JP3681284B2 - Scanning electron microscope - Google Patents

Scanning electron microscope Download PDF

Info

Publication number
JP3681284B2
JP3681284B2 JP20481998A JP20481998A JP3681284B2 JP 3681284 B2 JP3681284 B2 JP 3681284B2 JP 20481998 A JP20481998 A JP 20481998A JP 20481998 A JP20481998 A JP 20481998A JP 3681284 B2 JP3681284 B2 JP 3681284B2
Authority
JP
Japan
Prior art keywords
sample
sample chamber
vacuum
faraday cup
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20481998A
Other languages
Japanese (ja)
Other versions
JP2000036277A (en
Inventor
雅子 西村
猛夫 鈴木
満彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20481998A priority Critical patent/JP3681284B2/en
Publication of JP2000036277A publication Critical patent/JP2000036277A/en
Application granted granted Critical
Publication of JP3681284B2 publication Critical patent/JP3681284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は走査電子顕微鏡、特に試料室を鏡体部よりも低い真空度に保って観察を行うのに適した走査電子顕微鏡に関する。
【0002】
【従来の技術】
水や油などを含んだ試料や絶縁物試料などを前処理なしで観察するため、試料室を他の部分より低い真空に保った状態で観察を行う走査電子顕微鏡が多くの分野で利用されている。このような走査電子顕微鏡において、同一観察条件での繰り返し観察を行う場合や、エネルギー分散型X線分光器(EDS)などによる標準試料を用いた定量分析を行う場合は、測定条件を一定にするためにプローブ電流(電子ビーム電流)を正確に知る必要がある。プローブ電流は、試料室に到達した全ての電子ビームを絞りを通して小さな部屋(ファラデーカップ)に取り込み、二次電子や反射電子が絞り孔を通して放出されない状態で測定される。ファラデーカップは、ファラデーカップ装置として製品になっているものもあるが、簡易的ものでは、試料台の一部に小孔を開け、その上端部に絞り(数百μm径)を貼り付ける。小孔の深さは二次電子や反射電子が絞り孔を通して放出されないよう、絞り径の10倍以上とする。
【0003】
【発明が解決しようとする課題】
しかし、低い真空に保たれた試料室では、試料室圧力が高くなるにつれて入射電子と試料室内の残留ガス分子の衝突する確率が大きくなるため、入射電子の平均自由行程が短くなって散乱を生じる。そのため低い真空に保たれた試料室ではオリフィスからファラデーカップに到達するまでに入射電子は散乱してしまうとともに、ファラデーカップ内においても散乱してしまうため、試料に到達する正確なプローブ電流を測定することは困難であった。また、試料室圧力が50Paより高い場合は、入射電子の散乱が激しくなるためプローブ電流測定は不能となる。そこで、試料室圧力が50Paより高い状態で観察する場合、プローブ電流を測定する方法として、圧力によって変形を受けない非含水試料などでは観察中に、圧力によって変形を受ける含水試料などではすべての観察が終了後、観察時と同一条件で試料室を高真空にし、試料に到達するプローブ電流でなく、鏡体部と試料室とを仕切るオリフィス下面から出てくるすべての電子ビーム電流をプローブ電流として測定を行ってきた。
【0004】
本発明の目的は、鏡体部内よりも低い真空に保たれた試料室においても、試料観察時に正確なプローブ電流を測定するのに適した走査電子顕微鏡を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、低真空に維持された試料室内に試料を配置し、該試料を前記試料室よりも高真空に維持された鏡体部から前記試料室に入射する電子ビームで照射し、それによって前記試料から発生する信号を検出する走査電子顕微鏡において、前記鏡体部から前記試料室に入射する電子ビーム電流を測定するための、前記試料室内に配置されたファラデーカップと、該ファラデーカップ内を前記試料室よりも高真空に排気する手段とを備えていることを特徴とする。
【0006】
【発明の実施の形態】
図1は、本発明にもとづく走査電子顕微鏡の一実施例を示す。その走査電子顕微鏡は大きくは試料室1、その上段の鏡体部2並びに試料室1及び鏡体部2の内部をそれぞれ排気する排気系3を含み、鏡体部2は更に電子銃部4及びレンズ系部5を含む。
【0007】
電子銃部4の電子銃6からは電子ビーム7が放出され、レンズ系部5のコンデンサレンズ8及び対物レンズ9によって試料室1内の試料10に収束される。電子ビーム7はレンズ系5に設けられた図示しない走査用偏向器によって二次元的に偏向され、それによって試料10は収束された電子ビーム7で二次元的に走査される。
【0008】
試料10が電子ビーム7で走査されると、試料10からは反射電子や二次電子等が発生し、そのうち反射電子は反射電子検出器11によって検出される。検出された反射電子は電気信号に変換され、図示しない表示装置に輝度変調信号として導入される。その表示装置の表示面は試料10の二次元的走査と同期して走査される。したがって、表示装置の表示面には試料の反射電子にもとづく像が表示される。
【0009】
真空的には試料室1内は1〜270Paの低真空に、鏡体部2内は10-4Paの高真空にそれぞれ維持するため試料室1と鏡体部2との間にオリフィス12と呼ばれる数百μmの絞りが設けられており、排気系3によって差動排気される。また、その両方を10-4Paの高真空に排気することもできる。
【0010】
