JP6710269B2 - Observation method - Google Patents

Observation method Download PDF

Info

Publication number
JP6710269B2
JP6710269B2 JP2018246439A JP2018246439A JP6710269B2 JP 6710269 B2 JP6710269 B2 JP 6710269B2 JP 2018246439 A JP2018246439 A JP 2018246439A JP 2018246439 A JP2018246439 A JP 2018246439A JP 6710269 B2 JP6710269 B2 JP 6710269B2
Authority
JP
Japan
Prior art keywords
sample
gas
voltage
sample holder
observation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018246439A
Other languages
Japanese (ja)
Other versions
JP2019067774A (en
Inventor
矢口 紀恵
紀恵 矢口
康平 長久保
康平 長久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2018246439A priority Critical patent/JP6710269B2/en
Publication of JP2019067774A publication Critical patent/JP2019067774A/en
Application granted granted Critical
Publication of JP6710269B2 publication Critical patent/JP6710269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、荷電粒子線を用いて試料の観察を行う観察方法に関する。 The present invention relates to an observation method for observing a sample using a charged particle beam.

電子顕微鏡において、常温で試料を観察するほかに、高温に加熱、あるいは冷却、電圧印加、引っ張り応力を印加して試料をその場観察する方法がある。あるいは、種々のガス雰囲気中でその場観察する方法がある。 In addition to observing the sample at room temperature with an electron microscope, there is a method of observing the sample in situ by heating or cooling to high temperature, applying voltage, and applying tensile stress. Alternatively, there is a method of in-situ observation in various gas atmospheres.

高温、特定雰囲気下で、試料の所望の個所に電圧を印加しその反応をリアルタイムで観察する電子顕微鏡装置としては、特許文献1に記載のように、電極を設けたMEMS(Micro Electro Mechanical System)チップにFIB(Focused Ion Beam)で微小試料を搭載し、電子線を透過する薄膜を有した異なるMEMSチップで挟み密閉し、その空間に液体、およびガスを導入する装置がある。 As an electron microscope apparatus for applying a voltage to a desired portion of a sample and observing its reaction in real time under high temperature and a specific atmosphere, as described in Patent Document 1, a MEMS (Micro Electro Mechanical System) provided with electrodes is used. There is a device in which a micro sample is mounted on a chip by FIB (Focused Ion Beam), sandwiched and sealed by different MEMS chips having a thin film that transmits an electron beam, and a liquid and a gas are introduced into the space.

その場観察技術は種々の反応プロセスの観察に用いられており、燃料電池などの触媒劣化プロセス解明の手段として適用が試みられている。例えば、非特許文献1に記載のように、MEMSで燃料電池の微小模擬セルを作製し、水素および空気を各電極に導入し電圧を発生させる代わりに、発電しているときと同様な電圧をかけ、電解液中の電極に塗布した触媒粒子の変化を観察する方法がある。 The in-situ observation technique is used for observing various reaction processes, and its application is attempted as a means for clarifying catalyst deterioration processes in fuel cells and the like. For example, as described in Non-Patent Document 1, a minute simulated cell of a fuel cell is produced by MEMS, and instead of introducing hydrogen and air into each electrode to generate a voltage, a voltage similar to that during power generation is applied. There is a method of observing the change of the catalyst particles applied to the electrode in the electrolytic solution.

特許第5699207号Patent No. 5699207

S. Nagashima et al., In situ Liquid TEM Study for Degradation Mechanisms of Fuel Cell Catalysts during Potential Cycling Test, Microsc. Microanal. 21 (Suppl 3), 2015, p.1295-1296, DOI: 10.1017/S1431927615007266S. Nagashima et al., In situ Liquid TEM Study for Degradation Mechanisms of Fuel Cell Catalysts during Potential Cycling Test, Microsc. Microanal. 21 (Suppl 3), 2015, p.1295-1296, DOI: 10.1017/S1431927615007266

上記の先行技術において、異なるガスを単一試料の異なる所望の個所に別個に導入することは困難で、それによって生じる化学反応の観察および試料の電圧・電流測定は困難であった。また、観察対象が、電極に塗布された電解液中のナノ粒子に限られていた。 In the above-mentioned prior art, it was difficult to separately introduce different gases into different desired locations of a single sample, and it was difficult to observe the chemical reaction caused thereby and measure the voltage and current of the sample. Moreover, the observation target was limited to the nanoparticles in the electrolytic solution applied to the electrodes.

そのため、例えば燃料電池の触媒劣化過程の観察を行う場合、触媒を塗布した電極に同様な電圧が印加できるようにし、化学反応を模擬した構造をMEMS技術で作製していた。これは実際の燃料電池とは異なる構造であり、燃料電池が作動する実環境とも異なっており、ガス導入により発生する反応については配慮されていなかった。 Therefore, for example, when observing the catalyst deterioration process of a fuel cell, the same voltage can be applied to the electrode coated with the catalyst, and a structure simulating a chemical reaction is produced by the MEMS technique. This is a structure different from an actual fuel cell, and is different from the actual environment in which the fuel cell operates, and no consideration was given to the reaction generated by gas introduction.

そこで本発明は、異なるガス空間で発生する試料表面および内部の現象を観察することが可能な観察方法を提供することを目的とする。 Therefore, it is an object of the present invention to provide an observation method capable of observing phenomena on the surface of a sample and inside that occur in different gas spaces.

上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。 In order to solve the above-mentioned subject, the composition described in a claim is adopted, for example.

