい。例えば、上面91に構造体が形成された基板9の下面に当接する基板保持回転機構により、上面91を上方に向けて実質的に水平な姿勢で基板9を保持しつつ基板9が回転されてもよい。 The substrate holding/rotating mechanism may be realized in various modes. For example, the substrate 9 is rotated while holding the substrate 9 in a substantially horizontal posture with the upper surface 91 facing upward by a substrate holding/rotating mechanism that abuts the lower surface of the substrate 9 having the structure formed on the upper surface 91. Good.

基板処理装置1において、基板保持回転機構を昇降する昇降機構が設けられ、基板保持回転機構および基板9を昇降することにより、環状間隙Gの幅が変更されてもよい。このように、基板処理装置1における昇降機構は、基板9の周囲を囲む筒状のガード部25を基板保持回転機構に対して相対的に昇降すればよい。 In the substrate processing apparatus 1, an elevating mechanism for elevating the substrate holding/rotating mechanism may be provided, and the width of the annular gap G may be changed by elevating/lowering the substrate holding/rotating mechanism and the substrate 9. As described above, the elevating mechanism in the substrate processing apparatus 1 may elevate the cylindrical guard portion 25 surrounding the substrate 9 relative to the substrate holding/rotating mechanism.

基板処理装置1にて処理される基板は半導体基板には限定されず、ガラス基板や他の基板であってもよい。 The substrate processed by the substrate processing apparatus 1 is not limited to the semiconductor substrate, and may be a glass substrate or another substrate.

上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations of the above-described embodiment and each modification may be appropriately combined unless they contradict each other.

1 基板処理装置
9 基板
21 スピンモータ
22 スピンチャック
25 ガード部
26 ガード昇降機構
43 有機溶剤供給部
44 充填剤供給部
61 気流形成部
80〜82 液膜
91 (基板の)上面
910 構造体
D1〜D3 (環状間隙の)幅
G 環状間隙
S11〜S26 ステップ
DESCRIPTION OF SYMBOLS 1 Substrate processing device 9 Substrate 21 Spin motor 22 Spin chuck 25 Guard part 26 Guard raising/lowering mechanism 43 Organic solvent supply part 44 Filler supply part 61 Air flow forming part 80-82 Liquid film 91 (Substrate) upper surface 910 Structures D1-D3 Width (of annular gap) G Annular gap S11 to S26 steps

Claims (8)

