JP6711071B2 - Biological information measuring device and biological information measuring program - Google Patents

Biological information measuring device and biological information measuring program Download PDF

Info

Publication number
JP6711071B2
JP6711071B2 JP2016064456A JP2016064456A JP6711071B2 JP 6711071 B2 JP6711071 B2 JP 6711071B2 JP 2016064456 A JP2016064456 A JP 2016064456A JP 2016064456 A JP2016064456 A JP 2016064456A JP 6711071 B2 JP6711071 B2 JP 6711071B2
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
signal
biological information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016064456A
Other languages
Japanese (ja)
Other versions
JP2017176265A (en
Inventor
逆井 一宏
一宏 逆井
英之 梅川
英之 梅川
友暁 小嶋
友暁 小嶋
赤松 学
学 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2016064456A priority Critical patent/JP6711071B2/en
Priority to US15/226,371 priority patent/US10376223B2/en
Priority to US15/228,074 priority patent/US20170273631A1/en
Priority to US15/229,192 priority patent/US10492732B2/en
Priority to CN201610808043.1A priority patent/CN107233089B/en
Priority to CN201610806366.7A priority patent/CN107233100A/en
Priority to CN201610810705.9A priority patent/CN107233073A/en
Publication of JP2017176265A publication Critical patent/JP2017176265A/en
Application granted granted Critical
Publication of JP6711071B2 publication Critical patent/JP6711071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、生体情報測定装置、及び生体情報測定プログラムに関する。 The present invention relates to a biological information measuring device and a biological information measuring program.

特許文献1には、基板と、前記基板上に配置されており、波長の相異なる複数の光を、被検体に対し少なくとも部分的に相互に重なるように照射する照射部と、前記基板上に配置されており、前記照射された複数の光に起因する前記被検体からの光を、前記波長別に検出する受光部とを備えることを特徴とする自発光型センサ装置が開示されている。 In Patent Document 1, a substrate, an irradiation unit that is disposed on the substrate, and irradiates a plurality of lights having different wavelengths so as to at least partially overlap with each other on a subject, and the irradiation unit on the substrate. Disclosed is a self-luminous sensor device, comprising: a light-receiving unit that is arranged and that detects light from the subject caused by the plurality of irradiated light, for each wavelength.

特許文献2には、第1の波長の光を発生する第1の発光素子と、第2の波長の光を発生する第2の発光素子と、前記第1および第2の発光素子をそれぞれ異なる時期に発光させる駆動回路と、前記第1および第2の発光素子の光が照射される位置に生体組織を配置されたときに前記第1の発光素子からの光であって前記生体組織を透過または散乱した光を受光するように配置された第1の受光素子と、前記第1および第2の発光素子からの光であって前記生体組織を透過または散乱した光を受光するように前記第1の受光素子から所定距離離れた位置に配置された第2の受光素子と、前記第1および第2の発光素子からの光による前記第2の受光素子の出力に基づいて前記生体組織の血液中の酸素飽和度を計算する酸素飽和度計算手段と、前記第1の発光素子からの光による前記第1および第2の受光素子の出力の相互相関関数に基づいて前記生体組織の血液の流速を計算する血流計算手段とを具備する酸素飽和度および血流測定装置が開示されている。 In Patent Document 2, a first light emitting element that emits light of a first wavelength, a second light emitting element that emits light of a second wavelength, and the first and second light emitting elements are different from each other. And a drive circuit that emits light at a certain time, and the light from the first light emitting element that is transmitted through the body tissue when the living tissue is arranged at a position where the light of the first and second light emitting elements is irradiated. Alternatively, a first light-receiving element arranged to receive scattered light, and the first light-receiving element for receiving the light from the first and second light-emitting elements that has been transmitted or scattered through the biological tissue. Blood of the biological tissue based on the outputs of the second light receiving element arranged at a position separated from the first light receiving element by a predetermined distance and the light from the first and second light emitting elements. Flow rate of blood of the biological tissue based on a cross-correlation function of the outputs of the first and second light receiving elements by the light from the first light emitting element An oxygen saturation and blood flow measuring device including a blood flow calculating means for calculating

特許第4475601号公報Japanese Patent No. 4475601 特開平7−265284号公報JP, 7-265284, A

血中の酸素飽和度及び血流情報といった複数の生体情報を測定する場合、異なる波長の光を照射する複数の発光素子を生体に向けて交互に発光させ、生体を透過又は反射した光の受光量の変化から生体情報を測定する手法が用いられることがある。 When measuring multiple biological information such as oxygen saturation in blood and blood flow information, multiple light emitting elements that emit light of different wavelengths are alternately emitted toward the living body, and the light transmitted or reflected by the living body is received. A method of measuring biological information from a change in amount may be used.

この場合に、発光素子として、例えばレーザ光のようなコヒーレント光を照射する発光素子を用いた場合、ドップラーシフトによって、例えば血管内の血球細胞のように移動する生体組織で反射した光の周波数と、皮膚のように移動しない静止した生体組織で反射した光の周波数と、が異なる状況が発生する。そして、異なる周波数を有する光が干渉し合うことで、生体で反射した光に高周波成分が含まれる。そして、反射した光に含まれる高周波成分は、例えば血流量の測定に用いられる。 In this case, as the light emitting element, for example, when using a light emitting element that irradiates coherent light such as laser light, due to Doppler shift, for example, with the frequency of light reflected by moving biological tissue like blood cells in blood vessels and A situation occurs in which the frequency of light reflected from a stationary living tissue that does not move like skin does not match the frequency of light. Then, the lights reflected by the living body contain high-frequency components due to the interference of lights having different frequencies. The high-frequency component contained in the reflected light is used, for example, to measure the blood flow rate.

しかしながら、反射した光に含まれる高周波成分は、必ずしも他の生体情報を測定する場合に必要な情報ではなく、場合によってはノイズ成分として生体情報の測定精度を低下させる要因の一つになることがある。そのため、高周波成分を必要としない生体情報を測定する場合、複数の装置を用いて必要な生体情報を取得していた。 However, the high-frequency component contained in the reflected light is not necessarily information necessary for measuring other biological information, and may be one of the factors that deteriorate the measurement accuracy of biological information as a noise component in some cases. is there. Therefore, when measuring biometric information that does not require high frequency components, necessary biometric information has been acquired using a plurality of devices.

本発明は、受光素子からの受光信号にノイズ成分が含まれる場合であっても、1台の装置によって複数の生体情報を精度よく測定することを目的とする。 It is an object of the present invention to accurately measure a plurality of pieces of biometric information with one device even when a light receiving signal from a light receiving element contains a noise component.

上記目的を達成するために、請求項1記載の生体情報測定装置は、コヒーレント光を照射する第1の発光素子及び前記第1の発光素子とは異なる波長の光で、かつ、コヒーレント光ではない光を照射する第2の発光素子と、前記第1の発光素子及び前記第2の発光素子から照射される各々の光を受光し、前記各々の光の受光量に対応した受光信号を出力する受光素子と、前記受光信号を、前記第1の発光素子から照射される光の受光量に対応した第1の受光信号と、前記第2の発光素子から照射される光の受光量に対応した第2の受光信号と、に分離する分離手段と、前記第1の受光信号ノイズ成分を除去するフィルタと、前記フィルタによってノイズ成分が除去される前の前記第1の受光信号と、前記フィルタによってノイズ成分が除去された前記第1の受光信号と、前記フィルタによってノイズ成分が除去されていない前記第2の受光信号と、を用いて複数の生体情報を測定する測定手段と、を備える。 In order to achieve the above object, the biological information measuring apparatus according to claim 1 is a light of a wavelength different from the first emitting element and the first light emitting element which irradiates the coherent light, and not the coherent light A second light emitting element that emits light, receives each light emitted from the first light emitting element and the second light emitting element, and outputs a light reception signal corresponding to the received light amount of each light. A light receiving element and the light receiving signal correspond to a first light receiving signal corresponding to a light receiving amount of light emitted from the first light emitting element and a light receiving amount of light emitted from the second light emitting element. separating means for separating the second light receiving signal, and a filter for removing noise components of the first light receiving signal and the first light receiving signal before the noise component is removed by said filter, said filter Measurement means for measuring a plurality of biological information using the first received light signal from which the noise component has been removed by the above and the second received light signal from which the noise component has not been removed by the filter.