本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、荷電粒子線を用いて試料を観察する観察方法であって、第1の厚さの第1の部分と、前記第1の厚さよりも厚い第2の厚さの第2の部分と、を有する試料を準備し、前記試料に第1のガス及び第2のガスを噴射し、前記試料の電気計測を行い、前記試料に荷電粒子線を照射することを特徴とする。 The present application includes a plurality of means for solving the above problems, and one example thereof is an observation method for observing a sample using a charged particle beam, which comprises a first portion having a first thickness, A sample having a second portion having a second thickness that is thicker than the first thickness is prepared, and a first gas and a second gas are jetted to the sample to perform electrical measurement of the sample. The sample is irradiated with a charged particle beam.

本発明によれば、異なるガス空間で発生する試料表面および内部の現象を観察することが可能な観察方法を提供することができる。 According to the present invention, it is possible to provide an observation method capable of observing phenomena on the surface of a sample and inside that occur in different gas spaces.

上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

試料ホルダ1の一部拡大上面図(実施例1)。The partially expanded top view of the sample holder 1 (Example 1). 試料ホルダ1の一部断面図(実施例1)。The partial cross section figure of the sample holder 1 (Example 1). 試料ホルダ1の全体図(実施例1)。1 is an overall view of a sample holder 1 (Example 1). 試料ホルダ1の先端部の拡大上面図(実施例1)。The enlarged top view of the front-end|tip part of the sample holder 1 (Example 1). 試料ホルダ1のグリップ9部の構成図(実施例1)。The block diagram of the grip 9 part of the sample holder 1 (Example 1). 試料作製法の説明図。Explanatory drawing of a sample preparation method. 試料作製法の説明図。Explanatory drawing of a sample preparation method. 試料作製法の説明図。Explanatory drawing of a sample preparation method. 試料作製法の説明図。Explanatory drawing of a sample preparation method. 試料作製法の説明図。Explanatory drawing of a sample preparation method. 電子顕微鏡22の基本構成図。The basic block diagram of the electron microscope 22. 燃料電池の動作説明図。FIG. 4 is an operation explanatory view of the fuel cell. 試料ホルダ1の一部拡大上面図(実施例2)。The partially expanded top view of the sample holder 1 (Example 2). 試料ホルダ1の一部拡大上面図(実施例3)。The partially expanded top view of the sample holder 1 (Example 3). 試料ホルダ1の先端拡大上面図(実施例4)。An enlarged top view of the tip of the sample holder 1 (Example 4). 試料ホルダ1の先端部一部拡大上面図(実施例5)。Partially enlarged top view of the tip part of the sample holder 1 (Example 5). 試料ホルダ1の縦断面図(実施例5)。The longitudinal cross-sectional view of the sample holder 1 (Example 5). 試料ホルダ1の横断面図(実施例5)。The cross-sectional view of the sample holder 1 (Example 5). 試料5の形状を示す図(実施例6)。The figure which shows the shape of the sample 5 (Example 6). 試料ホルダ1の一部拡大上面図(実施例6)。The partial expanded top view of the sample holder 1 (Example 6). 試料ホルダ1の一部拡大断面図(実施例6)。The partial expanded sectional view of the sample holder 1 (Example 6). 試料ホルダ1の上面図(実施例7)。The top view of the sample holder 1 (Example 7). 図10Aの試料ホルダ1の中軸36が90度回転した状態の図(実施例7)。The figure in the state where the center shaft 36 of the sample holder 1 of FIG. 試料ホルダ1の先端部の一部拡大上面図(実施例8)。The partial expanded top view of the front-end|tip part of the sample holder 1 (Example 8). 試料ホルダ1の一部拡大上面図(実施例9)。The partial expanded top view of the sample holder 1 (Example 9). 試料ホルダ1の一部断面図(実施例9)。The partial cross section figure of the sample holder 1 (Example 9).

以下、図面を用いて本発明の実施例を説明する。以下の説明では、荷電粒子線を用いて試料の観察を行う観察方法の実施例について、荷電粒子線装置用として電子顕微鏡を例に説明する。 Embodiments of the present invention will be described below with reference to the drawings. In the following description, an embodiment of an observation method for observing a sample using a charged particle beam will be described using an electron microscope as an example for a charged particle beam device.

図1Aおよび図1Bに、荷電粒子線を用いて試料の観察を行う荷電粒子線装置用の試料ホルダ1の一部拡大上面図(図1A)および断面図(図1B)を示す。試料支持膜フレーム2は円形のMEMSで作成されたSiチップであり、中央に電子線の透過する部分となる正方形のフレーム窓3を有し、Siチップの片面に電子線が透過可能な厚さの試料支持膜4が張られている。試料支持膜4はSiNのような絶縁体である。フレーム窓3部分に位置する試料支持膜4上には小片に切りだした試料5が搭載される。試料5の両端に、それぞれ試料5に向けたガス導入口を有した2つのガス噴射ノズル6が配されている。ガス噴射ノズル6の間に位置する試料5の中央部には、各々のガス噴射ノズル6から噴射されるガス雰囲気を遮断するための隔壁7を有する。ガス噴射ノズル6のガス噴出口と試料5との距離は、好ましくは1mm以下である。また、試料5の両端部には電圧測定端子8(電極)が接触している。 1A and 1B are a partially enlarged top view (FIG. 1A) and a cross-sectional view (FIG. 1B) of a sample holder 1 for a charged particle beam apparatus for observing a sample using a charged particle beam. The sample supporting film frame 2 is a Si chip made of a circular MEMS, has a square frame window 3 which is a portion through which an electron beam penetrates, and has a thickness through which the electron beam can penetrate on one side of the Si chip. The sample support film 4 is attached. The sample support film 4 is an insulator such as SiN. A sample 5 cut into small pieces is mounted on the sample support film 4 located in the frame window 3 portion. Two gas injection nozzles 6 each having a gas introduction port toward the sample 5 are arranged at both ends of the sample 5. At the center of the sample 5 located between the gas injection nozzles 6, there is a partition wall 7 for blocking the gas atmosphere injected from each gas injection nozzle 6. The distance between the gas ejection port of the gas ejection nozzle 6 and the sample 5 is preferably 1 mm or less. The voltage measuring terminals 8 (electrodes) are in contact with both ends of the sample 5.

