WO2013099509A1 - Signal processing device and signal processing method - Google Patents

Signal processing device and signal processing method Download PDF

Info

Publication number
WO2013099509A1
WO2013099509A1 PCT/JP2012/080871 JP2012080871W WO2013099509A1 WO 2013099509 A1 WO2013099509 A1 WO 2013099509A1 JP 2012080871 W JP2012080871 W JP 2012080871W WO 2013099509 A1 WO2013099509 A1 WO 2013099509A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal processing
signal
unit
light emitting
Prior art date
Application number
PCT/JP2012/080871
Other languages
French (fr)
Japanese (ja)
Inventor
西村 拓也
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2013099509A1 publication Critical patent/WO2013099509A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light

Definitions

  • the present disclosure relates to a signal processing device and a signal processing method.
  • the present invention relates to a signal processing apparatus and a signal processing method for performing an optical blood flow analysis process.
  • An optical blood flow detection device is used as a device for measuring biological information (vital sign) such as a pulse rate, blood oxygen saturation, and a respiratory pattern for the purpose of health management and diagnosis.
  • biological information such as a pulse rate, blood oxygen saturation, and a respiratory pattern
  • patent document 1 patent document 1 (patent 4581480 gazette) has description, for example.
  • This optical blood flow detection device has a configuration that irradiates light to the human body such as a finger from the outside. Specifically, light of multiple wavelengths (generally red and infrared) is projected onto the human body, the transmitted light or reflected light is measured, and the difference in the absorption coefficient of blood depending on the wavelength is used to obtain a signal due to body movement. It absorbs fluctuations in blood and measures blood oxygen saturation (pulse oximeter).
  • light of multiple wavelengths generally red and infrared
  • the conventional technology realizes measurement of transmitted or reflected light for each wavelength by alternately illuminating multiple light sources and distributing the received signal obtained from the photoreceiver such as a photodiode to the amplifier circuit according to the emission timing. I have done it. This requires a plurality of light sources, and a circuit that illuminates them alternately and distributes the received light signals in accordance with the timing is complicated, and the structure is complicated.
  • the present disclosure aims to provide a signal processing device and a signal processing method for realizing an optical blood flow detection device with a simple configuration.
  • the first aspect of the present disclosure is: A light-emitting unit composed of a single light-emitting element that outputs an optical signal including light of a plurality of different wavelengths; A light receiving unit that receives transmitted light or reflected light through a human body of a light emission signal of the light emitting unit, each of which includes a plurality of light receiving elements that output light reception signals corresponding to different wavelength light; and
  • the signal processing apparatus includes a signal processing unit that performs signal processing based on light reception signals of a plurality of different wavelength lights output from the light receiving unit.
  • the light emitting unit includes a white LED as the single light emitting element.
  • the white LED is a light emitting element that outputs light of a plurality of different wavelengths including red light and blue light.
  • the white LED is a light emitting element that outputs light of a plurality of different wavelengths including red light to blue light, and includes a wavelength region of red light and blue light. It is a light emitting element that outputs light having a relative intensity having a peak in a wavelength region.
  • the light receiving unit is configured by a multi-color light emitting LED having a plurality of photodiodes that selectively receive light of different wavelengths.
  • the light receiving unit includes a blue photodiode and a red photodiode as the plurality of light receiving elements.
  • the blue photodiode outputs a signal corresponding to the intensity of the blue wavelength component included in the light reception signal
  • the red photodiode is a red light included in the light reception signal.
  • a signal corresponding to the intensity of the wavelength component is output.
  • the signal processing unit inputs an electric signal based on a received light signal corresponding to a plurality of different wavelength lights, and removes noise caused by body movement, thereby removing noise. Perform signal analysis based on the signal.
  • the signal processing unit includes a pulse detection unit that performs pulse detection according to the output of the light receiving unit.
  • the signal processing unit includes an oxygen concentration detection unit that detects a blood oxygen concentration according to an output of the light receiving unit.
  • the oxygen concentration detection unit performs blood oxygen concentration detection based on comparison of signal intensities of detection signals of different wavelength lights.
  • the second aspect of the present disclosure is: A signal processing method executed in a signal processing device, A light emitting step in which the light emitting unit outputs an optical signal including light of a plurality of different wavelengths from a single light emitting element;
  • the light receiving unit is a light receiving step for receiving transmitted light or reflected light through the human body of the light emission signal of the light emitting unit, and each of the plurality of light receiving elements that output light reception signals corresponding to different wavelength light has different wavelength light
  • the signal processing unit executes a signal processing step of executing signal processing based on light receiving signals of a plurality of different wavelength lights output from the light receiving unit.
  • system is a logical set configuration of a plurality of devices, and is not limited to one in which the devices of each configuration are in the same casing.
  • an optical blood flow measurement device that realizes a simple configuration and processing is realized. Specifically, a light emitting unit that outputs an optical signal including light of a plurality of different wavelengths, and a light receiving unit that receives transmitted light or reflected light through the human body of the light emission signal of the light emitting unit, and light having a plurality of different wavelengths A light receiving unit that selectively receives light and a signal processing unit that performs signal processing on an electrical signal corresponding to a light reception signal of the light receiving unit.
  • the light emitting unit includes a white LED as a light emitting element
  • the light receiving unit includes a blue photodiode and a red photodiode
  • the signal processing unit outputs an electric signal based on a light receiving signal corresponding to a plurality of different wavelength lights. Inputs noise removal caused by body movement, blood oxygen concentration detection signal, etc.
  • FIG. 1 illustrates the principle of the optical blood flow detection device.
  • a basic configuration example of the optical blood flow detection device is shown in FIG.
  • Fig.1 (a) light is projected with respect to the site
  • the light projecting part is directed from the skin surface to the inside.
  • Light is irradiated from the skin surface to the component part of the human body 10 having such a multilayer structure, and the time variation of the transmitted light or reflected light is measured.
  • This measurement result is, for example, data shown in FIG. In FIG. 1B, the horizontal axis indicates time (t), and the vertical axis indicates the intensity of transmitted light.
  • the transmitted light intensity changes according to the fluctuation of the blood volume at the light irradiation site due to blood circulation.
  • the wave of the graph shown in the figure is synchronized with the heartbeat.
  • the intensity of transmitted light or reflected light changes according to the amount of oxygen in blood, so-called blood oxygen concentration.
  • a biological signal such as a pulse or blood oxygen concentration.
  • FIG. 2 is a diagram illustrating a basic configuration example of the optical blood flow detection device.
  • the optical blood flow detection device 20 illustrated in FIG. 2 includes a light emitting unit 21, a light receiving unit 22, an amplification unit 23, and a signal processing unit 24.
  • Light is emitted from the light emitting unit 21 to the living tissue 30 having a human blood vessel.
  • the light transmitted through the living tissue 30 including blood vessels is input to the light receiving unit 22.
  • An electric signal based on the detection light of the light receiving unit 22 is input to the amplification unit 23 and amplified.
  • the electric signal of the amplifying unit 23 is input to the signal processing unit 24, and for example, signal processing such as noise removal and waveform shaping is executed, and a biological signal 50 as a measurement result is output.
  • the pulse oximeter measures chemical components contained in blood, such as oxygen concentration, by utilizing arterial blood fluctuations and differences in light absorption characteristics due to blood components.
  • FIG. 3 shows a conventional pulse oximeter and a light emitting unit of an optical pulse wave meter that suppresses measurement errors caused by the movement of the human body using a plurality of different wavelengths, that is, has improved body motion resistance. It is a figure which shows the example of a structure.
  • the light emitting unit 21 shown in FIG. 3 is a configuration example using a plurality (two) of monochromatic LEDs that emit monochromatic light of only a specific wavelength light that is generally used as a light emitting element.
  • a red LED 72 emitting red light of about 665 nm (red);
  • An infrared LED 73 that emits infrared light of about 880 nm (infrared), With these two single color LEDs.
  • the switch circuit 71 selectively emits these two monochromatic LEDs and irradiates the living tissue (skin) 30.
  • FIG. 4 is an example of the emission spectrum distribution of the two monochromatic LEDs used in FIG. FIG. 4 shows the following two emission spectrum distributions.
  • A Emission spectrum distribution of red LED 72 emitting red light of about 665 nm (red) shown in FIG. 3
  • Spectral distribution As shown in this figure, in general, a pulse oximeter uses 665 nm (red) and 880 nm (infrared).
  • the light receiving unit 22 inputs, for example, transmitted light or reflected light of the human body with respect to the irradiation light from the light emitting unit 21 having the configuration shown in FIG.
  • FIG. 5 shows a conventional pulse oximeter or a configuration of the light receiving unit 22 of the optical pulse wave meter that suppresses measurement errors caused by the movement of the human body by using a plurality of wavelengths, that is, has improved resistance to body movement. It is a figure which shows an example.
  • the light receiving unit 22 shown in FIG. 5 has a configuration using a photodiode (PD) 81 that is generally used as a light receiving element. Since the photocurrent obtained by the transmitted light or reflected light of the living tissue (skin) 30 constituting the human body is weak, a circuit (an operational amplifier) that converts it into a voltage and amplifies it is necessary.
  • PD photodiode
  • the light receiving unit 22 shown in FIG. 5 emits light output from the photodiode (PD) 81 in accordance with the light emission switching timing of the red LED 72 and the infrared color LED 73 which are the light emitting elements of the light emitting unit 21 shown in FIG.
  • the current is switched by the switch circuit 82.
  • the switch circuit 82 An electrical signal corresponding to the light reception signal corresponding to the light emission of the red LED 72 is output to the amplifying unit 83, An electrical signal corresponding to the light reception signal corresponding to the light emission of the infrared LED 73 is output to the amplifying unit 84.
  • the switch circuit 82 executes switching control for executing these two outputs without error.
  • the two outputs switched and output by the switch circuit 82 are distributed to the operational amplifiers of the amplifiers 83 and 84 and output. Further, in order to prevent a decrease in the output voltage of the operational amplifier at the time of opening due to switching, a hold circuit for holding the voltage up to that time at the time of opening is required for each of the amplifying units 83 and 84.
  • the conventional optical blood flow detection device alternately emits a plurality of light sources, and distributes a light reception signal obtained from a light receiver such as a photodiode to an amplification circuit according to a light emission timing, so that each wavelength is obtained. Measurement of transmitted light or reflected light has been realized. This requires a plurality of light sources, and a circuit that illuminates them alternately and distributes the received light signals in accordance with the timing is complicated, and the structure is complicated.
  • FIG. 6 is a diagram illustrating an overall configuration example of a signal processing device that executes the optical blood flow analysis of the present disclosure.
  • the signal processing device 100 shown in FIG. 6 has the same configuration as the optical blood flow detection device 20 described above with reference to FIG. That is, the signal processing apparatus 100 shown in FIG. Light emitting unit 101, Light receiving unit 102, Amplifying unit 103, Signal processing unit 104, Have
  • Light is emitted from the light emitting unit 101 to the living tissue 130 having a human blood vessel.
  • the transmitted light or reflected light of the biological tissue 130 including blood vessels is input to the light receiving unit 102.
  • An electric signal based on the detection light of the light receiving unit 102 is input to the amplifying unit 103 and amplified.
  • the electric signal of the amplifying unit 103 is input to the signal processing unit 104, for example, signal processing such as noise removal and waveform shaping is executed, and a biological signal 150 as a measurement result is output.
  • FIG. 7 is a diagram illustrating a configuration example of the light emitting unit 101 of the signal processing device 100 according to the present disclosure.
  • the light emitting unit 101 illustrated in FIG. 7 includes a white LED 201 and irradiates the living tissue (skin) 130 with light emitted from the white LED 201.
  • the white LED 101 is a light emitting unit that simultaneously projects light having a plurality of wavelengths.
  • a light emitting unit 101 illustrated in FIG. 7 uses a white LED 201 as a light emitting element.
  • FIG. 8 is a diagram showing an example of the emission spectrum distribution of the white LED 201 of the light emitting unit 101 shown in FIG. As shown in FIG. 8, the white LED 201 has a plurality of peak wavelengths in the emission spectrum distribution. In this example, it has two peaks of 450 nm (blue) and 650 nm (red).
  • the conventional light emitting unit 21 shown in FIG. 3 has two single-color LEDs that emit light of different wavelengths, that is, LEDs 72 and 73.
  • the light emitting unit 101 according to the present disclosure shown in FIG. 7 includes a single white LED 201 that emits light including light of multiple wavelengths.
  • the light emitting unit 101 according to the present disclosure illustrated in FIG. 7 has a configuration in which a single light source outputs a plurality of wavelengths at the same time, compared to the configuration of the light emitting unit 21 illustrated in FIG. 3 that requires a switching circuit. It has a very simple configuration.
  • FIG. 9 is a diagram illustrating a configuration example of the light receiving unit 102 of the signal processing device 100 of the present disclosure.
  • the light receiving unit 102 of the signal processing device 100 of the present disclosure is a light receiving unit that can detect the intensity of light having a plurality of frequencies.
  • the two-color light emitting LED uses a two-color light emitting LED as a light receiving element.