表面に構造体が形成された基板を処理する基板処理方法であって、
a)上下方向に沿って直径が異なる部位を有する筒状のガード部の内側に設けられた基板保持回転機構により、表面に構造体が形成された基板を、前記表面を上方に向けて実質的に水平な姿勢で保持する工程と、
b)所定の溶剤を前記基板の前記表面に供給して、前記表面上において前記溶剤の液膜を保持させて、前記表面の前記構造体における隙間を前記溶剤で満たす工程と、
c)前記b)工程において形成された前記液膜に所定の充填剤を供給して、前記構造体における前記隙間に存在する前記溶剤を前記充填剤で置換する工程と、
d)前記基板を回転させて、前記基板から前記溶剤および前記充填剤の余剰を除去する工程と、
e)前記基板を回転させつつ、前記基板の外縁部に所定の洗浄液を供給して、前記外縁部に付着した前記充填剤を除去する工程と、
を備え、
前記c)工程において前記ガード部の内側面と前記基板の前記外縁部との間に形成されている環状の最小間隙の幅が、前記e)工程における前記最小間隙の幅よりも大きくなるように、前記ガード部が前記基板保回転機構に対して相対的に昇降されることを特徴とする基板処理方法。
A substrate processing method for processing a substrate having a structure formed on a surface thereof, comprising:
a) The substrate holding/rotating mechanism provided inside the cylindrical guard portion having portions having different diameters in the vertical direction is used to substantially direct a substrate having a structure formed on the surface thereof with the surface facing upward. And the process of holding in a horizontal posture,
b) supplying a predetermined solvent to the surface of the substrate to hold a liquid film of the solvent on the surface, and filling the gap in the structure of the surface with the solvent;
c) supplying a predetermined filler to the liquid film formed in the step b) to replace the solvent existing in the gap in the structure with the filler ;
d) rotating the substrate to remove excess solvent and filler from the substrate;
e) supplying a predetermined cleaning liquid to the outer edge of the substrate while rotating the substrate to remove the filler adhering to the outer edge,
Equipped with
In the step c), the width of the annular minimum gap formed between the inner surface of the guard portion and the outer edge portion of the substrate is larger than the width of the minimum gap in the step e). the substrate processing method, characterized in that the guard portion is up and down relatively with respect to the base Itaho lifting rotation mechanism.
請求項1に記載の基板処理方法であって、
前記c)工程が、
c1)前記充填剤を前記表面に供給する工程と、
c2)前記充填剤の供給を停止した状態で、前記表面上において前記充填剤を含む液膜を保持させて、前記構造体における前記隙間に存在する前記溶剤を前記充填剤で置換する工程と、
を備えることを特徴とする基板処理方法。
The substrate processing method according to claim 1, wherein
The step c) includes
c1) supplying the filler to the surface,
c2) holding the liquid film containing the filler on the surface in a state where the supply of the filler is stopped , and replacing the solvent present in the gap in the structure with the filler ;
A substrate processing method, comprising:
請求項2に記載の基板処理方法であって、
前記充填剤の比重が、前記溶剤の比重よりも大きいことを特徴とする基板処理方法。
The substrate processing method according to claim 2, wherein
The substrate processing method, wherein the specific gravity of the filler is larger than the specific gravity of the solvent.
請求項2または3に記載の基板処理方法であって、
前記c1)工程においては前記基板を第1回転速度で回転させ、
前記c2)工程においては前記基板を前記第1回転速度よりも低速の第2回転速度で回転させるかあるいは前記基板を停止させることを特徴とする基板処理方法。
The substrate processing method according to claim 2 or 3, wherein
In the step c1), the substrate is rotated at a first rotation speed,
In the step c2), the substrate processing method is characterized in that the substrate is rotated at a second rotation speed lower than the first rotation speed or the substrate is stopped.
請求項1ないし4のいずれかに記載の基板処理方法であって、
前記b)工程における前記最小間隙の幅が、前記e)工程における前記最小間隙の幅よりも大きくなるように、前記ガード部が前記基板保回転機構に対して相対的に昇降されることを特徴とする基板処理方法。
The substrate processing method according to any one of claims 1 to 4,
The width of the smallest gap in the b) step, the e) so as to be larger than the width of the smallest gap in the process, that the guard portion is up and down relatively with respect to the base Itaho lifting rotation mechanism A substrate processing method, comprising:
請求項1ないし5のいずれかに記載の基板処理方法であって、
前記ガード部および前記基板保持回転機構の上方において、下降気流を形成する気流形成部が設けられることを特徴とする基板処理方法。
The substrate processing method according to any one of claims 1 to 5,
The substrate processing method, wherein an airflow forming unit that forms a descending airflow is provided above the guard unit and the substrate holding/rotating mechanism.
請求項6に記載の基板処理方法であって、
前記c)工程において前記気流形成部により形成されている前記下降気流の流量が、前記e)工程における前記下降気流の流量よりも小さいことを特徴とする基板処理方法。
The substrate processing method according to claim 6, wherein
The substrate processing method, wherein the flow rate of the descending airflow formed by the airflow forming unit in the step c) is smaller than the flow rate of the descending airflow in the step e).
表面に構造体が形成された基板を処理する基板処理装置であって、
上下方向に沿って直径が異なる部位を有する筒状のガード部と、
前記ガード部の内側に設けられ、表面に構造体が形成された基板を、前記表面を上方に向けて実質的に水平な姿勢で保持する基板保持回転機構と、
前記表面に所定の溶剤を供給する溶剤供給部と、
前記表面に所定の充填剤を供給する充填剤供給部と、
前記基板の外縁部に所定の洗浄液を供給する洗浄液供給部と、
前記ガード部を前記基板保持回転機構に対して相対的に昇降することにより、前記ガード部の内側面と前記基板の前記外縁部との間に形成されている環状の最小間隙の幅を変更する昇降機構と、
前記溶剤供給部により前記基板の前記表面に前記溶剤を供給して、前記表面上において前記溶剤の液膜を保持させて、前記表面の前記構造体における隙間を前記溶剤で満たし、前記最小間隙の幅が第1の幅である状態で、前記充填剤供給部により前記液膜に前記充填剤を供給して、前記構造体における前記隙間に存在する前記溶剤を前記充填剤で置換し、前記基板を回転させて、前記基板から前記溶剤および前記充填剤の余剰を除去し、前記最小間隙の幅が前記第1の幅よりも小さい第2の幅である状態で、前記基板を回転させつつ、前記洗浄液供給部により前記基板の前記外縁部に前記洗浄液を供給して、前記外縁部に付着した前記充填剤を除去する制御部と、
を備えることを特徴とする基板処理装置。
A substrate processing apparatus for processing a substrate having a structure formed on its surface, comprising:
A tubular guard part having parts with different diameters in the vertical direction,
A substrate holding/rotating mechanism which is provided inside the guard portion and holds a substrate having a structure formed on the surface thereof in a substantially horizontal posture with the surface facing upward;
A solvent supply unit that supplies a predetermined solvent to the surface,
A filler supply unit for supplying a predetermined filler to the surface,
A cleaning liquid supply unit for supplying a predetermined cleaning liquid to the outer edge of the substrate,
By moving the guard part up and down relative to the substrate holding and rotating mechanism, the width of the annular minimum gap formed between the inner surface of the guard part and the outer edge part of the substrate is changed. A lifting mechanism,
The solvent is supplied to the surface of the substrate by the solvent supply unit, a liquid film of the solvent is held on the surface, the gap in the structure of the surface is filled with the solvent, and the minimum gap width while a first width, and supplying the filler to the liquid film by the filler supply unit, to replace the solvent present in the gap in the structure by the filler, the substrate While rotating the substrate in a state where the excess of the solvent and the filler is removed from the substrate, and the width of the minimum gap is a second width smaller than the first width, A controller that supplies the cleaning liquid to the outer edge portion of the substrate by the cleaning liquid supply portion to remove the filler adhering to the outer edge portion;
A substrate processing apparatus comprising:
JP2016070403A 2016-03-31 2016-03-31 Substrate processing method and substrate processing apparatus Active JP6712482B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016070403A JP6712482B2 (en) 2016-03-31 2016-03-31 Substrate processing method and substrate processing apparatus
KR1020187024342A KR102110065B1 (en) 2016-03-31 2017-01-24 Substrate processing method and substrate processing apparatus
CN201780013898.8A CN108701605B (en) 2016-03-31 2017-01-24 Substrate processing method and substrate processing apparatus
PCT/JP2017/002403 WO2017169019A1 (en) 2016-03-31 2017-01-24 Substrate processing method and substrate processing apparatus
TW106104898A TWI637434B (en) 2016-03-31 2017-02-15 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070403A JP6712482B2 (en) 2016-03-31 2016-03-31 Substrate processing method and substrate processing apparatus

Publications (2)

Publication Number Publication Date
JP2017183576A JP2017183576A (en) 2017-10-05
JP6712482B2 true JP6712482B2 (en) 2020-06-24

Family

ID=59964058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070403A Active JP6712482B2 (en) 2016-03-31 2016-03-31 Substrate processing method and substrate processing apparatus

Country Status (5)

Country Link
JP (1) JP6712482B2 (en)
KR (1) KR102110065B1 (en)
CN (1) CN108701605B (en)
TW (1) TWI637434B (en)
WO (1) WO2017169019A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642597B2 (en) * 2018-02-02 2020-02-05 信越半導体株式会社 Wafer cleaning apparatus and wafer cleaning method
JP7015219B2 (en) * 2018-06-29 2022-02-02 株式会社Screenホールディングス Board processing method and board processing equipment
KR102597005B1 (en) * 2020-12-29 2023-11-02 세메스 주식회사 Method for treating a substrate
US11925963B2 (en) 2022-05-27 2024-03-12 Semes Co., Ltd. Method for treating a substrate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223457A (en) * 1999-02-02 2000-08-11 Sony Corp Semiconductor device cleaning method and equipment, and manufacture of the semiconductor device
JP2006059918A (en) * 2004-08-18 2006-03-02 Tokyo Electron Ltd Development processing method
JP2007235032A (en) * 2006-03-03 2007-09-13 Dainippon Screen Mfg Co Ltd Substrate processing device
JP5312856B2 (en) * 2008-06-27 2013-10-09 大日本スクリーン製造株式会社 Substrate processing equipment
JP5667545B2 (en) * 2011-10-24 2015-02-12 東京エレクトロン株式会社 Liquid processing apparatus and liquid processing method
JP5586734B2 (en) * 2012-08-07 2014-09-10 東京エレクトロン株式会社 Substrate cleaning apparatus, substrate cleaning system, substrate cleaning method, and storage medium
JP6017999B2 (en) * 2013-03-15 2016-11-02 株式会社Screenホールディングス Substrate processing equipment
JP6216188B2 (en) * 2013-09-04 2017-10-18 株式会社Screenホールディングス Substrate drying apparatus and substrate drying method
JP6268469B2 (en) * 2013-12-18 2018-01-31 株式会社Screenホールディングス Substrate processing apparatus, control method for substrate processing apparatus, and recording medium
JP6304592B2 (en) * 2014-03-25 2018-04-04 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
JP2017183576A (en) 2017-10-05
CN108701605A (en) 2018-10-23
TWI637434B (en) 2018-10-01
KR20180107172A (en) 2018-10-01
TW201802912A (en) 2018-01-16
WO2017169019A1 (en) 2017-10-05
CN108701605B (en) 2023-03-24
KR102110065B1 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
TWI567815B (en) Substrate cleaning method, substrate cleaning apparatus and storage medium for cleaning substrate
KR102566736B1 (en) Substrate processing apparatus, substrate processing method, and storage medium
JP4816747B2 (en) Liquid processing apparatus and liquid processing method
JP6712482B2 (en) Substrate processing method and substrate processing apparatus
KR102282708B1 (en) Application method
JP2009277870A (en) Applying apparatus, applying method, applying developing apparatus, and storage medium
US20220288627A1 (en) Spin dispenser module substrate surface protection system
KR20190004652A (en) Substrate processing apparatus, substrate processing method and recording medium
JP7309485B2 (en) Etching apparatus and etching method
JP5387636B2 (en) Liquid processing equipment
TW201934211A (en) Substrate processing method and substrate processing apparatus
TWI814177B (en) Substrate processing apparatus and substrate processing method
KR101579509B1 (en) Substrate treating apparatus and method
JP7073658B2 (en) Board processing method, board processing device, and storage medium
CN112170035B (en) Nozzle device, and device and method for processing substrate
TWI641039B (en) Substrate processing method and substrate processing apparatus
TWI648767B (en) Substrate processing method and substrate processing apparatus
TW202011501A (en) Substrate processing apparatus, processing liquid and substrate processing method
JP5138802B2 (en) Cleaning jig and cleaning method for spin coater
JP6515827B2 (en) Substrate processing method, storage medium and developing device
JP7506985B2 (en) Liquid treatment apparatus and liquid treatment method
KR20240080763A (en) Apparatus for processing substrate and method for processing substrate
JP6803736B2 (en) Board processing equipment
JP6843606B2 (en) Substrate processing equipment, substrate processing method and storage medium
KR20220167220A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R150 Certificate of patent or registration of utility model

Ref document number: 6712482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250