図2Aに試料ホルダ1の全体図、図2Bに試料ホルダ1の先端部の拡大上面図、図2Cに試料ホルダ1のグリップ9部の構成図を示す。ガス噴射ノズル6に接続されたガス導入管10は、試料ホルダ1の軸内を通り、真空内から真空外へとつながっている。試料ホルダ1の軸に装着されたOリング11より先端部が電子顕微鏡の鏡体内の真空部に挿入されている。ガス噴射ノズル6は、試料ホルダ1の軸内を通るガス導入管10を介して、図4に示すようにガス供給装置32に接続されている。電圧測定端子8はリード線・測定端子接続部13に接続されている。リード線・測定端子接続部13は絶縁体のリード線・測定端子接続台14に固定され、リード線・測定端子接続台14は試料ホルダ1に固定されている。リード線15は、図4に示すように電子顕微鏡鏡体外の電圧制御部33内の電圧電流測定部34に接続されている。電圧制御部33内では試料5に電圧測定端子8を介して電圧を印加するための電圧電源を備えている。試料支持膜フレーム2は試料ホルダ1に接着などで固定されている。ガス雰囲気を遮断する隔壁7は、着脱が可能な板状部材であり、試料ホルダ1の隔壁保持部16に挟み込まれる。 2A shows an overall view of the sample holder 1, FIG. 2B shows an enlarged top view of the tip of the sample holder 1, and FIG. 2C shows a configuration diagram of the grip 9 of the sample holder 1. The gas introduction tube 10 connected to the gas injection nozzle 6 passes through the shaft of the sample holder 1 and is connected from the inside of the vacuum to the outside of the vacuum. The tip of the O-ring 11 mounted on the shaft of the sample holder 1 is inserted into the vacuum portion of the microscope body of the electron microscope. The gas injection nozzle 6 is connected to a gas supply device 32 as shown in FIG. 4 via a gas introduction pipe 10 that passes through the axis of the sample holder 1. The voltage measuring terminal 8 is connected to the lead wire/measuring terminal connecting portion 13. The lead wire/measurement terminal connection portion 13 is fixed to an insulating lead wire/measurement terminal connection base 14, and the lead wire/measurement terminal connection base 14 is fixed to the sample holder 1. The lead wire 15 is connected to the voltage/current measuring unit 34 in the voltage control unit 33 outside the electron microscope body as shown in FIG. The voltage control unit 33 includes a voltage power supply for applying a voltage to the sample 5 via the voltage measuring terminal 8. The sample support film frame 2 is fixed to the sample holder 1 by adhesion or the like. The partition wall 7 that shuts off the gas atmosphere is a removable plate-shaped member and is sandwiched by the partition wall holding portion 16 of the sample holder 1.

図3A乃至図3Eに試料作製法を示す。図3Aは図3Bの状態の試料の分解立体図である。試料5の電圧発生部あるいは電圧印加部18と電圧測定端子8との接触を確実にするために、図3Bに示すように、試料5の電圧発生部あるいは電圧印加部18に、電気測定に必要な端子となる導電性膜19(Au箔または類似の導電性材料)を接着する。図3Cに示すように、導電性膜19を接着した試料5を樹脂20で包埋する。図3Dに示すように、各断面が電子線透過可能な厚さになるようにミクロトームなどで薄膜化および整形する。図3Eに示すように、整形した薄膜部を電圧測定端子8に接続可能な方向になるよう、試料支持膜4上に配する。これにより、確実に、薄膜部に発生した電圧の測定が可能となる。 A sample preparation method is shown in FIGS. 3A to 3E. FIG. 3A is an exploded three-dimensional view of the sample in the state of FIG. 3B. In order to ensure the contact between the voltage generating section or voltage applying section 18 of the sample 5 and the voltage measuring terminal 8, as shown in FIG. 3B, the voltage generating section or voltage applying section 18 of the sample 5 is required for electrical measurement. The conductive film 19 (Au foil or similar conductive material) that will serve as a terminal is bonded. As shown in FIG. 3C, the sample 5 to which the conductive film 19 is bonded is embedded with the resin 20. As shown in FIG. 3D, a thin film is formed and shaped by a microtome or the like so that each cross section has a thickness that allows electron beam transmission. As shown in FIG. 3E, the shaped thin film portion is arranged on the sample support film 4 so that it can be connected to the voltage measurement terminal 8. This makes it possible to reliably measure the voltage generated in the thin film portion.

