JP2017176263A - Apparatus and program for measuring biological information - Google Patents

Apparatus and program for measuring biological information Download PDF

Info

Publication number
JP2017176263A
JP2017176263A JP2016064454A JP2016064454A JP2017176263A JP 2017176263 A JP2017176263 A JP 2017176263A JP 2016064454 A JP2016064454 A JP 2016064454A JP 2016064454 A JP2016064454 A JP 2016064454A JP 2017176263 A JP2017176263 A JP 2017176263A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
amount
biological information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016064454A
Other languages
Japanese (ja)
Inventor
英之 梅川
Hideyuki Umekawa
英之 梅川
逆井 一宏
Kazuhiro Sakai
一宏 逆井
赤松 学
Manabu Akamatsu
学 赤松
友暁 小嶋
Tomoaki Kojima
友暁 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2016064454A priority Critical patent/JP2017176263A/en
Priority to US15/226,371 priority patent/US10376223B2/en
Priority to US15/228,074 priority patent/US20170273631A1/en
Priority to US15/229,192 priority patent/US10492732B2/en
Priority to CN201610808043.1A priority patent/CN107233089B/en
Priority to CN201610806366.7A priority patent/CN107233100A/en
Priority to CN201610810705.9A priority patent/CN107233073A/en
Publication of JP2017176263A publication Critical patent/JP2017176263A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the electric power consumed at light emitting elements in measurement of multiple pieces of biological information.SOLUTION: A biological information measuring apparatus 10 includes a light emitting element LD1 and a light emitting element LD2 that emit light having mutually different wavelengths, and a light receiving element 3. The biological information measuring apparatus 10 controls the periods of light emission from the light emitting elements LD1 and LD2 such that the number of light emission from the light emitting element LD2 is smaller than the number of light emission from the light emitting element LD1 per unit time for the light emitting elements LD1 and LD2. The biological information measuring apparatus 10 measures multiple pieces of biological information based on a frequency spectrum with respect to the amount of light received at the light receiving element 3 from the light emitting element LD1 and on the respective amounts of light received at the light receiving element 3 from the light emitting element LD1 and the light emitting element LD2.SELECTED DRAWING: Figure 8

Description

本発明は、生体情報測定装置、及び生体情報測定プログラムに関する。   The present invention relates to a biological information measuring device and a biological information measuring program.

特許文献1には、基板と、前記基板上に配置されており、波長の相異なる複数の光を、被検体に対し少なくとも部分的に相互に重なるように照射する照射部と、前記基板上に配置されており、前記照射された複数の光に起因する前記被検体からの光を、前記波長別に検出する受光部とを備えることを特徴とする自発光型センサ装置が開示されている。   In Patent Document 1, a substrate, an irradiation unit that is arranged on the substrate and irradiates a subject with a plurality of lights having different wavelengths so as to at least partially overlap each other, and on the substrate There is disclosed a self-luminous sensor device comprising: a light receiving unit that is disposed and detects light from the subject caused by the plurality of irradiated light for each wavelength.

特許文献2には、第1の波長の光を発生する第1の発光素子と、第2の波長の光を発生する第2の発光素子と、前記第1および第2の発光素子をそれぞれ異なる時期に発光させる駆動回路と、前記第1および第2の発光素子の光が照射される位置に生体組織を配置されたときに前記第1の発光素子からの光であって前記生体組織を透過または散乱した光を受光するように配置された第1の受光素子と、前記第1および第2の発光素子からの光であって前記生体組織を透過または散乱した光を受光するように前記第1の受光素子から所定距離離れた位置に配置された第2の受光素子と、前記第1および第2の発光素子からの光による前記第2の受光素子の出力に基づいて前記生体組織の血液中の酸素飽和度を計算する酸素飽和度計算手段と、前記第1の発光素子からの光による前記第1および第2の受光素子の出力の相互相関関数に基づいて前記生体組織の血液の流速を計算する血流計算手段とを具備する酸素飽和度および血流測定装置が開示されている。   In Patent Document 2, a first light emitting element that generates light having a first wavelength, a second light emitting element that generates light having a second wavelength, and the first and second light emitting elements are different from each other. A driving circuit that emits light at a time, and light from the first light emitting element that is transmitted through the living tissue when the living tissue is disposed at a position where the light of the first and second light emitting elements is irradiated Alternatively, the first light-receiving element arranged to receive the scattered light and the first light-receiving element and the first light-emitting element and the first light-emitting element so as to receive the light transmitted or scattered through the living tissue. A second light receiving element disposed at a predetermined distance from the one light receiving element, and blood of the living tissue based on an output of the second light receiving element by light from the first and second light emitting elements. Oxygen saturation calculation means for calculating the oxygen saturation in the A blood flow calculating means for calculating a blood flow velocity of the living tissue based on a cross-correlation function of outputs of the first and second light receiving elements by light from the first light emitting element; A flow measuring device is disclosed.

特許第4475601号公報Japanese Patent No. 4475601 特開平7−265284号公報JP-A-7-265284

血中の酸素飽和度及び血流情報といった複数の生体情報を測定する場合、異なる波長の光を照射する複数の発光素子を生体に向けて交互に発光させ、生体を透過又は反射した光の受光量の変化から生体情報を測定する手法が用いられることがある。   When measuring multiple biological information such as oxygen saturation in the blood and blood flow information, multiple light emitting elements that emit light of different wavelengths are alternately emitted toward the living body, and light that is transmitted or reflected through the living body is received. A technique for measuring biological information from a change in quantity may be used.

この場合、複数の発光素子を交互に発光しなくとも複数の生体情報を測定可能だとしても、複数の発光素子を交互に発光し、発光素子の駆動制御が継続して行なわれることから、生体情報の測定に関して必要以上の電力が消費されることになる。   In this case, even if it is possible to measure a plurality of pieces of biological information without alternately emitting light from the plurality of light emitting elements, the plurality of light emitting elements emit light alternately and drive control of the light emitting elements is continuously performed. More power is consumed than necessary for measuring information.

本発明は、複数の生体情報を測定する際に、複数の発光素子を交互に発光させる場合と比較して、発光素子で消費される電力を削減することを目的とする。   An object of the present invention is to reduce the power consumed by a light emitting element when measuring a plurality of pieces of biological information, as compared with a case where a plurality of light emitting elements emit light alternately.

上記目的を達成するために、請求項1記載の生体情報測定装置は、互いに波長の異なる光を照射する第1発光素子及び第2発光素子と、前記第1発光素子及び前記第2発光素子から照射される各々の光を受光する受光素子と、単位時間あたりの前記第2発光素子の発光回数が前記第1発光素子の発光回数より少なくなるように、前記第1発光素子及び前記第2発光素子の発光期間を制御する制御手段と、前記受光素子で受光した光の各々から、複数の生体情報を測定する測定手段と、を備える。   In order to achieve the above object, the biological information measuring apparatus according to claim 1 includes a first light emitting element and a second light emitting element that irradiate light having different wavelengths, and the first light emitting element and the second light emitting element. The first light emitting element and the second light emitting element so that the number of light emission of the second light emitting element per unit time and the light receiving element that receives each irradiated light is smaller than the number of light emission of the first light emitting element. Control means for controlling the light emission period of the element, and measurement means for measuring a plurality of biological information from each of the light received by the light receiving element.

請求項2記載の発明は、前記制御手段は、前記制御手段は、前記第1発光素子及び前記第2発光素子の発光期間が重複しないように、前記第1発光素子及び前記第2発光素子の発光期間を制御する。   According to a second aspect of the present invention, the control means includes: the first light emitting element and the second light emitting element so that the light emitting periods of the first light emitting element and the second light emitting element do not overlap. Control the light emission period.

請求項3記載の発明は、前記測定手段は、前記受光素子で受光した、前記第1発光素子による光の受光量に対する周波数スペクトル、並びに、前記受光素子で受光した、前記第1発光素子による光の受光量及び前記第2発光素子による光の受光量から、前記複数の生体情報を測定する。   According to a third aspect of the present invention, the measuring means receives the frequency spectrum with respect to the amount of light received by the first light emitting element received by the light receiving element, and the light by the first light emitting element received by the light receiving element. The plurality of pieces of biological information are measured from the amount of received light and the amount of light received by the second light emitting element.

請求項4記載の発明は、前記測定手段は、前記第1発光素子の発光期間における光の受光量と、前記第1発光素子の発光期間と隣接する前記第2発光素子の発光期間における光の受光量と、の組み合わせを用いて、前記複数の生体情報を測定する。   According to a fourth aspect of the present invention, the measuring means is configured to receive the amount of light received during the light emission period of the first light emitting element and the light during the light emission period of the second light emitting element adjacent to the light emission period of the first light emitting element. The plurality of pieces of biological information are measured using a combination with the amount of received light.

請求項5記載の発明は、前記測定手段は、特定の期間に含まれる前記第1発光素子の発光期間の各々における光の受光量の平均値を前記第1発光素子の発光期間における光の受光量とし、前記特定の期間に含まれる前記第1発光素子の発光期間の各々と隣接する、前記第2発光素子の各発光期間における光の受光量の平均値を、前記第2発光素子の発光期間における光の受光量とする。   According to a fifth aspect of the present invention, the measuring means calculates the average value of the amount of light received in each of the light emitting periods of the first light emitting element included in the specific period, and receives the light in the light emitting period of the first light emitting element. The average value of the amount of light received in each light emission period of the second light emitting element adjacent to each light emission period of the first light emitting element included in the specific period is used as the light emission amount of the second light emitting element. The amount of light received during the period.

請求項6記載の発明は、前記測定手段は、前記第1発光素子の発光期間及び前記第2発光素子の発光期間の少なくとも一方の発光期間において、複数回に亘って前記受光素子から受光量を取得し、取得した各々の受光量の平均値を、複数回に亘って前記受光素子から受光量を取得した発光期間における光の受光量とする。   According to a sixth aspect of the present invention, the measuring means measures the amount of light received from the light receiving element over a plurality of times during at least one of the light emitting period of the first light emitting element and the light emitting period of the second light emitting element. The acquired average value of the received light amounts is set as the received light amount in the light emission period in which the received light amount is acquired from the light receiving element over a plurality of times.

請求項7記載の発明は、前記測定手段は、血流量と血流速度と血液量の少なくとも1つと、血中の酸素飽和度と、を含む生体情報を前記複数の生体情報として測定する。   According to a seventh aspect of the present invention, the measuring means measures biological information including at least one of a blood flow volume, a blood flow velocity, a blood volume, and an oxygen saturation level in the blood as the plurality of biological information.