請求項2記載の発明は、前記測定手段は、前記フィルタによってノイズ成分が除去される前の前記第1の受光信号の周波数スペクトルと、前記フィルタによってノイズ成分が除去された前記第1の受光信号の変化に対する、前記フィルタによってノイズ成分が除去されていない前記第2の受光信号の変化の割合と、を用いて前記複数の生体情報を測定する。 According to a second aspect of the present invention, the measuring means includes a frequency spectrum of the first light receiving signal before the noise component is removed by the filter, and the first light receiving signal from which the noise component is removed by the filter. And the rate of change of the second received light signal in which the noise component has not been removed by the filter, with respect to the change of.

請求項3記載の発明は、前記測定手段は、前記複数の生体情報として、血流量又は血流速度と、血中の酸素飽和度と、を含む生体情報を測定し、前記血中の酸素飽和度を測定する場合に、前記フィルタによってノイズ成分が去された前記第1の受光信号の変化に対する、前記フィルタによってノイズ成分が除去されていない前記第2の受光信号の変化の割合を用いる。 In the invention according to claim 3, the measuring means measures biological information including a blood flow rate or a blood flow velocity and oxygen saturation in blood as the plurality of biological information, and the oxygen saturation in the blood is measured. when measuring degrees, with respect to a change in the first light receiving signal which the noise component is divided by the filter, using the rate of change of the second light receiving signal noise component is not removed by the filter.

請求項4記載の発明は、前記測定手段は、前記複数の生体情報として、血流量又は血流速度と、血中の酸素飽和度と、を含む生体情報を測定し、前記血流量又は血流速度を測定する場合に、前記フィルタによってノイズ成分が除去される前の前記第1の受光信号の周波数スペクトルを用いる。 In the invention according to claim 4, the measuring means measures biological information including a blood flow rate or a blood flow velocity and oxygen saturation in blood as the plurality of biological information, and the blood flow rate or the blood flow. When measuring the velocity, the frequency spectrum of the first received light signal before the noise component is removed by the filter is used.

請求項5記載の発明は、前記フィルタがローパスフィルタである。 In the invention according to claim 5, the filter is a low-pass filter.

請求項1、及び請求項2記載の発明によれば、受光素子からの受光信号にノイズ成分が含まれる場合であっても、1台の装置によって複数の生体情報を精度よく測定することができる。 According to the first and second aspects of the present invention, even when the light receiving signal from the light receiving element includes a noise component, it is possible to accurately measure a plurality of biological information by one device. ..

請求項3記載の発明によれば、ノイズ成分が含まれる受光信号を用いる場合と比較して、血中の酸素飽和度の測定精度を向上させることができる。 According to the invention described in claim 3, it is possible to improve the measurement accuracy of the oxygen saturation level in the blood, as compared with the case where the received light signal including the noise component is used.

請求項4記載の発明によれば、ノイズ成分が含まれる受光信号を用いる場合と比較して、血流量又は血流速度の測定精度を向上させることができる。 According to the invention described in claim 4, it is possible to improve the measurement accuracy of the blood flow rate or the blood flow velocity as compared with the case of using the received light signal including the noise component.

請求項5記載の発明によれば、より低い周波数成分を除去するハイパスフィルタを用いる場合と比較して、血中の酸素飽和度の測定精度を向上させることができる。 According to the fifth aspect of the present invention, the accuracy of measuring the oxygen saturation level in blood can be improved as compared with the case of using a high-pass filter that removes lower frequency components.

血流情報及び血中の酸素飽和度の測定例を示す模式図である。It is a schematic diagram which shows the measurement example of blood flow information and the oxygen saturation in blood. 生体からの反射光による受光量の変化の一例を示すグラフである。7 is a graph showing an example of changes in the amount of received light due to reflected light from a living body. 血管にレーザ光を照射した場合に生じるドップラーシフトの説明に供する模式図である。FIG. 6 is a schematic diagram for explaining a Doppler shift that occurs when a blood vessel is irradiated with laser light. 血管にレーザ光を照射した場合に生じるスペックルの説明に供する模式図である。It is a schematic diagram with which explanation of speckle which occurs when a blood vessel is irradiated with laser light is explained. 受光量の変化に対するスペクトル分布の一例を示すグラフである。It is a graph which shows an example of spectrum distribution with respect to change of the amount of received light. 血流量の変化の一例を示すグラフである。It is a graph which shows an example of a change of blood flow. 生体に吸収される光の吸光量の変化の一例を示すグラフである。It is a graph which shows an example of the change of the light absorption of the light absorbed by the living body. 生体情報測定装置の構成例を示す図である。It is a figure which shows the structural example of a biological information measuring device. 発光素子及び受光素子の配置例を示す図である。It is a figure which shows the example of arrangement|positioning of a light emitting element and a light receiving element. 発光素子及び受光素子の配置例を示す図である。It is a figure which shows the example of arrangement|positioning of a light emitting element and a light receiving element. IR光を照射する発光素子及び赤色光を照射する発光素子の発光タイミング及び受光素子による受光タイミングの一例を示すタイミングチャートである。7 is a timing chart showing an example of light emission timings of a light emitting element that emits IR light and a light emitting element that emits red light, and light reception timings by a light receiving element. LPFのカットオフ周波数の変化に伴う出力波形の一例を示す図である。It is a figure which shows an example of the output waveform accompanying the change of the cutoff frequency of LPF.

以下、図面を参照して、本発明を実施するための形態例を詳細に説明する。なお、作用又は機能が同じ働きを担う構成要素には、全図面を通して同じ符合を付与し、重複する説明を省略する。 Embodiments for carrying out the present invention will be described below in detail with reference to the drawings. It should be noted that components having the same functions or functions have the same reference numerals throughout the drawings, and redundant description will be omitted.

まず、図1を参照して、生体情報のうち、特に血液に関する生体情報の一例である血流情報及び血中の酸素飽和度の測定方法について説明する。 First, with reference to FIG. 1, a method of measuring blood flow information and blood oxygen saturation, which is one example of biological information regarding blood among biological information, will be described.

図1に示すように、血流情報及び血中の酸素飽和度は、患者の体(生体8)に向けて発光素子1から光を照射し、受光素子3で受光した、患者の体内に張り巡らされている動脈4、静脈5、及び毛細血管6等で反射又は透過した光の強さ、すなわち反射光又は透過光の受光量を用いて測定される。 As shown in FIG. 1, the blood flow information and the oxygen saturation level in the blood are measured in the patient's body by receiving light from the light emitting element 1 toward the patient's body (living body 8) and receiving the light by the light receiving element 3. The intensity of light reflected or transmitted by the circulated arteries 4, veins 5, capillaries 6 and the like, that is, the amount of received reflected or transmitted light is measured.

(血流情報の測定)
図2は、受光素子3で受光した反射光の受光量を示すグラフ80の一例である。なお、図2のグラフ80の横軸は時間の経過を表し、縦軸は受光素子3の出力、すなわち受光素子3の受光量を表している。
(Measurement of blood flow information)
FIG. 2 is an example of a graph 80 showing the amount of reflected light received by the light receiving element 3. The horizontal axis of the graph 80 in FIG. 2 represents the passage of time, and the vertical axis represents the output of the light receiving element 3, that is, the amount of light received by the light receiving element 3.

図2に示すように、受光素子3の受光量は時間の経過に伴って変化するが、これは血管を含む生体8への光の照射に対して現われる3つの光学現象の影響を受けるためであると考えられる。 As shown in FIG. 2, the amount of light received by the light receiving element 3 changes with the passage of time, but this is because it is affected by the three optical phenomena that appear when the light is applied to the living body 8 including blood vessels. It is believed that there is.