  • an LED is used as a light-emitting element, but since a photovoltaic power is generated during light reception, it can be used as a light-receiving element with a very narrow band.
  • the two-color light emitting LED is generally widely used and has an advantage that it can be used at low cost.
  • the photoelectromotive force at the time of receiving light is weak, it is necessary to amplify by an amplifier circuit (op-amp).
  • the light receiving unit 102 shown in FIG. 9 has a configuration using a two-color light emitting LED having a blue photodiode (blue PD) 301 and a red photodiode (red PD) 302.
  • the blue photodiode (blue PD) 301 outputs a signal corresponding to the intensity of the blue wavelength component included in the light reception signal
  • the red photodiode (red PD) 302 corresponds to the intensity of the red wavelength component included in the light reception signal.
  • the output of the blue photodiode (blue PD) 301 is output to and amplified by an amplifying unit 303 composed of an operational amplifier.
  • the output of the amplifying unit 303 is output as a blue light amount signal.
  • the output of the red photodiode (red PD) 302 is output to and amplified by an amplifying unit 304 composed of an operational amplifier.
  • the output of the amplifying unit 304 is output as
  • the light receiving unit can receive the light projected from the light emitting unit through the same path in the living tissue. For this reason, a two-color LED capable of receiving light at one place is suitable for this purpose.
  • the apparatus of the present disclosure has a configuration in which the light emitting unit 101 described with reference to FIG. 7 and the light receiving unit 102 described with reference to FIG. 9 are combined.
  • the light receiving unit 102 receives the reflected light or transmitted light of the light emitted from the light emitting unit 101 onto the living tissue including the blood vessels of the human body. By analyzing the received light signal, it is possible to detect the pulse wave component of arterial blood based on the increase or decrease of the received light amount.
  • the signal processing unit 104 includes a noise removal unit 501, a pulse detection unit 502, and an oxygen concentration detection unit 503.
  • the blue light obtained by amplifying the light receiving signal of the blue photodiode (blue PD) 301 of the light receiving unit 102 and the light receiving signal of the red photodiode (red PD) 302 of the light receiving unit 102 shown in FIG.
  • the amplified red light outputs an electrical signal corresponding to each light quantity, that is, a blue light signal 411 and a red light signal 412 shown in the figure to the noise removing unit 501.
  • the noise removing unit 501 performs processing for removing noise included in the blue light signal 411 and the red light signal 412.
  • the noise is, for example, noise caused by the movement of a person who is a measurer, that is, noise caused by body movement, and is characterized by irregularity common to two signals, that is, the blue light signal 411 and the red light signal 412. Included as a fluctuation signal.
  • a fluctuation signal By analyzing the two signals, it is possible to remove noise by removing irregular common fluctuation signals.
  • noise removal methods For example, a method of obtaining a difference by multiplying a preset coefficient is used.
  • the noise-removed blue signal 431 and the noise-removed red signal 432 from which noise has been removed by the noise removing unit 501 are output to the pulse detecting unit 502 and the oxygen concentration detecting unit 503.
  • the pulse detection unit 502 detects a pulse by analyzing regular fluctuations in at least one of the noise-removed blue signal 431 and the noise-removed red signal 432. That is, the regular wave described above with reference to FIG. 1B is acquired, and the pulse 511 is detected and output based on the acquired wave.
  • FIG. 11 is a graph showing measurement data of a pulse oximeter using a difference in light absorption characteristics between oxygenated hemoglobin and reduced hemoglobin in blood. That is, it is a graph showing the difference in light absorption characteristics between oxygenated hemoglobin (HbO2), which is hemoglobin having oxygen in blood, and reduced hemoglobin (Hb), which is hemoglobin not having oxygen.
  • HbO2 oxygenated hemoglobin
  • Hb reduced hemoglobin
  • the horizontal axis represents the wavelength (Wave Length (nm))
  • the vertical axis represents the absorbance (Absorption).
  • the solid line shows the absorbance corresponding to the light wavelength of oxygenated hemoglobin (HbO2), which is oxygen-containing hemoglobin
  • the dotted line indicates the absorbance corresponding to the light wavelength of reduced hemoglobin (Hb), which is hemoglobin having no oxygen.
  • the wavelength of each color is Blue light is about 440nm, Red light is about 660 nm, Infrared light is about 880 nm, It is.
  • the apparatus configuration of the present disclosure described with reference to FIGS. 6 to 10 receives blue light of about 440 nm and red light having a height of about 660 nm as transmitted light or reflected light of blood vessels. Therefore, when there is a lot of oxygen in the blood, the relationship corresponding to the solid line (HbO2) shown in FIG. 11, for example, the absorbance corresponding to the two wavelength lights shown in the figure, Absorbance corresponding to blue light of about 440 nm (a1), Absorbance corresponding to red light of about 660 nm (a2), It is measured as a blue light signal and a red light signal having an intensity reflecting these absorbances.
  • HbO2 solid line
  • the relationship corresponding to the dotted line (Hb) shown in FIG. 11 for example, the absorbance corresponding to the two wavelength lights shown in the figure, Absorbance corresponding to blue light of about 440 nm (b1), Absorbance corresponding to red light of about 660 nm (b2), It is measured as a blue light signal and a red light signal having an intensity reflecting these absorbances.
  • the oxygen concentration detection unit 503 holds a table storing the correspondence relationship between the intensity ratio of the blue light signal and the red light signal and the oxygen concentration in the memory, and the noise input from the noise removal unit 501 with reference to this table
  • the oxygen concentration 512 is detected and output according to the signal intensity of the removed blue signal 431 and the noise-removed red signal 432.
  • the oxygen concentration 512 may be calculated by arithmetic processing using a function that calculates the oxygen concentration using the noise-removed blue signal 431 and the noise-removed red signal 432 as input parameters.
  • the intensity ratio between red light and infrared light is a relationship reflecting the absorbances (a2) and (a3) or (b2) and (b3) shown in FIG.
  • the oxygen concentration is measured from this relationship.
  • the white LED 201 that emits light including the wavelength of blue light (about 440 nm) to red light (about 660 nm) is used as the light emitting unit 101.
  • a blue photodiode (blue PD) 301 that outputs a light reception signal corresponding to blue light (about 440 nm) and a red light that outputs a light reception signal corresponding to red light (about 660 nm) as the light receiving unit 102.
  • a photodiode (red PD) 302 was used.
  • the light emitting unit 101 by making the light emitting unit 101 a single LED capable of outputting a plurality of wavelengths of light, it becomes possible to concentrate measurement points in one place, and from different positions as described with reference to FIG. High-precision measurement is possible compared to a configuration that outputs light of different wavelengths. For example, by concentrating the measurement points at one point, it is possible to accurately detect noise caused by body movement, and high-accuracy noise removal is realized. Furthermore, by using the measurement result at the same point, it is possible to improve the accuracy of the oxygen concentration measurement according to the absorbance characteristic described with reference to FIG.
  • the white LED 201 that emits light including the wavelength of blue light (about 440 nm) to red light (about 660 nm) is used as a single LED of the light emitting unit. It is good also as a structure using the single LED which light-emits the light containing the wavelength of infrared light (about 880 nm) from 660 nm.
  • red PD red photodiode
  • infrared photodiode that outputs a received light signal corresponding to infrared light (about 880 nm)
  • Infrared light PD Infrared light PD
  • the oxygen concentration can be detected by analysis based on the difference in absorbance characteristics between the red light and the infrared light.
  • a single-color LED that emits blue to infrared light may be used for the light emitting unit, and a blue diode and an infrared diode may be set for the light receiving unit.
  • a single LED that emits light including light of various two or more different wavelengths can be used as the light emitting unit.
  • the light emission signal of the single LED used for the light emitting unit can be used. It is possible to use various configurations having a plurality of light receiving elements, for example, photodiodes, that detect and output light of different wavelengths contained therein.
  • the pulse oximeter using the difference in the absorption characteristics of oxygenated hemoglobin and reduced hemoglobin in the blood shown in FIG. 11 has been described. Not only the oxygen concentration detection process but also a configuration in which blood component measurement using the light absorption characteristics of other blood components is possible.
  • the light emitting unit is realized by a single light emitting element. Further, switching of light emission and distribution of received light signals are not required, and a simple signal processing device, that is, a pulse wave detection device or a pulse oximeter, that consumes less current than the conventional technology can be realized.
  • a light-emitting unit composed of a single light-emitting element that outputs an optical signal including light of a plurality of different wavelengths
  • a light receiving unit that receives transmitted light or reflected light through a human body of a light emission signal of the light emitting unit, each of which includes a plurality of light receiving elements that output light reception signals corresponding to different wavelength light
  • a signal processing apparatus comprising: a signal processing unit that executes signal processing based on light reception signals of a plurality of different wavelength lights output from the light receiving unit.
  • the light emitting unit includes a white LED as the single light emitting element.
  • the white LED is a light emitting element that outputs light having a plurality of different wavelengths including red light and blue light.
  • the white LED is a light emitting element that outputs light having a plurality of different wavelengths including red light from blue light, and has light having a relative intensity having peaks in the wavelength range of red light and the wavelength range of blue light.
  • the signal processing device includes a plurality of color light emitting LEDs each having a plurality of photodiodes that selectively receive light of different wavelengths.
  • the light receiving unit includes a blue photodiode and a red photodiode as the plurality of light receiving elements.
  • the blue photodiode outputs a signal according to the intensity of the blue wavelength component included in the light reception signal
  • the red photodiode outputs a signal according to the intensity of the red wavelength component included in the light reception signal.
  • the signal processing unit receives an electric signal based on a received light signal corresponding to a plurality of different wavelength lights, removes noise caused by body movement, and executes signal analysis based on the noise removal signal (1 ) To (7).
  • the signal processing device according to any one of (1) to (8), wherein the signal processing unit includes a pulse detection unit that detects a pulse according to an output of the light receiving unit.
  • the signal processing unit includes an oxygen concentration detection unit that detects a blood oxygen concentration according to an output of the light receiving unit.
  • the oxygen concentration detection unit performs blood oxygen concentration detection based on a comparison of signal intensities of detection signals of light having different wavelengths.
  • the series of processing described in the specification can be executed by hardware, software, or a combined configuration of both.
  • the program recording the processing sequence is installed in a memory in a computer incorporated in dedicated hardware and executed, or the program is executed on a general-purpose computer capable of executing various processing. It can be installed and run.
  • the program can be recorded in advance on a recording medium.
  • the program can be received via a network such as a LAN (Local Area Network) or the Internet and installed on a recording medium such as a built-in hard disk.
  • the various processes described in the specification are not only executed in time series according to the description, but may be executed in parallel or individually according to the processing capability of the apparatus that executes the processes or as necessary.
  • the system is a logical set configuration of a plurality of devices, and the devices of each configuration are not limited to being in the same casing.
  • an optical blood flow measurement device that realizes a simple configuration and processing is realized. Specifically, a light emitting unit that outputs an optical signal including light of a plurality of different wavelengths, and a light receiving unit that receives transmitted light or reflected light through the human body of the light emission signal of the light emitting unit, and light having a plurality of different wavelengths A light receiving unit that selectively receives light and a signal processing unit that performs signal processing on an electrical signal corresponding to a light reception signal of the light receiving unit.
  • the light emitting unit includes a white LED as a light emitting element
  • the light receiving unit includes a blue photodiode and a red photodiode
  • the signal processing unit outputs an electric signal based on a light receiving signal corresponding to a plurality of different wavelength lights. Inputs noise removal caused by body movement, blood oxygen concentration detection signal, etc.
  • SYMBOLS 10 Human body 11 Arterial blood layer 12 Venous blood layer 13 Tissues other than blood 20 Optical blood flow detection device 21 Light emitting unit 22 Light receiving unit 23 Amplifying unit 24 Signal processing unit 30 Biological tissue 50 Biological signal 71 Switch circuit 72 Red LED 73 LED outside red DESCRIPTION OF SYMBOLS 100 Optical blood-flow detection apparatus 101 Light-emitting part 102 Light-receiving part 103 Amplifying part 104 Signal processing part 130 Biological tissue 150 Biological signal 201 White LED 301 blue photodiode 302 red photodiode 303 amplifying unit 304 amplifying unit 411 blue light signal 412 red light signal 431 noise removing blue high signal 432 noise removing red high signal 501 noise removing unit 502 pulse detecting unit 503 oxygen concentration detecting unit 511 pulse 512 Oxygen concentration

Abstract

Provided is an optical circulation measurement device with which a simple configuration and process are implemented. A signal processing device comprises: a light emitting unit which outputs an optical signal including light of a plurality of different wavelengths; a light receiving unit which receives either transmitted or reflected light of the optical signal of the light emitting unit via a human body, and selectively receives the light of a plurality of different wavelengths; and a signal processing unit which executes a signal process on an electrical signal which corresponds to a received light signal of the light receiving unit. The light emitting unit further comprises a white LED as a light emitting element. The light receiving unit further comprises a blue photodiode and a red photodiode. The signal processing unit receives input of the electrical signal based on the received light signal corresponding to the light of the plurality of different wavelengths, removes noise caused by bodily movement, and generates a detection signal of blood oxygen concentration, etc.