請求項8記載の生体情報測定プログラムは、コンピュータを、請求項1〜請求項7の何れか1項に記載の制御手段及び測定手段として機能させる。   A biological information measurement program according to an eighth aspect causes a computer to function as the control means and the measurement means according to any one of the first to seventh aspects.

請求項1、請求項3、及び請求項8記載の発明によれば、複数の生体情報を測定する際に、複数の発光素子を交互に発光させる場合と比較して、発光素子で消費される電力を削減することができる。   According to invention of Claim 1, Claim 3, and Claim 8, when measuring several biological information, it is consumed with a light emitting element compared with the case where a several light emitting element is made to light-emit alternately. Electric power can be reduced.

請求項2記載の発明によれば、発光期間が重複していないものに比較して、生体情報をより精度よく測定することができる。   According to the second aspect of the present invention, biometric information can be measured with higher accuracy than those in which the light emission periods do not overlap.

請求項4記載の発明によれば、隣接していない発光期間における受光量を組み合わせる場合と比較して、生体情報を精度よく測定することができる。   According to invention of Claim 4, compared with the case where the light reception amount in the light emission period which is not adjacent is combined, biometric information can be measured with a sufficient precision.

請求項5記載の発明によれば、特定の一つの発光期間における受光量を用いて生体情報を測定する場合と比較して、生体情報を精度よく測定することができる。   According to the fifth aspect of the present invention, the biological information can be measured with higher accuracy than the case where the biological information is measured using the amount of received light in one specific light emission period.

請求項6記載の発明によれば、発光期間に受光量を1回取得する場合と比較して、生体情報を精度よく測定することができる。   According to the sixth aspect of the present invention, biometric information can be measured with higher accuracy than when the amount of received light is acquired once during the light emission period.

請求項7記載の発明によれば、複数の生体情報を個別に測定する場合と比較して、測定時間を短縮することができる。   According to the seventh aspect of the invention, the measurement time can be shortened as compared with the case where a plurality of pieces of biological information are individually measured.

血流情報及び血中の酸素飽和度の測定例を示す模式図である。It is a schematic diagram which shows the example of a blood flow information and the measurement of the oxygen saturation in blood. 生体からの反射光による受光量の変化の一例を示すグラフである。It is a graph which shows an example of change of the amount of received light by reflected light from a living body. 血管にレーザ光を照射した場合に生じるドップラーシフトの説明に供する模式図である。It is a schematic diagram with which it uses for description of the Doppler shift produced when a laser beam is irradiated to the blood vessel. 血管にレーザ光を照射した場合に生じるスペックルの説明に供する模式図である。It is a schematic diagram with which it uses for description of the speckle which arises when a blood vessel is irradiated with a laser beam. 受光量の変化に対するスペクトル分布の一例を示すグラフである。It is a graph which shows an example of the spectrum distribution with respect to the change of received light quantity. 血流量の変化の一例を示すグラフである。It is a graph which shows an example of a change of blood flow. 生体に吸収される光の吸光量の変化の一例を示すグラフである。It is a graph which shows an example of the change of the light absorption amount of the light absorbed by the biological body. 生体情報測定装置の構成例を示す図である。It is a figure which shows the structural example of a biometric information measuring apparatus. 発光素子及び受光素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of a light emitting element and a light receiving element. 発光素子及び受光素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of a light emitting element and a light receiving element. 生体情報測定装置の電気系統の要部構成例を示す図である。It is a figure which shows the principal part structural example of the electric system of a biological information measuring device. 生体情報測定処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a biometric information measurement process. IR光を照射する発光素子及び赤色光を照射する発光素子の発光タイミング及び受光素子による受光タイミングの一例を示すタイミングチャートである。It is a timing chart which shows an example of the light emission timing of the light emitting element which irradiates IR light, and the light emitting element which irradiates red light, and the light reception timing by a light receiving element. IR光を照射する発光素子及び赤色光を照射する発光素子の発光タイミング及び受光素子による受光タイミングの一例を示すタイミングチャートである。It is a timing chart which shows an example of the light emission timing of the light emitting element which irradiates IR light, and the light emitting element which irradiates red light, and the light reception timing by a light receiving element. IR光を照射する発光素子及び赤色光を照射する発光素子の発光タイミング及び受光素子による受光タイミングの一例を示すタイミングチャートである。It is a timing chart which shows an example of the light emission timing of the light emitting element which irradiates IR light, and the light emitting element which irradiates red light, and the light reception timing by a light receiving element. IR光を照射する発光素子及び赤色光を照射する発光素子の発光タイミング及び受光素子による受光タイミングの一例を示すタイミングチャートである。It is a timing chart which shows an example of the light emission timing of the light emitting element which irradiates IR light, and the light emitting element which irradiates red light, and the light reception timing by a light receiving element.

以下、図面を参照して、本発明を実施するための形態例を詳細に説明する。なお、作用又は機能が同じ働きを担う構成要素には、全図面を通して同じ符合を付与し、重複する説明を省略する。   DETAILED DESCRIPTION Hereinafter, exemplary embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is provided to the component which an action or a function bears the same function through all the drawings, and the overlapping description is abbreviate | omitted.

まず、図1を参照して、生体情報のうち、特に血液に関する生体情報の一例である血流情報及び血中の酸素飽和度の測定方法について説明する。   First, a method for measuring blood flow information and oxygen saturation in blood, which is an example of biological information related to blood, among biological information, will be described with reference to FIG.

図1に示すように、血流情報及び血中の酸素飽和度は、患者の体(生体8)に向けて発光素子1から光を照射し、受光素子3で受光した、患者の体内に張り巡らされている動脈4、静脈5、及び毛細血管6等で反射又は透過した光の強さ、すなわち反射光又は透過光の受光量を用いて測定される。   As shown in FIG. 1, blood flow information and blood oxygen saturation are stretched in the patient's body that is irradiated with light from the light emitting element 1 toward the patient's body (living body 8) and received by the light receiving element 3. It is measured using the intensity of light reflected or transmitted by the circulating artery 4, vein 5, capillary 6 or the like, that is, the amount of reflected or transmitted light received.

(血流情報の測定)
図2は、受光素子3で受光した反射光の受光量を示すグラフ80の一例である。なお、図2のグラフ80の横軸は時間の経過を表し、縦軸は受光素子3の出力、すなわち受光素子3の受光量を表している。
(Measurement of blood flow information)
FIG. 2 is an example of a graph 80 showing the amount of reflected light received by the light receiving element 3. 2 represents the passage of time, and the vertical axis represents the output of the light receiving element 3, that is, the amount of light received by the light receiving element 3.

図2に示すように、受光素子3の受光量は時間の経過に伴って変化するが、これは血管を含む生体8への光の照射に対して現われる3つの光学現象の影響を受けるためであると考えられる。   As shown in FIG. 2, the amount of light received by the light receiving element 3 changes with time, because this is influenced by three optical phenomena that appear when light is applied to the living body 8 including blood vessels. It is believed that there is.

1つ目の光学現象として、脈動によって、測定している血管内に存在する血液量が変化することによる光の吸収の変化が考えられる。血液には、例えば赤血球等の血球細胞が含まれ、毛細血管6等の血管内を移動するため、血液量が変化することによって血管内を移動する血球細胞の数も変化し、受光素子3での受光量に影響を与えることがある。   As a first optical phenomenon, a change in light absorption due to a change in the amount of blood existing in the blood vessel being measured due to pulsation can be considered. The blood contains blood cells such as red blood cells, and moves in blood vessels such as the capillaries 6, so that the number of blood cells moving in the blood vessels changes as the blood volume changes. May affect the amount of light received.

2つ目の光学現象として、ドップラーシフトによる影響が考えられる。   As the second optical phenomenon, the influence of the Doppler shift can be considered.

図3に示すように、例えばレーザ光のような周波数ω0のコヒーレント光40を発光素子1から血管の一例である毛細血管6を含む領域に照射した場合、毛細血管6を移動する血球細胞で散乱した散乱光42は、血球細胞の移動速度により決まる差周波Δω0を有するドップラーシフトを生じることになる。一方、血球細胞等の移動体を含まない皮膚等の組織(静止組織)で散乱した散乱光42の周波数は、照射したレーザ光の周波数と同じ周波数ω0を維持する。したがって、毛細血管6等の血管で散乱したレーザ光の周波数ω0+Δω0と、静止組織で散乱したレーザ光の周波数ω0とが互いに干渉し、差周波Δω0を有するビート信号が受光素子3で観測され、受光素子3の受光量が時間の経過に伴って変化する。なお、受光素子3で観測されるビート信号の差周波Δω0は血球細胞の移動速度に依存するが、約数十kHzを上限とした範囲に含まれる。 As shown in FIG. 3, for example, when a region including a capillary vessel 6, which is an example of a blood vessel, is irradiated from a light emitting element 1 with coherent light 40 having a frequency ω 0 such as a laser beam, blood cells that move through the capillary vessel 6 are used. The scattered scattered light 42 causes a Doppler shift having a difference frequency Δω 0 determined by the moving speed of blood cells. On the other hand, the frequency of the scattered light 42 scattered by a tissue such as skin (stationary tissue) that does not include a moving body such as a blood cell maintains the same frequency ω 0 as the frequency of the irradiated laser light. Therefore, the frequency ω 0 + Δω 0 of the laser light scattered by the blood vessel such as the capillary 6 interferes with the frequency ω 0 of the laser light scattered by the stationary tissue, and the beat signal having the difference frequency Δω 0 is received by the light receiving element 3. And the amount of light received by the light receiving element 3 varies with time. Note that the difference frequency Δω 0 of the beat signal observed by the light receiving element 3 depends on the moving speed of the blood cell, but is included in a range having an upper limit of about several tens of kHz.

また、3つ目の光学現象として、スペックルによる影響が考えられる。   As a third optical phenomenon, the influence of speckle is considered.

図4に示すように、レーザ光のようなコヒーレント光40を、発光素子1から血管中を矢印44の方向に移動する赤血球等の血球細胞7に照射した場合、血球細胞7にぶつかったレーザ光は様々な方向に散乱する。散乱光は位相が異なるためにランダムに干渉し合う。これによりランダムな斑点模様の光強度分布を生じる。このようにして形成される光強度の分布パターンは「スペックルパターン」と呼ばれる。   As shown in FIG. 4, when coherent light 40 such as laser light is applied to blood cell 7 such as red blood cells moving in the direction of arrow 44 from light emitting element 1, laser light hitting blood cell 7. Scatters in various directions. Since the scattered lights have different phases, they interfere with each other randomly. This produces a random spotted light intensity distribution. The light intensity distribution pattern thus formed is called a “speckle pattern”.