1つ目の光学現象として、脈動によって、測定している血管内に存在する血液量が変化することによる光の吸収の変化が考えられる。血液には、例えば赤血球等の血球細胞が含まれ、毛細血管6等の血管内を移動するため、血液量が変化することによって血管内を移動する血球細胞の数も変化し、受光素子3での受光量に影響を与えることがある。 The first optical phenomenon is considered to be a change in absorption of light due to a change in the amount of blood existing in the blood vessel being measured due to pulsation. Blood contains, for example, blood cells such as red blood cells and moves in blood vessels such as capillaries 6. Therefore, the number of blood cells moving in the blood vessels changes due to a change in blood volume, and the light receiving element 3 May affect the amount of received light.

2つ目の光学現象として、ドップラーシフトによる影響が考えられる。 As the second optical phenomenon, the influence of Doppler shift is considered.

図3に示すように、例えばレーザ光のような周波数ω0のコヒーレント光40を発光素子1から血管の一例である毛細血管6を含む領域に照射した場合、毛細血管6を移動する血球細胞で散乱した散乱光42は、血球細胞の移動速度により決まる差周波Δω0を有するドップラーシフトを生じることになる。一方、血球細胞等の移動体を含まない皮膚等の組織(静止組織)で散乱した散乱光42の周波数は、照射したレーザ光の周波数と同じ周波数ω0を維持する。したがって、毛細血管6等の血管で散乱したレーザ光の周波数ω0+Δω0と、静止組織で散乱したレーザ光の周波数ω0とが互いに干渉し、差周波Δω0を有するビート信号が受光素子3で観測され、受光素子3の受光量が時間の経過に伴って変化する。なお、受光素子3で観測されるビート信号の差周波Δω0は血球細胞の移動速度に依存するが、約数十kHzを上限とした範囲に含まれる。 As shown in FIG. 3, when coherent light 40 having a frequency ω 0 , such as laser light, is irradiated from the light emitting element 1 to a region including the capillaries 6 as an example of blood vessels, blood cells that move in the capillaries 6 are generated. The scattered light 42 thus scattered causes a Doppler shift having a difference frequency Δω 0 determined by the moving velocity of blood cells. On the other hand, the frequency of the scattered light 42 scattered by a tissue (stationary tissue) such as skin that does not include a moving body such as blood cells maintains the same frequency ω 0 as the frequency of the emitted laser light. Therefore, the frequency ω 0 + Δω 0 of the laser light scattered by the blood vessels 6 such capillary, and the frequency omega 0 of the laser light scattered by stationary tissue will interfere with each other, the beat signal receiving element 3 having a difference frequency [Delta] [omega 0 And the amount of light received by the light receiving element 3 changes with the passage of time. The difference frequency Δω 0 of the beat signal observed by the light receiving element 3 depends on the moving speed of the blood cells, but is included in the range with an upper limit of about several tens kHz.

また、3つ目の光学現象として、スペックルによる影響が考えられる。 As the third optical phenomenon, the influence of speckle can be considered.

図4に示すように、レーザ光のようなコヒーレント光40を、発光素子1から血管中を矢印44の方向に移動する赤血球等の血球細胞7に照射した場合、血球細胞7にぶつかったレーザ光は様々な方向に散乱する。散乱光は位相が異なるためにランダムに干渉し合う。これによりランダムな斑点模様の光強度分布を生じる。このようにして形成される光強度の分布パターンは「スペックルパターン」と呼ばれる。 As shown in FIG. 4, when the blood cell 7 such as red blood cells moving in the blood vessel in the direction of the arrow 44 from the light emitting element 1 is irradiated with the coherent light 40 such as the laser light, the laser light hit the blood cell 7 Is scattered in various directions. Since the scattered lights have different phases, they randomly interfere with each other. This produces a random spotted light intensity distribution. The light intensity distribution pattern formed in this manner is called a "speckle pattern".

既に説明したように、血球細胞7は血管中を移動するため、血球細胞7における光の散乱状態が変化し、スペックルパターンが時間の経過と共に変動する。したがって、受光素子3の受光量が時間の経過に伴って変化する。 As described above, since the blood cells 7 move in the blood vessel, the light scattering state in the blood cells 7 changes, and the speckle pattern changes with the passage of time. Therefore, the amount of light received by the light receiving element 3 changes with the passage of time.

次に、血流情報の求め方の一例について説明する。図2に示す時間経過に伴う受光素子3の受光量が得られた場合、予め定めた単位時間T0の範囲に含まれるデータを切り出し、当該データに対して、例えば高速フーリエ変換(Fast Fourier Transform:FFT)を実行することで、周波数ω毎のスペクトル分布が得られる。図5に、単位時間T0における周波数ω毎のスペクトル分布を示すグラフ82の一例を示す。なお、図5のグラフ82の横軸は周波数ωを表し、縦軸はスペクトル強度を表す。 Next, an example of how to obtain blood flow information will be described. When the amount of light received by the light receiving element 3 with the passage of time shown in FIG. 2 is obtained, data included in a range of a predetermined unit time T 0 is cut out and, for example, fast Fourier transform (Fast Fourier Transform) is performed on the data. :FFT) to obtain the spectral distribution for each frequency ω. FIG. 5 shows an example of the graph 82 showing the spectrum distribution for each frequency ω in the unit time T 0 . The horizontal axis of the graph 82 in FIG. 5 represents the frequency ω and the vertical axis represents the spectrum intensity.

ここで、血液量はグラフ82の横軸と縦軸とで囲まれた斜線領域84で表されるパワースペクトルの面積を全光量で規格化した値に比例する。また、血流速度はグラフ82で表されるパワースペクトルの周波数平均値に比例するため、周波数ωと周波数ωにおけるパワースペクトルの積を周波数ωについて積分した値を斜線領域84の面積で除算した値に比例する。 Here, the blood volume is proportional to a value obtained by normalizing the area of the power spectrum represented by the shaded area 84 surrounded by the horizontal axis and the vertical axis of the graph 82 by the total light amount. Further, since the blood flow velocity is proportional to the frequency average value of the power spectrum represented by the graph 82, the value obtained by integrating the product of the frequency ω and the power spectrum at the frequency ω with respect to the frequency ω is divided by the area of the shaded area 84. Proportional to.

なお、血流量は血液量と血流速度の積で表わされるため、上記血液量と血流速度の算出式より求める事が可能である。血流量、血流速度、血液量は血流情報の一例であり、血流情報はこれに限定されない。 Since the blood flow rate is represented by the product of the blood volume and the blood flow rate, it can be obtained from the above equation for calculating the blood volume and the blood flow rate. The blood flow rate, blood flow velocity, and blood volume are examples of blood flow information, and the blood flow information is not limited to this.

図6は、算出した単位時間T0あたりの血流量の変化を示すグラフ86の一例である。なお、図6のグラフ86の横軸は時間を表し、縦軸は血流量を表す。 FIG. 6 is an example of a graph 86 showing changes in the calculated blood flow rate per unit time T 0 . The horizontal axis of the graph 86 in FIG. 6 represents time and the vertical axis represents blood flow.

図6に示すように、血流量は時間と共に変動するが、その変動の傾向は2つの種類に分類される。例えば図6の区間Tにおける血流量の変動幅88に比べて、区間Tにおける血流量の変動幅90は大きい。これは、区間Tにおける血流量の変化が、主に脈の動きに伴う血流量の変化であるのに対して、区間Tにおける血流量の変化は、例えばうっ血等の原因に伴う血流量の変化を示しているためであると考えられる。 As shown in FIG. 6, the blood flow varies with time, but the tendency of the variation is classified into two types. For example, the fluctuation range 90 of the blood flow rate in the section T 2 is larger than the fluctuation range 90 of the blood flow rate in the section T 1 of FIG. This is because the change in the blood flow rate in the section T 1 is mainly the change in the blood flow rate associated with the movement of the pulse, whereas the change in the blood flow rate in the section T 2 is the blood flow rate associated with the cause such as congestion. It is thought that this is because it shows the change of.