排気系3は、試料室1内及び鏡体部2内を同じ10-4Paの高真空に排気する場合は次のように動作する。まず、バルブ13及び14を開き、予備排気用ロータリポンプ15により排気路16及び17〜21を介して鏡体部2の電子銃部4及びレンズ系部5並びに試料室1の内部を予備排気(粗引き排気)する。またそのとき、バルブ22を開いて、高真空用油拡散ポンプ23の排気路24は油拡散ポンプ排気用ロータリポンプ25により排気している。
【0011】
次いで、鏡体部2の電子銃部4及びレンズ系部5並びに試料室1の内部が所定の真空度(約10Pa)になったら、バルブ13を閉じ、バルブ26を開いて、油拡散ポンプ23により排気路18〜21を介して鏡体部2の電子銃部4及びレンズ系部5並びに試料室1の内部は10-4Paの真空に排気され、オリフィス12によって維持される。
【0012】
一方、この状態で鏡体部2の電子銃部4及びレンズ系部5の内部を10-4Paの高真空に維持し、試料室1内を1〜270Paの低真空に排気し、維持するためには、排気系3は次のように動作する。まず、バルブ14を閉じ、バルブ27を開いて、ロータリーポンプ15により試料室1内を排気路17及び28を介して排気する。次いでバルブ29を開いて低真空用コントロ−ルバルブ30により試料室1内の真空を1〜270Paのうちの任意に設定された真空度に調整する。そして、常に試料室1内の真空度を真空計31で計測し、リアルタイム真空度フィードバックコントローラ32で設定値との差を自動的に調整する。これによって、試料室1内は1〜270Paのうちの任意の低真空に排気され、維持されると共に、鏡体部2の電子銃部4及びレンズ系部5の内部は10-4Paの真空に排気され、オリフィス12によって真空は維持される。
【0013】
また、試料室1には試料ステージ33が設けられ、該試料ステージには試料10を固定し保持する試料台34が取り付けられ、試料台34にはファラデーカップ35が設けられている。ファラデーカップ35には排気路36が設けられ、排気路36、19、20および21を介して鏡体部2の電子銃部4及びレンズ系部5の内部と連通している。これにより、バルブ37を開けば、ファラデーカップ35は鏡体部2の電子銃部4及びレンズ系部5の内部と同じ10-4Paの高真空になる。なお、前記したように、低真空の走査電子顕微鏡では低い真空に保たれた試料室1と高い真空に保たれた鏡体部2の圧力差は、数百μm径のオリフィス12によって維持されている(差動排気)。このことから上記同様、孔径数百μmのファラデーカップ35内が高真空に排気されても、試料室1内を低真空に保つことは可能である。また、ファラデーカップ35はプローブ電流測定時、電子ビーム7通路下に挿入される。排気路36は試料ステージ33の挿入及び引き出し時に生じる長さの変動に対応するため、伸縮可能なコイル入りチューブ構造となっている。
【0014】
図2はファラデーカップ付近の拡大断面を示す。表1は試料室内圧力と電子の平均自由行程の関係を示す。
【0015】
【表1】

Figure 0003681284
【0016】
低真空状態では試料室1内の圧力が高く(低真空)なるにつれて、電子38は残留ガス分子39と衝突する確率が高くなり、平均自由行程が短くなって散乱してしまうため、オリフィス12からファラデーカップ35の距離が長いほど正確なプローブ電流を測定するのは困難となる。また、電子38は残留ガス分子39と衝突時、残留ガス分子39をイオン化して正イオン40を生成し、これが試料室1内及びファラデーカップ35内の電子38を中和してしまう。
【0017】
なお、ファラデーカップ35の入口には数百μm径の絞り41が貼り付けられている。
【0018】
表2は、図2の構成において対物レンズ9の下面からファラデーカップ35までの距離が5mmの時の試料室1内の圧力とプローブ電流の関係を示す。試料室1内の圧力が高くなるにつれてプローブ電流が減少し、50Paより高くなるとプローブ電流の値がプラスになってしまうことがわかる。プラスになる原因は明確でないが、プラスイオンの多量の生成がその原因となっていることが考えられる。
【0019】
【表2】
Figure 0003681284
【0020】
図3は本発明にもとづく一実施例で、ファラデーカップ内を高真空に維持して試料観察位置でプローブ電流を測定する場合の試料室内縦断面を示す。ファラデーカップ35は試料台34の一部に設けられているため、Z軸方向に可変可能である。試料室1内が高真空に維持されている一般の走査電子顕微鏡では、プローブ電流は対物レンズ9の下面からファラデーカップ35までの距離に関係なく一定であるため、測定位置は任意でよい。しかし、試料室の真空度が低い低真空走査電子顕微鏡では図2に示した理由から、距離によってプローブ電流は変化する。本発明の実施例によれば、プローブ電流測定時、ファラデーカップ35内は高真空に排気されているため、ファラデーカップ35に到達した電子38は散乱することなく測定可能であり、試料観察位置でプローブ電流を測定した場合は、試料10に到達するプローブ電流を測定することになる。しかし、試料室1内の圧力がより高く、電子38が残留ガス分子39と衝突する確率が高い場合は、試料観察位置に到達するまでに電子38は散乱してしまい、試料観察位置でのプローブ電流測定が困難となる場合もある。
【0021】
図4は上記問題を解決するための本発明にもとづく実施例で、ファラデーカップとオリフィス間を高真空に維持してオリフィス下面から出てくる全てのプローブ電流を測定する場合の試料室内縦断面図を示す。試料室1内の圧力がより高く、試料観察位置でプローブ電流測定が困難な場合は、従来と同様、オリフィス12下面から出てくる全てのプローブ電流を測定して測定条件を把握する手段をとる。その際、オリフィス12下面から出てくる全てのプローブ電流を測定可能とするため、ファラデーカップ35を設けた試料台34のファラデーカップ周辺にOリング42及び電気絶縁物43を設け、対物レンズ9と密着させる。これにより、バルブ37を開けばファラデーカップ35及びファラデーカップ35とオリフィス12と間の空間を試料室1の空間試料室1の真空と独立化して高真空に維持することが可能となり、プローブ電流測定時、圧力によって変形を受ける含水試料などでも、高真空にさらして変形を受けることなく、観察中、オリフィス12下面から出てくる全てのプローブ電流を測定することが可能となる。
【0022】
また、図3のプローブ電流測定では試料台34はZ方向に可変可能であることから、任意の試料観察位置でのプローブ電流を測定することができ、図4のプローブ電流測定ではオリフィス12下面から出てくる全てのプローブ電流を測定することができるため、測定時、試料にどのくらいの電子38が到達しているかを正確に把握することが可能となる。