Description

信号処理装置、および信号処理方法Signal processing apparatus and signal processing method
 本開示は、信号処理装置および信号処理方法に関する。特に、光学式の血流解析処理を行う信号処理装置および信号処理方法に関する。 The present disclosure relates to a signal processing device and a signal processing method. In particular, the present invention relates to a signal processing apparatus and a signal processing method for performing an optical blood flow analysis process.
 健康管理や診断等の目的で脈拍数、血中酸素飽和度、呼吸パターン等の生体情報(バイタルサイン)を測定するための装置として、光学式の血流検出装置が用いられている。なお、光学式血流検出装置については、例えば特許文献1(特許第4581480号公報)に記載がある。 An optical blood flow detection device is used as a device for measuring biological information (vital sign) such as a pulse rate, blood oxygen saturation, and a respiratory pattern for the purpose of health management and diagnosis. In addition, about an optical blood-flow detection apparatus, patent document 1 (patent 4581480 gazette) has description, for example.
 この光学式血流検出装置は、例えば指などの人体に外部から光を照射する構成を持つ。具体的には、複数の波長(一般に赤色と赤外)の光を人体に投射し、その透過光又は反射光を計測し、波長による血液の吸光係数の違いを利用して、体動による信号の変動の吸収や、血中酸素飽和度の計測(パルスオキシメータ)を実現している。 This optical blood flow detection device has a configuration that irradiates light to the human body such as a finger from the outside. Specifically, light of multiple wavelengths (generally red and infrared) is projected onto the human body, the transmitted light or reflected light is measured, and the difference in the absorption coefficient of blood depending on the wavelength is used to obtain a signal due to body movement. It absorbs fluctuations in blood and measures blood oxygen saturation (pulse oximeter).
 従来の技術では、複数の光源を交互に光らせ、フォトダイオードなどの受光器から得られる受光信号を、発光タイミングに合わせて増幅回路に振り分けることにより、波長ごとの透過光又は反射光の計測を実現してきた。これには光源が複数必要であり、またこれを交互に光らせ、さらにタイミングに合わせて受光信号を振り分ける回路が必要で、構造が複雑であった。 The conventional technology realizes measurement of transmitted or reflected light for each wavelength by alternately illuminating multiple light sources and distributing the received signal obtained from the photoreceiver such as a photodiode to the amplifier circuit according to the emission timing. I have done it. This requires a plurality of light sources, and a circuit that illuminates them alternately and distributes the received light signals in accordance with the timing is complicated, and the structure is complicated.
特許第4581480号公報Japanese Patent No. 4581480
 本開示は、簡易な構成によって光学式血流検出装置を実現する信号処理装置、および信号処理方法を提供することを目的とする。 The present disclosure aims to provide a signal processing device and a signal processing method for realizing an optical blood flow detection device with a simple configuration.
 本開示の第1の側面は、
 複数の異なる波長の光を含む光信号を出力する単一発光素子から構成される発光部と、
 前記発光部の発光信号の人体を介した透過光または反射光を受光する受光部であり、各々が異なる波長光に応じた受光信号を出力する複数の受光素子から構成される受光部と、
 前記受光部の出力する複数の異なる波長光の受光信号に基づく信号処理を実行する信号処理部を有する信号処理装置にある。
The first aspect of the present disclosure is:
A light-emitting unit composed of a single light-emitting element that outputs an optical signal including light of a plurality of different wavelengths;
A light receiving unit that receives transmitted light or reflected light through a human body of a light emission signal of the light emitting unit, each of which includes a plurality of light receiving elements that output light reception signals corresponding to different wavelength light; and
The signal processing apparatus includes a signal processing unit that performs signal processing based on light reception signals of a plurality of different wavelength lights output from the light receiving unit.
 さらに、本開示の信号処理装置の一実施態様において、前記発光部は、前記単一発光素子として白色LEDを備えた構成である。 Furthermore, in an embodiment of the signal processing device according to the present disclosure, the light emitting unit includes a white LED as the single light emitting element.
 さらに、本開示の信号処理装置の一実施態様において、前記白色LEDは、赤色光および青色光を含む複数の異なる波長の光を出力する発光素子である。 Furthermore, in an embodiment of the signal processing device of the present disclosure, the white LED is a light emitting element that outputs light of a plurality of different wavelengths including red light and blue light.
 さらに、本開示の信号処理装置の一実施態様において、前記白色LEDは、赤色光から青色光を含む複数の異なる波長の光を出力する発光素子であり、赤色光の波長領域と、青色光の波長領域にピークを有する相対強度を持つ光を出力する発光素子である。 Furthermore, in one embodiment of the signal processing device of the present disclosure, the white LED is a light emitting element that outputs light of a plurality of different wavelengths including red light to blue light, and includes a wavelength region of red light and blue light. It is a light emitting element that outputs light having a relative intensity having a peak in a wavelength region.
 さらに、本開示の信号処理装置の一実施態様において、前記受光部は、各々が異なる波長光を選択受光する複数のフォトダイオードを有する複数色発光LEDによって構成されている。 Furthermore, in an embodiment of the signal processing device of the present disclosure, the light receiving unit is configured by a multi-color light emitting LED having a plurality of photodiodes that selectively receive light of different wavelengths.
 さらに、本開示の信号処理装置の一実施態様において、前記受光部は、前記複数の受光素子として青色フォトダイオードと赤色フォトダイオードを備えた構成である。 Furthermore, in an embodiment of the signal processing device of the present disclosure, the light receiving unit includes a blue photodiode and a red photodiode as the plurality of light receiving elements.
 さらに、本開示の信号処理装置の一実施態様において、前記青色フォトダイオードは、受光信号に含まれる青色波長成分の強度に応じた信号を出力し、前記赤色フォトダイオードは、受光信号に含まれる赤色波長成分の強度に応じた信号を出力する。 Furthermore, in one embodiment of the signal processing device of the present disclosure, the blue photodiode outputs a signal corresponding to the intensity of the blue wavelength component included in the light reception signal, and the red photodiode is a red light included in the light reception signal. A signal corresponding to the intensity of the wavelength component is output.
 さらに、本開示の信号処理装置の一実施態様において、前記信号処理部は、複数の異なる波長光に対応する受光信号に基づく電気信号を入力し体動に起因するノイズの除去を行い、ノイズ除去信号に基づく信号解析を実行する。 Furthermore, in one embodiment of the signal processing device according to the present disclosure, the signal processing unit inputs an electric signal based on a received light signal corresponding to a plurality of different wavelength lights, and removes noise caused by body movement, thereby removing noise. Perform signal analysis based on the signal.
 さらに、本開示の信号処理装置の一実施態様において、前記信号処理部は、前記受光部の出力に応じて脈拍検出を行う脈拍検出部を有する。 Furthermore, in an embodiment of the signal processing device of the present disclosure, the signal processing unit includes a pulse detection unit that performs pulse detection according to the output of the light receiving unit.
 さらに、本開示の信号処理装置の一実施態様において、前記信号処理部は、前記受光部の出力に応じて血中酸素濃度の検出を行う酸素濃度検出部を有する。 Furthermore, in an embodiment of the signal processing device of the present disclosure, the signal processing unit includes an oxygen concentration detection unit that detects a blood oxygen concentration according to an output of the light receiving unit.
 さらに、本開示の信号処理装置の一実施態様において、前記酸素濃度検出部は、異なる波長光の検出信号の信号強度の対比に基づく血中酸素濃度検出を行う。 Furthermore, in an embodiment of the signal processing device of the present disclosure, the oxygen concentration detection unit performs blood oxygen concentration detection based on comparison of signal intensities of detection signals of different wavelength lights.
 さらに、本開示の第2の側面は、
 信号処理装置において実行する信号処理方法であり、
 発光部が、単一発光素子から複数の異なる波長の光を含む光信号を出力する発光ステップと、
 受光部が、前記発光部の発光信号の人体を介した透過光または反射光を受光する受光ステップであり、各々が異なる波長光に応じた受光信号を出力する複数の受光素子において、異なる波長光の受光信号を生成する受光ステップと、
 信号処理部が、前記受光部の出力する複数の異なる波長光の受光信号に基づく信号処理を実行する信号処理ステップを実行する信号処理方法にある。
Furthermore, the second aspect of the present disclosure is:
A signal processing method executed in a signal processing device,
A light emitting step in which the light emitting unit outputs an optical signal including light of a plurality of different wavelengths from a single light emitting element;
The light receiving unit is a light receiving step for receiving transmitted light or reflected light through the human body of the light emission signal of the light emitting unit, and each of the plurality of light receiving elements that output light reception signals corresponding to different wavelength light has different wavelength light A light receiving step for generating a light receiving signal of
In the signal processing method, the signal processing unit executes a signal processing step of executing signal processing based on light receiving signals of a plurality of different wavelength lights output from the light receiving unit.
 本開示のさらに他の目的、特徴や利点は、後述する本開示の実施例や添付する図面に基づくより詳細な説明によって明らかになるであろう。なお、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。 Further objects, features, and advantages of the present disclosure will become apparent from a more detailed description based on embodiments of the present disclosure described below and the accompanying drawings. In this specification, the system is a logical set configuration of a plurality of devices, and is not limited to one in which the devices of each configuration are in the same casing.
 本開示の一実施例の構成によれば、簡易な構成と処理を実現する光学式血流計測装置が実現される。
 具体的には、複数の異なる波長の光を含む光信号を出力する発光部と、発光部の発光信号の人体を介した透過光または反射光を受光する受光部であり、異なる複数の波長光を選択受光する受光部と、受光部の受光信号に対応した電気信号に対する信号処理を実行する信号処理部を有する。発光部は、発光素子として白色LEDを備え、受光部は、青色フォトダイオードと赤色フォトダイオードを備えた構成であり、信号処理部は、複数の異なる波長光に対応する受光信号に基づく電気信号を入力し体動に起因するノイズ除去、血中酸素濃度の検出信号等を生成する。
According to the configuration of an embodiment of the present disclosure, an optical blood flow measurement device that realizes a simple configuration and processing is realized.
Specifically, a light emitting unit that outputs an optical signal including light of a plurality of different wavelengths, and a light receiving unit that receives transmitted light or reflected light through the human body of the light emission signal of the light emitting unit, and light having a plurality of different wavelengths A light receiving unit that selectively receives light and a signal processing unit that performs signal processing on an electrical signal corresponding to a light reception signal of the light receiving unit. The light emitting unit includes a white LED as a light emitting element, the light receiving unit includes a blue photodiode and a red photodiode, and the signal processing unit outputs an electric signal based on a light receiving signal corresponding to a plurality of different wavelength lights. Inputs noise removal caused by body movement, blood oxygen concentration detection signal, etc.
光学式の血流検出装置の原理について説明する図である。It is a figure explaining the principle of an optical blood-flow detection apparatus. 光学式の血流検出装置の基本構成例について説明する図である。It is a figure explaining the basic structural example of an optical blood-flow detection apparatus. 従来の発光部の構成例について説明する図である。It is a figure explaining the structural example of the conventional light emission part. 従来の発光部に使用される単色LEDの発光スペクトル分布の例について説明する図である。It is a figure explaining the example of the emission spectrum distribution of monochromatic LED used for the conventional light emission part. 従来の受光部の構成例について説明する図である。It is a figure explaining the structural example of the conventional light-receiving part. 本開示の信号処理装置の構成例について説明する図である。It is a figure explaining the structural example of the signal processing apparatus of this indication. 本開示の信号処理装置の発光部の構成例について説明する図である。It is a figure explaining the structural example of the light emission part of the signal processing apparatus of this indication. 図7に示す発光部101の白色LED201の発光スペクトル分布の例を示す図である。It is a figure which shows the example of the emission spectrum distribution of white LED201 of the light emission part 101 shown in FIG. 本開示の信号処理装置の受光部の構成例について説明する図である。It is a figure explaining the structural example of the light-receiving part of the signal processing apparatus of this indication. 本開示の信号処理装置の信号処理部の構成例について説明する図である。It is a figure explaining the structural example of the signal processing part of the signal processing apparatus of this indication. 血液中の酸化ヘモグロビンと還元ヘモグロビンの吸光特性の違いを示す図である。It is a figure which shows the difference in the light absorption characteristic of the oxygenated hemoglobin in blood, and a reduced hemoglobin.
 以下、図面を参照しながら本開示の信号処理装置、および信号処理方法の詳細について説明する。なお、説明は以下の項目に従って行う。
  1.光学式血流検出装置の原理と基本構成例について
  2.本開示の光学式血流検出装置の構成と処理について
  2-1.本開示の光学式血流解析を実行する信号処理装置の発光部の構成と処理について
  2-2.本開示の光学式血流解析を実行する信号処理装置の受光部の構成と処理について
  2-3.本開示の光学式血流解析を実行する信号処理装置の信号処理部の構成と処理について
  2-4.本開示の信号処理装置の構成と処理の特徴と利点について
  3.本開示の構成のまとめ
Hereinafter, the signal processing device and the signal processing method of the present disclosure will be described in detail with reference to the drawings. The description will be made according to the following items.
1. 1. Principle of optical blood flow detection device and basic configuration example 2. Configuration and processing of optical blood flow detection device of present disclosure 2-1. Configuration and processing of light emitting unit of signal processing apparatus for executing optical blood flow analysis of present disclosure 2-2. Configuration and processing of light receiving unit of signal processing device for executing optical blood flow analysis of present disclosure 2-3. Configuration and processing of signal processing unit of signal processing device for executing optical blood flow analysis of present disclosure 2-4. 2. Configuration and processing characteristics and advantages of the signal processing apparatus of the present disclosure Summary of composition of this disclosure
  [1.光学式血流検出装置の原理と基本構成例について]
 まず、光学式の血流検出装置の原理と基本構成例について説明する。
 光学式血流検出装置の原理を説明する図1に示す。光学式血流検出装置の基本構成例を図2に示す。
 図1(a)に示すように、人体10の動脈血を有する部位、例えば皮膚に対して光を投射し、その透過または反射光を測定する。
 光の投射部位は、皮膚表面から内部に向けて、
 動脈血層11、
 静脈血層12、
 血液以外の組織13、
 このような複数の異なる層を持つ部位が好ましい。
[1. Principle of optical blood flow detection device and basic configuration example]
First, the principle and basic configuration example of an optical blood flow detection device will be described.
FIG. 1 illustrates the principle of the optical blood flow detection device. A basic configuration example of the optical blood flow detection device is shown in FIG.