図4に、本実施例の試料ホルダ1を備える電子顕微鏡22の基本構成図を示す。電子顕微鏡22の鏡体は、電子銃23、コンデンサーレンズ24、対物レンズ25、投射レンズ26により構成されている。コンデンサーレンズ24、対物レンズ25の間には、試料ホルダ1が挿入される。投射レンズ26の下方には蛍光板27が装着され、蛍光板27の下方にはカメラ28が装着されている。カメラ28は、画像表示部29に接続されている。試料ホルダ1のガス導入管10は、流量計30a,30bとガス圧コントロールバルブ31a,31bを介し、ガス供給装置32に連結されている。試料ホルダ1のリード線15は電子顕微鏡22鏡体外の電圧制御部33内の電圧電流測定部34に接続されている。 FIG. 4 shows a basic configuration diagram of an electron microscope 22 including the sample holder 1 of this embodiment. The mirror body of the electron microscope 22 includes an electron gun 23, a condenser lens 24, an objective lens 25, and a projection lens 26. The sample holder 1 is inserted between the condenser lens 24 and the objective lens 25. A fluorescent plate 27 is mounted below the projection lens 26, and a camera 28 is mounted below the fluorescent plate 27. The camera 28 is connected to the image display unit 29. The gas introduction pipe 10 of the sample holder 1 is connected to the gas supply device 32 via the flowmeters 30a and 30b and the gas pressure control valves 31a and 31b. The lead wire 15 of the sample holder 1 is connected to the voltage/current measuring unit 34 in the voltage control unit 33 outside the microscope body of the electron microscope 22.

電子銃23から発生した電子線35はコンデンサーレンズ24により収束され試料5に照射される。試料5を透過した電子線35は対物レンズ25により結像され、投射レンズ26により拡大、蛍光板27上に投影される。または、蛍光板27を電子線35の経路から外し、試料5を透過した電子線35をカメラ28に投影し、画像表示部29に透過像が表示されるようにしてもよい。試料5近傍には、ガスを吹き付けられるようにガス噴射ノズル6が装着されている。 The electron beam 35 generated from the electron gun 23 is converged by the condenser lens 24 and irradiated on the sample 5. The electron beam 35 transmitted through the sample 5 is imaged by the objective lens 25, enlarged by the projection lens 26, and projected on the fluorescent plate 27. Alternatively, the fluorescent plate 27 may be removed from the path of the electron beam 35, the electron beam 35 transmitted through the sample 5 may be projected on the camera 28, and a transmission image may be displayed on the image display unit 29. A gas injection nozzle 6 is attached near the sample 5 so that gas can be blown.

少量のガスを試料5に吹き付けながら試料5が反応している様子を蛍光板27あるいはカメラ28に投影された透過電子像で観察しながら、試料5とガスの反応によって発生する電圧を測定することも可能である。あるいは、ガス導入下での電圧を印加した試料5の変化を観察することも可能となる。この際、試料5は試料支持膜4の平面上に置くことになり、試料5と試料支持膜4との密着性が高くなるため、ガスは試料5の試料支持膜4側とは異なる側から導入される。そのため、試料5の表面からのみガスを導入し、試料5から離れたところで混合したガスに試料5の裏面が曝されることなく、局所的に導入されたガスによる内部での変化を捉えることが可能である。 The voltage generated by the reaction between the sample 5 and the gas may be measured while observing the reaction of the sample 5 while blowing a small amount of gas on the fluorescent plate 27 or the transmission electron image projected on the camera 28. It is possible. Alternatively, it is possible to observe the change of the sample 5 to which the voltage is applied under the introduction of gas. At this time, the sample 5 is placed on the plane of the sample support film 4, and the adhesion between the sample 5 and the sample support film 4 is increased. Therefore, the gas is supplied from a side different from the sample support film 4 side of the sample 5. be introduced. Therefore, it is possible to introduce the gas only from the front surface of the sample 5 and to capture the internal change caused by the locally introduced gas without exposing the back surface of the sample 5 to the mixed gas at a position away from the sample 5. It is possible.

なお、上述の透過電子像を用いた透過電子顕微鏡のみならず、本発明は二次電子像を用いる走査電子顕微鏡でも実施可能である。走査電子顕微鏡の場合、投射レンズ26は不要で、電子線入射エネルギーが数十keV以下の細く絞った電子線を試料5面上で走査させ、試料5表面から発生する二次電子を検出する。これにより、試料5表面の反応状態を観察することが可能である。 The present invention can be implemented not only by the transmission electron microscope using the transmission electron image described above but also by the scanning electron microscope using the secondary electron image. In the case of a scanning electron microscope, the projection lens 26 is not required, and a finely focused electron beam having an electron beam incident energy of tens of keV or less is scanned on the surface of the sample 5 to detect secondary electrons generated from the surface of the sample 5. This makes it possible to observe the reaction state on the surface of the sample 5.