【0023】
図5は、試料ステージ33内に延びている排気路36と連通する中空部44と、試料台34の表面と中空部44とに通じる複数の孔45を有したプローブ電流測定用試料台の一例を示す。試料10は軟弱性なもので、その形状はコンタクトレンズ状をなしている。試料台34は試料ステージ33に0リング42を介して取り付けられ、その表面は試料10の形状に合わせて半球状をなしている。試料台34は中空部44をもっていると共に、この中空部44と試料台34の表面とに通じる複数の孔(貫通孔)45及びファラデーカップ35をもっている。ファラデーカップ35は、もちろん鏡体部2からオリフィス12を通して試料室1に入射してくる電子ビーム電流を測定するためのもので、41はファラデーカップ35の上端部に設けられた絞りである。中空部44は排気路36、19、20及び21を介して鏡体部2の電子銃部4及びレンズ系部5の内部と貫通している(図1参照)。これにより、バルブ37を開けば、中空部44は鏡体部2の電子銃部4及びレンズ系部5の内部と同じ10-4Paの高真空にされる。したがって、試料室1内は中空部44内の圧力よりも高くなるから、その圧力差が試料台34の表面に複数の孔45を覆うように密接している試料10に作用し、これによって、試料10は試料台34の表面に密着して固定される。このように、試料10は試料台34に密着状態で固定されるので、像観察中の試料の微動、したがってその微動にもとづく像シフトが防止される。また、試料10の固定にガス放出材料を用いていないため、試料汚染の問題も生じない。また、ファラデーカップ35内も高真空に排気され、ファラデーカップ35に到達した電子38は散乱することなく測定することができる。このように、試料10の固定に試料室1内の低真空と鏡体部2内の高真空との差を利用し、更にファラデーカップ35内を鏡体部2内の高真空を利用して試料室1内よりも高真空にしているため、構成が非常に簡単である。
【0024】
本発明の実施例によれば、試料室が低真空の状態であっても、試料観察時に正確なプローブ電流を測定することができ、試料の観察及び分析において、より信頼性のあるデータを得ることができる。
【0025】
【発明の効果】
本発明によれば、鏡体部内よりも低い真空に保たれた試料室においても、試料観察時に正確なプローブ電流を測定するのに適した走査電子顕微鏡が提供される。
【図面の簡単な説明】
【図1】本発明にもとづく一実施例を示す走査電子顕微鏡全体構成の概念図。
【図2】図1のファラデーカップ付近の拡大断面図。
【図3】図1のプローブ電流測定部分の拡大断面図。
【図4】図3に対応する、もう一つのプローブ電流測定部分の拡大断面図。
【図5】試料固定及びプローブ電流測定のもう一つの実施例の断面図。
【符号の説明】
1:試料室、2:鏡体部、3:排気系、4:電子銃部、5:レンズ系部、6:電子銃、7:電子ビーム、8:コンデンサレンズ、9:対物レンズ、10:試料、11:反射電子検出器、12:オリフィス、13、14、22、26、27、29、37:バルブ、15:予備排気用ロータリポンプ、16〜21、24、28、36:排気路、23:高真空用油拡散ポンプ、25:油拡散ポンプ排気用ロータリポンプ、30:低真空用コントロールバルブ、31:真空計、32:リアルタイム真空度フィードバックコントローラ、33:試料ステージ、34:試料台、35:ファラデーカップ、38:電子、39:残留ガス分子、40:正イオン、41:絞り、42:Oリング、43:絶縁物、44:中空部、45:孔(貫通孔)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scanning electron microscope, and more particularly to a scanning electron microscope suitable for performing observation while maintaining a sample chamber at a lower degree of vacuum than a mirror part.
[0002]
[Prior art]
In order to observe samples containing water and oil and insulator samples without pretreatment, scanning electron microscopes that perform observation in a state where the sample chamber is kept at a lower vacuum than other parts are used in many fields. Yes. In such a scanning electron microscope, when performing repeated observation under the same observation conditions, or when performing quantitative analysis using a standard sample using an energy dispersive X-ray spectrometer (EDS), the measurement conditions are fixed. Therefore, it is necessary to know the probe current (electron beam current) accurately. The probe current is measured in a state in which all the electron beams that have reached the sample chamber are taken into a small chamber (Faraday cup) through a diaphragm, and secondary electrons and reflected electrons are not emitted through the diaphragm hole. Some Faraday cups are products as Faraday cup devices, but in a simple one, a small hole is made in a part of a sample stage, and a diaphragm (diameter of several hundred μm) is pasted on the upper end thereof. The depth of the small hole is set to be 10 times or more the diameter of the aperture so that secondary electrons and reflected electrons are not emitted through the aperture.