既に説明したように、血球細胞7は血管中を移動するため、血球細胞7における光の散乱状態が変化し、スペックルパターンが時間の経過と共に変動する。したがって、受光素子3の受光量が時間の経過に伴って変化する。   As already described, since the blood cell 7 moves in the blood vessel, the light scattering state in the blood cell 7 changes, and the speckle pattern changes with the passage of time. Therefore, the amount of light received by the light receiving element 3 changes with time.

次に、血流情報の求め方の一例について説明する。図2に示す時間経過に伴う受光素子3の受光量が得られた場合、予め定めた単位時間T0の範囲に含まれるデータを切り出し、当該データに対して、例えば高速フーリエ変換(Fast Fourier Transform:FFT)を実行することで、周波数ω毎のスペクトル分布が得られる。図5に、単位時間T0における周波数ω毎のスペクトル分布を示すグラフ82の一例を示す。なお、図5のグラフ82の横軸は周波数ωを表し、縦軸はスペクトル強度を表す。 Next, an example of how to obtain blood flow information will be described. When the amount of light received by the light receiving element 3 with the passage of time shown in FIG. 2 is obtained, data included in a predetermined unit time T 0 is cut out, and, for example, fast Fourier transform (Fast Fourier Transform) is performed on the data. : FFT), the spectral distribution for each frequency ω can be obtained. FIG. 5 shows an example of a graph 82 showing the spectrum distribution for each frequency ω in the unit time T 0 . 5 represents the frequency ω, and the vertical axis represents the spectral intensity.

ここで、血液量はグラフ82の横軸と縦軸とで囲まれた斜線領域84で表されるパワースペクトルの面積を全光量で規格化した値に比例する。また、血流速度はグラフ82で表されるパワースペクトルの周波数平均値に比例するため、周波数ωと周波数ωにおけるパワースペクトルの積を周波数ωについて積分した値を斜線領域84の面積で除算した値に比例する。   Here, the blood volume is proportional to the value obtained by normalizing the area of the power spectrum represented by the hatched area 84 surrounded by the horizontal axis and the vertical axis of the graph 82 with the total light quantity. Further, since the blood flow velocity is proportional to the frequency average value of the power spectrum represented by the graph 82, a value obtained by dividing the product of the frequency ω and the power spectrum at the frequency ω with respect to the frequency ω by the area of the hatched region 84. Is proportional to

なお、血流量は血液量と血流速度の積で表わされるため、上記血液量と血流速度の算出式より求める事が可能である。血流量、血流速度、血液量は血流情報の一例であり、血流情報はこれに限定されない。   In addition, since the blood flow volume is represented by the product of the blood volume and the blood flow velocity, it can be obtained from the calculation formula for the blood volume and the blood flow velocity. Blood flow volume, blood flow velocity, and blood volume are examples of blood flow information, and blood flow information is not limited to this.

図6は、算出した単位時間T0あたりの血流量の変化を示すグラフ86の一例である。なお、図6のグラフ86の横軸は時間を表し、縦軸は血流量を表す。 FIG. 6 is an example of a graph 86 showing a change in blood flow per unit time T 0 calculated. Note that the horizontal axis of the graph 86 in FIG. 6 represents time, and the vertical axis represents blood flow.

図6に示すように、血流量は時間と共に変動するが、その変動の傾向は2つの種類に分類される。例えば図6の区間Tにおける血流量の変動幅88に比べて、区間Tにおける血流量の変動幅90は大きい。これは、区間Tにおける血流量の変化が、主に脈の動きに伴う血流量の変化であるのに対して、区間Tにおける血流量の変化は、例えばうっ血等の原因に伴う血流量の変化を示しているためであると考えられる。 As shown in FIG. 6, the blood flow volume varies with time, but the variation tendency is classified into two types. For example, compared to the fluctuation range 88 of the blood flow rate in the interval T 1 of the FIG. 6, the fluctuation range 90 of the blood flow in the interval T 2 are large. This is because the change in the blood flow volume in the section T 1 is mainly a change in the blood flow volume accompanying the movement of the pulse, whereas the change in the blood flow volume in the section T 2 is a blood flow volume caused by causes such as congestion. It is thought that this is because of the change of.

(酸素飽和度の測定)
次に、血中の酸素飽和度の測定について説明する。血中の酸素飽和度とは、血液中のヘモグロビンがどの程度酸素と結合しているかを示す指標であり、血中の酸素飽和度が低下するにつれ、貧血等の症状が発生しやすくなる。
(Measurement of oxygen saturation)
Next, measurement of blood oxygen saturation will be described. The blood oxygen saturation is an index indicating how much hemoglobin in the blood is bound to oxygen, and symptoms such as anemia are likely to occur as the blood oxygen saturation decreases.

図7は、例えば生体8に吸収される光量の変化を示す概念図である。図7に示すように、生体8における吸光量は、時間の経過と共に変動する傾向が見られる。   FIG. 7 is a conceptual diagram showing changes in the amount of light absorbed by the living body 8, for example. As shown in FIG. 7, the light absorption amount in the living body 8 tends to vary with time.

更に、生体8における吸光の変動に関する内訳について見てみると、主に動脈4によって吸光量が変動し、静脈5及び静止組織を含むその他の組織では、動脈4に比べて吸光量が変動しないとみなせる程度の変動量であることが知られている。これは、心臓から拍出された動脈血は脈波を伴って血管内を移動するため、動脈4が動脈4の断面方向に沿って経時的に伸縮し、動脈4の厚みが変化するためである。なお、図7において、矢印94で示される範囲が、動脈4の厚みの変化に対応した吸光量の変動量を示す。   Further, looking at the breakdown of the change in light absorption in the living body 8, the light absorption amount mainly fluctuates by the artery 4, and the light absorption amount does not fluctuate compared to the artery 4 in other tissues including the vein 5 and the stationary tissue. It is known that the amount of fluctuation can be considered. This is because arterial blood pumped out of the heart moves in the blood vessel with a pulse wave, so that the artery 4 expands and contracts with time along the cross-sectional direction of the artery 4 and the thickness of the artery 4 changes. . In FIG. 7, the range indicated by the arrow 94 indicates the amount of fluctuation of the light absorption corresponding to the change in the thickness of the artery 4.

図7において、時刻taにおける受光量をIa、時刻tbにおける受光量をIbとすれば、動脈4の厚みの変化による光の吸光量の変化量ΔAは、(1)式で表される。 In FIG. 7, assuming that the amount of received light at time t a is I a and the amount of received light at time t b is I b , the amount of change ΔA in the amount of light absorption due to the change in the thickness of the artery 4 can be expressed by equation (1). Is done.

(数1)
ΔA=ln(Ib/Ia)・・・(1)
(Equation 1)
ΔA = ln (I b / I a ) (1)

一方、動脈4を流れる酸素と結合したヘモグロビン(酸化ヘモグロビン)は、特に約880nm近辺の波長を有する赤外線(infrared:IR)領域の光を吸収しやすく、酸素と結合していないヘモグロビン(還元ヘモグロビン)は、特に約665nm近辺の波長を有する赤色領域の光を吸収しやすいことが知られている。更に、酸素飽和度は、異なる波長における吸光量の変化量ΔAの比率と比例関係があることが知られている。   On the other hand, hemoglobin (oxygenated hemoglobin) combined with oxygen flowing through the artery 4 easily absorbs light in an infrared (IR) region having a wavelength of about 880 nm, and hemoglobin (reduced hemoglobin) not bonded to oxygen. Is known to easily absorb light in the red region having a wavelength of around 665 nm. Furthermore, it is known that the oxygen saturation is proportional to the ratio of the amount of change ΔA in the amount of absorption at different wavelengths.

したがって、他の波長の組み合わせに比べて。酸化ヘモグロビンと還元ヘモグロビンとで吸光量の差が現われやすい赤外光(IR光)と赤色光を用いて、IR光を生体8に照射した場合の吸光量の変化量ΔAIRと、赤色光を生体8に照射した場合の吸光量の変化量ΔARedとの比率をそれぞれ算出することで、(2)式によって酸素飽和度Sが算出される。なお、(2)においてkは比例定数である。 Therefore, compared to other wavelength combinations. Using infrared light (IR light) and red light, in which the difference in light absorption between oxidized hemoglobin and reduced hemoglobin is likely to appear, the amount of change ΔA IR in the amount of light absorption when IR light is irradiated on the living body 8, and the red light By calculating the ratio of the amount of change ΔA Red in the amount of light absorbed when the living body 8 is irradiated, the oxygen saturation S is calculated by the equation (2). In (2), k is a proportionality constant.

(数2)
S=k(ΔARed/ΔAIR)・・・(2)
(Equation 2)
S = k (ΔA Red / ΔA IR ) (2)

すなわち、血中の酸素飽和度を算出する場合、それぞれ異なる波長の光を照射する複数の発光素子1、具体的には、IR光を照射する発光素子1と赤色光を照射する発光素子1とを一部の発光期間が重複しても良いが、望ましくは発光期間が重複しないよう発光させる。そして、各々の発光素子1による反射光又は透過光を受光素子3で受光して、各受光時点における受光量から(1)式及び(2)式、又は、これらの式を変形して得られる公知の式を算出することで、酸素飽和度が測定される。   That is, when calculating oxygen saturation in blood, a plurality of light emitting elements 1 that irradiate light of different wavelengths, specifically, a light emitting element 1 that irradiates IR light and a light emitting element 1 that irradiates red light, However, it is desirable to emit light so that the light emission periods do not overlap. Then, the reflected light or transmitted light from each light emitting element 1 is received by the light receiving element 3 and is obtained by modifying the expressions (1) and (2) or these expressions from the amount of light received at each light reception time point. The oxygen saturation is measured by calculating a known formula.

上記(1)式を変形して得られる公知の式として、例えば(1)式を展開して、光の吸光量の変化量ΔAを(3)式のように表してもよい。   As a well-known equation obtained by modifying the above equation (1), for example, the equation (1) may be developed and the amount of change ΔA in the amount of light absorption may be expressed as in equation (3).

(数3)
ΔA=lnIb−lnIa・・・(3)
(Equation 3)
ΔA = lnI b −lnI a (3)

また、(1)式は(4)式のように変形することができる。   Further, the expression (1) can be modified as the expression (4).

(数4)
ΔA=ln(Ib/Ia)=ln(1+(Ib-Ia)/Ia) ・・・(4)
(Equation 4)
ΔA = ln (I b / I a ) = ln (1+ (I b −I a ) / I a ) (4)

通常、(Ib-Ia)≪Iaであることから、ln(Ib/Ia)≒(Ib-Ia)/Iaが成り立つため、(1)式の代わりに、光の吸光量の変化量ΔAとして(5)式を用いてもよい。 Usually, because it is (I b -I a) «I a , ln order to (I b / I a) ≒ (I b -I a) / I a is satisfied, instead of equation (1), light Equation (5) may be used as the amount of change ΔA in the amount of light absorption.

(数5)
ΔA≒(Ib-Ia)/Ia ・・・(5)
(Equation 5)
ΔA≈ (I b −I a ) / I a (5)

なお、IR光を照射する発光素子1と赤色光を照射する発光素子1とを区別して説明する必要がある場合、以降では、IR光を照射する発光素子1を「発光素子LD1」といい、赤色光を照射する発光素子1を「発光素子LD2」というようにする。また、一例として、発光素子LD1を血流量の算出で使用する発光素子1とし、発光素子LD1及び発光素子LD2を、血中の酸素飽和度の算出で利用する発光素子1とする。   When it is necessary to distinguish between the light emitting element 1 that emits IR light and the light emitting element 1 that emits red light, the light emitting element 1 that emits IR light is hereinafter referred to as “light emitting element LD1”. The light emitting element 1 that emits red light is referred to as a “light emitting element LD2”. In addition, as an example, the light emitting element LD1 is used as the light emitting element 1 used for calculating blood flow, and the light emitting element LD1 and the light emitting element LD2 are used as light emitting element 1 used for calculating oxygen saturation in blood.

既に説明したように、血流量の測定では、受光素子3で観測されるビート信号の差周波Δω0は約数十kHzを上限とした範囲に含まれることから、少なくとも差周波Δω0の2倍以上の周波数で発光素子LD1を発光させ、発光素子LD1による反射光を受光素子3で取得する必要がある。 As already described, in the measurement of the blood flow rate, the difference frequency Δω 0 of the beat signal observed by the light receiving element 3 is included in a range having an upper limit of about several tens of kHz, and therefore at least twice the difference frequency Δω 0 . It is necessary to cause the light emitting element LD1 to emit light at the above frequency and to acquire the reflected light from the light emitting element LD1 by the light receiving element 3.

したがって、血中の酸素飽和度の測定と組み合わせて考えると、例えば、発光素子LD2の発光周波数を発光素子LD1の発光周波数に合わせた上で、発光素子LD1と発光素子LD2の一部の発光期間が重複しても良いが、望ましくは発光期間が重複しないように発光素子LD1と発光素子LD2を交互に発光し、発光素子LD1及び発光素子LD2の発光期間毎に受光素子3で受光量を取得すれば、血中の酸素飽和度が測定される。   Therefore, when considered in combination with the measurement of oxygen saturation in blood, for example, after adjusting the light emission frequency of the light emitting element LD2 to the light emission frequency of the light emitting element LD1, the light emitting periods of the light emitting elements LD1 and LD2 are partially emitted. The light emitting elements LD1 and LD2 emit light alternately so that the light emitting periods do not overlap, and the light receiving element 3 obtains the amount of light received for each light emitting period of the light emitting elements LD1 and LD2. Then, the oxygen saturation in the blood is measured.

しかしながら、血中の酸素飽和度を測定する場合、受光量の測定周波数は約30Hzから1000Hz程度で十分であることが知られているため、発光素子LD2の発光周波数は約30Hzから1000Hz程度で十分である。すなわち、発光素子LD1の発光周波数に合わせて発光素子LD2を発光させる必要はなく、発光素子LD2の発光周波数を、発光素子LD1の発光周波数より低くしてもよいことがわかる。   However, when measuring oxygen saturation in the blood, it is known that the measurement frequency of the amount of received light is about 30 Hz to about 1000 Hz. Therefore, the light emission frequency of the light emitting element LD2 is about 30 Hz to about 1000 Hz. It is. In other words, it is not necessary to cause the light emitting element LD2 to emit light in accordance with the light emitting frequency of the light emitting element LD1, and the light emitting frequency of the light emitting element LD2 may be lower than the light emitting frequency of the light emitting element LD1.

以降では、発光素子LD1及び発光素子LD2を交互に発光させる場合に消費される電力より少ない電力で、複数の生体情報を測定する生体情報測定装置について説明する。   Hereinafter, a biological information measuring device that measures a plurality of biological information with less power than that consumed when the light emitting elements LD1 and LD2 emit light alternately will be described.

図8は、本実施の形態に係る生体情報測定装置10の構成例を示す図である。   FIG. 8 is a diagram illustrating a configuration example of the biological information measuring apparatus 10 according to the present embodiment.

図8に示すように、生体情報測定装置10は、制御部12、駆動回路14、増幅回路16、A/D(Analog/Digital)変換回路18、測定部20、発光素子LD1、発光素子LD2、及び受光素子3を備える。   As shown in FIG. 8, the biological information measuring apparatus 10 includes a control unit 12, a drive circuit 14, an amplification circuit 16, an A / D (Analog / Digital) conversion circuit 18, a measurement unit 20, a light emitting element LD1, a light emitting element LD2, And a light receiving element 3.

制御部12は、発光素子LD1及び発光素子LD2に駆動電力を供給する電力供給回路を含む駆動回路14に、発光素子LD1及び発光素子LD2の発光周期及び発光期間を制御する制御信号を出力する。   The control unit 12 outputs a control signal for controlling the light emission period and the light emission period of the light emitting element LD1 and the light emitting element LD2 to the driving circuit 14 including a power supply circuit that supplies driving power to the light emitting element LD1 and the light emitting element LD2.

駆動回路14は、制御部12からの制御信号を受け付けると、制御信号で指示された発光周期及び発光期間に従って、発光素子LD1及び発光素子LD2に駆動電力を供給し、発光素子LD1及び発光素子LD2を駆動する。   When receiving the control signal from the control unit 12, the driving circuit 14 supplies driving power to the light emitting element LD1 and the light emitting element LD2 according to the light emission cycle and the light emitting period instructed by the control signal, and the light emitting element LD1 and the light emitting element LD2 are supplied. Drive.

増幅回路16は、受光素子3で受光した光の強さに応じた電圧を、A/D変換回路18の入力電圧範囲として規定される電圧レベルまで増幅する。なお、ここでは一例として、受光素子3は受光した光の強さに応じた電圧を出力する素子とするが、受光素子3は受光した光の強さに応じた電流を出力してもよく、この場合、増幅回路16は、A/D変換回路18の入力電流範囲として規定される電流レベルまで、受光素子3が出力する電流を増幅する。   The amplifier circuit 16 amplifies a voltage corresponding to the intensity of light received by the light receiving element 3 to a voltage level defined as an input voltage range of the A / D conversion circuit 18. Here, as an example, the light receiving element 3 is an element that outputs a voltage according to the intensity of received light, but the light receiving element 3 may output a current according to the intensity of received light, In this case, the amplifier circuit 16 amplifies the current output from the light receiving element 3 to the current level defined as the input current range of the A / D conversion circuit 18.

A/D変換回路18は、増幅回路16で増幅した電圧を入力として、当該電圧の大きさで表される受光素子3の受光量を数値化して出力する。   The A / D conversion circuit 18 receives the voltage amplified by the amplifier circuit 16 as an input, converts the received light amount of the light receiving element 3 represented by the magnitude of the voltage into a numerical value, and outputs it.

測定部20は、A/D変換回路18で数値化された受光量を入力として、発光素子LD1によって照射された光の受光量に対してFFT処理を行って周波数ω毎のスペクトル分布を算出し、周波数ωと当該周波数ωにおけるスペクトル強度の積を周波数ωについて積分することで、血流量を測定する。   The measurement unit 20 calculates the spectral distribution for each frequency ω by performing an FFT process on the amount of light received by the light emitting element LD1 using the amount of light received by the A / D conversion circuit 18 as an input. The blood flow rate is measured by integrating the product of the frequency ω and the spectral intensity at the frequency ω with respect to the frequency ω.

また、測定部20は、A/D変換回路18で数値化された受光量を入力として、発光素子LD1及び発光素子LD2によって照射された光の受光量を、それぞれ時系列順に管理する。そして、測定部20は、発光素子LD1の吸光量の変化量ΔAIR、及び発光素子LD2の吸光量の変化量ΔARedを(1)式に従って算出し、吸光量の変化量ΔAIRに対する吸光量の変化量ΔARedの割合を(2)式に従って算出することで、酸素飽和度を測定する。 In addition, the measurement unit 20 receives the light reception amount quantified by the A / D conversion circuit 18 and manages the light reception amounts of light emitted by the light emitting element LD1 and the light emitting element LD2 in time series. Then, the measuring unit 20 calculates the change amount ΔA IR of the light absorption amount of the light emitting element LD1 and the change amount ΔA Red of the light absorption amount of the light emitting element LD2 according to the equation (1), and the light absorption amount with respect to the change amount ΔA IR of the light absorption amount. The oxygen saturation is measured by calculating the ratio of the change amount ΔA Red in accordance with the equation (2).

図9に、生体情報測定装置10における発光素子LD1、発光素子LD2、及び受光素子3の配置例を示す。図9に示すように、発光素子LD1、発光素子LD2、及び受光素子3は、生体8の一方の面に向かって並べて配置される。この場合、受光素子3は、生体8で反射された発光素子LD1及び発光素子LD2の光を受光する。   FIG. 9 shows an arrangement example of the light emitting element LD 1, the light emitting element LD 2, and the light receiving element 3 in the biological information measuring apparatus 10. As shown in FIG. 9, the light emitting element LD 1, the light emitting element LD 2, and the light receiving element 3 are arranged side by side toward one surface of the living body 8. In this case, the light receiving element 3 receives light from the light emitting element LD1 and the light emitting element LD2 reflected by the living body 8.