(酸素飽和度の測定)
次に、血中の酸素飽和度の測定について説明する。血中の酸素飽和度とは、血液中のヘモグロビンがどの程度酸素と結合しているかを示す指標であり、血中の酸素飽和度が低下するにつれ、貧血等の症状が発生しやすくなる。
(Measurement of oxygen saturation)
Next, the measurement of oxygen saturation in blood will be described. The oxygen saturation in blood is an index showing how much hemoglobin in blood is bound to oxygen, and symptoms such as anemia are more likely to occur as the oxygen saturation in blood decreases.

図7は、例えば生体8に吸収される光量の変化を示す概念図である。図7に示すように、生体8における吸光量は、時間の経過と共に変動する傾向が見られる。 FIG. 7 is a conceptual diagram showing a change in the amount of light absorbed by the living body 8, for example. As shown in FIG. 7, the amount of light absorbed in the living body 8 tends to change with the passage of time.

更に、生体8における吸光の変動に関する内訳について見てみると、主に動脈4によって吸光量が変動し、静脈5及び静止組織を含むその他の組織では、動脈4に比べて吸光量が変動しないとみなせる程度の変動量であることが知られている。これは、心臓から拍出された動脈血は脈波を伴って血管内を移動するため、動脈4が動脈4の断面方向に沿って経時的に伸縮し、動脈4の厚みが変化するためである。なお、図7において、矢印94で示される範囲が、動脈4の厚みの変化に対応した吸光量の変動量を示す。 Further, looking at the details of the fluctuation of the light absorption in the living body 8, the light absorption changes mainly by the artery 4, and the light absorption does not change in other tissues including the vein 5 and the quiescent tissue as compared with the artery 4. It is known that the amount of fluctuation is recognizable. This is because the arterial blood pumped from the heart moves in the blood vessel with a pulse wave, so that the artery 4 expands and contracts with time along the cross-sectional direction of the artery 4, and the thickness of the artery 4 changes. .. Note that, in FIG. 7, the range indicated by the arrow 94 indicates the variation amount of the light absorption amount corresponding to the variation of the thickness of the artery 4.

図7において、時刻taにおける受光量をIa、時刻tbにおける受光量をIbとすれば、動脈4の厚みの変化による光の吸光量の変化量ΔAは、(1)式で表される。 In FIG. 7, if the amount of light received at time t a is I a and the amount of light received at time t b is I b , the amount of change ΔA in the amount of absorbed light due to the change in the thickness of the artery 4 is expressed by equation (1). To be done.

(数1)
ΔA=ln(Ib/Ia)・・・(1)
(Equation 1)
ΔA=ln(I b /I a )... (1)

一方、動脈4を流れる酸素と結合したヘモグロビン(酸化ヘモグロビン)は、特に約880nm近辺の波長を有する赤外線(infrared:IR)領域の光を吸収しやすく、酸素と結合していないヘモグロビン(還元ヘモグロビン)は、特に約665nm近辺の波長を有する赤色領域の光を吸収しやすいことが知られている。更に、酸素飽和度は、異なる波長における吸光量の変化量ΔAの比率と比例関係があることが知られている。 On the other hand, hemoglobin (oxygenated hemoglobin) that is bound to oxygen flowing through the artery 4 is particularly apt to absorb light in the infrared (IR) region having a wavelength around 880 nm, and hemoglobin that is not bound to oxygen (reduced hemoglobin). Is known to be particularly easy to absorb light in the red region having a wavelength around 665 nm. Further, it is known that the oxygen saturation has a proportional relationship with the ratio of the change amount ΔA of the absorption amount at different wavelengths.

したがって、他の波長の組み合わせに比べて。酸化ヘモグロビンと還元ヘモグロビンとで吸光量の差が現われやすい赤外光(IR光)と赤色光を用いて、IR光を生体8に照射した場合の吸光量の変化量ΔAIRと、赤色光を生体8に照射した場合の吸光量の変化量ΔARedとの比率をそれぞれ算出することで、(2)式によって酸素飽和度Sが算出される。なお、(2)においてkは比例定数である。 Therefore, compared to other wavelength combinations. By using infrared light (IR light) and red light where the difference in the absorption amount between oxyhemoglobin and reduced hemoglobin tends to appear, the change amount ΔA IR of the absorption amount when the living body 8 is irradiated with the IR light and the red light The oxygen saturation S is calculated by the equation (2) by calculating the ratio with the change amount ΔA Red of the absorption amount when the living body 8 is irradiated. Note that in (2), k is a proportional constant.

(数2)
S=k(ΔARed/ΔAIR)・・・(2)
(Equation 2)
S=k(ΔA Red /ΔA IR )・・・(2)

すなわち、血中の酸素飽和度を算出する場合、それぞれ異なる波長の光を照射する複数の発光素子1、具体的には、IR光を照射する発光素子1と赤色光を照射する発光素子1とを一部の発光期間が重複しても良いが、望ましくは発光期間が重複しないよう発光させる。そして、各々の発光素子1による反射光又は透過光を受光素子3で受光して、各受光時点における受光量から(1)式及び(2)式、又は、これらの式を変形して得られる公知の式を算出することで、酸素飽和度が測定される。 That is, when calculating the oxygen saturation in blood, a plurality of light emitting elements 1 that emit light of different wavelengths, specifically, a light emitting element 1 that emits IR light and a light emitting element 1 that emits red light. The light emitting periods may partially overlap with each other, but it is preferable to emit light so that the light emitting periods do not overlap. Then, the reflected light or the transmitted light from each light emitting element 1 is received by the light receiving element 3, and the expressions (1) and (2) are obtained from the received light amount at each light receiving time, or these expressions are modified. The oxygen saturation is measured by calculating a known formula.

上記(1)式を変形して得られる公知の式として、例えば(1)式を展開して、光の吸光量の変化量ΔAを(3)式のように表してもよい。 As a known formula obtained by modifying the above formula (1), for example, the formula (1) may be developed to express the change amount ΔA of the light absorption amount as the formula (3).

(数3)
ΔA=lnIb−lnIa・・・(3)
(Equation 3)
ΔA=lnI b −lnI a (3)

また、(1)式は(4)式のように変形することができる。 Further, the equation (1) can be transformed into the equation (4).

(数4)
ΔA=ln(Ib/Ia)=ln(1+(Ib-Ia)/Ia) ・・・(4)
(Equation 4)
ΔA=ln(I b /I a )=ln(1+(I b −I a )/I a )... (4)

通常、(Ib-Ia)≪Iaであることから、ln(Ib/Ia)≒(Ib-Ia)/Iaが成り立つため、(1)式の代わりに、光の吸光量の変化量ΔAとして(5)式を用いてもよい。 Usually, because it is (I b -I a) «I a , ln order to (I b / I a) ≒ (I b -I a) / I a is satisfied, instead of equation (1), light Equation (5) may be used as the change amount ΔA of the light absorption amount.

(数5)
ΔA≒(Ib-Ia)/Ia ・・・(5)
(Equation 5)
ΔA≈(I b -I a )/I a (5)

なお、IR光を照射する発光素子1と赤色光を照射する発光素子1とを区別して説明する必要がある場合、以降では、IR光を照射する発光素子1を「発光素子LD1」といい、赤色光を照射する発光素子1を「発光素子LD2」というようにする。また、一例として、発光素子LD1を血流量の算出で使用する発光素子1とし、発光素子LD1及び発光素子LD2を、血中の酸素飽和度の算出で利用する発光素子1とする。 When it is necessary to distinguish between the light emitting element 1 that emits IR light and the light emitting element 1 that emits red light, the light emitting element 1 that emits IR light is hereinafter referred to as a “light emitting element LD1”. The light emitting element 1 that emits red light is referred to as a “light emitting element LD2”. Further, as an example, the light emitting element LD1 is used as the light emitting element 1 used for calculating the blood flow rate, and the light emitting elements LD1 and LD2 are used as the light emitting element 1 used for calculating the oxygen saturation level in blood.

また、血中の酸素飽和度を測定する場合、受光量の測定周波数は約30Hzから1000Hz程度で十分であることが知られているため、発光素子LD2の1秒あたりの点滅回数を表す発光周波数も約30Hzから1000Hz程度で十分である。したがって、発光素子LD2における消費電力等の観点からは、発光素子LD2の発光周波数を発光素子LD1の発光周波数より低くすることが好ましいが、発光素子LD2の発光周波数を発光素子LD1の発光周波数に合わせ、発光素子LD1と発光素子LD2を交互に発光させるようにしてもよい。 Further, when measuring the oxygen saturation level in blood, it is known that a measurement frequency of the amount of received light of about 30 Hz to 1000 Hz is sufficient. Therefore, a light emission frequency indicating the number of blinks of the light emitting element LD2 per second. Also, about 30 Hz to 1000 Hz is sufficient. Therefore, from the viewpoint of the power consumption of the light emitting element LD2, it is preferable that the light emitting frequency of the light emitting element LD2 is lower than the light emitting frequency of the light emitting element LD1, but the light emitting frequency of the light emitting element LD2 is adjusted to the light emitting frequency of the light emitting element LD1. Alternatively, the light emitting element LD1 and the light emitting element LD2 may be caused to emit light alternately.

既に説明したように、血流量は、ビート信号等の影響による受光素子3の受光量の変化を利用して測定される一方、血中の酸素飽和度の測定においては、ビート信号等の影響によって生じる受光素子3の受光量の変化は、ノイズ成分として作用する。 As described above, the blood flow rate is measured by utilizing the change in the amount of light received by the light receiving element 3 due to the influence of the beat signal and the like, while the measurement of the oxygen saturation level in blood is affected by the influence of the beat signal and the like. The resulting change in the amount of light received by the light receiving element 3 acts as a noise component.

したがって、以降では、受光素子3からの受光信号に、ビート信号のような周波数の変動成分が含まれる場合であっても、複数の生体情報を精度よく測定する生体情報測定装置について説明する。 Therefore, hereinafter, a biological information measuring device that accurately measures a plurality of biological information even when the light receiving signal from the light receiving element 3 includes a frequency fluctuation component such as a beat signal will be described.

図8は、本実施の形態に係る生体情報測定装置10の構成例を示す図である。 FIG. 8 is a diagram showing a configuration example of the biological information measuring device 10 according to the present embodiment.

図8に示すように、生体情報測定装置10は、制御部12、駆動回路14、増幅回路16、A/D(Analog/Digital)変換回路18、測定部20、信号分離回路22、ローパスフィルタ(Low Pass Filter:LPF)24、発光素子LD1、発光素子LD2、及び受光素子3を備える。 As shown in FIG. 8, the biological information measuring device 10 includes a control unit 12, a drive circuit 14, an amplification circuit 16, an A/D (Analog/Digital) conversion circuit 18, a measurement unit 20, a signal separation circuit 22, a low-pass filter ( A low pass filter (LPF) 24, a light emitting element LD1, a light emitting element LD2, and a light receiving element 3.

制御部12は、発光素子LD1及び発光素子LD2に駆動電力を供給する電力供給回路を含む駆動回路14に、発光素子LD1及び発光素子LD2の発光周期及び発光期間を制御する制御信号を出力する。 The control unit 12 outputs a control signal for controlling the light emission cycle and the light emission period of the light emitting elements LD1 and LD2 to the drive circuit 14 including a power supply circuit that supplies drive power to the light emitting elements LD1 and LD2.

駆動回路14は、制御部12からの制御信号を受け付けると、制御信号で指示された発光周期及び発光期間に従って、発光素子LD1及び発光素子LD2に駆動電力を供給し、発光素子LD1及び発光素子LD2を駆動する。 When the drive circuit 14 receives the control signal from the control unit 12, the drive circuit 14 supplies drive power to the light emitting element LD1 and the light emitting element LD2 in accordance with the light emitting cycle and the light emitting period instructed by the control signal, and the light emitting element LD1 and the light emitting element LD2. To drive.

ここで、図9に、生体情報測定装置10における発光素子LD1、発光素子LD2、及び受光素子3の配置例を示す。図9に示すように、発光素子LD1、発光素子LD2、及び受光素子3は、生体8の一方の面に向かって並べて配置される。この場合、受光素子3は、生体8で反射された発光素子LD1及び発光素子LD2の光を受光する。 Here, FIG. 9 shows an arrangement example of the light emitting element LD1, the light emitting element LD2, and the light receiving element 3 in the biological information measuring device 10. As shown in FIG. 9, the light emitting element LD1, the light emitting element LD2, and the light receiving element 3 are arranged side by side toward one surface of the living body 8. In this case, the light receiving element 3 receives the light of the light emitting elements LD1 and LD2 reflected by the living body 8.

しかし、発光素子LD1、発光素子LD2、及び受光素子3の配置は、図9の配置例に限定されない。例えば、図10に示すように、発光素子LD1及び発光素子LD2と、受光素子3とを、生体8を挟んで対向する位置に配置するようにしてもよい。この場合、受光素子3は、生体8を透過した発光素子LD1及び発光素子LD2の光を受光する。 However, the arrangement of the light emitting element LD1, the light emitting element LD2, and the light receiving element 3 is not limited to the arrangement example of FIG. For example, as shown in FIG. 10, the light emitting element LD1 and the light emitting element LD2 and the light receiving element 3 may be arranged at positions facing each other with the living body 8 interposed therebetween. In this case, the light receiving element 3 receives the light of the light emitting elements LD1 and LD2 that have passed through the living body 8.

なお、ここでは一例として、発光素子LD1及び発光素子LD2は、共に面発光レーザ素子であるものとして説明するが、これに限らず、端面発光レーザ素子であってもよい。 Note that, here, as an example, the light emitting element LD1 and the light emitting element LD2 are both described as being surface emitting laser elements, but the invention is not limited to this and may be edge emitting laser elements.

測定部20において血流量を測定する場合、ビート信号による受光量のスペクトル分布を利用するため、発光素子LD1には他の光に比べてビート信号が発生しやすいレーザ素子を用いることが好ましい。 When measuring the blood flow rate in the measurement unit 20, it is preferable to use a laser element that is more likely to generate a beat signal than the other light, as the light emitting element LD1 because the spectral distribution of the amount of received light by the beat signal is used.

しかし、発光素子LD2から照射される光はレーザ光でなくても、発光素子LD2の吸光量の変化量ΔARedは算出されるため、発光素子LD2には、発光ダイオード(Light-Emitting Diode:LED)又は有機発光ダイオード(Organic Light-Emitting Diode:OLED)を用いてもよい。 However, even if the light emitted from the light emitting element LD2 is not a laser beam, the change amount ΔA Red of the amount of light absorbed by the light emitting element LD2 is calculated, so that the light emitting element LD2 includes a light-emitting diode (LED). ) Or an organic light-emitting diode (OLED) may be used.

増幅回路16は、受光素子3で受光した光の強さに応じた電流を電圧に変換した上で、A/D変換回路18の入力電圧範囲として規定される電圧レベルまで増幅する。換言すれば、増幅回路16は、受光素子3から出力される受光信号を増幅する。なお、ここでは一例として、受光素子3は、受光した光の強さに応じた電流を受光信号として出力する素子として説明するが、受光素子3は、受光した光の強さに応じた電圧を受光信号として出力してもよい。 The amplifier circuit 16 converts a current corresponding to the intensity of light received by the light receiving element 3 into a voltage, and then amplifies it to a voltage level defined as an input voltage range of the A/D conversion circuit 18. In other words, the amplifier circuit 16 amplifies the light receiving signal output from the light receiving element 3. Here, as an example, the light receiving element 3 will be described as an element that outputs a current corresponding to the intensity of the received light as a light receiving signal, but the light receiving element 3 generates a voltage corresponding to the intensity of the received light. You may output as a light reception signal.

A/D変換回路18は、増幅回路16で増幅した受光信号を入力として、当該受光信号で表される受光素子3の受光量を数値化した受光信号を出力する。 The A/D conversion circuit 18 receives the received light signal amplified by the amplifier circuit 16 as an input, and outputs a received light signal that is a numerical value of the amount of received light of the light receiving element 3 represented by the received light signal.

信号分離回路22は、数値化された受光素子3の受光信号をA/D変換回路18から受け付けると、受け付けた受光信号を、発光素子LD1による受光量のデータ列として表される、発光素子LD1による受光信号46と、発光素子LD2による受光量のデータ列として表される、発光素子LD2による受光信号48と、に分離する。なお、A/D変換回路18から受け付けた受光信号の受光量が受光信号46と受光信号48の何れの受光信号に含まれるかは、例えば発光素子LD1及び発光素子LD2の発光周期及び発光期間から判別することができる。 When the signal separation circuit 22 receives the digitized light-receiving signal of the light-receiving element 3 from the A/D conversion circuit 18, the received light-receiving signal is represented as a data string of the amount of light received by the light-emitting element LD1. The light receiving signal 46 by the light emitting element LD2 and the light receiving signal 48 by the light emitting element LD2 represented as a data string of the amount of light received by the light emitting element LD2 are separated. Whether the received light amount of the received light signal received from the A/D conversion circuit 18 is included in the received light signal 46 or the received light signal 48 depends on, for example, the light emitting period and the light emitting period of the light emitting elements LD1 and LD2. Can be determined.

信号分離回路22は、発光素子LD1による受光信号46を測定部20に出力する一方、発光素子LD1による受光信号46及び発光素子LD2による受光信号48をLPF24に出力する。 The signal separation circuit 22 outputs the light receiving signal 46 from the light emitting element LD1 to the measuring unit 20, while outputting the light receiving signal 46 from the light emitting element LD1 and the light receiving signal 48 from the light emitting element LD2 to the LPF 24.

LPF24は、発光素子LD1による受光信号46の変化に含まれる周波数成分と、発光素子LD2による受光信号48の変化に含まれる周波数成分と、に対して、予め定めたカットオフ周波数fc以上の周波数成分を減衰させた上で測定部20に出力する。なお、ここではカットオフ周波数fcより高い周波数成分を「高周波成分」ということにする。カットオフ周波数fcの具体的な設定値については後ほど説明するが、約10Hz以下の周波数に設定することが好ましい。 The LPF 24 has a frequency component equal to or higher than a predetermined cutoff frequency fc with respect to a frequency component included in a change in the received light signal 46 by the light emitting element LD1 and a frequency component included in a change in the received light signal 48 by the light emitting element LD2. Is attenuated and then output to the measuring unit 20. Here, the frequency component higher than the cutoff frequency fc will be referred to as “high frequency component”. Although a specific setting value of the cutoff frequency fc will be described later, it is preferable to set the cutoff frequency fc to a frequency of about 10 Hz or less.

測定部20は、血流量測定部20Aと、酸素飽和度測定部20Bと、を含み、信号分離回路22から出力された発光素子LD1による受光信号46が、血流量測定部20Aに入力される。また、LPF24から出力された発光素子LD1による受光信号46及び発光素子LD2による受光信号48が、酸素飽和度測定部20Bに入力される。 The measurement unit 20 includes a blood flow rate measurement unit 20A and an oxygen saturation measurement unit 20B, and the light reception signal 46 from the light emitting element LD1 output from the signal separation circuit 22 is input to the blood flow rate measurement unit 20A. Further, the light receiving signal 46 from the light emitting element LD1 and the light receiving signal 48 from the light emitting element LD2 output from the LPF 24 are input to the oxygen saturation measuring section 20B.

血流量測定部20Aは、発光素子LD1による受光信号46を受け付けると、受光信号46に対してFFT処理を行って周波数ω毎のスペクトル分布を算出し、周波数ωと当該周波数ωにおけるスペクトル強度の積を周波数ωについて積分することで、血流量を測定する。 When receiving the light reception signal 46 from the light emitting element LD1, the blood flow measurement unit 20A performs FFT processing on the light reception signal 46 to calculate the spectrum distribution for each frequency ω, and calculates the product of the frequency ω and the spectrum intensity at the frequency ω. Is integrated with respect to the frequency ω to measure the blood flow.

また、酸素飽和度測定部20Bは、LPF24によって高周波成分が各々除去された、発光素子LD1による受光信号46及び発光素子LD2による受光信号48を受け付けると、発光素子LD1の吸光量の変化量ΔAIR、及び発光素子LD2の吸光量の変化量ΔARedを(1)式に従って算出し、吸光量の変化量ΔAIRに対する吸光量の変化量ΔARedの割合を(2)式に従って算出することで、酸素飽和度を測定する。なお、酸素飽和度測定部20Bは、(1)式及び(2)式を変形して得られる公知の式を算出することで、血中の酸素飽和度を測定するようにしてもよい。 Further, when the oxygen saturation measuring section 20B receives the light reception signal 46 from the light emitting element LD1 and the light reception signal 48 from the light emitting element LD2 from which the high frequency components have been removed by the LPF 24, the variation ΔA IR of the light absorption amount of the light emitting element LD1. , And the change amount ΔA Red of the light absorption amount of the light emitting element LD2 is calculated according to the formula (1), and the ratio of the change amount ΔA Red of the light absorption amount to the change amount ΔA IR of the light absorption amount is calculated according to the formula (2), Measure oxygen saturation. The oxygen saturation measuring unit 20B may measure the oxygen saturation in blood by calculating a known formula obtained by modifying the formulas (1) and (2).

既に説明したように、発光素子LD1の受光信号46に含まれるビート信号の差周波Δω0は、約数十kHzを上限とした範囲に含まれるため、LPF24によって、ビート信号によるノイズ成分が除去される。また、発光素子LD2の受光信号48についても、LPF24によって、受光信号48に含まれるビート信号によるノイズ成分が除去される。したがって、酸素飽和度測定部20Bは、ビート信号によるノイズ成分が除去された受光信号46及び受光信号48を用いて、血中の酸素飽和度を測定することができる。 As already described, since the difference frequency Δω 0 of the beat signal included in the light reception signal 46 of the light emitting element LD1 is included in the range with the upper limit of about several tens kHz, the LPF 24 removes the noise component due to the beat signal. It The LPF 24 also removes the noise component due to the beat signal included in the received light signal 48 from the received light signal 48 of the light emitting element LD2. Therefore, the oxygen saturation measuring section 20B can measure the oxygen saturation in blood by using the light receiving signal 46 and the light receiving signal 48 from which the noise component due to the beat signal is removed.

なお、発光素子LD2にLED又はOLEDを用いた場合、発光素子LD2が照射する光はコヒーレント光とはならないため、発光素子LD2による受光信号48にビート信号は含まれにくくなる。したがって、この場合には、信号分離回路22は、受光信号48をLPF24に出力せずに、酸素飽和度測定部20Bに直接出力してもよい。 When an LED or an OLED is used for the light emitting element LD2, the light emitted by the light emitting element LD2 does not become coherent light, and thus the light reception signal 48 from the light emitting element LD2 hardly contains a beat signal. Therefore, in this case, the signal separation circuit 22 may directly output the received light signal 48 to the oxygen saturation measuring section 20B without outputting it to the LPF 24.

また、血流量算出部20Aにおいても、ビート信号の差周波Δω0より高い周波数成分は、血流量の測定の際にノイズ成分として作用してしまう場合がある。したがって、信号分離回路22と血流量測定部20Aとの間に、LPF24とは異なる、カットオフ周波数fcが数十kHz程度の別のLPFを設けるようにしてもよい。 Also in the blood flow volume calculation unit 20A, a frequency component higher than the difference frequency Δω 0 of the beat signal may act as a noise component when measuring the blood flow volume. Therefore, another LPF having a cutoff frequency fc of about several tens of kHz, which is different from the LPF 24, may be provided between the signal separation circuit 22 and the blood flow measurement unit 20A.

また、周波数成分が直流に近づくにつれて、血流量の測定精度との相関が低くなる傾向が見られることから、前記別のLPFの代わりに、数Hzから数十kHz程度の周波数成分を通過させるバンドパスフィルタを信号分離回路22と血流量測定部20Aとの間に設け、受光信号46から数Hz未満の直流成分と、数十kHzより高い周波数成分を除去するようにしてもよい。 Further, as the frequency component approaches DC, the correlation with the measurement accuracy of the blood flow rate tends to decrease. Therefore, instead of the another LPF, a band for passing a frequency component of several Hz to several tens kHz is passed. A pass filter may be provided between the signal separation circuit 22 and the blood flow measuring unit 20A to remove a direct current component of less than several Hz and a frequency component of more than several tens of kHz from the received light signal 46.

この場合、前記別のLPF又はバンドパスフィルタを設けない場合に比べて、生体情報測定装置10における血流量の測定精度が向上する。 In this case, the measurement accuracy of the blood flow in the biological information measuring device 10 is improved as compared with the case where the separate LPF or bandpass filter is not provided.

一例として、図11に示すように、発光素子LD1及び発光素子LD2を同じ周期で交互に発光させた場合の、LPF24における発光素子LD1による受光信号46の出力波形例を図12に示す。なお、図11において、複数の点96は、受光素子3による受光点96を示す。 As an example, as shown in FIG. 11, FIG. 12 shows an output waveform example of the light reception signal 46 from the light emitting element LD1 in the LPF 24 when the light emitting element LD1 and the light emitting element LD2 emit light alternately in the same cycle. Note that, in FIG. 11, a plurality of points 96 indicate light receiving points 96 by the light receiving element 3.

図12に示す受光信号46の出力波形は、LPF24のカットオフ周波数fcをそれぞれ5Hz、10Hz、200Hz、及びFULLに設定した場合の出力波形を示している。ここで、カットオフ周波数fcがFULLとは、カットオフ周波数を無限大、すなわち、LPF24に入力した受光信号46をそのまま出力することをいう。 The output waveform of the received light signal 46 shown in FIG. 12 shows the output waveform when the cutoff frequencies fc of the LPF 24 are set to 5 Hz, 10 Hz, 200 Hz, and FULL, respectively. Here, the cutoff frequency fc being FULL means that the cutoff frequency is infinite, that is, the received light signal 46 input to the LPF 24 is output as it is.

図12に示すように、カットオフ周波数fcが低くなる程、受光信号46の出力波形からノイズ成分が除去され、滑らかな波形になっていく。この場合、カットオフ周波数fcが200Hzの場合でも、まだ受光信号46にノイズ成分が含まれていることを確認できることから、カットオフ周波数fcは約5Hz以上、且つ、約10Hz以下であることが好ましいことがわかる。 As shown in FIG. 12, as the cutoff frequency fc becomes lower, the noise component is removed from the output waveform of the received light signal 46, and the waveform becomes smoother. In this case, even if the cutoff frequency fc is 200 Hz, it is possible to confirm that the received light signal 46 still contains a noise component. Therefore, the cutoff frequency fc is preferably about 5 Hz or more and about 10 Hz or less. I understand.

このように本実施の形態に係る生体情報測定装置10によれば、LPF24通過後の発光素子1の受光信号を用いて、血中の酸素飽和度を測定する。したがって、生体情報の測定の際、発光素子1から照射されるコヒーレント光の干渉によって生じるビート信号がノイズ成分として作用してしまう場合であっても、LPF24によってノイズ成分が除去されるため、目的の生体情報を精度よく測定することができる。 As described above, according to the biological information measuring device 10 according to the present embodiment, the oxygen saturation level in blood is measured using the light reception signal of the light emitting element 1 after passing through the LPF 24. Therefore, when measuring the biological information, even if the beat signal generated by the interference of the coherent light emitted from the light emitting element 1 acts as a noise component, the LPF 24 removes the noise component, and therefore, Biological information can be measured with high accuracy.

なお、生体情報測定装置10は、既に説明したように血流量の他、血流速度の測定にも適用される。また、図7に示したように、動脈4の脈動に応じて受光素子3で受光される受光量が変化するため、受光素子3での受光量の変化から、脈拍数が測定される。また、脈拍数の変化を時系列順に測定して得られる波形を2回微分することで、光電脈波が測定される。光電脈波は、血管年齢の推定又は動脈硬化の診断等に用いられる。 The biological information measuring device 10 is also applied to the measurement of the blood flow velocity in addition to the blood flow rate as already described. Further, as shown in FIG. 7, since the amount of light received by the light receiving element 3 changes according to the pulsation of the artery 4, the pulse rate is measured from the change in the amount of light received by the light receiving element 3. Further, the photoelectric pulse wave is measured by differentiating twice the waveform obtained by measuring the change in pulse rate in time series. The photoelectric pulse wave is used for estimating the age of blood vessels, diagnosing arteriosclerosis, and the like.

また、生体情報測定装置10は、ここで挙げた内容に限らず、他の生体情報の測定にも利用する事ができる。 In addition, the biological information measuring device 10 is not limited to the contents described here, but can be used for measuring other biological information.

以上、実施の形態を用いて本発明について説明したが、本発明は実施の形態に記載の範囲には限定されない。本発明の要旨を逸脱しない範囲で実施の形態に多様な変更又は改良を加えることができ、当該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。例えば、本発明の要旨を逸脱しない範囲で処理の順序を変更してもよい。 Although the present invention has been described above using the embodiment, the present invention is not limited to the scope described in the embodiment. Various modifications and improvements can be added to the embodiments without departing from the scope of the present invention, and the embodiments to which the modifications or improvements are added are also included in the technical scope of the present invention. For example, the order of processing may be changed without departing from the scope of the present invention.

また、図8に示した生体情報測定装置10の各処理は、ソフトウエア又はハードウエア、或いはソフトウエアとハードウエアとの組み合わせの何れの形態を用いてもよい。 Further, each process of the biological information measuring device 10 shown in FIG. 8 may use any form of software or hardware, or a combination of software and hardware.

1、2・・・発光素子(LD)
3・・・受光素子
4・・・動脈
5・・・静脈
6・・・毛細血管
7・・・血球細胞
8・・・生体
10・・・生体情報測定装置
12・・・制御部
14・・・駆動回路
16・・・増幅回路
18・・・変換回路
20・・・測定部
22・・・信号分離回路
24・・・LPF
96・・・受光点
1, 2... Light emitting device (LD)
3... Light receiving element 4... Artery 5... Vein 6... Capillaries 7... Blood cells 8... Living body 10... Biological information measuring device 12... Control unit 14...・Drive circuit 16・・・Amplifying circuit 18・・・Conversion circuit 20・・・Measuring section 22・・・Signal separation circuit 24・・・LPF
96... Receiving point

Claims (5)

コヒーレント光を照射する第1の発光素子及び前記第1の発光素子とは異なる波長の光で、かつ、コヒーレント光ではない光を照射する第2の発光素子と、
前記第1の発光素子及び前記第2の発光素子から照射される各々の光を受光し、前記各々の光の受光量に対応した受光信号を出力する受光素子と、
前記受光信号を、前記第1の発光素子から照射される光の受光量に対応した第1の受光信号と、前記第2の発光素子から照射される光の受光量に対応した第2の受光信号と、に分離する分離手段と、
前記第1の受光信号ノイズ成分を除去するフィルタと、
前記フィルタによってノイズ成分が除去される前の前記第1の受光信号と、前記フィルタによってノイズ成分が除去された前記第1の受光信号と、前記フィルタによってノイズ成分が除去されていない前記第2の受光信号と、を用いて複数の生体情報を測定する測定手段と、
を備えた生体情報測定装置。
A first light emitting element which emits coherent light and a second light emitting element which emits light having a wavelength different from that of the first light emitting element and which is not coherent light ;
A light receiving element that receives each light emitted from the first light emitting element and the second light emitting element, and outputs a light receiving signal corresponding to the light receiving amount of each light;
The received light signal is a first received light signal corresponding to the received light amount of the light emitted from the first light emitting element, and a second received light signal corresponding to the received light amount of the light emitted from the second light emitting element. A signal and a separating means for separating into
A filter for removing noise components of the first light receiving signal,
The first received light signal before the noise component is removed by the filter, the first received light signal where the noise component is removed by the filter, and the second received signal where the noise component is not removed by the filter. A light receiving signal, and a measuring unit that measures a plurality of biological information using the received light signal,
A biological information measuring device equipped with.
前記測定手段は、前記フィルタによってノイズ成分が除去される前の前記第1の受光信号の周波数スペクトルと、前記フィルタによってノイズ成分が除去された前記第1の受光信号の変化に対する、前記フィルタによってノイズ成分が除去されていない前記第2の受光信号の変化の割合と、を用いて前記複数の生体情報を測定する
請求項1記載の生体情報測定装置。
The measuring means measures the frequency spectrum of the first light receiving signal before the noise component is removed by the filter and the noise by the filter with respect to the change of the first light receiving signal from which the noise component is removed by the filter. The biological information measuring device according to claim 1, wherein the plurality of biological information is measured using a rate of change of the second received light signal in which a component is not removed.
前記測定手段は、前記複数の生体情報として、血流量又は血流速度と、血中の酸素飽和度と、を含む生体情報を測定し、前記血中の酸素飽和度を測定する場合に、前記フィルタによってノイズ成分が去された前記第1の受光信号の変化に対する、前記フィルタによってノイズ成分が除去されていない前記第2の受光信号の変化の割合を用いる
請求項1又は請求項2記載の生体情報測定装置。
The measuring means, as the plurality of biological information, measuring biological information including blood flow rate or blood flow velocity, and oxygen saturation in blood, when measuring the oxygen saturation in blood, to changes in the first light receiving signal which the noise component is divided by the filter, according to claim 1 or claim 2, wherein using the rate of change of the second light receiving signal noise component is not removed by the filter Biological information measuring device.
前記測定手段は、前記複数の生体情報として、血流量又は血流速度と、血中の酸素飽和度と、を含む生体情報を測定し、前記血流量又は血流速度を測定する場合に、前記フィルタによってノイズ成分が除去される前の前記第1の受光信号の周波数スペクトルを用いる
請求項1又は請求項2記載の生体情報測定装置。
The measuring means, as the plurality of biometric information, in the case of measuring the blood flow or blood flow velocity, and blood oxygen saturation, and measures biological information including, the blood flow or blood flow velocity, the The biological information measuring device according to claim 1 or 2 , wherein a frequency spectrum of the first received light signal before a noise component is removed by a filter is used.
前記フィルタがローパスフィルタである
請求項1〜請求項4の何れか1項に記載の生体情報測定装置。
The biological information measuring device according to any one of claims 1 to 4, wherein the filter is a low-pass filter.
JP2016064456A 2016-03-28 2016-03-28 Biological information measuring device and biological information measuring program Active JP6711071B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016064456A JP6711071B2 (en) 2016-03-28 2016-03-28 Biological information measuring device and biological information measuring program
US15/226,371 US10376223B2 (en) 2016-03-28 2016-08-02 Living-body information measurement device and non-transitory computer readable medium
US15/228,074 US20170273631A1 (en) 2016-03-28 2016-08-04 Living-body information measurement device
US15/229,192 US10492732B2 (en) 2016-03-28 2016-08-05 Living-body information measurement device and non-transitory computer readable medium
CN201610808043.1A CN107233089B (en) 2016-03-28 2016-09-07 Living body information measuring device
CN201610806366.7A CN107233100A (en) 2016-03-28 2016-09-07 Biological information detecting device
CN201610810705.9A CN107233073A (en) 2016-03-28 2016-09-08 Biological information detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064456A JP6711071B2 (en) 2016-03-28 2016-03-28 Biological information measuring device and biological information measuring program

Publications (2)

Publication Number Publication Date
JP2017176265A JP2017176265A (en) 2017-10-05
JP6711071B2 true JP6711071B2 (en) 2020-06-17

Family

ID=60003041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064456A Active JP6711071B2 (en) 2016-03-28 2016-03-28 Biological information measuring device and biological information measuring program

Country Status (1)

Country Link
JP (1) JP6711071B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085195A (en) * 1996-09-19 1998-04-07 Advance Co Ltd Laser blood flow meter
IL148795A0 (en) * 2002-03-20 2002-09-12 Vital Medical Ltd Apparatus and method for monitoring tissue vitality parameters for the diagnosis of body metabolic emergency state
JP4352315B2 (en) * 2002-10-31 2009-10-28 日本光電工業株式会社 Signal processing method / apparatus and pulse photometer using the same
JP4848732B2 (en) * 2005-10-17 2011-12-28 株式会社日立製作所 Terminal device
US20100056887A1 (en) * 2006-11-27 2010-03-04 Pioneer Corporation Emission sensor device and bioinformation detecting method
US20090326351A1 (en) * 2008-06-30 2009-12-31 Nellcor Puritan Bennett Ireland Signal Processing Mirroring Technique
JP5531715B2 (en) * 2010-03-30 2014-06-25 コニカミノルタ株式会社 Biological information measuring apparatus and method
JP5806390B2 (en) * 2012-04-13 2015-11-10 パイオニア株式会社 Fluid evaluation apparatus and method
KR20150110898A (en) * 2014-03-20 2015-10-05 주식회사 하이로시 Method for measuring oxygen saturation

Also Published As

Publication number Publication date
JP2017176265A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US10542894B2 (en) Method for measuring cardiovascular and respiratory parameters based on multi-wavelength photoplethysmography
CN107233089B (en) Living body information measuring device
JP3760920B2 (en) Sensor
JP4475601B2 (en) Self-luminous sensor device and biological information detection method
EP2194842B1 (en) Blood oximeter
WO2018012312A1 (en) Measurement device, measurement method, and measurement program
WO2013099509A1 (en) Signal processing device and signal processing method
TWI536968B (en) Method and system for determining blood oxygen saturation
KR102542395B1 (en) Apparatus and method for measuring bio-information
ES2276594B1 (en) METHOD FOR PROCESSING PHOTOPLETISMOGRAPHIC SIGNS OBTAINED FROM A PERSON OR ANIMAL, AND OXIMETER THAT USES SUCH METHOD.
JP2012504037A (en) Photon density wave pulse oximetry and pulse blood sampling system and method
US10271747B2 (en) Living-body information measuring device
JP2017176267A (en) Biological information measurement device and light-emitting device
JP6711071B2 (en) Biological information measuring device and biological information measuring program
JP6385839B2 (en) Pulse wave measuring device and pulse wave measuring method
US11160473B2 (en) Biological information measurement device and non-transitory computer readable medium
JP6613028B2 (en) Imaging device
JP2017176264A (en) Apparatus and program for measuring biological information
WO2019082688A1 (en) Measurement device and measurement method
JP2017176263A (en) Apparatus and program for measuring biological information
JP7106893B2 (en) Biological information measuring device
CN110267587A (en) Optical sensing apparatus and corresponding optical sensing method
JP7024261B2 (en) Optical measuring device and optical measuring program
JP6698422B2 (en) Apparatus and method for measuring hematocrit value
JP7102832B2 (en) Biological information measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6711071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350