[0003]
[Problems to be solved by the invention]
However, in the sample chamber kept in a low vacuum, the probability that the incident electrons collide with the residual gas molecules in the sample chamber increases as the sample chamber pressure increases, and the mean free path of the incident electrons is shortened and scattering occurs. . Therefore, in the sample chamber kept in a low vacuum, incident electrons are scattered before reaching the Faraday cup from the orifice, and are also scattered in the Faraday cup. Therefore, an accurate probe current reaching the sample is measured. It was difficult. Also, when the sample chamber pressure is higher than 50 Pa, the probe current measurement becomes impossible because the scattering of incident electrons becomes intense. Therefore, when observing in a state where the pressure in the sample chamber is higher than 50 Pa, as a method for measuring the probe current, all observations are made for non-hydrated samples that are not deformed by pressure, and for all hydrous samples that are deformed by pressure. After the process is completed, the sample chamber is evacuated under the same conditions as in the observation, and the probe current is not the probe current that reaches the sample, but all the electron beam current that emerges from the bottom surface of the orifice that separates the mirror and the sample chamber. Measurement has been carried out.
[0004]
An object of the present invention is to provide a scanning electron microscope suitable for measuring an accurate probe current at the time of sample observation even in a sample chamber maintained at a lower vacuum than in a mirror body.
[0005]
[Means for Solving the Problems]
The present invention arranges a sample in a sample chamber maintained at a low vacuum, and irradiates the sample with an electron beam incident on the sample chamber from a mirror body portion maintained at a higher vacuum than the sample chamber. In a scanning electron microscope for detecting a signal generated from the sample, a Faraday cup disposed in the sample chamber for measuring an electron beam current incident on the sample chamber from the mirror body, and inside the Faraday cup And means for evacuating to a higher vacuum than the sample chamber.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a scanning electron microscope according to the present invention. The scanning electron microscope generally includes a sample chamber 1, an upper mirror portion 2, and an exhaust system 3 that exhausts the interior of the sample chamber 1 and the mirror portion 2, respectively. A lens system unit 5 is included.