しかし、発光素子LD1、発光素子LD2、及び受光素子3の配置は、図9の配置例に限定されない。例えば、図10に示すように、発光素子LD1及び発光素子LD2と、受光素子3とを、生体8を挟んで対向する位置に配置するようにしてもよい。この場合、受光素子3は、生体8を透過した発光素子LD1及び発光素子LD2の光を受光する。   However, the arrangement of the light emitting element LD1, the light emitting element LD2, and the light receiving element 3 is not limited to the arrangement example of FIG. For example, as shown in FIG. 10, the light emitting element LD <b> 1, the light emitting element LD <b> 2, and the light receiving element 3 may be arranged at positions facing each other with the living body 8 interposed therebetween. In this case, the light receiving element 3 receives light from the light emitting element LD1 and the light emitting element LD2 that have passed through the living body 8.

なお、ここでは一例として、発光素子LD1及び発光素子LD2は、共に面発光レーザ素子であるものとして説明するが、これに限らず、端面発光レーザ素子であってもよい。   Here, as an example, the light-emitting element LD1 and the light-emitting element LD2 are described as both surface-emitting laser elements. However, the present invention is not limited to this, and may be edge-emitting laser elements.

測定部20において血流量を測定する場合、既に説明したように、ビート信号による受光量のスペクトル分布を利用するため、発光素子LD1には他の光に比べてビート信号が発生しやすいレーザ素子を用いることが好ましい。   When measuring the blood flow in the measurement unit 20, as described above, a laser element that easily generates a beat signal compared to other light is used for the light emitting element LD1 in order to use the spectral distribution of the amount of light received by the beat signal. It is preferable to use it.

しかし、発光素子LD2から照射される光はレーザ光でなくても、発光素子LD2の吸光量の変化量ΔARedは算出されるため、発光素子LD2には、発光ダイオード(Light-Emitting Diode:LED)又は有機発光ダイオード(Organic Light-Emitting Diode:OLED)を用いてもよい。 However, even if the light emitted from the light emitting element LD2 is not laser light, the change amount ΔA Red of the light absorption amount of the light emitting element LD2 is calculated, and therefore, the light emitting element LD2 includes a light-emitting diode (LED). ) Or organic light-emitting diode (OLED) may be used.

次に、図11を参照して、本実施の形態に係る生体情報測定装置10の電気系統の要部構成について説明する。   Next, with reference to FIG. 11, the principal part structure of the electric system of the biological information measuring device 10 which concerns on this Embodiment is demonstrated.

図11に示すように、本実施の形態に係る生体情報測定装置10は、発光素子LD1及び発光素子LD2の発光周期及び発光期間を制御する制御手段、並びに、生体8における血流量及び血中の酸素飽和度を測定する測定手段の一例としてのCPU(Central Processing Unit)30を備える。また、生体情報測定装置10は、各種プログラムや各種パラメータ等が予め記憶されたROM(Read Only Memory)32、及びCPU30による各種プログラムの実行時のワークエリア等として用いられるRAM(Random Access Memory)34を備える。   As shown in FIG. 11, the biological information measuring apparatus 10 according to the present embodiment includes a light-emitting element LD1 and a control unit that controls the light-emission period and light-emission period of the light-emitting element LD2, and the blood flow volume and blood in the living body 8. A CPU (Central Processing Unit) 30 is provided as an example of a measuring means for measuring oxygen saturation. The biological information measuring apparatus 10 includes a ROM (Read Only Memory) 32 in which various programs and various parameters are stored in advance, and a RAM (Random Access Memory) 34 used as a work area when the CPU 30 executes the various programs. Is provided.

CPU30、ROM32、及びRAM32は、生体情報測定装置10の内部バス36で互いに接続され、更に、内部バス36には、発光素子LD1、発光素子LD2、受光素子3、増幅回路16、及びA/D変換回路18が各々接続される。   The CPU 30, ROM 32, and RAM 32 are connected to each other via an internal bus 36 of the biological information measuring apparatus 10, and further, the internal bus 36 includes a light emitting element LD 1, a light emitting element LD 2, a light receiving element 3, an amplifier circuit 16, and an A / D. Conversion circuits 18 are connected to each other.

なお、CPU30には、指定した時点からの経過時間を計測するタイマが内蔵されている。   The CPU 30 has a built-in timer that measures the elapsed time from the specified time.

次に、図12を参照して、生体情報測定装置10の作用について説明する。   Next, the operation of the biological information measuring device 10 will be described with reference to FIG.

図12は、CPU30が生体情報の測定を開始する指示を受け付けた場合に、CPU30によって実行される生体情報測定処理の流れの一例を示すフローチャートである。生体情報測定処理を規定するプログラム(生体情報測定プログラム)は、例えばROM32に予めインストールされている。なお、生体情報測定プログラムの開始時点において、発光素子LD1及び発光素子LD2は、共にレーザ光を照射していない発光停止状態になっているものとする。   FIG. 12 is a flowchart illustrating an example of the flow of a biological information measurement process executed by the CPU 30 when the CPU 30 receives an instruction to start measurement of biological information. A program (biological information measurement program) for defining the biological information measurement process is installed in advance in the ROM 32, for example. Note that at the start of the biological information measurement program, it is assumed that both the light emitting element LD1 and the light emitting element LD2 are in a light emission stop state in which laser light is not irradiated.

まず、ステップS10において、CPU30は、CPU30に内蔵されるタイマA及びタイマBの2つのタイマをリセットする。ここで、タイマをリセットするとは、タイマによる計測を停止し、タイマを停止した時点から新たに経過時間を計測し始めることを意味する。   First, in step S <b> 10, the CPU 30 resets two timers, timer A and timer B, built in the CPU 30. Here, resetting the timer means stopping the measurement by the timer and starting to newly measure the elapsed time from the time when the timer is stopped.

ステップS20において、CPU30は、ステップS10でタイマAをリセットしてから時間T3以上経過しているか否かを判定する。当該時間T3は、例えばROM32の予め定めた領域に予め記憶されるパラメータであり、発光素子LD1の発光期間から次の発光期間までの時間、すなわち、発光素子LD1の発光停止期間を決定する。 In step S20, CPU 30 determines whether or Reset the timer A has elapsed time T 3 or more in step S10. The time T 3 is a parameter stored in advance in a predetermined area of the ROM 32, for example, and determines the time from the light emission period of the light emitting element LD1 to the next light emission period, that is, the light emission stop period of the light emitting element LD1.

なお、発光素子LD1は血流量の測定に用いられるため、約数十kHzを上限とした範囲の周波数に対応する周期に設定される。   Since the light emitting element LD1 is used for blood flow measurement, it is set to a cycle corresponding to a frequency in a range with an upper limit of about several tens of kHz.

ステップS20の判定処理が否定判定の場合には、CPU30はステップS20の処理を繰り返し実行して、タイマAが時間T3以上経過するまで待機する。一方、肯定判定の場合にはステップS30に移行する。 Determination processing in step S20 is in the negative determination is, CPU 30 may repeatedly performs the processes of steps S20, timer A waits until the elapsed time T 3 or more. On the other hand, if the determination is affirmative, the process proceeds to step S30.

ステップS30において、CPU30は、タイマAをリセットする。   In step S30, the CPU 30 resets the timer A.

そして、ステップS40において、CPU30は、駆動回路14に対して発光素子LD1の発光開始を指示する発光開始指示を通知する。駆動回路14は、発光開始指示を受け付けると発光素子LD1に駆動電力を供給し、発光素子LD1からレーザ光を照射させる。   In step S40, the CPU 30 notifies the drive circuit 14 of a light emission start instruction that instructs the light emission element LD1 to start light emission. When the drive circuit 14 receives the light emission start instruction, the drive circuit 14 supplies drive power to the light emitting element LD1 and irradiates the laser light from the light emitting element LD1.

ステップS50において、CPU30は、発光素子LD1の発光期間に、受光素子3で受光された発光素子LD1による受光量をA/D変換回路18から取得して、例えばRAM34の予め定めた領域に記憶する。   In step S50, the CPU 30 acquires the amount of light received by the light emitting element LD1 received by the light receiving element 3 during the light emitting period of the light emitting element LD1 from the A / D conversion circuit 18, and stores it in a predetermined area of the RAM 34, for example. .

ステップS60において、CPU30は、ステップS20でタイマAをリセットしてから時間T4以上経過しているか否かを判定する。当該時間T4は、例えばROM32の予め定めた領域に予め記憶されるパラメータであり、発光素子LD1が発光してから発光を停止するまでの時間、すなわち、発光素子LD1の発光期間を決定する。 In step S60, CPU 30 determines whether or Reset the timer A has elapsed time T 4 or more in step S20. The time T 4 is a parameter stored in advance in a predetermined area of the ROM 32, for example, and determines the time from when the light emitting element LD1 emits light until it stops emitting light, that is, the light emitting period of the light emitting element LD1.

ステップS60の判定処理が否定判定の場合には、CPU30はステップS60の処理を繰り返し実行して、タイマAが時間T4以上経過するまで待機する。一方、肯定判定の場合にはステップS70に移行する。 Determination processing in step S60 is in the negative determination is, CPU 30 may repeatedly performs the processes of steps S60, timer A waits until the elapsed time T 4 or higher. On the other hand, if the determination is affirmative, the process proceeds to step S70.

ステップS70において、CPU30は、駆動回路14に対して発光素子LD1の発光停止を指示する発光停止指示を通知する。駆動回路14は、発光停止指示を受け付けると発光素子LD1への駆動電力の供給を停止し、発光素子LD1によるレーザ光の照射を停止させる。また、CPU30は、タイマAをリセットする。   In step S70, the CPU 30 notifies the drive circuit 14 of a light emission stop instruction that instructs the light emission element LD1 to stop light emission. When receiving the light emission stop instruction, the drive circuit 14 stops the supply of drive power to the light emitting element LD1, and stops the irradiation of the laser light by the light emitting element LD1. Further, the CPU 30 resets the timer A.

ステップS80において、CPU30は、今度はステップS10でタイマBをリセットしてから時間T5以上経過しているか否かを判定する。当該時間T5は、例えばROM32の予め定めた領域に予め記憶されるパラメータであり、発光素子LD2の発光停止期間を決定する。なお、時間T5は時間T3より長い時間に設定する。具体的には、血中の酸素飽和度を測定する場合に用いられる、発光素子LD1及び発光素子LD2から各々照射される光の受光量の測定周波数、すなわち、約30Hzから1000Hz程度の周波数に対応する周期に合わせて時間T5を設定すればよい。 In step S80, CPU 30 determines whether this time has elapsed since the reset timer B in step S10 time T 5 or more. The time T 5 is a parameter stored in advance in a predetermined area of the ROM 32, for example, and determines the light emission stop period of the light emitting element LD2. The time T 5 is set to be longer than the time T 3 . Specifically, it corresponds to the measurement frequency of the amount of light received from each of the light emitting element LD1 and the light emitting element LD2, which is used when measuring oxygen saturation in blood, that is, a frequency of about 30 Hz to about 1000 Hz. it may be set time T 5 in accordance with the cycle of.

このように時間T5を設定することで、以下で説明するように、発光素子LD2が発光してから次に発光するまでの発光周期が、発光素子LD1の発光周期より長く設定される。 By setting the time T 5 in this way, as will be described below, the light emission period from when the light emitting element LD2 emits light until the next light emission is set longer than the light emission period of the light emitting element LD1.

ステップS80の判定処理が否定判定の場合にはステップS20に移行し、CPU30は、ステップS20〜S80の処理を繰り返すことによって、発光素子LD2の発光停止期間中に、発光素子LD1を時間T3毎に時間T4に亘って発光させる処理を繰り返し実行する。 Determination processing in step S80 is shifted to the step S20 in the case of negative determination, CPU 30, by repeating the process of step S20~S80, during light emission stop period of the light emitting element LD2, the light emitting elements LD1 time T 3 each The process of emitting light over time T 4 is repeatedly executed.

一方、ステップS80の判定処理が肯定判定の場合にはステップS90に移行する。   On the other hand, if the determination process in step S80 is affirmative, the process proceeds to step S90.

以降のステップS90〜S130では、発光素子LD2に対して、ステップS30〜S70に示した発光素子LD1と同様の発光開始動作及び発光停止動作を行う。   In subsequent steps S90 to S130, the light emission start operation and the light emission stop operation are performed on the light emitting element LD2 in the same manner as the light emitting element LD1 shown in steps S30 to S70.

すなわち、ステップS90において、CPU30は、タイマBをリセットする。   That is, in step S90, the CPU 30 resets the timer B.

ステップS100において、CPU30は、駆動回路14に対して発光素子LD2の発光開始を指示する発光開始指示を通知する。駆動回路14は、発光開始指示を受け付けると発光素子LD2に駆動電力を供給し、発光素子LD2からレーザ光を照射させる。   In step S100, the CPU 30 notifies the drive circuit 14 of a light emission start instruction that instructs the light emission element LD2 to start light emission. When the drive circuit 14 receives the light emission start instruction, the drive circuit 14 supplies drive power to the light emitting element LD2, and irradiates the laser light from the light emitting element LD2.

ステップS110において、CPU30は、発光素子LD2の発光期間に、受光素子3で受光された発光素子LD2による受光量をA/D変換回路18から取得して、例えばRAM34の予め定めた領域に記憶する。   In step S110, the CPU 30 acquires the amount of light received by the light emitting element LD2 received by the light receiving element 3 during the light emitting period of the light emitting element LD2 from the A / D conversion circuit 18, and stores it in a predetermined area of the RAM 34, for example. .

ステップS120において、CPU30は、ステップS90でタイマBをリセットしてから時間T6以上経過しているか否かを判定する。当該時間T6は、例えばROM32の予め定めた領域に予め記憶されるパラメータであり、発光素子LD2の発光期間を決定する。なお、時間T6は、発光素子LD1の発光停止期間の長さを設定する時間T3以下に設定される。 In step S120, CPU 30 determines whether or Reset the timer B has elapsed time T 6 or more in step S90. The time T 6 is a parameter stored in advance in a predetermined area of the ROM 32, for example, and determines the light emission period of the light emitting element LD2. The time T 6 is set to be equal to or shorter than the time T 3 for setting the length of the light emission stop period of the light emitting element LD1.

ステップS120の判定処理が否定判定の場合には、CPU30はステップS120の処理を繰り返し実行して、タイマBが時間T6以上経過するまで待機する。一方、肯定判定の場合にはステップS130に移行する。 Determination processing in step S120 is the case of a negative determination, CPU 30 is repeatedly performs the processes of steps S120, timer B waits until the elapsed time T 6 or more. On the other hand, if the determination is affirmative, the process proceeds to step S130.

ステップS130において、CPU30は、駆動回路14に対して発光素子LD2の発光停止を指示する発光停止指示を通知する。駆動回路14は、発光停止指示を受け付けると発光素子LD2への駆動電力の供給を停止し、発光素子LD2によるレーザ光の照射を停止させる。また、CPU30は、タイマBをリセットする。   In step S130, the CPU 30 notifies the drive circuit 14 of a light emission stop instruction for instructing the light emission element LD2 to stop light emission. When receiving the light emission stop instruction, the drive circuit 14 stops the supply of drive power to the light emitting element LD2, and stops the irradiation of the laser light by the light emitting element LD2. Further, the CPU 30 resets the timer B.

ステップS140において、CPU30は、既に説明した血流量の測定方法にしたがって、ステップS50で取得した発光素子LD1の受光量の時系列データに対してFFT処理を行い、周波数ω毎のスペクトル分布を算出し、当該スペクトル分布を全周波数ωについて積分することで、血流量を測定する。   In step S140, the CPU 30 performs FFT processing on the time-series data of the light reception amount of the light emitting element LD1 acquired in step S50 according to the blood flow measurement method described above, and calculates the spectrum distribution for each frequency ω. The blood flow is measured by integrating the spectral distribution with respect to all frequencies ω.

ステップS150において、CPU30は、既に説明した血中の酸素飽和度の測定方法にしたがって、ステップS50で取得した発光素子LD1の受光量と、ステップS110で取得した発光素子LD2の受光量を、例えばRAM34の予め定めた領域に記憶する。そして、CPU30は、受光量の時系列データを用いて(1)式及び(2)式、又は、これらの式を変形して得られる公知の式を算出することで、血中の酸素飽和度を測定する。   In step S150, the CPU 30 uses, for example, the RAM 34 to calculate the received light amount of the light emitting element LD1 acquired in step S50 and the received light amount of the light emitting element LD2 acquired in step S110, according to the method for measuring the oxygen saturation in blood. Is stored in a predetermined area. Then, the CPU 30 calculates the expression (1) and (2) or a known expression obtained by modifying these expressions using the time series data of the amount of received light, so that the oxygen saturation level in the blood is calculated. Measure.

ステップS160において、CPU30は、生体情報の測定を終了する終了指示を受け付けたか否かを判定する。当該判定処理が否定判定の場合にはステップS20に移行し、終了指示を受け付けるまでステップS20〜S160を繰り返し実行することで、血流量及び酸素飽和度を測定し続ける。   In step S160, the CPU 30 determines whether or not an end instruction for ending the measurement of biometric information has been received. If the determination process is negative, the process proceeds to step S20, and steps S20 to S160 are repeatedly executed until an end instruction is received, thereby continuously measuring the blood flow volume and the oxygen saturation.

図13は、図12の生体情報測定プログラムを実行した場合における、発光素子LD1及び発光素子LD2の発光タイミングを示すタイミングチャートの一例である。   FIG. 13 is an example of a timing chart showing the light emission timings of the light emitting element LD1 and the light emitting element LD2 when the biological information measurement program of FIG. 12 is executed.

図13に示すように、発光素子LD1には、時間T3の長さを有する発光停止期間と、時間T4の長さを有する発光期間とが繰り返し現われる。また、発光素子LD2には、時間T5の長さを有する発光停止期間と、時間T6の長さを有する発光期間とが繰り返し現われるが、発光素子LD2の発光停止期間を発光素子LD1の発光停止期間より長く設定したことによって、発光素子LD1の発光停止期間毎に発光素子LD2が発光する状況が回避される。 As shown in FIG. 13, in the light emitting element LD1, a light emission stop period having a length of time T 3 and a light emission period having a length of time T 4 appear repeatedly. Further, the light emitting element LD2, the light emission stop period having a length of time T 5, although the light emitting period is repeatedly appear with a length of time T 6, emit emission stop period of the light emitting element LD2 of the light emitting element LD1 By setting it longer than the stop period, a situation where the light emitting element LD2 emits light every light emission stop period of the light emitting element LD1 is avoided.

この場合、測定部20は、発光素子LD1及び発光素子LD2の受光量の各取得タイミングを表す受光点96のうち、受光点96Bで取得した発光素子LD2の受光量と、受光点96Bを含む発光素子LD2の発光期間と時間軸に沿って隣接する発光素子LD1の発光期間中に取得した、受光点96A又は受光点96Bの何れかにおける発光素子LD1の受光量を用いて、血中の酸素飽和度を測定する。   In this case, the measurement unit 20 emits light including the light receiving amount of the light emitting element LD2 acquired at the light receiving point 96B and the light receiving point 96B among the light receiving points 96 representing the respective acquisition timings of the light receiving amounts of the light emitting elements LD1 and LD2. Oxygen saturation in blood using the light receiving amount of the light emitting element LD1 at either the light receiving point 96A or the light receiving point 96B obtained during the light emitting period of the element LD2 and the light emitting period of the light emitting element LD1 adjacent along the time axis. Measure the degree.

これは、血中の酸素飽和度を測定する場合、時間的にできるだけ近接する発光素子LD1の受光量と発光素子LD2の受光量とを用いた方が、測定精度が高くなる傾向があるためである。なお、以降では、受光点96が時間的にできるだけ近接することを、単に「受光点96が近接する」という場合がある。   This is because, when measuring oxygen saturation in blood, the measurement accuracy tends to be higher when the amount of light received by the light emitting element LD1 and the amount of light received by the light emitting element LD2 are as close as possible in time. is there. In the following, the fact that the light receiving point 96 is as close as possible in time may be simply referred to as “the light receiving point 96 is close”.

また、図12に示した生体情報測定プログラムのフローチャートでは、発光素子LD2の発光停止期間の長さを固定としたが、可変にしてもよい。   In the flowchart of the biological information measurement program shown in FIG. 12, the length of the light emission stop period of the light emitting element LD2 is fixed, but may be variable.

図14は、発光素子LD2の発光停止期間を規定する時間T5及び時間T7をそれぞれ異なる値に設定した場合における、発光素子LD1及び発光素子LD2の発光タイミングを示すタイミングチャートの一例である。この場合であっても、測定部20は、受光点96Aにおける発光素子LD1の受光量と、受光点96Aに近接する受光点96の一例である受光点96Bにおける発光素子LD2の受光量、及び受光点96Cにおける発光素子LD1の受光量と、受光点96Cに近接する受光点96の一例である受光点96Dにおける発光素子LD2の受光量を用いて、血中の酸素飽和度を測定する。 14, in the case where the time T 5 and time T 7 for defining the light emission stop period of the light emitting element LD2 is set to different values, which is an example of a timing chart showing the emission timing of the light emitting elements LD1 and the light-emitting element LD2. Even in this case, the measurement unit 20 receives the received light amount of the light emitting element LD1 at the light receiving point 96A, the received light amount of the light emitting element LD2 at the light receiving point 96B, which is an example of the light receiving point 96 close to the light receiving point 96A, and the received light. The blood oxygen saturation is measured using the amount of light received by the light emitting element LD1 at the point 96C and the amount of light received by the light emitting element LD2 at the light receiving point 96D, which is an example of the light receiving point 96 close to the light receiving point 96C.

また、例えば発光素子LD1の発光期間のうち、特定の期間に含まれる複数の発光期間における各受光点96の受光量の平均値を、発光素子LD1の発光期間における受光量としてもよい。また、発光素子LD2の発光期間のうち、特定の期間に含まれる複数の発光期間における各受光点96の受光量の平均値を、発光素子LD2の発光期間における受光量としてもよい。   Further, for example, an average value of the light receiving amount of each light receiving point 96 in a plurality of light emitting periods included in a specific period among the light emitting periods of the light emitting element LD1 may be used as the light receiving amount in the light emitting period of the light emitting element LD1. Further, among the light emission periods of the light emitting element LD2, the average value of the light reception amount of each light receiving point 96 in a plurality of light emission periods included in the specific period may be used as the light reception amount in the light emission period of the light emitting element LD2.

例えば、図15に示すように、測定部20は、発光素子LD1の発光期間のうち、特定の期間TLD1に含まれる各々の発光期間における受光点96A及び受光点96Cの各受光量の平均値を算出する。また、測定部20は、発光素子LD2の発光期間のうち、特定の期間TLD2に含まれる各々の発光期間における受光点96B及び受光点96Dの各受光量の平均値を算出する。そして、測定部20は、受光点96A及び受光点96Cの各受光量の平均値と、受光点96B及び受光点96Dの各受光量の平均値を用いて、血中の酸素飽和度を測定する。 For example, as shown in FIG. 15, the measurement unit 20 uses the average value of the amounts of light received at the light receiving points 96A and 96C in the respective light emitting periods included in the specific period T LD1 among the light emitting periods of the light emitting element LD1. Is calculated. In addition, the measurement unit 20 calculates an average value of the amounts of light received at the light receiving points 96B and 96D in each light emitting period included in the specific period T LD2 among the light emitting periods of the light emitting element LD2. Then, the measurement unit 20 measures the oxygen saturation level in the blood using the average value of the respective received light amounts of the light receiving points 96A and 96C and the average value of the received light amounts of the light receiving points 96B and 96D. .

更に、測定部20は、図16に示すように、発光素子LD1の発光期間及び発光素子LD2の発光期間において受光点96を複数設け、各受光点96における受光量を取得し、取得した各受光点96における受光量の平均値を、それぞれ発光素子LD1及び発光素子LD2の発光期間における受光量としてもよい。すなわち、受光点96A及び受光点96Cにおける各々の受光量の平均値を発光素子LD1の発光期間における受光量とし、受光点96B及び受光点96Dにおける各々の受光量の平均値を発光素子LD2の発光期間における受光量とする。   Further, as shown in FIG. 16, the measuring unit 20 provides a plurality of light receiving points 96 in the light emitting period of the light emitting element LD1 and the light emitting period of the light emitting element LD2, acquires the amount of light received at each light receiving point 96, and acquires each received light received. The average value of the received light amount at the point 96 may be used as the received light amount in the light emission period of the light emitting element LD1 and the light emitting element LD2, respectively. That is, the average value of the respective received light amounts at the light receiving point 96A and the light receiving point 96C is set as the received light amount in the light emitting period of the light emitting element LD1, and the average value of the respective received light amounts at the light receiving point 96B and the light receiving point 96D is emitted from the light emitting element LD2. The amount of light received during the period.

なお、図16では、発光素子LD1及び発光素子LD2の各々の発光期間に対して複数の受光点96を設け、受光点96における受光量を平均する例を示したが、受光量の算出方法はこれに限られない。例えば、発光素子LD1及び発光素子LD2の何れか一方の発光期間に対してのみ複数の受光点96を設けるようにしてもよい。   Note that FIG. 16 shows an example in which a plurality of light receiving points 96 are provided for each light emitting period of the light emitting element LD1 and the light emitting element LD2 and the amount of light received at the light receiving point 96 is averaged. It is not limited to this. For example, a plurality of light receiving points 96 may be provided only for either one of the light emitting elements LD1 and LD2.

すなわち、測定に用いる発光素子LD1および発光素子LD2の受光量データは、図14に記載したデータ数に限らず、図15のように特定の期間に複数の発光期間を有してもよく、加えて図16のように発光素子LD1の発光期間及び発光素子LD2の発光期間において受光点96を複数設けてもかまわない。   That is, the received light amount data of the light emitting element LD1 and the light emitting element LD2 used for the measurement is not limited to the number of data described in FIG. 14, and may have a plurality of light emitting periods in a specific period as shown in FIG. As shown in FIG. 16, a plurality of light receiving points 96 may be provided in the light emitting period of the light emitting element LD1 and the light emitting period of the light emitting element LD2.

このように本実施の形態に係る生体情報測定装置10によれば、発光素子LD1と発光素子LD2の一部の発光期間が重複しても良いが、望ましくは重複しないように、且つ、単位時間あたりの発光素子LD2の発光回数が発光素子LD1の発光回数より少なくなるように、発光素子LD1及び発光素子LD2を制御する。   As described above, according to the biological information measuring apparatus 10 according to the present embodiment, a part of the light emission periods of the light emitting element LD1 and the light emitting element LD2 may overlap. The light emitting element LD1 and the light emitting element LD2 are controlled such that the number of times of light emission of the light emitting element LD2 is smaller than the number of times of light emission of the light emitting element LD1.

したがって、発光素子LD1及び発光素子LD2の発光周期を同じに設定して、発光素子LD1及び発光素子LD2を交互に発光させる場合に消費される電力より少ない電力で、血流量及び血中の酸素飽和度が測定される。   Accordingly, the light emission period of the light emitting element LD1 and the light emitting element LD2 are set to be the same, and the blood flow volume and oxygen saturation in the blood are reduced with less power than that consumed when the light emitting elements LD1 and LD2 emit light alternately. The degree is measured.

なお、生体情報測定装置10は、既に説明したように血流量の他、血流速度の測定にも適用される。また、図7に示したように、動脈の脈動に応じて受光素子3で受光される受光量が変化するため、受光素子3での受光量の変化から、脈拍数が測定される。また、脈拍数の変化を時系列順に測定して得られる波形を2回微分することで、加速度脈波が測定される。加速度脈波は、血管年齢の推定又は動脈硬化の診断等に用いられる。   In addition, the biological information measuring device 10 is applied to the measurement of the blood flow velocity in addition to the blood flow as already described. Further, as shown in FIG. 7, since the amount of light received by the light receiving element 3 changes according to the pulsation of the artery, the pulse rate is measured from the change in the amount of light received by the light receiving element 3. Moreover, an acceleration pulse wave is measured by differentiating twice the waveform obtained by measuring the change of the pulse rate in time series. The acceleration pulse wave is used for estimating blood vessel age or diagnosing arteriosclerosis.

また、生体情報測定装置10は、ここで挙げた内容に限らず、他の生体情報の測定にも利用する事ができる。 In addition, the biological information measuring device 10 is not limited to the contents described here, and can be used for measuring other biological information.

以上、実施の形態を用いて本発明について説明したが、本発明は実施の形態に記載の範囲には限定されない。本発明の要旨を逸脱しない範囲で実施の形態に多様な変更又は改良を加えることができ、当該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。例えば、本発明の要旨を逸脱しない範囲で処理の順序を変更してもよい。   Although the present invention has been described using the embodiment, the present invention is not limited to the scope described in the embodiment. Various changes or improvements can be added to the embodiments without departing from the gist of the present invention, and embodiments to which the changes or improvements are added are also included in the technical scope of the present invention. For example, the processing order may be changed without departing from the scope of the present invention.

また、実施の形態では、一例として制御部12及び測定部20における処理をソフトウエアで実現する形態について説明したが、図12に示したフローチャートと同等の処理をハードウエアで処理させるようにしてもよい。この場合、制御部12及び測定部20における処理をソフトウエアで実現する場合に比べて、処理の高速化が図られる。   In the embodiment, as an example, the form in which the processing in the control unit 12 and the measurement unit 20 is realized by software has been described. However, the same processing as the flowchart shown in FIG. 12 may be processed by hardware. Good. In this case, the processing speed can be increased as compared with the case where the processing in the control unit 12 and the measurement unit 20 is realized by software.

また、実施の形態では、生体情報測定プログラムがROM32にインストールされている形態を説明したが、これに限定されるものではない。本発明に係る生体情報測定プログラムは、コンピュータ読取可能な記録媒体に記録された形態で提供することも可能である。例えば、本発明に係る生体情報測定プログラムは、CD(Compact Disc)−ROM、DVD(Digital Versatile)−ROMまたはUSB(Universal Serial Bus)メモリ等の可搬型記録媒体に記録された形態で提供することも可能である。また、本発明に係る生体情報測定プログラムは、フラッシュメモリ等の半導体メモリ等に記録された形態で提供することも可能である。   In the embodiment, the biological information measurement program is installed in the ROM 32. However, the present invention is not limited to this. The biological information measurement program according to the present invention can also be provided in a form recorded on a computer-readable recording medium. For example, the biological information measurement program according to the present invention is provided in a form recorded in a portable recording medium such as a CD (Compact Disc) -ROM, a DVD (Digital Versatile) -ROM, or a USB (Universal Serial Bus) memory. Is also possible. The biological information measurement program according to the present invention can be provided in a form recorded in a semiconductor memory such as a flash memory.

1、2・・・発光素子(LD)
3・・・受光素子
4・・・動脈
5・・・静脈
6・・・毛細血管
7・・・血球細胞
8・・・生体
10・・・生体情報測定装置
12・・・制御部
14・・・駆動回路
16・・・増幅回路
18・・・変換回路
20・・・測定部
30・・・CPU
96(96A、96B、96C、96D)・・・受光点
1, 2 ... Light emitting element (LD)
DESCRIPTION OF SYMBOLS 3 ... Light receiving element 4 ... Artery 5 ... Vein 6 ... Capillary blood vessel 7 ... Blood cell 8 ... Living body 10 ... Living body information measuring device 12 ... Control part 14 ... Drive circuit 16 ... amplifier circuit 18 ... conversion circuit 20 ... measurement unit 30 ... CPU
96 (96A, 96B, 96C, 96D) ... light receiving point

Claims (8)

互いに波長の異なる光を照射する第1発光素子及び第2発光素子と、
前記第1発光素子及び前記第2発光素子から照射される各々の光を受光する受光素子と、
単位時間あたりの前記第2発光素子の発光回数が前記第1発光素子の発光回数より少なくなるように、前記第1発光素子及び前記第2発光素子の発光期間を制御する制御手段と、
前記受光素子で受光した光の各々から、複数の生体情報を測定する測定手段と、
を備えた生体情報測定装置。
A first light emitting element and a second light emitting element that irradiate light having different wavelengths;
A light receiving element that receives each light emitted from the first light emitting element and the second light emitting element;
Control means for controlling the light emission periods of the first light emitting element and the second light emitting element so that the number of times of light emission of the second light emitting element per unit time is less than the number of times of light emission of the first light emitting element;
Measuring means for measuring a plurality of biological information from each of the light received by the light receiving element;
A biological information measuring device comprising:
前記制御手段は、前記第1発光素子及び前記第2発光素子の発光期間が重複しないように、前記第1発光素子及び前記第2発光素子の発光期間を制御する
請求項1記載の生体情報測定装置。
The biological information measurement according to claim 1, wherein the control unit controls a light emission period of the first light emitting element and the second light emitting element so that light emission periods of the first light emitting element and the second light emitting element do not overlap. apparatus.
前記測定手段は、前記受光素子で受光した、前記第1発光素子による光の受光量に対する周波数スペクトル、並びに、前記受光素子で受光した、前記第1発光素子による光の受光量及び前記第2発光素子による光の受光量から、前記複数の生体情報を測定する
請求項1記載の生体情報測定装置。
The measuring means receives the frequency spectrum with respect to the amount of light received by the first light emitting element received by the light receiving element, and the amount of light received by the first light emitting element and the second light emission received by the light receiving element. The biological information measuring apparatus according to claim 1, wherein the biological information is measured from an amount of light received by the element.
前記測定手段は、前記第1発光素子の発光期間における光の受光量と、前記第1発光素子の発光期間と隣接する前記第2発光素子の発光期間における光の受光量と、の組み合わせを用いて、前記複数の生体情報を測定する
請求項1〜請求項3の何れか1項に記載の生体情報測定装置。
The measuring means uses a combination of a light receiving amount of the first light emitting element during a light emitting period and a light receiving amount of the second light emitting element adjacent to the light emitting period of the first light emitting element. The biological information measuring device according to claim 1, wherein the biological information is measured.
前記測定手段は、特定の期間に含まれる前記第1発光素子の発光期間の各々における光の受光量の平均値を前記第1発光素子の発光期間における光の受光量とし、前記特定の期間に含まれる前記第1発光素子の発光期間の各々と隣接する、前記第2発光素子の各発光期間における光の受光量の平均値を、前記第2発光素子の発光期間における光の受光量とする
請求項4記載の生体情報測定装置。
The measuring means sets an average value of the amount of light received in each of the light emitting periods of the first light emitting element included in the specific period as the amount of light received in the light emitting period of the first light emitting element, and in the specific period The average value of the amount of light received in each light emission period of the second light emitting element adjacent to each of the light emission periods of the first light emitting element included is the amount of light received in the light emission period of the second light emitting element. The biological information measuring device according to claim 4.
前記測定手段は、前記第1発光素子の発光期間及び前記第2発光素子の発光期間の少なくとも一方の発光期間において、複数回に亘って前記受光素子から受光量を取得し、取得した各々の受光量の平均値を、複数回に亘って前記受光素子から受光量を取得した発光期間における光の受光量とする
請求項4又は請求項5記載の生体情報測定装置。
The measuring means acquires the amount of light received from the light receiving element over a plurality of times during at least one of the light emitting period of the first light emitting element and the light emitting period of the second light emitting element. The biological information measuring device according to claim 4 or 5, wherein an average value of the amount is set as a light reception amount in a light emission period in which the light reception amount is acquired from the light receiving element over a plurality of times.
前記測定手段は、血流量と血流速度と血液量の少なくとも1つと、血中の酸素飽和度と、を含む生体情報を前記複数の生体情報として測定する
請求項1〜請求項6の何れか1項に記載の生体情報測定装置。
The measurement means measures biological information including at least one of blood flow volume, blood flow velocity, blood volume, and oxygen saturation in blood as the plurality of biological information. The biological information measuring device according to item 1.
コンピュータを、請求項1〜請求項7の何れか1項に記載の制御手段及び測定手段として機能させるための生体情報測定プログラム。   A biological information measurement program for causing a computer to function as the control unit and the measurement unit according to any one of claims 1 to 7.
JP2016064454A 2016-03-28 2016-03-28 Apparatus and program for measuring biological information Pending JP2017176263A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016064454A JP2017176263A (en) 2016-03-28 2016-03-28 Apparatus and program for measuring biological information
US15/226,371 US10376223B2 (en) 2016-03-28 2016-08-02 Living-body information measurement device and non-transitory computer readable medium
US15/228,074 US20170273631A1 (en) 2016-03-28 2016-08-04 Living-body information measurement device
US15/229,192 US10492732B2 (en) 2016-03-28 2016-08-05 Living-body information measurement device and non-transitory computer readable medium
CN201610808043.1A CN107233089B (en) 2016-03-28 2016-09-07 Living body information measuring device
CN201610806366.7A CN107233100A (en) 2016-03-28 2016-09-07 Biological information detecting device
CN201610810705.9A CN107233073A (en) 2016-03-28 2016-09-08 Biological information detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064454A JP2017176263A (en) 2016-03-28 2016-03-28 Apparatus and program for measuring biological information

Publications (1)

Publication Number Publication Date
JP2017176263A true JP2017176263A (en) 2017-10-05

Family

ID=60002952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064454A Pending JP2017176263A (en) 2016-03-28 2016-03-28 Apparatus and program for measuring biological information

Country Status (1)

Country Link
JP (1) JP2017176263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154523A (en) * 2018-03-08 2019-09-19 富士ゼロックス株式会社 Biological information measuring device
WO2024117209A1 (en) * 2022-11-30 2024-06-06 株式会社ジャパンディスプレイ Detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256924A (en) * 1988-04-08 1989-10-13 Kowa Co Ophthalmologic diagnosis and device thereof
JPH04193158A (en) * 1990-11-27 1992-07-13 Kowa Co Blood flow measuring device
JPH07265284A (en) * 1994-03-30 1995-10-17 Nippon Koden Corp Measuring device for oxygen saturation ratio and bloodstream
JP2002168862A (en) * 2000-12-04 2002-06-14 Terumo Corp Apparatus for measuring body fluid
JP2007135621A (en) * 2005-11-14 2007-06-07 Konica Minolta Sensing Inc Biological information measuring instrument
JP2010233908A (en) * 2009-03-31 2010-10-21 Konica Minolta Sensing Inc Pulse oximeter
JP2011041699A (en) * 2009-08-21 2011-03-03 Konica Minolta Sensing Inc Biological information measuring apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256924A (en) * 1988-04-08 1989-10-13 Kowa Co Ophthalmologic diagnosis and device thereof
JPH04193158A (en) * 1990-11-27 1992-07-13 Kowa Co Blood flow measuring device
JPH07265284A (en) * 1994-03-30 1995-10-17 Nippon Koden Corp Measuring device for oxygen saturation ratio and bloodstream
JP2002168862A (en) * 2000-12-04 2002-06-14 Terumo Corp Apparatus for measuring body fluid
JP2007135621A (en) * 2005-11-14 2007-06-07 Konica Minolta Sensing Inc Biological information measuring instrument
JP2010233908A (en) * 2009-03-31 2010-10-21 Konica Minolta Sensing Inc Pulse oximeter
JP2011041699A (en) * 2009-08-21 2011-03-03 Konica Minolta Sensing Inc Biological information measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154523A (en) * 2018-03-08 2019-09-19 富士ゼロックス株式会社 Biological information measuring device
JP7106893B2 (en) 2018-03-08 2022-07-27 富士フイルムビジネスイノベーション株式会社 Biological information measuring device
WO2024117209A1 (en) * 2022-11-30 2024-06-06 株式会社ジャパンディスプレイ Detection device

Similar Documents

Publication Publication Date Title
US10376223B2 (en) Living-body information measurement device and non-transitory computer readable medium
KR102486700B1 (en) Apparatus and method for estimating blood pressure
US20190380598A1 (en) Measurement apparatus, measurement method, and measurement method
US20100056887A1 (en) Emission sensor device and bioinformation detecting method
JP6790412B2 (en) Biological information measuring device
US20180014731A1 (en) Biometric information measuring apparatus and non-transitory computer readable storage medium
US10492695B2 (en) Living-body information measuring device and light-emitting element
JP2017176263A (en) Apparatus and program for measuring biological information
JP2017176264A (en) Apparatus and program for measuring biological information
JP5407768B2 (en) Pulse measuring device
JP2019166144A (en) Biological information measurement apparatus and biological information measurement program
US20180014735A1 (en) Biometric information measuring apparatus and non-transitory computer readable storage medium
JP7106893B2 (en) Biological information measuring device
JP6711071B2 (en) Biological information measuring device and biological information measuring program
JP2019042004A (en) Optical measuring device and optical measuring program
JP2006081703A (en) Biological light measuring apparatus
JP2019166149A (en) Biological information measurement apparatus
JP7247671B2 (en) Biological information measuring device and biological information measuring program
JP2019166145A (en) Biological information measurement device and biological information measurement program
JP2019141410A (en) Biological information measurement device and biological information measurement program
JP2023043576A (en) Biological information measurement device and biological information measurement program
WO2021241609A1 (en) Measurement device and estimation system
JP6309659B1 (en) Biological signal analyzer and control method thereof
US9655533B2 (en) System and method for low power sampling of plethysmograph signals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201013