図5に、燃料電池の動作説明図を示す。燃料電池は、本発明による観察が有益と考えられる技術分野の一例である。燃料電池は、中央の電解質膜を挟んで両側に電極がある膜/電極接合体(Membrane Electrode Assembly. MEA)と呼ばれる基本構造を有している。現在は、どちらの電極にもカーボン系担体(カーボンブラック、グラファイト化カーボン、ケッチェンブラックなど)と白金(Pt)またはPt合金微粒子の貴金属微粒子触媒が使われている。膜/電極接合体50の燃料極51に水素(図5のH)などの燃料が供給され、プロトン(図5のH)と電子(図5のe)に分解する。プロトンは電解質膜52内を、電子は導線53内を通って空気極54に移動する。空気極54では電解質膜52からのプロトンと、導線からきた電子が空気中の酸素(図5のO)と反応して水(図5のHO)を生成する。例えばこの燃料電池MEAを模した試料5を作製し、本実施例の試料ホルダ1にセットし、各電極に異なるガスを吹き付けることにより、燃料電池の動作状態を模擬した観察をリアルタイムで行うことが可能となる。 FIG. 5 shows an explanatory diagram of the operation of the fuel cell. Fuel cells are an example of a technical field in which observations according to the present invention would be beneficial. A fuel cell has a basic structure called a membrane/electrode assembly (Membrane Electrode Assembly. MEA) in which electrodes are provided on both sides of a central electrolyte membrane. Currently, a carbon-based carrier (carbon black, graphitized carbon, Ketjen black, etc.) and a noble metal fine particle catalyst of platinum (Pt) or Pt alloy fine particles are used for both electrodes. Fuel such as hydrogen (H 2 in FIG. 5) is supplied to the fuel electrode 51 of the membrane/electrode assembly 50, and decomposes into protons (H + in FIG. 5) and electrons (e − in FIG. 5). Protons move in the electrolyte membrane 52 and electrons move in the conducting wire 53 to the air electrode 54. At the air electrode 54, the protons from the electrolyte membrane 52 and the electrons from the lead wire react with oxygen in the air (O 2 in FIG. 5) to generate water (H 2 O in FIG. 5). For example, a sample 5 imitating this fuel cell MEA is prepared, set in the sample holder 1 of this embodiment, and different gases are blown to the respective electrodes, so that observation simulating the operating state of the fuel cell can be performed in real time. It will be possible.

図6Aに試料ホルダ1の別の実施例の一部拡大上面図を示す。ガス噴射ノズル6は導電性があるため、図6Aに示すように、電圧測定端子8を試料5に接触させる代わりにガス噴射ノズル6に接触させ、ガス噴射ノズル6を試料5の両端に接触させてもよい。実施例1の電圧測定端子8を小さい試料5に接触させるのは難しいが、本実施例の形態であればガス噴射ノズル6で試料5を挟むだけ試料5の電圧を測定可能になる。 FIG. 6A shows a partially enlarged top view of another embodiment of the sample holder 1. Since the gas injection nozzle 6 has conductivity, as shown in FIG. 6A, the voltage measurement terminal 8 is brought into contact with the gas injection nozzle 6 instead of being brought into contact with the sample 5, and the gas injection nozzle 6 is brought into contact with both ends of the sample 5. May be. Although it is difficult to bring the voltage measuring terminal 8 of Example 1 into contact with the small sample 5, the voltage of the sample 5 can be measured only by sandwiching the sample 5 between the gas injection nozzles 6 in the embodiment.

図6Bに試料ホルダ1の別の実施例の一部拡大上面図を示す。ガス噴射ノズル6は導電性があるため、図6Bに示すように、ガス噴射ノズル6自体が電圧測定端子8の役割を果たすように、ガス噴射ノズル6bを、試料5に接触させ、リード線15等で電圧電流測定部に接続されるようにしてもよい。実施例2と同様、本実施例の形態でもガス噴射ノズル6で試料5を挟むだけで試料5の電圧を測定可能になる。 FIG. 6B shows a partially enlarged top view of another embodiment of the sample holder 1. Since the gas injection nozzle 6 has conductivity, the gas injection nozzle 6b is brought into contact with the sample 5 and the lead wire 15 is contacted so that the gas injection nozzle 6 itself functions as the voltage measurement terminal 8 as shown in FIG. 6B. It may be configured to be connected to the voltage/current measuring unit, etc. Similar to the second embodiment, the voltage of the sample 5 can be measured only by sandwiching the sample 5 between the gas injection nozzles 6 in this embodiment.

図7に試料ホルダ1の別の実施例の先端拡大上面図を示す。ガス噴射ノズル6を試料5の両端に接触させるために板バネ17で固定するようにしてもよい。これにより、ガス噴射ノズル6および試料5共に固定される。板バネ17の先端部はリング状であり、リング部分にピンセットの先端などを差し込み、つまむことによってバネがゆるみ固定を解くことが可能である。 FIG. 7 shows an enlarged top view of the tip of another embodiment of the sample holder 1. The gas injection nozzle 6 may be fixed by the leaf springs 17 so as to contact both ends of the sample 5. As a result, both the gas injection nozzle 6 and the sample 5 are fixed. The tip of the leaf spring 17 has a ring shape, and the tip of tweezers or the like is inserted into the ring portion and pinched, so that the spring can be loosened to release the fixation.

図8A乃至図8Cに、試料ホルダ1の先端部一部の拡大上面図(図8A)、縦断面図(図8B)、および横断面図(図8C)を示す。試料5および電圧測定端子8がセットされ、ガス噴射ノズル6も所定の位置に配された上から、各電圧測定端子8、ガス噴射ノズル6、および試料5を含むように高分子膜21で被覆する。これにより、試料5部分に高分子膜21が密着して図8Cに示すように隔壁7が形成され、各ガス噴射ノズル6間が互いに分離されるため、同一の試料5の異なる部分に異なるガス空間を形成することが可能となる。 8A to 8C show an enlarged top view (FIG. 8A), a vertical cross-sectional view (FIG. 8B), and a horizontal cross-sectional view (FIG. 8C) of the tip portion of the sample holder 1. The sample 5 and the voltage measurement terminal 8 are set, and the gas injection nozzle 6 is also arranged at a predetermined position. Then, the polymer film 21 is covered so as to include each voltage measurement terminal 8, the gas injection nozzle 6 and the sample 5. To do. As a result, the polymer film 21 is brought into close contact with the sample 5 portion to form the partition wall 7 as shown in FIG. 8C, and the gas injection nozzles 6 are separated from each other. It becomes possible to form a space.