[0007]
An electron beam 7 is emitted from the electron gun 6 of the electron gun unit 4 and converged on the sample 10 in the sample chamber 1 by the condenser lens 8 and the objective lens 9 of the lens system unit 5. The electron beam 7 is deflected two-dimensionally by a scanning deflector (not shown) provided in the lens system 5, whereby the sample 10 is scanned two-dimensionally with the converged electron beam 7.
[0008]
When the sample 10 is scanned with the electron beam 7, reflected electrons and secondary electrons are generated from the sample 10, and the reflected electrons are detected by the reflected electron detector 11. The detected reflected electrons are converted into an electrical signal and introduced as a luminance modulation signal into a display device (not shown). The display surface of the display device is scanned in synchronization with the two-dimensional scanning of the sample 10. Therefore, an image based on the reflected electrons of the sample is displayed on the display surface of the display device.
[0009]
In vacuum, the sample chamber 1 is maintained at a low vacuum of 1 to 270 Pa, and the interior of the lens body 2 is maintained at a high vacuum of 10 −4 Pa, so that an orifice 12 is provided between the sample chamber 1 and the lens body 2. A diaphragm of several hundred μm called is provided, and differential exhaust is performed by the exhaust system 3. Further, both of them can be evacuated to a high vacuum of 10 −4 Pa.
[0010]
The exhaust system 3 operates as follows when the sample chamber 1 and the mirror body 2 are exhausted to the same high vacuum of 10 −4 Pa. First, valves 13 and 14 are opened, and preliminary exhaust is performed by the preliminary exhaust rotary pump 15 through the exhaust passages 16 and 17 to 21 to the inside of the electron gun section 4 and the lens system section 5 of the mirror body section 2 and the sample chamber 1 ( Rough exhaust). At that time, the valve 22 is opened, and the exhaust passage 24 of the high vacuum oil diffusion pump 23 is exhausted by the oil diffusion pump exhaust rotary pump 25.
[0011]
Next, when the inside of the electron gun section 4 and the lens system section 5 of the mirror body section 2 and the sample chamber 1 reaches a predetermined degree of vacuum (about 10 Pa), the valve 13 is closed, the valve 26 is opened, and the oil diffusion pump 23 Thus, the electron gun section 4 and the lens system section 5 of the mirror body section 2 and the inside of the sample chamber 1 are evacuated to a vacuum of 10 −4 Pa through the exhaust passages 18 to 21 and are maintained by the orifice 12.
[0012]
On the other hand, in this state, the inside of the electron gun unit 4 and the lens system unit 5 of the mirror unit 2 is maintained at a high vacuum of 10 −4 Pa, and the inside of the sample chamber 1 is evacuated to a low vacuum of 1 to 270 Pa and maintained. For this purpose, the exhaust system 3 operates as follows. First, the valve 14 is closed, the valve 27 is opened, and the rotary pump 15 exhausts the sample chamber 1 through the exhaust passages 17 and 28. Next, the valve 29 is opened, and the vacuum in the sample chamber 1 is adjusted to an arbitrarily set vacuum degree of 1 to 270 Pa by the low vacuum control valve 30. Then, the degree of vacuum in the sample chamber 1 is always measured by the vacuum gauge 31, and the difference from the set value is automatically adjusted by the real-time degree of vacuum feedback controller 32. Thus, the inside of the sample chamber 1 is evacuated and maintained at an arbitrary low vacuum of 1 to 270 Pa, and the inside of the electron gun unit 4 and the lens system unit 5 of the mirror unit 2 is a vacuum of 10 −4 Pa. The vacuum is maintained by the orifice 12.
[0013]
A sample stage 33 is provided in the sample chamber 1, a sample stage 34 for fixing and holding the sample 10 is attached to the sample stage, and a Faraday cup 35 is provided on the sample stage 34. The Faraday cup 35 is provided with an exhaust path 36, and communicates with the inside of the electron gun section 4 and the lens system section 5 of the mirror body section 2 through the exhaust paths 36, 19, 20 and 21. As a result, when the valve 37 is opened, the Faraday cup 35 becomes a high vacuum of 10 −4 Pa, which is the same as the inside of the electron gun unit 4 and the lens system unit 5 of the mirror unit 2. As described above, in the low vacuum scanning electron microscope, the pressure difference between the sample chamber 1 kept at a low vacuum and the mirror body part 2 kept at a high vacuum is maintained by the orifice 12 having a diameter of several hundred μm. Yes (differential exhaust). Therefore, as described above, even if the inside of the Faraday cup 35 having a hole diameter of several hundred μm is exhausted to a high vacuum, the inside of the sample chamber 1 can be kept at a low vacuum. Further, the Faraday cup 35 is inserted under the electron beam 7 path when the probe current is measured. The exhaust path 36 has a coiled tube structure that can be expanded and contracted in order to cope with the variation in length that occurs when the sample stage 33 is inserted and withdrawn.