As shown to Fig.1 (a), light is projected with respect to the site | part which has arterial blood of the human body 10, for example, skin, and the permeation | transmission or reflected light is measured.
The light projecting part is directed from the skin surface to the inside.
Arterial blood layer 11,
Venous blood layer 12,
Tissue 13 other than blood,
Such a portion having a plurality of different layers is preferable.
 このような多層構成の人体10の構成部位に皮膚表面から光を照射し、その透過光あるいは反射光の時間変異を計測する。
 この計測結果が例えば図1(b)に示すデータである。図1(b)には、横軸が時間(t)、縦軸が透過光の強度を示している。
 透過光強度は、血液循環による光照射部位の血液量の変動に応じて変化する。
 図に示すグラフの波は心拍に同期している。また、透過光や反射光の強度は、血液中の酸素量、いわゆる血中酸素濃度に応じて変化する。
 このように皮膚表面から光を照射し、その透過光あるいは反射光の時間変異を計測することで脈拍や血中酸素濃度等の生体信号を得ることができる。
Light is irradiated from the skin surface to the component part of the human body 10 having such a multilayer structure, and the time variation of the transmitted light or reflected light is measured.
This measurement result is, for example, data shown in FIG. In FIG. 1B, the horizontal axis indicates time (t), and the vertical axis indicates the intensity of transmitted light.
The transmitted light intensity changes according to the fluctuation of the blood volume at the light irradiation site due to blood circulation.
The wave of the graph shown in the figure is synchronized with the heartbeat. The intensity of transmitted light or reflected light changes according to the amount of oxygen in blood, so-called blood oxygen concentration.
Thus, by irradiating light from the skin surface and measuring the time variation of the transmitted light or reflected light, it is possible to obtain a biological signal such as a pulse or blood oxygen concentration.
 図2は、光学式血流検出装置の基本構成例を示す図である。
 図2に示す光学式血流検出装置20は、発光部21、受光部22、増幅部23、信号処理部24を有する。
 発光部21から人体の血管を有する生体組織30に対して光を照射する。
 血管を含む生体組織30を透過した光は、受光部22に入力する。
 受光部22の検出光に基づく電気信号は、増幅部23に入力され、増幅される。
 増幅部23の電気信号は信号処理部24に入力され、例えばノイズ除去や波形整形などの信号処理が実行され、測定結果としての生体信号50を出力する。
FIG. 2 is a diagram illustrating a basic configuration example of the optical blood flow detection device.
The optical blood flow detection device 20 illustrated in FIG. 2 includes a light emitting unit 21, a light receiving unit 22, an amplification unit 23, and a signal processing unit 24.
Light is emitted from the light emitting unit 21 to the living tissue 30 having a human blood vessel.
The light transmitted through the living tissue 30 including blood vessels is input to the light receiving unit 22.
An electric signal based on the detection light of the light receiving unit 22 is input to the amplification unit 23 and amplified.
The electric signal of the amplifying unit 23 is input to the signal processing unit 24, and for example, signal processing such as noise removal and waveform shaping is executed, and a biological signal 50 as a measurement result is output.
 この光学式血流検出処理方式を用いた装置として、例えばパルスオキシメータがある。パルスオキシメータは、動脈血の変動と、血液の成分による吸光特性の違いを利用して、酸素濃度等、血中に含まれる化学成分を測定するものである。 As an apparatus using this optical blood flow detection processing method, for example, there is a pulse oximeter. The pulse oximeter measures chemical components contained in blood, such as oxygen concentration, by utilizing arterial blood fluctuations and differences in light absorption characteristics due to blood components.
 次に、図3以下を参照して発光部21と、受光部22の具体的構成例について説明する。
 まず、図3を参照して発光部21の構成例について説明する。
 図3は、従来の一般的なパルスオキシメータや、複数の異なる波長を利用して人体の動きに起因する測定誤差を抑制、すなわち耐体動性を高めた光学式脈波計の発光部の構成例を示す図である。
Next, specific configuration examples of the light emitting unit 21 and the light receiving unit 22 will be described with reference to FIG.
First, a configuration example of the light emitting unit 21 will be described with reference to FIG.
FIG. 3 shows a conventional pulse oximeter and a light emitting unit of an optical pulse wave meter that suppresses measurement errors caused by the movement of the human body using a plurality of different wavelengths, that is, has improved body motion resistance. It is a figure which shows the example of a structure.
 図3に示す発光部21は発光素子として、一般によく用いられる特定波長光のみの単色光を発光する単色LEDを複数(2つ)、用いた構成例である。
 図3に示すように、発光部21は、
 約665nm(赤)の赤色光を発光する赤色LED72と、
 約880nm(赤外)の赤外色光を発光する赤外色LED73、
 これらの2つの単色LEDを有する。
 スイッチ回路71によって、これら2つの単色LEDを選択的に発光させて、生体組織(皮膚)30に照射する構成を有する。
The light emitting unit 21 shown in FIG. 3 is a configuration example using a plurality (two) of monochromatic LEDs that emit monochromatic light of only a specific wavelength light that is generally used as a light emitting element.
As shown in FIG.
A red LED 72 emitting red light of about 665 nm (red);
An infrared LED 73 that emits infrared light of about 880 nm (infrared),
With these two single color LEDs.
The switch circuit 71 selectively emits these two monochromatic LEDs and irradiates the living tissue (skin) 30.
 図4は、図3で使われている2つの単色LEDの発光スペクトル分布の例である。図4には、以下の2つの発光スペクトル分布を示している。
 (a)図3に示す約665nm(赤)の赤色光を発光する赤色LED72の発光スペクトル分布
 (b)図3に示す約880nm(赤外)の赤外色光を発光する赤外色LED73の発光スペクトル分布
 この図で示すように、一般にパルスオキシメータでは、665nm(赤)と880nm(赤外)が用いられる。
FIG. 4 is an example of the emission spectrum distribution of the two monochromatic LEDs used in FIG. FIG. 4 shows the following two emission spectrum distributions.
(A) Emission spectrum distribution of red LED 72 emitting red light of about 665 nm (red) shown in FIG. 3 (b) Emission of infrared LED 73 emitting infrared color light of about 880 nm (infrared) shown in FIG. Spectral distribution As shown in this figure, in general, a pulse oximeter uses 665 nm (red) and 880 nm (infrared).
 次に、図5を参照して、受光部22の構成例について説明する。受光部22は、例えば図3に示す構成を持つ発光部21からの照射光に対する人体の透過光、あるいは反射光を入力する。
 図5は、従来のパルスオキシメータ、あるいは複数の波長を利用することで、人体の動きに起因する測定誤差を抑制、すなわち耐体動性を高めた光学式脈波計の受光部22の構成例を示す図である。
Next, a configuration example of the light receiving unit 22 will be described with reference to FIG. The light receiving unit 22 inputs, for example, transmitted light or reflected light of the human body with respect to the irradiation light from the light emitting unit 21 having the configuration shown in FIG.
FIG. 5 shows a conventional pulse oximeter or a configuration of the light receiving unit 22 of the optical pulse wave meter that suppresses measurement errors caused by the movement of the human body by using a plurality of wavelengths, that is, has improved resistance to body movement. It is a figure which shows an example.
 図5に示す受光部22は受光素子として、一般によく用いられるフォトダイオード(PD)81を用いた構成である。
 人体を構成する生体組織(皮膚)30の透過光、あるいは反射光によって得られる光電流は微弱であるため電圧に変換して増幅する回路(オペアンプ)が必要である。
The light receiving unit 22 shown in FIG. 5 has a configuration using a photodiode (PD) 81 that is generally used as a light receiving element.
Since the photocurrent obtained by the transmitted light or reflected light of the living tissue (skin) 30 constituting the human body is weak, a circuit (an operational amplifier) that converts it into a voltage and amplifies it is necessary.
 図5に示す受光部22は、先に説明した図3に示す発光部21の発光素子である赤色LED72と赤外色LED73の発光切り替えタイミングに応じて、フォトダイオード(PD)81の出力する光電流をスイッチ回路82で切り替えている。 The light receiving unit 22 shown in FIG. 5 emits light output from the photodiode (PD) 81 in accordance with the light emission switching timing of the red LED 72 and the infrared color LED 73 which are the light emitting elements of the light emitting unit 21 shown in FIG. The current is switched by the switch circuit 82.
 すなわち、スイッチ回路82は、
 赤色LED72の発光に応じた受光信号に応じた電気信号を増幅部83に出力し、
 赤外色LED73の発光に応じた受光信号に応じた電気信号を増幅部84に出力する、
 スイッチ回路82は、これらの2系統の出力を誤りなく実行するためのスイッチング制御を実行する。
That is, the switch circuit 82
An electrical signal corresponding to the light reception signal corresponding to the light emission of the red LED 72 is output to the amplifying unit 83,
An electrical signal corresponding to the light reception signal corresponding to the light emission of the infrared LED 73 is output to the amplifying unit 84.
The switch circuit 82 executes switching control for executing these two outputs without error.
 スイッチ回路82によって切り替え出力される2つの出力は、増幅部83,84のオペアンプに振り分けて出力される。さらにスイッチングによる開放時のオペアンプの出力電圧の低下を防ぐため、開放時にそれまでの電圧を保持するためのホールド回路がそれぞれの増幅部83,84に必要となる。 The two outputs switched and output by the switch circuit 82 are distributed to the operational amplifiers of the amplifiers 83 and 84 and output. Further, in order to prevent a decrease in the output voltage of the operational amplifier at the time of opening due to switching, a hold circuit for holding the voltage up to that time at the time of opening is required for each of the amplifying units 83 and 84.
 このように、従来型の光学式血流検出装置は、複数の光源を交互に光らせ、フォトダイオードなどの受光器から得られる受光信号を、発光タイミングに合わせて増幅回路に振り分けることにより、波長ごとの透過光又は反射光の計測を実現してきた。これには光源が複数必要であり、またこれを交互に光らせ、さらにタイミングに合わせて受光信号を振り分ける回路が必要で、構造が複雑であった。 As described above, the conventional optical blood flow detection device alternately emits a plurality of light sources, and distributes a light reception signal obtained from a light receiver such as a photodiode to an amplification circuit according to a light emission timing, so that each wavelength is obtained. Measurement of transmitted light or reflected light has been realized. This requires a plurality of light sources, and a circuit that illuminates them alternately and distributes the received light signals in accordance with the timing is complicated, and the structure is complicated.
  [2.本開示の光学式血流解析を実行する信号処理装置の構成と処理について]
 次に、本開示の光学式血流解析を実行する信号処理装置の構成と処理について説明する。
 図6は、本開示の光学式血流解析を実行する信号処理装置の全体の構成例を示す図である。図6に示す信号処理装置100は、先に図2を参照して説明した光学式血流検出装置20と同様の構成を有する。すなわち、図6に示す信号処理装置100は、
 発光部101、
 受光部102、
 増幅部103、
 信号処理部104、
 を有する。
[2. Configuration and processing of signal processing apparatus for performing optical blood flow analysis of present disclosure]
Next, the configuration and processing of the signal processing device that executes the optical blood flow analysis of the present disclosure will be described.
FIG. 6 is a diagram illustrating an overall configuration example of a signal processing device that executes the optical blood flow analysis of the present disclosure. The signal processing device 100 shown in FIG. 6 has the same configuration as the optical blood flow detection device 20 described above with reference to FIG. That is, the signal processing apparatus 100 shown in FIG.
Light emitting unit 101,
Light receiving unit 102,
Amplifying unit 103,
Signal processing unit 104,
Have
 発光部101から人体の血管を有する生体組織130に対して光を照射する。
 血管を含む生体組織130の透過光、または反射光は、受光部102に入力する。
 受光部102の検出光に基づく電気信号は、増幅部103に入力され、増幅される。
 増幅部103の電気信号は信号処理部104に入力され、例えばノイズ除去や波形整形などの信号処理が実行され、測定結果としての生体信号150を出力する。
Light is emitted from the light emitting unit 101 to the living tissue 130 having a human blood vessel.
The transmitted light or reflected light of the biological tissue 130 including blood vessels is input to the light receiving unit 102.
An electric signal based on the detection light of the light receiving unit 102 is input to the amplifying unit 103 and amplified.
The electric signal of the amplifying unit 103 is input to the signal processing unit 104, for example, signal processing such as noise removal and waveform shaping is executed, and a biological signal 150 as a measurement result is output.
  (2-1.本開示の光学式血流解析を実行する信号処理装置の発光部の構成と処理について)
 次に、本開示の信号処理装置100の発光部101の構成と処理について説明する。
 図7は、本開示に従った信号処理装置100の発光部101の構成例を示す図である。
 図7に示す発光部101は、白色LED201を有し、白色LED201の発光する光を生体組織(皮膚)130に照射する構成である。
(2-1. Configuration and Processing of Light Emitting Unit of Signal Processing Device that Performs Optical Blood Flow Analysis of Present Disclosure)
Next, the configuration and processing of the light emitting unit 101 of the signal processing apparatus 100 of the present disclosure will be described.
FIG. 7 is a diagram illustrating a configuration example of the light emitting unit 101 of the signal processing device 100 according to the present disclosure.
The light emitting unit 101 illustrated in FIG. 7 includes a white LED 201 and irradiates the living tissue (skin) 130 with light emitted from the white LED 201.
 白色LED101は、複数の波長の光を同時に投射する発光部である。図7に示す発光部101は、発光素子として白色LED201を用いている。
 図8は、図7に示す発光部101の白色LED201の発光スペクトル分布の例を示す図である。
 図8に示すように、白色LED201は発光スペクトル分布に複数のピーク波長を有している。この例では450nm(青)と650nm(赤)の2つのピークを有している。
The white LED 101 is a light emitting unit that simultaneously projects light having a plurality of wavelengths. A light emitting unit 101 illustrated in FIG. 7 uses a white LED 201 as a light emitting element.
FIG. 8 is a diagram showing an example of the emission spectrum distribution of the white LED 201 of the light emitting unit 101 shown in FIG.
As shown in FIG. 8, the white LED 201 has a plurality of peak wavelengths in the emission spectrum distribution. In this example, it has two peaks of 450 nm (blue) and 650 nm (red).
 図3に示す従来型の発光部21と、図7に示す本開示に従った発光部101を比較して理解されるように、
 図3に示す従来型の発光部21は、異なる波長の光を照射する2つの単色LED、すなわちLED72,73を有している。
 一方、図7に示す本開示に従った発光部101は、複数波長光を含む光を照射する単一の白色LED201を有する。
 このように、図7に示す本開示に従った発光部101は、1つの光源で複数の波長を同時に出力する構成であり、スイッチング回路を必要とする図3に示す発光部21の構成に比べ非常に簡易な構成となっている。
As can be understood by comparing the conventional light emitting unit 21 shown in FIG. 3 with the light emitting unit 101 according to the present disclosure shown in FIG.
The conventional light emitting unit 21 shown in FIG. 3 has two single-color LEDs that emit light of different wavelengths, that is, LEDs 72 and 73.
On the other hand, the light emitting unit 101 according to the present disclosure shown in FIG. 7 includes a single white LED 201 that emits light including light of multiple wavelengths.
As described above, the light emitting unit 101 according to the present disclosure illustrated in FIG. 7 has a configuration in which a single light source outputs a plurality of wavelengths at the same time, compared to the configuration of the light emitting unit 21 illustrated in FIG. 3 that requires a switching circuit. It has a very simple configuration.
  (2-2.本開示の光学式血流解析を実行する信号処理装置の受光部の構成と処理について)