図9Aに試料5の別実施例の形状、図9Bに図9Aの試料5を配置した試料ホルダ1の一部拡大上面図、図9Cに図9Aの試料ホルダ1の一部拡大断面図を示す。実施例1で示したような試料5の形状では、全面観察が可能である一方、試料5の体積が少ないため電流量が少なく、電圧・電流変化の測定が難しい。そこで、試料5を図3Cの状態から薄膜状に切削する代わりに、厚みのある部分と薄い部分とを備える形状、例えばくさび状の形状に切り出す。厚みのある部分では反応量を多くすることができ、薄い部分では透過像を得やすくすることができる。よって、試料5の厚みのある部分を電圧測定端子8との接触部とし、薄い部分を透過像観察部とすることにより、試料5内部に発生した電圧・電流変化の測定と透過像の観察が両立可能となる。また、この試料5の形状は、オペレーションがしやすいという効果もある。 9A shows a shape of another embodiment of the sample 5, FIG. 9B shows a partially enlarged top view of the sample holder 1 in which the sample 5 of FIG. 9A is arranged, and FIG. 9C shows a partially enlarged cross-sectional view of the sample holder 1 of FIG. 9A. .. With the shape of the sample 5 as shown in Example 1, the entire surface can be observed, but the volume of the sample 5 is small, so that the amount of current is small and it is difficult to measure the voltage/current change. Therefore, instead of cutting the sample 5 from the state of FIG. 3C into a thin film shape, the sample 5 is cut into a shape including a thick portion and a thin portion, for example, a wedge shape. The reaction amount can be increased in the thick portion, and the transmission image can be easily obtained in the thin portion. Therefore, by making a thick portion of the sample 5 a contact portion with the voltage measuring terminal 8 and a thin portion a transmission image observation portion, it is possible to measure a voltage/current change generated inside the sample 5 and observe the transmission image. It becomes compatible. Further, the shape of the sample 5 also has an effect that the operation is easy.

図10Aに、試料ホルダ1を電子顕微鏡用サイドエントリー型試料ホルダとして構成した場合の上面図を、図10Bに図10Aの試料ホルダ1の中軸36が90度回転した状態の図を示す。試料ホルダ1は、試料保持部37とは別に同軸回転する外殻38を有し、外殻38は少なくとも±90度傾斜することが可能である。これにより、例えば図10Bの矢印Aの向きに電子線35が入射した場合、図10Bの状態と、図10Bの状態から180度回転した状態とで観察することにより、各電極側の表面状態の二次電子像および反射電子像観察することが可能となる。 FIG. 10A shows a top view when the sample holder 1 is configured as a side entry type sample holder for an electron microscope, and FIG. 10B shows a state in which the center shaft 36 of the sample holder 1 of FIG. 10A is rotated by 90 degrees. The sample holder 1 has an outer shell 38 that rotates coaxially with the sample holder 37, and the outer shell 38 can be inclined at least ±90 degrees. As a result, for example, when the electron beam 35 is incident in the direction of arrow A in FIG. 10B, by observing the state in FIG. 10B and the state rotated 180 degrees from the state in FIG. It becomes possible to observe the secondary electron image and the backscattered electron image.

図11に試料ホルダ1の別の実施例の先端部の一部拡大上面図を示す。試料支持膜4上にヒータ39を設け、ヒータ39は鏡体外に設置された加熱電源に接続される。ヒータ39が加熱されることにより、試料支持膜4が加熱され、試料5を加熱することが可能となる。これにより、試料5加熱時における、試料5とガス噴射ノズル6から供給されるガスとの反応を観察することが可能となる。 FIG. 11 shows a partially enlarged top view of the tip portion of another embodiment of the sample holder 1. A heater 39 is provided on the sample support film 4, and the heater 39 is connected to a heating power source installed outside the mirror body. By heating the heater 39, the sample support film 4 is heated and the sample 5 can be heated. This makes it possible to observe the reaction between the sample 5 and the gas supplied from the gas injection nozzle 6 when the sample 5 is heated.

図12Aおよび図12Bに、試料ホルダ1の別の実施例の一部拡大上面図(図12A)および断面図(図12B)を示す。ガス空間を仕切る隔壁7は、実施例1−3では板状部材により、実施例5では高分子膜21により形成した。しかし、隔壁7は試料5自体によって形成してもよい。例えば、図12Aおよび図12Bに示すように、試料5の部位の内、2つのガス噴射ノズル6の間に位置する部位を、各々のガス噴射ノズル6から噴射されるガス雰囲気を遮断できる程度に厚く形成し、他の部分を薄く形成する形であってもよい。 12A and 12B show a partially enlarged top view (FIG. 12A) and a sectional view (FIG. 12B) of another embodiment of the sample holder 1. The partition wall 7 for partitioning the gas space was formed of a plate-shaped member in Example 1-3 and the polymer film 21 in Example 5. However, the partition wall 7 may be formed by the sample 5 itself. For example, as shown in FIG. 12A and FIG. 12B, the part of the sample 5 located between the two gas injection nozzles 6 can be blocked to the extent that the gas atmosphere injected from each gas injection nozzle 6 can be blocked. The shape may be such that it is formed thick and the other portions are formed thin.

なお、いずれの実施例においても、隔壁7の形成には、板状部材、高分子膜21、または試料5自体の形状による形成を適宜採用することが可能であり、これらを組合せて採用することも可能である。 In any of the embodiments, it is possible to appropriately adopt the plate-shaped member, the polymer film 21, or the shape of the sample 5 itself for forming the partition wall 7, and to use them in combination. Is also possible.

以下に本発明の効果を纏める。 The effects of the present invention are summarized below.

本発明を採用することにより、異なるガス空間で発生する試料表面および内部の現象を観察することができる。 By adopting the present invention, it is possible to observe phenomena on the sample surface and inside that occur in different gas spaces.

また、異なるガス空間で試料の電圧による変化や、極性による変化をリアルタイムで観察、その電圧・電流測定が可能となる。 Further, it is possible to observe changes in the sample due to voltage and changes in polarity in real time in different gas spaces, and to measure the voltage and current.

また、試料加熱時における試料とガス供給手段から供給されるガスとの反応を観察可能となる。 Further, it becomes possible to observe the reaction between the sample and the gas supplied from the gas supply means when the sample is heated.

また、荷電粒子線装置を用いて、微量のガスで荷電粒子線装置の真空状態に影響を与えることなく、試料を包含する異なる微小ガス雰囲気を形成させ、その雰囲気内での試料構造変化の観察および試料内に発生した電圧・電流測定を同時に行うことができる。 Also, using a charged particle beam device, different minute gas atmospheres containing the sample are formed without affecting the vacuum state of the charged particle beam device with a small amount of gas, and the change of the sample structure in the atmosphere is observed. Also, the voltage and current generated in the sample can be measured at the same time.

また、微小ガス雰囲気中での加熱、電圧印加をしながらの原子レベルの動的観察および試料内の電圧・電流測定が可能となる。 Moreover, it becomes possible to perform atomic level dynamic observation and voltage/current measurement in a sample while heating in a micro gas atmosphere and applying a voltage.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・置換をすることも可能である。 It should be noted that the present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add or replace a part of the configuration of each embodiment with another configuration.

1…試料ホルダ、2…試料支持膜フレーム、3…フレーム窓、4…試料支持膜、5…試料、6,6b…ガス噴射ノズル、7…隔壁、8…電圧測定端子、9…グリップ、10…ガス導入管、11…Oリング、13…リード線・測定端子接続部、14…リード線・測定端子接続台、15…リード線、16…隔壁保持部、17…板バネ、18…電圧発生部あるいは電圧印加部、19…導電性膜、20…樹脂、21…高分子膜、22…電子顕微鏡、23…電子銃、24…コンデンサーレンズ、25…対物レンズ、26…投射レンズ、27…蛍光板、28…カメラ、29…画像表示部、30a,30b…流量計、31a,31b…ガス圧コントロールバルブ、32…ガス供給装置、33…電圧制御部、34…電圧電流測定部、35…電子線、36…中軸、37…試料保持部、38…外殻、39…ヒータ、50…膜/電極接合体、51…燃料極、52…電解質膜、53…導線、54…空気極
1... Sample holder, 2... Sample support film frame, 3... Frame window, 4... Sample support film, 5... Sample, 6,6b... Gas injection nozzle, 7... Partition wall, 8... Voltage measurement terminal, 9... Grip, 10 ... Gas introduction pipe, 11... O-ring, 13... Lead wire/measurement terminal connection part, 14... Lead wire/measurement terminal connection block, 15... Lead wire, 16... Partition holding part, 17... Leaf spring, 18... Voltage generation Section or voltage applying section, 19... Conductive film, 20... Resin, 21... Polymer film, 22... Electron microscope, 23... Electron gun, 24... Condenser lens, 25... Objective lens, 26... Projection lens, 27... Fluorescent plate , 28... Camera, 29... Image display section, 30a, 30b... Flowmeter, 31a, 31b... Gas pressure control valve, 32... Gas supply device, 33... Voltage control section, 34... Voltage/current measuring section, 35... Electron beam , 36... Central shaft, 37... Sample holding part, 38... Outer shell, 39... Heater, 50... Membrane/electrode assembly, 51... Fuel electrode, 52... Electrolyte membrane, 53... Conductive wire, 54... Air electrode

Claims (6)

第1の厚さの第1の部分と、前記第1の厚さよりも厚い第2の厚さの第2の部分と、を有する試料を準備し、
前記試料の厚さ方向とは異なる向きでガス噴出方向を互いに異なるようにして、前記試料に第1のガス及び第2のガスを噴射し、
前記第2の部分を測定端子との接触部にして前記試料の電気計測を行い、
荷電粒子線装置の光軸方向が前記試料の厚さ方向になるようにして、前記試料の観察部としての前記第1の部分に荷電粒子線を照射することを特徴とする観察方法。
Providing a sample having a first portion of a first thickness and a second portion of a second thickness greater than said first thickness,
Injecting a first gas and a second gas into the sample by making the gas ejection directions different from each other in the thickness direction of the sample,
The second portion is used as a contact portion with a measurement terminal to perform electrical measurement of the sample,
An observation method comprising irradiating the charged particle beam to the first portion as an observation part of the sample such that the optical axis direction of the charged particle beam device is in the thickness direction of the sample.
請求項1に記載の観察方法であって、
前記第1の部分と前記第2の部分とを有するくさび状に切り出すことで、前記試料を準備することを特徴とする観察方法。
The observation method according to claim 1, wherein
An observation method, characterized in that the sample is prepared by cutting out in a wedge shape having the first portion and the second portion.
請求項に記載の観察方法であって、
前記くさび状の試料の相対向する側面のうちの一方の側面の側から前記第1のガスを噴射し、他方の側面の側から前記第2のガスを噴射することを特徴とする観察方法。
The observation method according to claim 2 , wherein
An observing method comprising injecting the first gas from one side surface side of the opposed side surfaces of the wedge-shaped sample and injecting the second gas from the other side surface side.
第1の厚さの第1の部分と、前記第1の厚さよりも厚い第2の厚さの第2の部分と、を有する試料を準備し、
前記第2の部分を測定端子との接触部にして前記試料に電圧を印加し、
前記試料の厚さ方向とは異なる向きでガス噴出方向を互いに異なるようにして、前記試料に第1のガス及び第2のガスを噴射し、
荷電粒子線装置の光軸方向が前記試料の厚さ方向になるようにして、前記試料の観察部としての前記第1の部分に荷電粒子線を照射することを特徴とする観察方法。
Providing a sample having a first portion of a first thickness and a second portion of a second thickness greater than said first thickness,
A voltage is applied to the sample by using the second portion as a contact portion with the measurement terminal ,
Injecting a first gas and a second gas into the sample by making the gas ejection directions different from each other in the thickness direction of the sample,
An observation method comprising irradiating the charged particle beam to the first portion as an observation part of the sample such that the optical axis direction of the charged particle beam device is in the thickness direction of the sample.
請求項に記載の観察方法であって、
前記第1の部分と前記第2の部分とを有するくさび状に切り出すことで、前記試料を準備することを特徴とする観察方法。
The observation method according to claim 4 ,
An observation method, characterized in that the sample is prepared by cutting out in a wedge shape having the first portion and the second portion.
請求項に記載の観察方法であって、
前記くさび状の試料の相対向する側面のうちの一方の側面の側から前記第1のガスを噴射し、他方の側面の側から前記第2のガスを噴射することを特徴とする観察方法。
The observation method according to claim 5 , wherein
An observing method comprising injecting the first gas from one side surface side of the opposed side surfaces of the wedge-shaped sample and injecting the second gas from the other side surface side.
JP2018246439A 2018-12-28 2018-12-28 Observation method Active JP6710269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018246439A JP6710269B2 (en) 2018-12-28 2018-12-28 Observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018246439A JP6710269B2 (en) 2018-12-28 2018-12-28 Observation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018518807A Division JP6463555B2 (en) 2016-05-23 2016-05-23 Sample holding apparatus and charged particle beam apparatus including the same

Publications (2)

Publication Number Publication Date
JP2019067774A JP2019067774A (en) 2019-04-25
JP6710269B2 true JP6710269B2 (en) 2020-06-17

Family

ID=66339868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018246439A Active JP6710269B2 (en) 2018-12-28 2018-12-28 Observation method

Country Status (1)

Country Link
JP (1) JP6710269B2 (en)

Also Published As

Publication number Publication date
JP2019067774A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP5699207B2 (en) Sample holding device for electron microscope and electron microscope device
US7582885B2 (en) Charged particle beam apparatus
Kishimoto et al. Effect of Composition Ratio of Ni‐YSZ Anode on Distribution of Effective Three‐Phase Boundary and Power Generation Performance
JPS59501604A (en) bottom voltage field emission electron gun
US10068745B2 (en) Charged particle beam device and sample holder for charged particle beam device
JP2013020918A (en) Charged particle beam device
JP2008047411A (en) Sample retainer, sample inspection method and sample inspection device
KR101682521B1 (en) Apparatus for observing specimen, Cover assembly And Method for observing specimen
US7081630B2 (en) Compact microcolumn for automated assembly
JP6463555B2 (en) Sample holding apparatus and charged particle beam apparatus including the same
JP6710269B2 (en) Observation method
WO2007043412A1 (en) X-ray tube and x-ray source including same
Wang et al. Pore confined time-of-flight secondary ion electrochemical mass spectrometry
JP2018049691A (en) Holder and transmission electron microscope equipped with the same
CN109075002B (en) Charged particle microscope and sample imaging method
JP2006244796A (en) Sample holder of electron microscope
Unocic et al. Performing In Situ Closed-Cell Gas Reactions in the Transmission Electron Microscope
US20230333032A1 (en) Sample holder for detection of hydrogen permeation and hydrogen permeation and diffusion path observation device
JP3681284B2 (en) Scanning electron microscope
Ma Electrochemical TEM experiments on solid oxide cells
KR101916529B1 (en) Accelerated Electrochemical and Mechanical Stress Test for GDL in PEM Fuel Cells
Fedorov et al. Scanning mass spectrometry probe for biochemical imaging
Makela Re-generable field emission cathodes for electric propulsion
KR101540721B1 (en) Scanning Electron Microscope
KR20080103123A (en) Analysis method of membrane-electrode assembly using scanning electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200526

R150 Certificate of patent or registration of utility model

Ref document number: 6710269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150