[0014]
FIG. 2 shows an enlarged cross section near the Faraday cup. Table 1 shows the relationship between the pressure in the sample chamber and the mean free path of electrons.
[0015]
[Table 1]
Figure 0003681284
[0016]
In the low vacuum state, as the pressure in the sample chamber 1 increases (low vacuum), the probability that the electrons 38 collide with the residual gas molecules 39 increases, and the mean free path becomes shorter and scatters. The longer the distance of the Faraday cup 35, the more difficult it is to measure the accurate probe current. Further, when the electrons 38 collide with the residual gas molecules 39, the residual gas molecules 39 are ionized to generate positive ions 40, which neutralize the electrons 38 in the sample chamber 1 and the Faraday cup 35.
[0017]
A diaphragm 41 having a diameter of several hundred μm is attached to the entrance of the Faraday cup 35.
[0018]
Table 2 shows the relationship between the pressure in the sample chamber 1 and the probe current when the distance from the lower surface of the objective lens 9 to the Faraday cup 35 is 5 mm in the configuration of FIG. It can be seen that the probe current decreases as the pressure in the sample chamber 1 increases, and the probe current value becomes positive when the pressure exceeds 50 Pa. The cause of the positive is not clear, but it is thought that the large amount of positive ions is the cause.
[0019]
[Table 2]
Figure 0003681284
[0020]
FIG. 3 shows an embodiment of the present invention, which shows a longitudinal section in the sample chamber when the probe current is measured at the sample observation position while maintaining the inside of the Faraday cup at a high vacuum. Since the Faraday cup 35 is provided in a part of the sample stage 34, it can be varied in the Z-axis direction. In a general scanning electron microscope in which the inside of the sample chamber 1 is maintained at a high vacuum, the probe current is constant regardless of the distance from the lower surface of the objective lens 9 to the Faraday cup 35, and therefore the measurement position may be arbitrary. However, in a low-vacuum scanning electron microscope with a low degree of vacuum in the sample chamber, the probe current varies depending on the distance for the reason shown in FIG. According to the embodiment of the present invention, when the probe current is measured, the Faraday cup 35 is evacuated to a high vacuum, so that the electrons 38 that have reached the Faraday cup 35 can be measured without being scattered, and at the sample observation position. When the probe current is measured, the probe current reaching the sample 10 is measured. However, when the pressure in the sample chamber 1 is higher and the probability that the electrons 38 collide with the residual gas molecules 39 is high, the electrons 38 are scattered before reaching the sample observation position, and the probe at the sample observation position is detected. Current measurement may be difficult.
[0021]
FIG. 4 is an embodiment based on the present invention for solving the above-mentioned problem. FIG. 4 is a longitudinal sectional view of a sample chamber in the case where all probe currents coming out from the lower surface of the orifice are measured while maintaining a high vacuum between the Faraday cup and the orifice. Indicates. When the pressure in the sample chamber 1 is higher and it is difficult to measure the probe current at the sample observation position, as in the prior art, measures are taken to measure all the probe currents coming out from the bottom surface of the orifice 12 and grasp the measurement conditions. . At that time, in order to be able to measure all the probe currents coming out from the lower surface of the orifice 12, an O-ring 42 and an electrical insulator 43 are provided around the Faraday cup of the sample stage 34 provided with the Faraday cup 35, and the objective lens 9 and Adhere closely. As a result, if the valve 37 is opened, the Faraday cup 35 and the space between the Faraday cup 35 and the orifice 12 can be made independent of the vacuum of the space sample chamber 1 in the sample chamber 1 and maintained at a high vacuum, and probe current measurement is performed. Even in the case of a water-containing sample that is deformed by pressure, it is possible to measure all probe currents coming out from the bottom surface of the orifice 12 during observation without being deformed by exposure to a high vacuum.
[0022]
In the probe current measurement of FIG. 3, the sample stage 34 can be changed in the Z direction, so that the probe current can be measured at any sample observation position. In the probe current measurement of FIG. Since all the probe currents that come out can be measured, it is possible to accurately grasp how many electrons 38 have reached the sample at the time of measurement.