 次に本開示の信号処理装置100の受光部102の構成と処理について説明する。
 図9は本開示の信号処理装置100の受光部102の構成例を示す図である。本開示の信号処理装置100の受光部102は、複数の周波数の光の強度を検知できる受光部である。
(2-2. Configuration and Processing of Light Receiving Unit of Signal Processing Device that Performs Optical Blood Flow Analysis of Present Disclosure)
Next, the configuration and processing of the light receiving unit 102 of the signal processing apparatus 100 according to the present disclosure will be described.
FIG. 9 is a diagram illustrating a configuration example of the light receiving unit 102 of the signal processing device 100 of the present disclosure. The light receiving unit 102 of the signal processing device 100 of the present disclosure is a light receiving unit that can detect the intensity of light having a plurality of frequencies.
 図9に示す受光部102は、受光素子として2色発光LEDを用いている。通常、LEDは発光素子として用いられるが、受光時に光起電力が発生するため非常に帯域の狭い受光素子として用いることが可能である。さらに2色発光LEDは一般に広く普及しており、安価に利用することができるメリットもある。ただし、受光時の光起電力は弱いため、増幅回路(オペアンプ)により増幅する必要がある。 9 uses a two-color light emitting LED as a light receiving element. Usually, an LED is used as a light-emitting element, but since a photovoltaic power is generated during light reception, it can be used as a light-receiving element with a very narrow band. Further, the two-color light emitting LED is generally widely used and has an advantage that it can be used at low cost. However, since the photoelectromotive force at the time of receiving light is weak, it is necessary to amplify by an amplifier circuit (op-amp).
 図9に示す受光部102は、青色フォトダイオード(青色PD)301と、赤色フォトダイオード(赤色PD)302を有する2色発光LEDを用いた構成である。
 青色フォトダイオード(青色PD)301は、受光信号に含まれる青色波長成分の強度に応じた信号を出力し、赤色フォトダイオード(赤色PD)302は、受光信号に含まれる赤色波長成分の強度に応じた信号を出力する。
 青色フォトダイオード(青色PD)301の出力は、オペアンプから構成される増幅部303に出力され増幅される。この増幅部303の出力が青光量信号として出力される。
 また、赤色フォトダイオード(赤色PD)302の出力は、オペアンプから構成される増幅部304に出力され増幅される。この増幅部304の出力が赤光量信号として出力される。
The light receiving unit 102 shown in FIG. 9 has a configuration using a two-color light emitting LED having a blue photodiode (blue PD) 301 and a red photodiode (red PD) 302.
The blue photodiode (blue PD) 301 outputs a signal corresponding to the intensity of the blue wavelength component included in the light reception signal, and the red photodiode (red PD) 302 corresponds to the intensity of the red wavelength component included in the light reception signal. Output the signal.
The output of the blue photodiode (blue PD) 301 is output to and amplified by an amplifying unit 303 composed of an operational amplifier. The output of the amplifying unit 303 is output as a blue light amount signal.
In addition, the output of the red photodiode (red PD) 302 is output to and amplified by an amplifying unit 304 composed of an operational amplifier. The output of the amplifying unit 304 is output as a red light amount signal.
 受光部は、発光部から投射された光が、同じ生体組織内の経路を通った光を受光できることが望ましい。このため、1カ所で受光できる2色発光LEDはこの目的に好適である。 It is desirable that the light receiving unit can receive the light projected from the light emitting unit through the same path in the living tissue. For this reason, a two-color LED capable of receiving light at one place is suitable for this purpose.
  (2-3.本開示の光学式血流解析を実行する信号処理装置の信号処理部の構成と処理について)
 先に図5を参照して説明した従来型の受光部22の構成と、図9を参照して説明した本開示の装置における受光部102を比較して理解されるように、図9を参照して説明した本開示の受光部102はスイッチ回路やホールド回路が不要となり、簡易な構成となっている。
(2-3. Regarding Configuration and Processing of Signal Processing Unit of Signal Processing Device that Performs Optical Blood Flow Analysis of Present Disclosure)
As can be understood by comparing the configuration of the conventional light receiving unit 22 described above with reference to FIG. 5 and the light receiving unit 102 in the apparatus of the present disclosure described with reference to FIG. 9, refer to FIG. The light receiving unit 102 of the present disclosure described above does not require a switch circuit or a hold circuit, and has a simple configuration.
 本開示の装置は、図7を参照して説明した発光部101と、図9を参照して説明した受光部102を組み合わせた構成である。発光部101が人体の血管を含む生体組織に照射した光の反射光または透過光を受光部102において受光する。この受光信号を解析することにより、受光量の増減をもとに動脈血の脈波成分の検出を行うことが可能となる。 The apparatus of the present disclosure has a configuration in which the light emitting unit 101 described with reference to FIG. 7 and the light receiving unit 102 described with reference to FIG. 9 are combined. The light receiving unit 102 receives the reflected light or transmitted light of the light emitted from the light emitting unit 101 onto the living tissue including the blood vessels of the human body. By analyzing the received light signal, it is possible to detect the pulse wave component of arterial blood based on the increase or decrease of the received light amount.
 図6に示す信号処理装置100の信号処理部104の構成例を図10に示す。
 信号処理部104は、図6に示すように、ノイズ除去部501、脈拍検出部502、酸素濃度検出部503を有する。
A configuration example of the signal processing unit 104 of the signal processing apparatus 100 illustrated in FIG. 6 is illustrated in FIG.
As illustrated in FIG. 6, the signal processing unit 104 includes a noise removal unit 501, a pulse detection unit 502, and an oxygen concentration detection unit 503.
 図9に示す受光部102の青色フォトダイオード(青色PD)301の受光信号を増幅部303で増幅した青色光と、受光部102の赤色フォトダイオード(赤色PD)302の受光信号を増幅部304で増幅した赤色光は、それぞれの光量に応じた電気信号、すなわち、図に示す青色光信号411,赤色光信号412をノイズ除去部501に出力する。 The blue light obtained by amplifying the light receiving signal of the blue photodiode (blue PD) 301 of the light receiving unit 102 and the light receiving signal of the red photodiode (red PD) 302 of the light receiving unit 102 shown in FIG. The amplified red light outputs an electrical signal corresponding to each light quantity, that is, a blue light signal 411 and a red light signal 412 shown in the figure to the noise removing unit 501.
 ノイズ除去部501は、これらの青色光信号411,赤色光信号412に含まれるノイズを除去する処理を行なう。ノイズは、例えば測定者である人の動きなどに起因するノイズ、すなわち体動に起因するノイズであり、特徴として、2つの信号、すなわち青色光信号411,赤色光信号412に共通する不規則な変動信号として含まれる。2つの信号の解析により、不規則な共通変動信号を取り除くことでノイズを除去することが可能となる。ノイズ除去方法は各種あるが、例えば予め設定した係数をかけて差分をとる方法が利用される。 The noise removing unit 501 performs processing for removing noise included in the blue light signal 411 and the red light signal 412. The noise is, for example, noise caused by the movement of a person who is a measurer, that is, noise caused by body movement, and is characterized by irregularity common to two signals, that is, the blue light signal 411 and the red light signal 412. Included as a fluctuation signal. By analyzing the two signals, it is possible to remove noise by removing irregular common fluctuation signals. There are various noise removal methods. For example, a method of obtaining a difference by multiplying a preset coefficient is used.
 ノイズ除去部501におけるノイズ除去されたノイズ除去青色信号431と、ノイズ除去赤色信号432は、脈拍検出部502と、酸素濃度検出部503に出力される。
 脈拍検出部502は、ノイズ除去青色信号431と、ノイズ除去赤色信号432の少なくともいずれかの信号の規則的変動を解析して、脈拍を検出する。
 すなわち、先に図1(b)を参照して説明した規則的な波動を取得し、取得した波動に基づいて脈拍511を検出して出力する。
The noise-removed blue signal 431 and the noise-removed red signal 432 from which noise has been removed by the noise removing unit 501 are output to the pulse detecting unit 502 and the oxygen concentration detecting unit 503.
The pulse detection unit 502 detects a pulse by analyzing regular fluctuations in at least one of the noise-removed blue signal 431 and the noise-removed red signal 432.
That is, the regular wave described above with reference to FIG. 1B is acquired, and the pulse 511 is detected and output based on the acquired wave.
 また、酸素濃度検出部503は、ノイズ除去青色信号431と、ノイズ除去赤色信号432の強度の対応関係に基づいて血流中の酸素濃度を検出する。
 図11は、血液中の酸化ヘモグロビンと還元ヘモグロビンの吸光特性の違いを利用したパルスオキシメータの測定データを示すグラフである。
 すなわち、血液中の酸素を有するヘモグロビンである酸化ヘモグロビン(HbO2)と、酸素を有さないヘモグロビンである還元ヘモグロビン(Hb)の吸光特性の違いを示すグラフである。図の横軸が波長(Weve Length(nm))、縦軸が吸光度(Absorption)を示している。
Further, the oxygen concentration detection unit 503 detects the oxygen concentration in the bloodstream based on the correspondence relationship between the noise-removed blue signal 431 and the noise-removed red signal 432.
FIG. 11 is a graph showing measurement data of a pulse oximeter using a difference in light absorption characteristics between oxygenated hemoglobin and reduced hemoglobin in blood.
That is, it is a graph showing the difference in light absorption characteristics between oxygenated hemoglobin (HbO2), which is hemoglobin having oxygen in blood, and reduced hemoglobin (Hb), which is hemoglobin not having oxygen. In the figure, the horizontal axis represents the wavelength (Wave Length (nm)), and the vertical axis represents the absorbance (Absorption).
 実線が、酸素を有するヘモグロビンである酸化ヘモグロビン(HbO2)の光波長対応の吸光度を示し、
 点線が、酸素を有さないヘモグロビンである還元ヘモグロビン(Hb)の光波長対応の吸光度を示している。
The solid line shows the absorbance corresponding to the light wavelength of oxygenated hemoglobin (HbO2), which is oxygen-containing hemoglobin,
The dotted line indicates the absorbance corresponding to the light wavelength of reduced hemoglobin (Hb), which is hemoglobin having no oxygen.
 各色の波長は、
 青色光は約440nm、
 赤色光は約660nm、
 赤外光は約880nm、
 である。
The wavelength of each color is
Blue light is about 440nm,
Red light is about 660 nm,
Infrared light is about 880 nm,
It is.
 図6~図10を参照して説明した本開示の装置構成では、約440nmの青色光と、訳660nm高の赤色光を血管の透過光または反射光として受光している。
 従って、血液中に酸素が多い場合は、図11に示す実線(HbO2)に対応する関係、例えば図に示す2つの波長光対応の吸光度、すなわち、
 約440nmの青色光対応の吸光度(a1)、
 約660nmの赤色光対応の吸光度(a2)、
 これらの吸光度を反映した強度を持つ青色光信号、および赤色光信号として測定される。
The apparatus configuration of the present disclosure described with reference to FIGS. 6 to 10 receives blue light of about 440 nm and red light having a height of about 660 nm as transmitted light or reflected light of blood vessels.
Therefore, when there is a lot of oxygen in the blood, the relationship corresponding to the solid line (HbO2) shown in FIG. 11, for example, the absorbance corresponding to the two wavelength lights shown in the figure,
Absorbance corresponding to blue light of about 440 nm (a1),
Absorbance corresponding to red light of about 660 nm (a2),
It is measured as a blue light signal and a red light signal having an intensity reflecting these absorbances.
 一方、血液中に酸素が少ない場合は、図11に示す点線(Hb)に対応する関係、例えば図に示す2つの波長光対応の吸光度、すなわち、
 約440nmの青色光対応の吸光度(b1)、
 約660nmの赤色光対応の吸光度(b2)、
 これらの吸光度を反映した強度を持つ青色光信号、および赤色光信号として測定される。
On the other hand, when there is little oxygen in the blood, the relationship corresponding to the dotted line (Hb) shown in FIG. 11, for example, the absorbance corresponding to the two wavelength lights shown in the figure,
Absorbance corresponding to blue light of about 440 nm (b1),
Absorbance corresponding to red light of about 660 nm (b2),
It is measured as a blue light signal and a red light signal having an intensity reflecting these absorbances.
 このように、青色光信号、および赤色光信号の強度比は、血液中の酸素濃度に応じて変動する。
 酸素濃度検出部503は、青色光信号、および赤色光信号の強度比と酸素濃度との対応関係を格納したテーブルをメモリに保持し、このテーブルを参照して、ノイズ除去部501から入力するノイズ除去青色信号431と、ノイズ除去赤色信号432との信号強度に応じて酸素濃度512を検出し出力する。
Thus, the intensity ratio of the blue light signal and the red light signal varies according to the oxygen concentration in the blood.
The oxygen concentration detection unit 503 holds a table storing the correspondence relationship between the intensity ratio of the blue light signal and the red light signal and the oxygen concentration in the memory, and the noise input from the noise removal unit 501 with reference to this table The oxygen concentration 512 is detected and output according to the signal intensity of the removed blue signal 431 and the noise-removed red signal 432.
 なお、テーブルではなく、予め規定した演算によって酸素濃度512を算出する構成としてもよい。
 すなわち、ノイズ除去青色信号431と、ノイズ除去赤色信号432を入力パラメータとして酸素濃度を算出する関数を用いて演算処理によって酸素濃度512を算出する構成としてもよい。
In addition, it is good also as a structure which calculates oxygen concentration 512 by the calculation prescribed | regulated instead of a table.
That is, the oxygen concentration 512 may be calculated by arithmetic processing using a function that calculates the oxygen concentration using the noise-removed blue signal 431 and the noise-removed red signal 432 as input parameters.
 なお、先に従来構成として説明した図3に示す発光部21と、図5に示す受光部22を用いた構成では、赤色光と赤外光との強度比を用いて酸素濃度を検出する構成である。この場合、赤色光と赤外光との強度比は、酸素濃度に応じて、図11に示す吸光度(a2)と(a3)、または(b2)と(b3)の吸光度を反映した関係となり、この関係性から酸素濃度を測定している。 In the configuration using the light emitting unit 21 shown in FIG. 3 and the light receiving unit 22 shown in FIG. 5 described above as the conventional configuration, a configuration for detecting the oxygen concentration using the intensity ratio of red light and infrared light. It is. In this case, the intensity ratio between red light and infrared light is a relationship reflecting the absorbances (a2) and (a3) or (b2) and (b3) shown in FIG. The oxygen concentration is measured from this relationship.
 なお、複数の異なる波長の光に対応する吸光度と酸素濃度との対応関係に基づく酸素濃度計測処理は、例えば、US特許:M. Konishi, T. Kisanuki, A. Yamanishi, Y. Majima: Photo Electric Oximeter, US Patent, Patent Number: 3998550,1976に記載されている処理を適用可能である。 Note that the oxygen concentration measurement process based on the correspondence between the absorbance and the oxygen concentration corresponding to a plurality of lights having different wavelengths is described in, for example, US Pat. Konishi, T. Kisanuki, A. Yamanishi, Y. Majima: Photo Electric Oximeter, US Patent, Patent Number: 3998550, 1976 can be applied.
  (2-4.本開示の信号処理装置の構成と処理の特徴と利点について)
 上述の実施例において説明したように、
 本開示の装置では、発光部101として図7を参照して説明したように、青色光(約440nm)から赤色光(約660nm)の波長を含む光を発光する白色LED201を用いた。
 また、受光部102として、図9に示すように青色光(約440nm)対応の受光信号を出力する青色フォトダイオード(青色PD)301と、赤色光(約660nm)対応の受光信号を出力する赤色フォトダイオード(赤色PD)302を用いた。
(2-4. Configuration and Processing Features and Advantages of Signal Processing Device of Present Disclosure)
As explained in the above embodiment,
In the apparatus of the present disclosure, as described with reference to FIG. 7, the white LED 201 that emits light including the wavelength of blue light (about 440 nm) to red light (about 660 nm) is used as the light emitting unit 101.
Further, as shown in FIG. 9, a blue photodiode (blue PD) 301 that outputs a light reception signal corresponding to blue light (about 440 nm) and a red light that outputs a light reception signal corresponding to red light (about 660 nm) as the light receiving unit 102. A photodiode (red PD) 302 was used.
 このように発光部101を複数の波長光を出力可能な単一LEDとすることで、測定ポイントを一か所に集中することが可能となり、図3を参照して説明したような異なる位置から異なる波長光を出力する構成に比較して高精度の測定が可能となる。
 例えば測定ポイントを一ポイントに集中させることで、体動に起因するノイズを正確に検出可能となり、高精度なノイズ除去が実現される。さらに、同一ポイントの測定結果を用いることで、図11を参照して説明した吸光度特性に応じた酸素濃度測定の精度も高めることが可能となる。
Thus, by making the light emitting unit 101 a single LED capable of outputting a plurality of wavelengths of light, it becomes possible to concentrate measurement points in one place, and from different positions as described with reference to FIG. High-precision measurement is possible compared to a configuration that outputs light of different wavelengths.
For example, by concentrating the measurement points at one point, it is possible to accurately detect noise caused by body movement, and high-accuracy noise removal is realized. Furthermore, by using the measurement result at the same point, it is possible to improve the accuracy of the oxygen concentration measurement according to the absorbance characteristic described with reference to FIG.
 なお、上述の実施例では、発光部の単一LEDとして青色光(約440nm)から赤色光(約660nm)の波長を含む光を発光する白色LED201を用いているが、例えば、赤色光(約660nm)から赤外光(約880nm)の波長を含む光を発光する単一LEDを用いた構成としてもよい。この場合は、受光側に、赤色光(約660nm)対応の受光信号を出力する赤色フォトダイオード(赤色PD)と、赤外光(約880nm)対応の受光信号を出力する赤外光フォトダイオード(赤外光PD)を用いる。これらの赤色光と、赤外光の吸光度特性の差異に基づく解析により、酸素濃度の検出が可能となる。 In the above-described embodiment, the white LED 201 that emits light including the wavelength of blue light (about 440 nm) to red light (about 660 nm) is used as a single LED of the light emitting unit. It is good also as a structure using the single LED which light-emits the light containing the wavelength of infrared light (about 880 nm) from 660 nm. In this case, on the light receiving side, a red photodiode (red PD) that outputs a received light signal corresponding to red light (about 660 nm) and an infrared photodiode (that outputs a received light signal corresponding to infrared light (about 880 nm)) ( Infrared light PD) is used. The oxygen concentration can be detected by analysis based on the difference in absorbance characteristics between the red light and the infrared light.
 その他、青色~赤外光の発光を行う単色LEDを発光部に用い、受光部に青色ダイオードと赤外ダイオードを設定した構成としてもよい。
 このように、発光部としては、様々な2つ以上の異なる波長光を含む光を発光する単一LEDが利用可能であり、受光部には、発光部に利用した単一LEDの発光信号に含まれる異なる波長の光を検出して出力する複数の受光素子、例えばフォトダイオードを持つ様々な構成を利用することが可能である。
In addition, a single-color LED that emits blue to infrared light may be used for the light emitting unit, and a blue diode and an infrared diode may be set for the light receiving unit.
As described above, as the light emitting unit, a single LED that emits light including light of various two or more different wavelengths can be used. In the light receiving unit, the light emission signal of the single LED used for the light emitting unit can be used. It is possible to use various configurations having a plurality of light receiving elements, for example, photodiodes, that detect and output light of different wavelengths contained therein.
 また、信号処理部104の酸素濃度検出部503の処理として、図11に示す血液中の酸化ヘモグロビンと還元ヘモグロビンの吸光特性の違いを利用したパルスオキシメータについて述べたが、信号処理部104は、酸素濃度検出処理に限らず、他の血中成分の吸光特性を用いた血中成分測定を行う構成とすることも可能である。 Further, as the processing of the oxygen concentration detection unit 503 of the signal processing unit 104, the pulse oximeter using the difference in the absorption characteristics of oxygenated hemoglobin and reduced hemoglobin in the blood shown in FIG. 11 has been described. Not only the oxygen concentration detection process but also a configuration in which blood component measurement using the light absorption characteristics of other blood components is possible.
 上述したように、本開示の信号処理装置は、発光部を単一の発光素子で実現している。また発光の切り替えおよび受光信号の振り分けが不要となり、従来の技術に比べ消費電流が少なくシンプルな信号処理装置、すなわち、脈波検出装置やパルスオキシメータを実現することが可能となる。 As described above, in the signal processing device of the present disclosure, the light emitting unit is realized by a single light emitting element. Further, switching of light emission and distribution of received light signals are not required, and a simple signal processing device, that is, a pulse wave detection device or a pulse oximeter, that consumes less current than the conventional technology can be realized.
  [3.本開示の構成のまとめ]
 以上、特定の実施例を参照しながら、本開示の実施例について詳解してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が実施例の修正や代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、限定的に解釈されるべきではない。本開示の要旨を判断するためには、特許請求の範囲の欄を参酌すべきである。
[3. Summary of composition of the present disclosure]
As described above, the embodiments of the present disclosure have been described in detail with reference to specific embodiments. However, it is obvious that those skilled in the art can make modifications and substitutions of the embodiments without departing from the gist of the present disclosure. In other words, the present invention has been disclosed in the form of exemplification, and should not be interpreted in a limited manner. In order to determine the gist of the present disclosure, the claims should be taken into consideration.
 なお、本明細書において開示した技術は、以下のような構成をとることができる。
 (1) 複数の異なる波長の光を含む光信号を出力する単一発光素子から構成される発光部と、
 前記発光部の発光信号の人体を介した透過光または反射光を受光する受光部であり、各々が異なる波長光に応じた受光信号を出力する複数の受光素子から構成される受光部と、
 前記受光部の出力する複数の異なる波長光の受光信号に基づく信号処理を実行する信号処理部を有する信号処理装置。
The technology disclosed in this specification can take the following configurations.
(1) a light-emitting unit composed of a single light-emitting element that outputs an optical signal including light of a plurality of different wavelengths;
A light receiving unit that receives transmitted light or reflected light through a human body of a light emission signal of the light emitting unit, each of which includes a plurality of light receiving elements that output light reception signals corresponding to different wavelength light; and
A signal processing apparatus comprising: a signal processing unit that executes signal processing based on light reception signals of a plurality of different wavelength lights output from the light receiving unit.
 (2)前記発光部は、前記単一発光素子として白色LEDを備えた構成である前記(1)に記載の信号処理装置。
 (3)前記白色LEDは、赤色光および青色光を含む複数の異なる波長の光を出力する発光素子である前記(2)に記載の信号処理装置。
 (4)前記白色LEDは、赤色光から青色光を含む複数の異なる波長の光を出力する発光素子であり、赤色光の波長領域と、青色光の波長領域にピークを有する相対強度を持つ光を出力する発光素子である前記(2)または(3)に記載の信号処理装置。
(2) The signal processing device according to (1), wherein the light emitting unit includes a white LED as the single light emitting element.
(3) The signal processing device according to (2), wherein the white LED is a light emitting element that outputs light having a plurality of different wavelengths including red light and blue light.
(4) The white LED is a light emitting element that outputs light having a plurality of different wavelengths including red light from blue light, and has light having a relative intensity having peaks in the wavelength range of red light and the wavelength range of blue light. The signal processing device according to (2) or (3), wherein the signal processing device is a light-emitting element that outputs.
 (5)前記受光部は、各々が異なる波長光を選択受光する複数のフォトダイオードを有する複数色発光LEDによって構成されている前記(1)~(4)いずれかに記載の信号処理装置。
 (6)前記受光部は、前記複数の受光素子として青色フォトダイオードと赤色フォトダイオードを備えた構成である前記(1)~(5)いずれかに記載の信号処理装置。
 (7)前記青色フォトダイオードは、受光信号に含まれる青色波長成分の強度に応じた信号を出力し、前記赤色フォトダイオードは、受光信号に含まれる赤色波長成分の強度に応じた信号を出力する前記(6)に記載の信号処理装置。
(5) The signal processing device according to any one of (1) to (4), wherein the light receiving unit includes a plurality of color light emitting LEDs each having a plurality of photodiodes that selectively receive light of different wavelengths.
(6) The signal processing device according to any one of (1) to (5), wherein the light receiving unit includes a blue photodiode and a red photodiode as the plurality of light receiving elements.
(7) The blue photodiode outputs a signal according to the intensity of the blue wavelength component included in the light reception signal, and the red photodiode outputs a signal according to the intensity of the red wavelength component included in the light reception signal. The signal processing device according to (6).
 (8)前記信号処理部は、複数の異なる波長光に対応する受光信号に基づく電気信号を入力し体動に起因するノイズの除去を行い、ノイズ除去信号に基づく信号解析を実行する前記(1)~(7)いずれかに記載の信号処理装置。
 (9)前記信号処理部は、前記受光部の出力に応じて脈拍検出を行う脈拍検出部を有する前記(1)~(8)いずれかに記載の信号処理装置。
(8) The signal processing unit receives an electric signal based on a received light signal corresponding to a plurality of different wavelength lights, removes noise caused by body movement, and executes signal analysis based on the noise removal signal (1 ) To (7).
(9) The signal processing device according to any one of (1) to (8), wherein the signal processing unit includes a pulse detection unit that detects a pulse according to an output of the light receiving unit.
 (10)前記信号処理部は、前記受光部の出力に応じて血中酸素濃度の検出を行う酸素濃度検出部を有する前記(1)~(9)いずれかに記載の信号処理装置。
 (11)前記酸素濃度検出部は、異なる波長光の検出信号の信号強度の対比に基づく血中酸素濃度検出を行う前記(10)に記載の信号処理装置。
(10) The signal processing device according to any one of (1) to (9), wherein the signal processing unit includes an oxygen concentration detection unit that detects a blood oxygen concentration according to an output of the light receiving unit.
(11) The signal processing apparatus according to (10), wherein the oxygen concentration detection unit performs blood oxygen concentration detection based on a comparison of signal intensities of detection signals of light having different wavelengths.
 また、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させるか、あるいは、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。例えば、プログラムは記録媒体に予め記録しておくことができる。記録媒体からコンピュータにインストールする他、LAN(Local Area Network)、インターネットといったネットワークを介してプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。 Further, the series of processing described in the specification can be executed by hardware, software, or a combined configuration of both. When executing processing by software, the program recording the processing sequence is installed in a memory in a computer incorporated in dedicated hardware and executed, or the program is executed on a general-purpose computer capable of executing various processing. It can be installed and run. For example, the program can be recorded in advance on a recording medium. In addition to being installed on a computer from a recording medium, the program can be received via a network such as a LAN (Local Area Network) or the Internet and installed on a recording medium such as a built-in hard disk.
 なお、明細書に記載された各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。また、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。 In addition, the various processes described in the specification are not only executed in time series according to the description, but may be executed in parallel or individually according to the processing capability of the apparatus that executes the processes or as necessary. Further, in this specification, the system is a logical set configuration of a plurality of devices, and the devices of each configuration are not limited to being in the same casing.
 以上、説明したように、本開示の一実施例の構成によれば、簡易な構成と処理を実現する光学式血流計測装置が実現される。
 具体的には、複数の異なる波長の光を含む光信号を出力する発光部と、発光部の発光信号の人体を介した透過光または反射光を受光する受光部であり、異なる複数の波長光を選択受光する受光部と、受光部の受光信号に対応した電気信号に対する信号処理を実行する信号処理部を有する。発光部は、発光素子として白色LEDを備え、受光部は、青色フォトダイオードと赤色フォトダイオードを備えた構成であり、信号処理部は、複数の異なる波長光に対応する受光信号に基づく電気信号を入力し体動に起因するノイズ除去、血中酸素濃度の検出信号等を生成する。
As described above, according to the configuration of an embodiment of the present disclosure, an optical blood flow measurement device that realizes a simple configuration and processing is realized.
Specifically, a light emitting unit that outputs an optical signal including light of a plurality of different wavelengths, and a light receiving unit that receives transmitted light or reflected light through the human body of the light emission signal of the light emitting unit, and light having a plurality of different wavelengths A light receiving unit that selectively receives light and a signal processing unit that performs signal processing on an electrical signal corresponding to a light reception signal of the light receiving unit. The light emitting unit includes a white LED as a light emitting element, the light receiving unit includes a blue photodiode and a red photodiode, and the signal processing unit outputs an electric signal based on a light receiving signal corresponding to a plurality of different wavelength lights. Inputs noise removal caused by body movement, blood oxygen concentration detection signal, etc.
  10 人体
  11 動脈血層
  12 静脈血層
  13 血液以外の組織
  20 光学式血流検出装置
  21 発光部
  22 受光部
  23 増幅部
  24 信号処理部
  30 生体組織
  50 生体信号
  71 スイッチ回路
  72 赤色LED
  73 赤色外LED
 100 光学式血流検出装置
 101 発光部
 102 受光部
 103 増幅部
 104 信号処理部
 130 生体組織
 150 生体信号
 201 白色LED
 301 青色フォトダイオード
 302 赤色フォトダイオード
 303 増幅部
 304 増幅部
 411 青色光信号
 412 赤色光信号
 431 ノイズ除去青色高信号
 432 ノイズ除去赤色高信号
 501 ノイズ除去部
 502 脈拍検出部
 503 酸素濃度検出部
 511 脈拍
 512 酸素濃度
DESCRIPTION OF SYMBOLS 10 Human body 11 Arterial blood layer 12 Venous blood layer 13 Tissues other than blood 20 Optical blood flow detection device 21 Light emitting unit 22 Light receiving unit 23 Amplifying unit 24 Signal processing unit 30 Biological tissue 50 Biological signal 71 Switch circuit 72 Red LED
73 LED outside red
DESCRIPTION OF SYMBOLS 100 Optical blood-flow detection apparatus 101 Light-emitting part 102 Light-receiving part 103 Amplifying part 104 Signal processing part 130 Biological tissue 150 Biological signal 201 White LED
301 blue photodiode 302 red photodiode 303 amplifying unit 304 amplifying unit 411 blue light signal 412 red light signal 431 noise removing blue high signal 432 noise removing red high signal 501 noise removing unit 502 pulse detecting unit 503 oxygen concentration detecting unit 511 pulse 512 Oxygen concentration

Claims (12)

  1.  複数の異なる波長の光を含む光信号を出力する単一発光素子から構成される発光部と、
     前記発光部の発光信号の人体を介した透過光または反射光を受光する受光部であり、各々が異なる波長光に応じた受光信号を出力する複数の受光素子から構成される受光部と、
     前記受光部の出力する複数の異なる波長光の受光信号に基づく信号処理を実行する信号処理部を有する信号処理装置。
    A light-emitting unit composed of a single light-emitting element that outputs an optical signal including light of a plurality of different wavelengths;
    A light receiving unit that receives transmitted light or reflected light through a human body of a light emission signal of the light emitting unit, each of which includes a plurality of light receiving elements that output light reception signals corresponding to different wavelength light; and
    A signal processing apparatus comprising: a signal processing unit that executes signal processing based on light reception signals of a plurality of different wavelength lights output from the light receiving unit.
  2.  前記発光部は、前記単一発光素子として白色LEDを備えた構成である請求項1に記載の信号処理装置。 The signal processing apparatus according to claim 1, wherein the light emitting unit includes a white LED as the single light emitting element.
  3.  前記白色LEDは、赤色光および青色光を含む複数の異なる波長の光を出力する発光素子である請求項2に記載の信号処理装置。 3. The signal processing apparatus according to claim 2, wherein the white LED is a light emitting element that outputs light of a plurality of different wavelengths including red light and blue light.
  4.  前記白色LEDは、赤色光から青色光を含む複数の異なる波長の光を出力する発光素子であり、赤色光の波長領域と、青色光の波長領域にピークを有する相対強度を持つ光を出力する発光素子である請求項2に記載の信号処理装置。 The white LED is a light emitting element that outputs light of a plurality of different wavelengths including red light from blue light, and outputs light having a relative intensity having a peak in the wavelength region of red light and the wavelength region of blue light. The signal processing apparatus according to claim 2, wherein the signal processing apparatus is a light emitting element.
  5.  前記受光部は、各々が異なる波長光を選択受光する複数のフォトダイオードを有する複数色発光LEDによって構成されている請求項1に記載の信号処理装置。 The signal processing apparatus according to claim 1, wherein the light receiving unit is configured by a multi-color light emitting LED having a plurality of photodiodes that selectively receive light of different wavelengths.
  6.  前記受光部は、前記複数の受光素子として青色フォトダイオードと赤色フォトダイオードを備えた構成である請求項1に記載の信号処理装置。 The signal processing device according to claim 1, wherein the light receiving unit includes a blue photodiode and a red photodiode as the plurality of light receiving elements.
  7.  前記青色フォトダイオードは、受光信号に含まれる青色波長成分の強度に応じた信号を出力し、
     前記赤色フォトダイオードは、受光信号に含まれる赤色波長成分の強度に応じた信号を出力する請求項6に記載の信号処理装置。
    The blue photodiode outputs a signal corresponding to the intensity of the blue wavelength component included in the received light signal,
    The signal processing apparatus according to claim 6, wherein the red photodiode outputs a signal corresponding to an intensity of a red wavelength component included in a light reception signal.
  8.  前記信号処理部は、複数の異なる波長光に対応する受光信号に基づく電気信号を入力し体動に起因するノイズの除去を行い、ノイズ除去信号に基づく信号解析を実行する請求項1に記載の信号処理装置。 2. The signal processing unit according to claim 1, wherein the signal processing unit inputs an electric signal based on a light reception signal corresponding to a plurality of different wavelength lights, removes noise caused by body movement, and performs signal analysis based on the noise removal signal. Signal processing device.
  9.  前記信号処理部は、前記受光部の出力に応じて脈拍検出を行う脈拍検出部を有する請求項1に記載の信号処理装置。 The signal processing device according to claim 1, wherein the signal processing unit includes a pulse detection unit that performs pulse detection according to an output of the light receiving unit.
  10.  前記信号処理部は、前記受光部の出力に応じて血中酸素濃度の検出を行う酸素濃度検出部を有する請求項1に記載の信号処理装置。 The signal processing apparatus according to claim 1, wherein the signal processing unit includes an oxygen concentration detection unit that detects a blood oxygen concentration according to an output of the light receiving unit.
  11.  前記酸素濃度検出部は、異なる波長光の検出信号の信号強度の対比に基づく血中酸素濃度検出を行う請求項10に記載の信号処理装置。 The signal processing apparatus according to claim 10, wherein the oxygen concentration detection unit performs blood oxygen concentration detection based on a comparison of signal intensities of detection signals of light having different wavelengths.
  12.  信号処理装置において実行する信号処理方法であり、
     発光部が、単一発光素子から複数の異なる波長の光を含む光信号を出力する発光ステップと、
     受光部が、前記発光部の発光信号の人体を介した透過光または反射光を受光する受光ステップであり、各々が異なる波長光に応じた受光信号を出力する複数の受光素子において、異なる波長光の受光信号を生成する受光ステップと、
     信号処理部が、前記受光部の出力する複数の異なる波長光の受光信号に基づく信号処理を実行する信号処理ステップを実行する信号処理方法。
    A signal processing method executed in a signal processing device,
    A light emitting step in which the light emitting unit outputs an optical signal including light of a plurality of different wavelengths from a single light emitting element;
    The light receiving unit is a light receiving step for receiving transmitted light or reflected light through the human body of the light emission signal of the light emitting unit, and each of the plurality of light receiving elements that output light reception signals corresponding to different wavelength light has different wavelength light A light receiving step for generating a light receiving signal of
    A signal processing method for executing a signal processing step in which a signal processing unit executes signal processing based on light reception signals of a plurality of different wavelength lights output from the light receiving unit.
PCT/JP2012/080871 2011-12-29 2012-11-29 Signal processing device and signal processing method WO2013099509A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011290258 2011-12-29
JP2011-290258 2011-12-29
JP2012-129432 2012-06-07
JP2012129432A JP2013150772A (en) 2011-12-29 2012-06-07 Signal processing apparatus and signal processing method

Publications (1)

Publication Number Publication Date
WO2013099509A1 true WO2013099509A1 (en) 2013-07-04

Family

ID=48697007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080871 WO2013099509A1 (en) 2011-12-29 2012-11-29 Signal processing device and signal processing method

Country Status (3)

Country Link
JP (1) JP2013150772A (en)
TW (1) TW201338754A (en)
WO (1) WO2013099509A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104224198A (en) * 2014-10-07 2014-12-24 复旦大学 Multi-function portable noninvasive medical treatment detection device and method based on Raman scattering
JP2016047073A (en) * 2014-08-27 2016-04-07 株式会社東芝 Electronic apparatus and control method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015129025A1 (en) * 2014-02-28 2017-03-30 パイオニア株式会社 Measuring device, pulse oximeter, measuring method, computer program, and recording medium
JP2016083030A (en) * 2014-10-23 2016-05-19 ローム株式会社 Pulse wave sensor, and semi-conductor module
TWI608826B (en) 2014-10-31 2017-12-21 財團法人工業技術研究院 Optical sensing device and measurement method thereof
JP2016096848A (en) * 2014-11-18 2016-05-30 京セラ株式会社 Measuring device and measuring method
US9772222B2 (en) 2014-12-08 2017-09-26 Samsung Electronics Co., Ltd. Retainer for photoelectric sensor and photoelectric pulse wave measuring apparatus including the same
JP2016214512A (en) 2015-05-19 2016-12-22 株式会社東芝 Sensor
JP6406135B2 (en) * 2015-06-10 2018-10-17 Tdk株式会社 Biological signal measuring device
US10376223B2 (en) * 2016-03-28 2019-08-13 Fuji Xerox Co., Ltd. Living-body information measurement device and non-transitory computer readable medium
EP3449825A1 (en) * 2016-04-27 2019-03-06 Asahi Kasei Pharma Corporation Estimation device
JP2018007894A (en) 2016-07-14 2018-01-18 京セラ株式会社 Measuring device, measuring method, and measuring program
JP6820706B2 (en) 2016-09-27 2021-01-27 京セラ株式会社 Electronics, control methods and programs
KR102476707B1 (en) * 2018-02-05 2022-12-09 삼성전자주식회사 Pulse oximetry and pulse oximetry embedded organic image sensor
JP2018134470A (en) * 2018-04-27 2018-08-30 パイオニア株式会社 Measuring device
JP2019213992A (en) * 2019-10-01 2019-12-19 パイオニア株式会社 Measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3177757A (en) * 1960-03-29 1965-04-13 American Optical Corp Method of performing reflective oximetry
JPS61257629A (en) * 1985-05-10 1986-11-15 住友電気工業株式会社 Blood monitor
JP2003210438A (en) * 2002-01-22 2003-07-29 Tyco Healthcare Japan Inc Adapter for oximeter
JP2005279255A (en) * 2004-03-05 2005-10-13 Junichi Shimada Illuminating apparatus, filter apparatus and image display
JP2008301914A (en) * 2007-06-06 2008-12-18 Sony Corp Physiological data acquiring apparatus and physiological data acquiring method
JP2010003901A (en) * 2008-06-20 2010-01-07 Fujifilm Corp Photoelectric converting element and solid-state imaging element
JP2011185634A (en) * 2010-03-05 2011-09-22 Seiko Epson Corp Spectroscopic sensor device and electronic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3177757A (en) * 1960-03-29 1965-04-13 American Optical Corp Method of performing reflective oximetry
JPS61257629A (en) * 1985-05-10 1986-11-15 住友電気工業株式会社 Blood monitor
JP2003210438A (en) * 2002-01-22 2003-07-29 Tyco Healthcare Japan Inc Adapter for oximeter
JP2005279255A (en) * 2004-03-05 2005-10-13 Junichi Shimada Illuminating apparatus, filter apparatus and image display
JP2008301914A (en) * 2007-06-06 2008-12-18 Sony Corp Physiological data acquiring apparatus and physiological data acquiring method
JP2010003901A (en) * 2008-06-20 2010-01-07 Fujifilm Corp Photoelectric converting element and solid-state imaging element
JP2011185634A (en) * 2010-03-05 2011-09-22 Seiko Epson Corp Spectroscopic sensor device and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047073A (en) * 2014-08-27 2016-04-07 株式会社東芝 Electronic apparatus and control method
US9808197B2 (en) 2014-08-27 2017-11-07 Kabushiki Kaisha Toshiba Electronic apparatus and control method
CN104224198A (en) * 2014-10-07 2014-12-24 复旦大学 Multi-function portable noninvasive medical treatment detection device and method based on Raman scattering

Also Published As

Publication number Publication date
JP2013150772A (en) 2013-08-08
TW201338754A (en) 2013-10-01

Similar Documents

Publication Publication Date Title
WO2013099509A1 (en) Signal processing device and signal processing method
JP6393679B2 (en) Spectroscopic system and method for improving focus location of temporal and spatial variation measurements
US6363269B1 (en) Synchronized modulation/demodulation method and apparatus for frequency division multiplexed spectrophotometric system
JP2004135854A (en) Reflection type photoelectric pulse wave detector and reflection type oxymeter
US20130204102A1 (en) System and method for non-invasive determination of hemoglobin concentration in blood
JP2002095652A (en) Device of measuring concentration of light-absorbing material in blood
US20200046275A1 (en) Pulse oximetry device and method of operating a pulse oximetry device
JP2010504803A5 (en)
EP2194842A1 (en) Blood oximeter
CN107595297B (en) Physiological information detection device and method
US20050187451A1 (en) Simultaneous signal attenuation measurements utilizing frequency orthogonal random codes
TW201519870A (en) Method and system for determining blood oxygen saturation
CN107233089B (en) Living body information measuring device
US20120229800A1 (en) Pulse oximeter test instruments and methods
JP6373511B2 (en) Optical analysis system and method
US20190257759A1 (en) Signal processing device of analyzing bio-signal and bio-signal analyzing apparatus using the same
JP2007111461A (en) Bio-optical measurement apparatus
RU2294141C1 (en) Device for measuring oxygenation level and pulse frequency
EP3849399B1 (en) Large dynamic range detector for gingivitis detection
US20070129617A1 (en) Light source drive algorithm
CN109890287B (en) Method for non-invasive determination of hemoglobin concentration and oxygen concentration in blood
Patterson et al. Ratiometric artefact reduction in low power, discrete-time, reflective photoplethysmography
JP6937927B2 (en) A signal processing device that analyzes biological signals and a biological signal analyzer that uses them.
Leier et al. Smart photoplethysmographic sensor for pulse wave registration at different vascular depths
CN208031214U (en) The measuring device of Non-invasive detection hemoglobin level

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862397

Country of ref document: EP

Kind code of ref document: A1