JP6709646B2 - Vibration control device, vibration control system - Google Patents

Vibration control device, vibration control system Download PDF

Info

Publication number
JP6709646B2
JP6709646B2 JP2016050748A JP2016050748A JP6709646B2 JP 6709646 B2 JP6709646 B2 JP 6709646B2 JP 2016050748 A JP2016050748 A JP 2016050748A JP 2016050748 A JP2016050748 A JP 2016050748A JP 6709646 B2 JP6709646 B2 JP 6709646B2
Authority
JP
Japan
Prior art keywords
vibration
axial direction
damper
damping
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016050748A
Other languages
Japanese (ja)
Other versions
JP2017166168A (en
Inventor
義文 杉村
義文 杉村
鈴木 幹夫
幹夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2016050748A priority Critical patent/JP6709646B2/en
Publication of JP2017166168A publication Critical patent/JP2017166168A/en
Application granted granted Critical
Publication of JP6709646B2 publication Critical patent/JP6709646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、制振装置、制振システムに関する。 The present invention relates to a vibration damping device and a vibration damping system.

超高層ビル等の建造物の地震対策として、各種の制振装置が開発されている。制振装置には、主にパッシブ方式、アクティブ方式およびセミアクティブ方式がある。
パッシブ方式は、電力などのエネルギーを必要とせずに、オイルダンパー等の減衰特性に基づいて建造物の振動を減衰させる。このため、停電などの影響を受けず、安定した性能を発揮することができる。
アクティブ方式およびセミアクティブ方式は、建造物の揺れをセンサで検出し、その検出結果に基づいて制振ダンパー等を制御する。
Various vibration control devices have been developed as earthquake countermeasures for buildings such as skyscrapers. The vibration damping device mainly includes a passive type, an active type and a semi-active type.
The passive method does not require energy such as electric power, and damps the vibration of a building based on the damping characteristics of an oil damper or the like. Therefore, stable performance can be achieved without being affected by a power failure or the like.
In the active method and the semi-active method, the vibration of a building is detected by a sensor, and the vibration damper and the like are controlled based on the detection result.

特許文献1には、振動を減衰させるためのブレースダンパーが開示されている。このブレースダンパーは、第一油圧ダンパーと第二油圧ダンパーとを直列に連結し、互いに逆方向の動作を行うようにしている。
特許文献2には、コントローラ等を必要とせずに、セミアクティブ方式と同様の効率を得ることを可能とした油圧ダンパーが開示されている。この油圧ダンパーは、同一の構造を持つ油圧ダンパーを、ブレースを挟んで対称に対向配置している。
Patent Document 1 discloses a brace damper for damping vibration. In this brace damper, the first hydraulic damper and the second hydraulic damper are connected in series so that they operate in opposite directions.
Patent Document 2 discloses a hydraulic damper capable of obtaining the same efficiency as that of the semi-active method without requiring a controller or the like. In this hydraulic damper, hydraulic dampers having the same structure are symmetrically arranged so as to sandwich a brace.

特開平11−270179号公報JP-A-11-270179 特開2004−52922号公報JP, 2004-52922, A

ところで、地震が起きると様々な周期を持つ揺れ(地震動)が発生する。特に高層の建造物では長周期地震動の影響を強く受ける。
このような様々な周期の揺れに対して、パッシブ方式では十分に対応することが困難であるという問題がある。
一方、アクティブ方式は、様々な周期の揺れに対応可能であるが、例えばアクティブマスダンパーの様に大型のアクチュエータやポンプが必要となったり、ダンパー自体の減衰特性を変化させる形式では特殊なダンパーを開発、製造する必要があったりする。このため、装置が大型かつ高価になりやすいという問題がある。
By the way, when an earthquake occurs, shaking (earthquake motion) having various cycles occurs. Especially, high-rise buildings are strongly affected by long-period ground motion.
There is a problem that it is difficult for the passive method to sufficiently cope with such fluctuations of various cycles.
On the other hand, the active system can deal with fluctuations of various cycles, but for example, a large actuator or pump such as an active mass damper is required, or a special damper is used in the form that changes the damping characteristic of the damper itself. It may be necessary to develop and manufacture. Therefore, there is a problem that the device tends to be large and expensive.

本発明はこのような問題点に鑑みてなされたものであって、建造物の振動を効率よく減衰させるとともに、小型かつ安価に構成することができる制振装置、制振システムを提供することを目的とする。 The present invention has been made in view of the above problems, and provides a vibration damping device and a vibration damping system that can efficiently reduce the vibration of a building and can be configured in a small size and at a low cost. To aim.

上記課題を解決するために、本発明は以下の手段を提案している。
本発明の制振装置は、建造物の相対変位可能な二部材間に介設される制振装置において、前記二部材間に渡る軸方向の減衰特性を有する減衰部と、前記軸方向の剛性および長さの少なくとも一つを可変とする軸方向可変部と、を備え、前記軸方向可変部と前記減衰部とが直列に連結され、前記軸方向可変部は、前記二部材間の荷重伝達をなくすことを含んで、前記二部材間の荷重伝達を変化させる
この構成によれば、軸方向可変部の剛性および長さの少なくとも一つを任意に変化させることで、前記二部材間の伝達荷重を任意に変化させることができ、建造物の振動を効率よく減衰させることができる。このため、特に高層の建造物の長周期地震動対策として有効である。また、減衰部から独立した軸方向可変部を減衰部に直列に連結するのみでよいので、減衰部にアクチュエータが組み込まれたアクティブダンパを用いる場合と比較して小型かつ安価に構成することができる。
In order to solve the above problems, the present invention proposes the following means.
The vibration damping device of the present invention is a vibration damping device interposed between two members capable of relative displacement in a building, wherein a damping portion having an axial damping characteristic across the two members and a rigidity in the axial direction are provided. And an axial direction variable part that makes at least one of the lengths variable, the axial direction variable part and the damping part are connected in series, and the axial direction variable part transmits the load between the two members. To eliminate the load transfer between the two members .
According to this structure, by arbitrarily changing at least one of the rigidity and the length of the axial direction variable portion, it is possible to arbitrarily change the transmission load between the two members, and to efficiently vibrate the building. Can be attenuated. Therefore, it is particularly effective as a measure against long-period ground motion of high-rise buildings. Further, since it is only necessary to connect the axial direction variable section independent of the damping section to the damping section in series, it is possible to configure the apparatus at a smaller size and at a lower cost as compared with the case of using the active damper in which the actuator is incorporated in the damping section. ..

また、上記の制振装置は、建造物のブレースに連結されている構成としてもよい。
この場合、軸方向可変部の作動によりブレースへの伝達荷重を任意に変化させ、建造物の振動を効率よく減衰させることができる。
Further, the vibration damping device may be connected to a brace of a building.
In this case, the load transmitted to the brace can be arbitrarily changed by the operation of the axial direction variable portion, and the vibration of the building can be efficiently damped.

また、上記の制振装置は、前記軸方向可変部が、MRダンパーである構成としてもよい。
この場合、既存のMRダンパーを利用して小型かつ安価にアクティブ制御を実現することができる。
Further, in the above vibration damping device, the axial direction variable portion may be an MR damper.
In this case, the existing MR damper can be used to realize small-sized and inexpensive active control.

また、上記の制振装置は、前記軸方向可変部が、電動アクチュエータである構成としてもよい。
この場合、既存の電動アクチュエータを利用して小型かつ安価にアクティブ制御を実現することができる。
Further, the vibration damping device may be configured such that the axial direction variable portion is an electric actuator.
In this case, the existing electric actuator can be used to realize small-sized and inexpensive active control.

また、上記の制振装置は、前記減衰部が、オイルダンパー、粘性ダンパー、粘弾性ダンパー、鋼材ダンパーおよび摩擦ダンパーの何れかである構成としてもよい。
この場合、既存のダンパー装置を利用して簡単かつ安価に制振装置を構成することができる。
Further, the damping device may be configured such that the damping portion is any one of an oil damper, a viscous damper, a viscoelastic damper, a steel material damper, and a friction damper.
In this case, the vibration damping device can be configured easily and inexpensively using the existing damper device.

また、上記の制振装置は、前記減衰部が、前記軸方向可変部を建造物に連結する連結部材である構成としてもよい。
この場合、連結部材を減衰部として簡単かつ安価に制振装置を構成することができる。
The damping device may be configured such that the damping portion is a connecting member that connects the axial direction varying portion to a building.
In this case, the vibration damping device can be configured easily and inexpensively using the connecting member as the damping portion.

本発明の制振システムは、上記何れかの制振装置と、前記建造物の振動を検出する振動センサと、前記振動センサの検出結果に基づいて前記軸方向可変部を作動させる制御装置と、を備えている。 The vibration damping system of the present invention includes any one of the above vibration damping devices, a vibration sensor that detects vibration of the building, and a control device that operates the axial direction variable unit based on a detection result of the vibration sensor. Is equipped with.

本発明によれば、建造物の振動を効率よく減衰させるとともに、小型かつ安価に構成することができる制振装置、制振システムを提供することができる。 According to the present invention, it is possible to provide a vibration damping device and a vibration damping system that can efficiently reduce the vibration of a building and can be configured in a small size and at a low cost.

本発明の実施形態における制振システムの説明図である。It is explanatory drawing of the damping system in embodiment of this invention. 本発明の実施形態における制振装置の正面図であり、(a)はY形ブレースに連結した例、(b)は片ブレースに連結した例をそれぞれ示す。It is a front view of a damping device in an embodiment of the present invention, (a) shows an example connected to a Y-shaped brace, and (b) shows an example connected to a single brace. 上記制振装置の減衰特性の説明図であり、粘性ダンパーとMRダンパーとを連結した例において、(a)はMRダンパーの軸方向の剛性を変化させた場合、(b)はMRダンパーの軸方向の剛性を変化させずMRダンパーが軸方向に変形しない一定の特性とした場合の比較例をそれぞれ示す。It is an explanatory view of the damping characteristic of the above-mentioned damping device, and in the example which connected a viscous damper and MR damper, (a) changes the rigidity of the MR damper in the axial direction, (b) shows the axis of the MR damper. Comparative examples in the case where the MR damper has a constant characteristic that the rigidity is not changed and the MR damper is not deformed in the axial direction are shown. 上記制振装置の減衰特性の説明図であり、鋼材ダンパーとMRダンパーとを連結した例において、(a)はMRダンパーの軸方向の剛性を変化させた場合、(b)はMRダンパーの軸方向の剛性を変化させずMRダンパーが軸方向に変形しない一定の特性とした場合の比較例をそれぞれ示す。It is an explanatory view of the damping characteristic of the above-mentioned damping device, and in the example which connected a steel material damper and MR damper, (a) changes the rigidity of the MR damper in the axial direction, (b) shows the axis of MR damper. Comparative examples in the case where the MR damper has a constant characteristic that the rigidity is not changed and the MR damper is not deformed in the axial direction are shown. 上記制振装置の減衰特性の説明図であり、粘性ダンパーと電動アクチュエータとを連結した例において、(a)は電動アクチュエータを変化させた場合、(b)は電動アクチュエータを変化させず電動アクチュエータが軸方向に変形しない一定の特性とした場合の比較例をそれぞれ示す。It is explanatory drawing of the damping characteristic of the said damping device, and in the example which connected the viscous damper and an electric actuator, (a) changes an electric actuator, (b) does not change an electric actuator and an electric actuator changes. Comparative examples will be shown in the case of a constant characteristic that does not deform in the axial direction. 上記制振装置の減衰特性の説明図であり、鋼材ダンパーと電動アクチュエータとを連結した例において、(a)は電動アクチュエータを変化させた場合、(b)は電動アクチュエータを変化させず電動アクチュエータが軸方向に変形しない一定の特性とした場合の比較例をそれぞれ示す図である。It is explanatory drawing of the damping characteristic of the said damping device, and in the example which connected the steel damper and an electric actuator, (a) changes an electric actuator, (b) does not change an electric actuator and an electric actuator changes. It is a figure which shows each comparative example when it is set as a fixed characteristic which does not deform|transform in an axial direction.

以下、添付図面を参照して、本発明の実施形態に係る制振装置および制振システムを説明する。
図1に示す制振システム5は、高層の建造物BLの例えば下層部に取り付けられた複数の制振装置1と、建造物BLの適宜の層に取り付けられて建造物BLの振動を検出する複数の振動センサ6と、振動センサ6の検出結果に基づいて制振装置1を作動制御する制御装置7と、を備えている。制振システム5は、各振動センサ6にて建造物BLの揺れを感知、記録し、この検出結果に応じて制御装置7にて制御力を計算し、この計算結果に応じて各制振装置1にて建造物BLの振動を制御する。なお、制振装置1の設置個所は低層部に限らず任意の層に設置してもよい。
Hereinafter, a vibration damping device and a vibration damping system according to embodiments of the present invention will be described with reference to the accompanying drawings.
A vibration damping system 5 shown in FIG. 1 detects a vibration of a building BL by being attached to a plurality of vibration damping devices 1 attached to, for example, a lower layer portion of a high-rise building BL and an appropriate layer of the building BL. A plurality of vibration sensors 6 and a control device 7 that controls the operation of the vibration damping device 1 based on the detection result of the vibration sensor 6 are provided. The vibration damping system 5 senses and records the vibration of the building BL with each vibration sensor 6, calculates the control force with the control device 7 according to the detection result, and each vibration damping device according to this calculation result. At 1, the vibration of the building BL is controlled. The location of the vibration damping device 1 is not limited to the lower layer portion, and may be installed in any layer.

制振装置1は、建造物BLの相対変位可能な二部材間に介設される。制振装置1は、前記二部材に対する連結部の間に渡る軸方向(長さ方向)の減衰特性を有する減衰部10と、前記軸方向の剛性および長さの少なくとも一つを可変とする軸方向可変部20と、を備えている。制振装置1は、軸方向可変部20と減衰部10とを前記軸方向で直列に連結して構成されている。なお、軸方向可変部20と減衰部10とは互いに別体であっても一体型であってもよい。 The vibration damping device 1 is provided between two members of the building BL that are capable of relative displacement. The vibration damping device 1 includes a damping portion 10 having a damping characteristic in the axial direction (longitudinal direction) across a connecting portion for the two members, and a shaft having at least one of rigidity and length in the axial direction variable. The direction variable unit 20 is provided. The vibration damping device 1 is configured by connecting an axial direction variable portion 20 and a damping portion 10 in series in the axial direction. The axial direction variable portion 20 and the damping portion 10 may be separate bodies or may be integrated.

図2(a)に示す制振装置1Aは、建造物BLにおける一対の柱Pの上端部間に渡るY形ブレースBr1の頂部(下端部)Br1aに連結されている。制振装置1Aは、Y形ブレースBr1の頂部Br1aと建造物BLの柱Pの基台Paとの間に略水平に配置されている。制振装置1Aは、両端部を頂部Br1aおよび柱Pにそれぞれ連結している。図2(a)に示す制振装置1Aは、減衰部10および軸方向可変部20で構成されているが、前記軸方向に延びる連結部材をさらに備え、この連結部材を介して、減衰部10および軸方向可変部20の少なくとも一方をブレースおよび柱Pの対応するものに連結してもよい。 The vibration damping device 1A shown in FIG. 2A is connected to a top portion (lower end portion) Br1a of a Y-shaped brace Br1 extending between upper end portions of a pair of pillars P in a building BL. The vibration damping device 1A is arranged substantially horizontally between the top portion Br1a of the Y-shaped brace Br1 and the base Pa of the pillar P of the building BL. Both ends of the vibration damping device 1A are connected to the top portion Br1a and the pillar P, respectively. The vibration damping device 1A shown in FIG. 2A is composed of the damping portion 10 and the axial direction variable portion 20, but further includes a connecting member extending in the axial direction, and the damping portion 10 is provided via this connecting member. Also, at least one of the axial direction variable portion 20 may be connected to the corresponding one of the brace and the pillar P.

図2(b)に示す制振装置1Bは、建造物BLにおける一対の柱Pの上下端部間に渡る片ブレースBr2の中間部に連結(設置)されている。制振装置1Bは、片ブレースBr2における上下に分断した上下ブレース部材Br2a,Br2bのブレース中央側の端部の間に配置されている。制振装置1Bは、前記軸方向を片ブレースBr2の軸方向(長さ方向)と平行かつ略一致させて配置されている。制振装置1Bは、両端部を上下ブレース部材Br2a,Br2bのブレース中央側の端部にそれぞれ連結している。図2(b)に示す制振装置1Bは、減衰部10および軸方向可変部20並びに上下ブレース部材Br2a,Br2bで構成されているが、上下ブレース部材Br2a,Br2bの一方を無くしてもよい。 The vibration damping device 1B shown in FIG. 2B is connected (installed) to the middle portion of a single brace Br2 that extends between the upper and lower ends of a pair of columns P in a building BL. The vibration damping device 1B is arranged between the end portions of the upper and lower brace members Br2a, Br2b, which are vertically divided in the single brace Br2, on the center side of the brace. The vibration damping device 1B is arranged such that the axial direction thereof is parallel to and substantially coincides with the axial direction (length direction) of the single brace Br2. The vibration damping device 1B has both ends connected to the ends of the upper and lower brace members Br2a, Br2b on the center side of the brace, respectively. The vibration damping device 1B shown in FIG. 2B includes the damping unit 10, the axial direction variable unit 20, and the upper and lower brace members Br2a and Br2b, but one of the upper and lower brace members Br2a and Br2b may be omitted.

減衰部10は、前記軸方向で所定の減衰特性を有するものであり、オイルダンパー、粘性ダンパー、粘弾性ダンパー、鋼材ダンパーまたは摩擦ダンパー等が用いられる。つまり、市販の各種の制振ダンパーを用いることができる。また、減衰部10は、前記軸方向での減衰特性を持った連結部材および上下ブレース部材Br2a,Br2bの何れかで構成してもよい。また、連結部材およびブレース部材の何れかが減衰部10および軸方向可変部20の間に設けられてもよい。
なお、制振装置1を連結するブレースは、Y形ブレースBr1および片ブレースBr2に限らず、X形ブレース、V形ブレース等の他の形態であってもよい。
The damping portion 10 has a predetermined damping characteristic in the axial direction, and an oil damper, a viscous damper, a viscoelastic damper, a steel damper, a friction damper, or the like is used. That is, various commercially available vibration dampers can be used. Further, the damping portion 10 may be configured by any one of the connecting member and the upper and lower brace members Br2a, Br2b having the damping characteristic in the axial direction. Further, either the connecting member or the brace member may be provided between the damping portion 10 and the axial direction varying portion 20.
The brace connecting the vibration damping device 1 is not limited to the Y-shaped brace Br1 and the one-sided brace Br2, and other forms such as an X-shaped brace and a V-shaped brace may be used.

軸方向可変部20は、前記軸方向の剛性および長さの少なくとも一つを変化させることで、減衰部10を含む制振装置1の減衰特性を変化させる。軸方向可変部20および減衰部10の軸方向は前記軸方向と一致している。 The axial direction variable portion 20 changes the damping characteristic of the vibration damping device 1 including the damping portion 10 by changing at least one of the rigidity and the length in the axial direction. The axial direction of the axial direction variable portion 20 and the damping portion 10 coincides with the axial direction.

軸方向可変部20は、建造物BLと減衰部10との間に直列に挿入され、建造物BLの振動に応じて前記二部材間の伝達荷重を任意に変化させることで、減衰部10の特性を任意に変化させて建造物BL全体の振動を効果的に抑制可能とする。
軸方向可変部20は、例えばMRダンパーで構成することができる。つまり、市販のMRダンパーを用いることができる。
MRダンパーは、MR流体(Magnetorheological Fluid:磁気粘性流体)を内部に備え、MR流体に与える磁場に応じてMR流体の粘性を変化させて所望の減衰力を発生させる。
The axial direction variable portion 20 is inserted in series between the building BL and the damping portion 10, and the transmission load between the two members is arbitrarily changed according to the vibration of the building BL, whereby the damping portion 10 of the damping portion 10 is changed. It is possible to effectively suppress the vibration of the entire building BL by changing the characteristics arbitrarily.
The axial direction variable portion 20 can be composed of, for example, an MR damper. That is, a commercially available MR damper can be used.
The MR damper includes an MR fluid (Magnetorheological Fluid) inside, and changes the viscosity of the MR fluid according to a magnetic field applied to the MR fluid to generate a desired damping force.

MR流体に磁場を与えなければ、MRダンパーの減衰力(反力)がほぼ0になり、前記軸方向の剛性がほぼ0になって、前記二部材間の荷重伝達を不能とする。このとき、制振装置1全体の減衰力がほぼ0になるとともに、前記二部材の一方の振動が他方に伝わらなくなり、前記二部材間で振動をいなすことが可能となる。
一方、MR流体に磁場を与えてMRダンパーの減衰力を適宜高めることで、前記軸方向の剛性が高まり、制振装置1全体の減衰力を発生させ、かつ増減させることができる。またこのとき、前記二部材間の荷重伝達を可能とし、かつ伝達荷重を増減させることができる。これにより、前記二部材間で振動を効果的に減衰させることが可能となる。
このように、建造物BLの振動に応じてMRダンパーを作動させることで、アクティブ方式の制振作用を奏し、パッシブ方式よりも効率的な振動制御が可能となる。
If a magnetic field is not applied to the MR fluid, the damping force (reaction force) of the MR damper becomes almost 0, the rigidity in the axial direction becomes almost 0, and the load transmission between the two members is disabled. At this time, the damping force of the entire vibration damping device 1 becomes almost zero, and the vibration of one of the two members is not transmitted to the other, so that the vibration can be controlled between the two members.
On the other hand, by applying a magnetic field to the MR fluid to appropriately increase the damping force of the MR damper, the rigidity in the axial direction is increased, and the damping force of the entire vibration damping device 1 can be generated and increased/decreased. At this time, it is possible to transmit the load between the two members and increase or decrease the transmitted load. This makes it possible to effectively damp the vibration between the two members.
In this way, by operating the MR damper according to the vibration of the building BL, the active type vibration damping action is achieved, and the vibration control can be performed more efficiently than the passive type.

一方、軸方向可変部20は、例えば電動アクチュエータで構成することもできる。つまり、市販の電動アクチュエータを用いることができる。
そして、建造物BLの振動に応じて電動アクチュエータを伸縮させることで、前記二部材間の荷重伝達を不能にしたり増減させたりすることが可能となる。これにより、制振装置1全体の減衰力を増減させて前記二部材間で荷重伝達をなくしたり振動を減衰させたりすることが可能となる。
このように、建造物BLの振動に応じて電動アクチュエータを作動させることで、アクティブ方式の制振作用を奏し、パッシブ方式よりも効率的な振動制御が可能となる。
On the other hand, the axial direction variable portion 20 can also be configured by an electric actuator, for example. That is, a commercially available electric actuator can be used.
Then, by expanding and contracting the electric actuator according to the vibration of the building BL, it becomes possible to disable or increase or decrease the load transmission between the two members. This makes it possible to increase or decrease the damping force of the entire vibration damping device 1 to eliminate load transmission between the two members or to damp vibrations.
In this way, by operating the electric actuator according to the vibration of the building BL, the active type vibration damping action is achieved, and the vibration control can be performed more efficiently than the passive type.

図3、図4を参照し、軸方向可変部20にMRダンパー(軸剛性可変装置)を用いた場合の作用について説明する。
図3(a)は、粘性ダンパーからなる減衰部10とMRダンパーからなる軸方向可変部20とを直列に組み合わせた制振装置1による減衰特性を示し、図4(a)は、鋼材ダンパーからなる減衰部10とMRダンパーからなる軸方向可変部20とを直列に組み合わせた制振装置1による減衰特性を示す。
これらの場合、制振装置1全体の減衰特性は、任意のタイミングでMRダンパーを作動させることにより変化させることができる。図3、図4の例では、MRダンパーの軸剛性を任意のタイミングでほぼ無限大とし、他のタイミングでほぼゼロにすることにより、前記二部材間の荷重伝達を部分的にキャンセルしている。
このように、振動センサ6により得られた記録を基に制振装置1を制御することで、建造物BLへの負担や効率等を総合的に考慮してパッシブ制振よりも効果的な制振を行うことが可能となる。なお、図3、図4の如くMRダンパーの軸剛性をほぼ無限大かゼロの二択にするのみならず、中間の軸剛性を設定して制振装置1の制御幅を広げてもよい。
With reference to FIGS. 3 and 4, the operation when the MR damper (shaft rigidity varying device) is used for the axial direction varying unit 20 will be described.
FIG. 3A shows damping characteristics of the vibration damping device 1 in which a damping unit 10 made of a viscous damper and an axial direction variable unit 20 made of an MR damper are combined in series, and FIG. 2 shows damping characteristics of the vibration damping device 1 in which the damping unit 10 and the axial direction variable unit 20 including an MR damper are combined in series.
In these cases, the damping characteristic of the entire vibration damping device 1 can be changed by operating the MR damper at an arbitrary timing. In the examples of FIGS. 3 and 4, the load transmission between the two members is partially canceled by making the axial rigidity of the MR damper almost infinite at any timing and making it substantially zero at other timings. .
In this way, by controlling the vibration damping device 1 based on the record obtained by the vibration sensor 6, it is more effective than passive vibration damping in consideration of the load on the building BL, efficiency, etc. It becomes possible to shake. It should be noted that, as shown in FIGS. 3 and 4, the axial rigidity of the MR damper is not limited to the infinity or zero, but an intermediate axial rigidity may be set to widen the control range of the vibration damping device 1.

図3(b)は、粘性ダンパーからなる減衰部10を備える一方、軸方向可変部20の軸方向の剛性を高めて変化させず、MRダンパーが軸方向に変形しない一定の特性とした制振装置1による減衰特性を示し、図4(b)は、鋼材ダンパーからなる減衰部10を備える一方、軸方向可変部20の軸方向の剛性を高めて変化させず、MRダンパーが軸方向に変形しない一定の特性とした制振装置1による減衰特性を示す。
これらの場合、制振装置1全体の減衰特性は、減衰部10の固定された減衰特性となる。
FIG. 3B is a vibration damping device having a damping part 10 made of a viscous damper, which has a constant characteristic that the rigidity of the axial direction variable part 20 is not changed by increasing the rigidity in the axial direction and the MR damper is not deformed in the axial direction. FIG. 4( b) shows the damping characteristics of the device 1, and the MR damper is deformed in the axial direction while the damping portion 10 made of a steel damper is provided, while the axial rigidity of the axial direction variable portion 20 is increased and does not change. The damping characteristic by the vibration damping device 1 having a constant characteristic is shown.
In these cases, the damping characteristic of the entire vibration damping device 1 is the fixed damping characteristic of the damping section 10.

図5、図6を参照し、軸方向可変部20に電動アクチュエータ(軸長可変装置)を用いた場合の作用について説明する。
図5(a)は、粘性ダンパーからなる減衰部10と電動アクチュエータからなる軸方向可変部20とを直列に組み合わせた制振装置1による減衰特性を示し、図6(a)は、鋼材ダンパーからなる減衰部10と電動アクチュエータからなる軸方向可変部20とを直列に組み合わせた制振装置1による減衰特性を示す。
これらの場合、制振装置1全体の減衰特性は、任意のタイミングで電動アクチュエータを作動(伸縮)させることにより変化させることができる。図5、図6の例では、電動アクチュエータの軸方向長さを伸縮させ、減衰部10の軸変形のスピードや量を変化させることにより、前記二部材間の荷重伝達を任意に増減させている。
このように、振動センサ6により得られた記録を基に制振装置1を制御することで、建造物BLへの負担や効率等を総合的に考慮してパッシブ制振よりも効果的な制振を行うことが可能となる。
With reference to FIGS. 5 and 6, the operation when the electric actuator (axial length varying device) is used for the axial direction varying unit 20 will be described.
FIG. 5A shows damping characteristics of the vibration damping device 1 in which a damping unit 10 made of a viscous damper and an axial direction variable unit 20 made of an electric actuator are combined in series, and FIG. 6A shows a damping characteristic of a steel material damper. 2 shows damping characteristics of the vibration damping device 1 in which the damping unit 10 and the axial direction variable unit 20 including an electric actuator are combined in series.
In these cases, the damping characteristic of the entire vibration damping device 1 can be changed by operating (extending and contracting) the electric actuator at an arbitrary timing. In the example of FIGS. 5 and 6, the load transmission between the two members is arbitrarily increased or decreased by expanding or contracting the axial length of the electric actuator and changing the speed or amount of axial deformation of the damping portion 10. ..
In this way, by controlling the vibration damping device 1 based on the record obtained by the vibration sensor 6, it is more effective than passive vibration damping in consideration of the load on the building BL, efficiency, etc. It becomes possible to shake.

図5(b)は、粘性ダンパーからなる減衰部10を備える一方、軸方向可変部20を変化させず、電動アクチュエータが軸方向に変化しない一定の特性とした制振装置1による減衰特性を示し、図6(b)は、鋼材ダンパーからなる減衰部10を備える一方、軸方向可変部20を変化させず、電動アクチュエータが軸方向に変化しない一定の特性とした制振装置1による減衰特性を示す。
これらの場合、制振装置1の減衰特性は減衰部10の固定された減衰特性となる。
FIG. 5B shows a damping characteristic of the vibration damping device 1 which is provided with the damping portion 10 made of a viscous damper, while the axial direction variable portion 20 is not changed and the electric actuator has a constant characteristic that does not change in the axial direction. 6(b) shows a damping characteristic of the vibration damping device 1 which is provided with a damping portion 10 made of a steel damper, while the axial direction varying portion 20 is not changed and the electric actuator has a constant characteristic that does not change in the axial direction. Show.
In these cases, the damping characteristic of the vibration damping device 1 is the fixed damping characteristic of the damping unit 10.

図1に戻り、制振システム5は、振動センサ6により建造物BLの振動を検出し、振動センサ6の検出結果に基づいて制御装置7が制振装置1の作動(軸方向可変部20の作動)を制御する。これにより、建造物BLの振動に応じて制振装置1全体の減衰力を増減させて、前記二部材間で荷重伝達をなくしたり振動を減衰させたりすることが可能となる。 Returning to FIG. 1, the vibration damping system 5 detects the vibration of the building BL by the vibration sensor 6, and based on the detection result of the vibration sensor 6, the control device 7 operates the vibration damping device 1 (of the axial direction variable portion 20). Control). As a result, it is possible to increase or decrease the damping force of the entire vibration damping device 1 according to the vibration of the building BL to eliminate the load transmission between the two members or to damp the vibration.

本制振システム5を建造物BLに導入することにより、建造物BLの振動を容易にアクティブに制御でき、パッシブ方式の制振に比べて少ないダンパーで効率的な制振を行うことができる。また、本制振システムは、既存建造物BLにも導入が容易であり、既存の制振ダンパーをアクティブ制振用のダンパーとして使用することができる。本制振システム5に用いる減衰部10は、市販の制振ダンパーが豊富に存在し、安価に手に入る。一方、軸方向可変部20は、機能が単純であり、MRダンパーや小型のアクチュエータ等を用いることが可能である。 By introducing the vibration damping system 5 into the building BL, the vibration of the building BL can be easily and actively controlled, and efficient damping can be performed with a smaller number of dampers as compared with passive type damping. Further, the present vibration damping system can be easily introduced into the existing building BL, and the existing vibration damping damper can be used as a damper for active vibration damping. The damping unit 10 used in the vibration damping system 5 is abundant in commercially available vibration damping dampers and can be obtained at low cost. On the other hand, the axial direction variable unit 20 has a simple function, and it is possible to use an MR damper, a small actuator, or the like.

以上説明したように、上記実施形態における制振装置1は、建造物BLの相対変位可能な二部材間(例えばY形ブレースBr1と柱Pとの間、上下ブレース部材Br2a,Br2bの間)に介設されるものであって、前記軸方向の減衰特性を有する減衰部10と、前記軸方向の剛性および長さの少なくとも一つを可変とする軸方向可変部20とが、互いに直列に連結されているため、軸方向可変部20の剛性および長さの少なくとも一つを任意に変化させることで、前記二部材間の伝達荷重を任意に変化させることができ、建造物BLに対して任意に減衰と復元力とを与え、建造物BLの振動を効率よく減衰させることができる。また、減衰部10から独立した軸方向可変部20を減衰部10に直列に連結するのみでよいので、減衰部にアクチュエータが組み込まれたアクティブダンパを用いる場合と比較して小型かつ安価に構成することができる。 As described above, the vibration damping device 1 according to the above-described embodiment is provided between the two members of the building BL that are capable of relative displacement (for example, between the Y-shaped brace Br1 and the pillar P, between the upper and lower brace members Br2a, Br2b). The damping part 10 having the damping property in the axial direction and the axial direction varying part 20 for varying at least one of the rigidity and the length in the axial direction are connected to each other in series. Therefore, by arbitrarily changing at least one of the rigidity and the length of the axial direction variable portion 20, it is possible to arbitrarily change the transmission load between the two members and to arbitrarily change the building BL. The vibration of the building BL can be efficiently damped by applying damping and restoring force to the. Further, since it is only necessary to connect the axial direction variable portion 20 independent of the damping portion 10 to the damping portion 10 in series, the size and cost are reduced as compared with the case where the active damper in which the actuator is incorporated in the damping portion is used. be able to.

なお、本発明は上記実施形態に限られるものではなく、例えば、制振システム5において、振動センサ6の数や種類は任意に選択することができる。また、制御装置7による制御も適宜フィードバックや学習による最適化を図るものであってもよい。
建造物BLの揺れは、地震動に限らず風による振動も含まれる。
制振装置1は、建造物BLの任意の場所に設置することができ、かつ設置数も様々である。また、制振装置1を連結するブレースBの形式は統一されている必要はなく、各種の形式のブレースBが混在していてもよい。また、制振装置1の方式(軸剛性可変方式、軸長可変方式)も統一されている必要はなく、複数の方式の制振装置1が混在していてもよい。
軸剛性可変装置としてはMRダンパーに限らず機械的機構の装置等でもよい。軸長可変装置としては電動アクチュエータに限らず油圧アクチュエータ等でもよい。
そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
The present invention is not limited to the above-described embodiment, and for example, in the vibration damping system 5, the number and types of the vibration sensors 6 can be arbitrarily selected. The control by the control device 7 may also be optimized by feedback or learning as appropriate.
The shaking of the building BL includes not only seismic motion but also vibration due to wind.
The vibration damping device 1 can be installed anywhere in the building BL, and the number of installations is various. In addition, the forms of the braces B that connect the vibration damping device 1 do not have to be unified, and the braces B of various forms may be mixed. Further, the system of the vibration damping device 1 (variable shaft rigidity system, variable shaft length system) does not need to be unified, and the vibration damping devices 1 of a plurality of systems may be mixed.
The variable shaft rigidity device is not limited to the MR damper, but may be a device having a mechanical mechanism or the like. The variable axial length device is not limited to an electric actuator, but may be a hydraulic actuator or the like.
The configurations in the above embodiments are examples of the present invention, and various modifications can be made without departing from the gist of the present invention, such as replacing the elements of the embodiments with known elements.

1,1A,1B…制振装置
5…制振システム
6…振動センサ
7…制御装置
10…減衰部
20…軸方向可変部
BL…建造物
P…柱
Pa…基台
Br1…Y形ブレース(ブレース)
Br2…片ブレース(ブレース)
Br1a…頂部
Br2a…上ブレース部材(連結部材)
Br2b…下ブレース部材(連結部材)
1, 1A, 1B... Vibration control device 5... Vibration control system 6... Vibration sensor 7... Control device 10... Damping part 20... Axial direction variable part BL... Building P... Pillar Pa... Base Br1... Y type brace (brace )
Br2... Single brace (Brace)
Br1a... Top part Br2a... Upper brace member (connecting member)
Br2b... Lower brace member (connecting member)

Claims (7)

建造物の相対変位可能な二部材間に介設される制振装置において、
前記二部材間に渡る軸方向の減衰特性を有する減衰部と、前記軸方向の剛性および長さの少なくとも一つを可変とする軸方向可変部と、を備え、前記軸方向可変部と前記減衰部とが直列に連結され、前記軸方向可変部は、前記二部材間の荷重伝達をなくすことを含んで、前記二部材間の荷重伝達を変化させる制振装置。
In a vibration damping device interposed between two members capable of relative displacement in a building,
A damping part having an axial damping characteristic extending between the two members, and an axial direction varying part capable of varying at least one of rigidity and length in the axial direction, the axial direction varying part and the damping. A vibration damping device that changes the load transmission between the two members, including eliminating the load transmission between the two members, and the axial direction variable portion being connected in series.
建造物のブレースに連結されている請求項1に記載の制振装置。 The vibration damping device according to claim 1, which is connected to a brace of a building. 前記軸方向可変部が、MRダンパーである請求項1又は2に記載の制振装置。 The vibration damping device according to claim 1, wherein the axial direction variable portion is an MR damper. 前記軸方向可変部が、電動アクチュエータである請求項1又は2に記載の制振装置。 The vibration damping device according to claim 1, wherein the axial direction variable portion is an electric actuator. 前記減衰部が、オイルダンパー、粘性ダンパー、粘弾性ダンパー、鋼材ダンパーおよび摩擦ダンパーの何れかである請求項1から4の何れか一項に記載の制振装置。 The vibration damping device according to claim 1, wherein the damping portion is any one of an oil damper, a viscous damper, a viscoelastic damper, a steel material damper, and a friction damper. 前記減衰部が、前記軸方向可変部を建造物に連結する連結部材である請求項1から5の何れか一項に記載の制振装置。 The vibration damping device according to claim 1, wherein the damping portion is a connecting member that connects the axial direction variable portion to a building. 請求項1から6の何れか一項に記載の制振装置と、前記建造物の振動を検出する振動センサと、前記振動センサの検出結果に基づいて前記軸方向可変部を作動させる制御装置と、を備えている制振システム。 The vibration damping device according to any one of claims 1 to 6, a vibration sensor that detects vibration of the building, and a control device that operates the axial direction variable unit based on a detection result of the vibration sensor. , A vibration damping system equipped with.
JP2016050748A 2016-03-15 2016-03-15 Vibration control device, vibration control system Active JP6709646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016050748A JP6709646B2 (en) 2016-03-15 2016-03-15 Vibration control device, vibration control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016050748A JP6709646B2 (en) 2016-03-15 2016-03-15 Vibration control device, vibration control system

Publications (2)

Publication Number Publication Date
JP2017166168A JP2017166168A (en) 2017-09-21
JP6709646B2 true JP6709646B2 (en) 2020-06-17

Family

ID=59908750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016050748A Active JP6709646B2 (en) 2016-03-15 2016-03-15 Vibration control device, vibration control system

Country Status (1)

Country Link
JP (1) JP6709646B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930901B2 (en) * 2017-11-09 2021-09-01 株式会社Nttファシリティーズ Vibration control control system, vibration control control method, vibration analysis device and vibration analysis method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250165A (en) * 1990-02-27 1991-11-07 Shimizu Corp Hybrid dynamic vibration reducer
US5984062A (en) * 1995-02-24 1999-11-16 Bobrow; James E. Method for controlling an active truss element for vibration suppression
JP4855378B2 (en) * 2007-12-10 2012-01-18 株式会社竹中工務店 Damping device, damping method and damping program
JP5601825B2 (en) * 2009-11-13 2014-10-08 株式会社免制震ディバイス Damper and seismic isolation mechanism

Also Published As

Publication number Publication date
JP2017166168A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
EP2732106B1 (en) Passive damper
JP5970818B2 (en) Seismic isolation mechanism
JP4852552B2 (en) Negative rigid device and seismic isolation structure provided with the negative rigid device
JP6217181B2 (en) Floor seismic isolation system
JP2012122228A (en) Vibration control device fitted with inertia mass damper
JP6183478B2 (en) Seismic isolation mechanism
JP2014510204A (en) Displacement amplification type vibration control system and its construction method
JP6385121B2 (en) Rotating mass damper
JP6709646B2 (en) Vibration control device, vibration control system
JP2014159689A (en) Vibration control device and building with the same
Lee et al. Experimental application of a vibration absorber in structural vibration reduction using tunable fluid mass driven by micropump
JP5874336B2 (en) Vibration control device
JP6811138B2 (en) Vibration control device and vibration control system
JP6726381B2 (en) Installation structure of rotary mass damper
JP5601824B2 (en) Damper and seismic isolation mechanism
JP4761347B2 (en) Building vibration control system.
JP6910111B2 (en) Vibration control device and vibration control system
JP5341546B2 (en) Seismic isolation structure, seismic isolation structure design method, and building
JP6531479B2 (en) Seismic isolation structure
JP6178111B2 (en) Friction damper
CN101346557A (en) Negative rigidity device and vibration isolating construction provided with this negative rigidity device
JP5917291B2 (en) Mass damper type damping device
JP2015010650A (en) Oil damper, and damper system
JP5743432B2 (en) Expansion joint structure
JP7499087B2 (en) Damper system and seismic isolation structure equipped with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R150 Certificate of patent or registration of utility model

Ref document number: 6709646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250