[0023]
FIG. 5 shows an example of a probe current measurement sample stage having a hollow portion 44 communicating with the exhaust passage 36 extending into the sample stage 33 and a plurality of holes 45 communicating with the surface of the sample stage 34 and the hollow portion 44. Indicates. The sample 10 is soft and has a contact lens shape. The sample stage 34 is attached to the sample stage 33 via an O-ring 42, and the surface thereof is hemispherical according to the shape of the sample 10. The sample stage 34 has a hollow portion 44 and a plurality of holes (through holes) 45 and a Faraday cup 35 communicating with the hollow portion 44 and the surface of the sample stage 34. The Faraday cup 35 is for measuring the electron beam current incident on the sample chamber 1 from the mirror body 2 through the orifice 12, and 41 is a stop provided at the upper end of the Faraday cup 35. The hollow portion 44 penetrates the inside of the electron gun portion 4 and the lens system portion 5 of the mirror body portion 2 through the exhaust passages 36, 19, 20 and 21 (see FIG. 1). Thus, when the bulb 37 is opened, the hollow portion 44 is brought to a high vacuum of 10 −4 Pa, which is the same as the inside of the electron gun portion 4 and the lens system portion 5 of the mirror body portion 2. Therefore, since the inside of the sample chamber 1 becomes higher than the pressure in the hollow portion 44, the pressure difference acts on the sample 10 that is in close contact with the surface of the sample stage 34 so as to cover the plurality of holes 45, thereby The sample 10 is fixed in close contact with the surface of the sample table 34. Thus, since the sample 10 is fixed in close contact with the sample stage 34, the fine movement of the sample during the image observation, and hence the image shift based on the fine movement is prevented. Further, since no gas releasing material is used for fixing the sample 10, the problem of sample contamination does not occur. The Faraday cup 35 is also evacuated to a high vacuum, and the electrons 38 that have reached the Faraday cup 35 can be measured without being scattered. As described above, the difference between the low vacuum in the sample chamber 1 and the high vacuum in the mirror unit 2 is used for fixing the sample 10, and further, the high vacuum in the mirror unit 2 is used in the Faraday cup 35. Since the vacuum is higher than that in the sample chamber 1, the configuration is very simple.
[0024]
According to the embodiment of the present invention, even when the sample chamber is in a low vacuum state, an accurate probe current can be measured during sample observation, and more reliable data can be obtained in sample observation and analysis. be able to.
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the scanning electron microscope suitable for measuring an exact probe electric current at the time of sample observation also in the sample chamber maintained at the vacuum lower than the inside of a mirror part is provided.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of the overall configuration of a scanning electron microscope according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view near the Faraday cup of FIG.
3 is an enlarged cross-sectional view of the probe current measurement portion of FIG.
FIG. 4 is an enlarged cross-sectional view of another probe current measurement portion corresponding to FIG. 3;
FIG. 5 is a cross-sectional view of another embodiment of sample fixing and probe current measurement.
[Explanation of symbols]
1: sample chamber, 2: mirror part, 3: exhaust system, 4: electron gun part, 5: lens system part, 6: electron gun, 7: electron beam, 8: condenser lens, 9: objective lens, 10: Sample, 11: backscattered electron detector, 12: orifice, 13, 14, 22, 26, 27, 29, 37: valve, 15: rotary pump for preliminary exhaust, 16-21, 24, 28, 36: exhaust path, 23: Oil diffusion pump for high vacuum, 25: Rotary pump for oil diffusion pump exhaust, 30: Control valve for low vacuum, 31: Vacuum gauge, 32: Real time vacuum feedback controller, 33: Sample stage, 34: Sample stage, 35: Faraday cup, 38: electron, 39: residual gas molecule, 40: positive ion, 41: throttle, 42: O-ring, 43: insulator, 44: hollow part, 45: hole (through hole).

Claims (4)

低真空に維持された試料室内に試料を配置し、該試料を前記試料室よりも高真空に維持された鏡体部から前記試料室に入射する電子ビームで照射し、それによって前記試料から発生する信号を検出する走査電子顕微鏡において、前記鏡体部から前記試料室に入射する電子ビーム電流を測定するための、前記試料室内に配置されたファラデーカップと、該ファラデーカップ内を前記試料室よりも高真空に排気する手段とを備えていることを特徴とする走査電子顕微鏡。A sample is placed in a sample chamber maintained at a low vacuum, and the sample is irradiated with an electron beam incident on the sample chamber from a mirror part maintained at a higher vacuum than the sample chamber, thereby generating the sample from the sample chamber In a scanning electron microscope for detecting a signal to be transmitted, a Faraday cup disposed in the sample chamber for measuring an electron beam current incident on the sample chamber from the mirror body portion, and the Faraday cup from the sample chamber And a means for evacuating to a high vacuum. 請求項1において、前記排気手段は前記ファラデーカップ内を前記鏡体内部と連通させる排気通路を含むことを特徴とする走査電子顕微鏡。2. The scanning electron microscope according to claim 1, wherein the exhaust means includes an exhaust passage for communicating the inside of the Faraday cup with the interior of the mirror body. 請求項2において、前記鏡体部と前記ファラデーカップとの間に前記試料室内の真空に対して独立した空間を適時形成する手段を備えていることを特徴とする走査電子顕微鏡。3. The scanning electron microscope according to claim 2, further comprising means for forming a space independent of the vacuum in the sample chamber between the mirror body part and the Faraday cup in a timely manner. 低真空に維持された試料室内の試料ステージに取り付けられた試料台に試料を固定し、該試料を前記試料室よりも高真空に維持された鏡体部から前記試料室に入射する電子ビームで照射し、それによって前記試料から発生する信号を検出する走査電子顕微鏡において、前記鏡体部と連通する排気路を備え、前記試料台は、前記排気路と連通する中空部と、前記試料台の表面と前記中空部とに通じる複数の孔と、前記鏡体部から前記試料室に入射する電子ビーム電流を測定するように前記試料台の表面と前記中空部とに通じるファラデーカップとを有し、前記試料は前記鏡体部内の圧力と前記試料室内の圧力との差にもとづいて前記複数の孔を覆うように前記試料台表面に固定することを特徴とする走査電子顕微鏡。A sample is fixed to a sample stage attached to a sample stage in a sample chamber maintained at a low vacuum, and the sample is irradiated with an electron beam incident on the sample chamber from a mirror part maintained at a higher vacuum than the sample chamber. In a scanning electron microscope that irradiates and thereby detects a signal generated from the sample, the scanning electron microscope includes an exhaust path that communicates with the mirror body, the sample stage includes a hollow part that communicates with the exhaust path, A plurality of holes communicating with the surface and the hollow portion, and a Faraday cup communicating with the surface of the sample stage and the hollow portion so as to measure an electron beam current incident on the sample chamber from the mirror body portion. The scanning electron microscope is characterized in that the sample is fixed to the surface of the sample stage so as to cover the plurality of holes based on the difference between the pressure in the mirror body and the pressure in the sample chamber.
JP20481998A 1998-07-21 1998-07-21 Scanning electron microscope Expired - Fee Related JP3681284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20481998A JP3681284B2 (en) 1998-07-21 1998-07-21 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20481998A JP3681284B2 (en) 1998-07-21 1998-07-21 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2000036277A JP2000036277A (en) 2000-02-02
JP3681284B2 true JP3681284B2 (en) 2005-08-10

Family

ID=16496916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20481998A Expired - Fee Related JP3681284B2 (en) 1998-07-21 1998-07-21 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP3681284B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497258B2 (en) 2000-06-15 2010-07-07 東洋自動機株式会社 Spout sealing method and sealing device
JP2005062130A (en) * 2003-08-20 2005-03-10 Canon Inc Microflake preparing device
JP2007141633A (en) * 2005-11-18 2007-06-07 Hitachi High-Technologies Corp Electron microscope
KR101216961B1 (en) 2011-10-17 2013-01-02 (주)엠크래프츠 Electronic microscope system

Also Published As

Publication number Publication date
JP2000036277A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
EP1340241B1 (en) Device and method for the examination of samples in a non-vacuum environment using a scanning electron microscope
Pawley The development of field-emission scanning electron microscopy for imaging biological surfaces
EP1930720B1 (en) Sample inspection method
EP1238405B1 (en) Method and system for the examination of specimen using a charged particle beam
EP2565900B1 (en) Beam device and system comprising a particle beam device and an optical microscope
AU2002221019A1 (en) Device and method for the examination of samples in a non-vacuum environment using a scanning electron microscope
JP2007292702A (en) Apparatus, method and system for inspecting samples
DE112010004286T5 (en) charged particle
JPH0421302B2 (en)
JPH01500940A (en) Scanning electron microscope and method for electron microscopic imaging of the surface of a sample
JP2008047411A (en) Sample retainer, sample inspection method and sample inspection device
Neděla et al. The simulation of energy distribution of electrons detected by segmental ionization detector in high pressure conditions of ESEM
JP3681284B2 (en) Scanning electron microscope
JP4262158B2 (en) Low vacuum scanning electron microscope
US20230420224A1 (en) Operating a gas supply device for a particle beam device
JP2002310959A (en) Electron beam analyzer
JP5832112B2 (en) Sample image generation method
CN106373848A (en) Plasma neutralization mode-based electronic microscope device
JP2001148232A (en) Scanning electron microscope
US6060707A (en) Apparatus and method for analyzing microscopic area
JP7210762B2 (en) Thin film damage detection function and charged particle beam device
JPH07296759A (en) Observing method of semiconductor element, and scanning electron microscope used therefor
JP2012227170A (en) Sample holder, sample inspection device, and sample inspection method
WO2021070338A1 (en) Charged particle beam device
US20100133432A1 (en) Device and method for analyzing a sample

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees