JP6708863B2 - Contaminated water purification equipment - Google Patents

Contaminated water purification equipment Download PDF

Info

Publication number
JP6708863B2
JP6708863B2 JP2016088927A JP2016088927A JP6708863B2 JP 6708863 B2 JP6708863 B2 JP 6708863B2 JP 2016088927 A JP2016088927 A JP 2016088927A JP 2016088927 A JP2016088927 A JP 2016088927A JP 6708863 B2 JP6708863 B2 JP 6708863B2
Authority
JP
Japan
Prior art keywords
water
voc
contaminated water
tube
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016088927A
Other languages
Japanese (ja)
Other versions
JP2017196563A (en
Inventor
靖史 浅井
靖史 浅井
享 平野
享 平野
英史 日下
英史 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Nishimatsu Construction Co Ltd
Original Assignee
Kyoto University
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Nishimatsu Construction Co Ltd filed Critical Kyoto University
Priority to JP2016088927A priority Critical patent/JP6708863B2/en
Publication of JP2017196563A publication Critical patent/JP2017196563A/en
Application granted granted Critical
Publication of JP6708863B2 publication Critical patent/JP6708863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Description

本発明は、マイクロバブルを用いたVOC汚染水の浄化処理装置に関するものである。 The present invention relates to a VOC-contaminated water purification treatment apparatus using microbubbles.

一般に地下水汚染に対するVOC(揮発性有機化合物)対策としては、汚染土壌・地下水を原位置で浄化する方法、汚染土壌ガスを抽出する方法、汚染地下水を揚水する方法、汚染土壌を掘削除去する方法などが挙げられる。 In general, VOC (volatile organic compound) countermeasures against groundwater pollution include methods for cleaning contaminated soil and groundwater in-situ, methods for extracting contaminated soil gas, methods for pumping contaminated groundwater, methods for excavating and removing contaminated soil, etc. Is mentioned.

このうち、汚染地下水を揚水する方法では、汚染水を水槽に導きその水中に設けた散気管やエジェクターポンプ等で汚染水をバブリング(気泡サイズとして1mm以上)して気液接触浄化(ばっ気処理)することが行われてきた。 Among these methods, the method of pumping contaminated groundwater is to guide the contaminated water to a water tank and bubble the contaminated water with an air diffuser or an ejector pump installed in the water (1 mm or more in bubble size) to purify gas and liquid (aeration treatment). ) Has been done.

図15はその一例を示すもので、図中1は汚染水を貯水する原水槽、2はばっ気槽で、原水槽1には原水ポンプ3が置かれ、これによりばっ気槽2に汚染水が送り込まれる。 FIG. 15 shows an example thereof. In the figure, 1 is a raw water tank for storing contaminated water, 2 is an aeration tank, and a raw water pump 3 is placed in the raw water tank 1, whereby the aeration tank 2 is contaminated with water. Is sent.

ばっ気槽2には吸気管5を備えた水中エジェクター4が置かれ、これで汚染水をバブリングして汚染水からVOCを揮発脱離させ、揮発脱離したVOCを含有する空気は気液分離槽6に送り、さらに、活性炭吸着塔7で活性炭にVOCを吸着させ、除去した空気はブロア8でVOC管理施設に送る。 The aeration tank 2 is provided with an underwater ejector 4 equipped with an intake pipe 5, by which contaminated water is bubbled to volatilize and desorb VOCs from the contaminated water, and the air containing the volatilized and desorbed VOCs is gas-liquid separated. The air is sent to the tank 6, the activated carbon is adsorbed on the activated carbon by the activated carbon adsorption tower 7, and the removed air is sent to the VOC management facility by the blower 8.

また、ばっ気槽2には排水ポンプ10を設置した排水ピット9が形成され、汚染水からVOCを揮発脱離した水は排水ポンプ10により濁水処理設備11に送られる。 In addition, a drainage pit 9 having a drainage pump 10 installed therein is formed in the aeration tank 2, and the water obtained by volatilizing and desorbing VOCs from the contaminated water is sent to the muddy water treatment facility 11 by the drainage pump 10.

しかしこの方法で大量の汚染水へ対応しようとすると水槽は大型化してしまう。 However, if this method is used to deal with a large amount of contaminated water, the tank will become large.

汚染水の浄化効率は処理水槽内の汚染水ばっ気処理の均一性に大きく依存するが、ばっ気槽全体の均一な撹拌が困難であることから、単一のバブリング系統では均一性の確保が困難であり、大型化した水槽ではそれが顕著となる。 The purification efficiency of contaminated water largely depends on the uniformity of the aeration treatment of contaminated water in the treated water tank, but it is difficult to evenly agitate the entire aeration tank, so it is not possible to ensure uniformity with a single bubbling system. Difficult, especially in larger tanks.

下記特許文献は図16に示すように、汚染水ばっ気処理の均一性確保が可能な大きさまで、大型化した水槽を小さく分割し、その各々の水槽にバブリング系統を設けるようにしたものである。
特開2014−124543号公報
In the following patent documents, as shown in FIG. 16, a large-sized water tank is divided into small pieces to a size that can ensure the uniformity of aeration treatment of contaminated water, and a bubbling system is provided in each of the water tanks. ..
JP, 2014-124543, A

地下揚水井に連設する原水流入管がFRP製ばっ気水槽体12に連通し、このばっ気水槽体12は内部にFRP製気液混合樹脂層部材を設けるとともに外部にばっ気ブロア13を設け、前記ばっ気水槽体12に活性炭吸着槽体14を連設して成るユニットを直列又は並列に必要数連結して成る。 The raw water inflow pipe connected to the underground pumping well communicates with the FRP aeration water tank body 12. This aeration water tank body 12 is provided with the FRP gas-liquid mixed resin layer member inside and the aeration blower 13 outside. A required number of units each comprising an activated carbon adsorption tank body 14 connected to the aeration water tank body 12 are connected in series or in parallel.

しかしながら、前記特許文献1では設備系統が複雑となり、単一の大型水槽で行う場合に比較してより広い設置場所を必要とするなど、欠点をともなうものであった。 However, the above-mentioned Patent Document 1 has a drawback that the facility system becomes complicated and a wider installation place is required as compared with the case where a single large water tank is used.

本発明の目的は前記従来例の不都合を解消し、大量のVOC汚染水(処理対象濃度:5,000〜0.001mg/L)を効率よく処理できるもので、従来のような処理水槽の大型化や分割、多段式の導入などを必要としないで、小スペース設置が可能な汚染水の浄化処理装置を提供することにある。 The object of the present invention is to eliminate the disadvantages of the conventional example and to efficiently treat a large amount of VOC-contaminated water (concentration to be treated: 5,000 to 0.001 mg/L). Another object of the present invention is to provide a contaminated water purification treatment device which can be installed in a small space without requiring a multi-stage introduction.

前記目的を達成するため請求項1記載の本発明は、内側管を多孔管で形成した内側管と外側管の二重管構造であり、20μmから1mm未満が中心のサイズ分布を持つ気泡群のマイクロバブルを発生するマイクロバブル発生モジュールを複数本を並べてVOC抽出ユニットとし、該マイクロバブル発生モジュールの内側管内にVOC(揮発性有機化合物)を含有する汚染水を通水し、外側管内に圧搾空気を導入するようにし、マイクロバブル発生モジュール出口側に衝撃板を内蔵するチャンバーを設け、該チャンバー内にシャワー状に放出するVOC含有気泡と浄化水との混合物を衝突させる衝撃板を設けたことを要旨とするものである。 In order to achieve the above-mentioned object, the present invention according to claim 1 has a double tube structure of an inner tube and an outer tube in which the inner tube is formed of a perforated tube. A plurality of microbubble generating modules that generate microbubbles are arranged to form a VOC extraction unit, contaminated water containing VOC (volatile organic compound) is passed through the inner tube of the microbubble generating module, and compressed air is passed through the outer tube. A chamber containing an impact plate is provided on the outlet side of the microbubble generation module, and an impact plate is provided in the chamber for colliding a mixture of VOC-containing bubbles discharged in a shower and purified water. Is the gist.

請求項1記載の本発明によれば、マイクロバブル発生モジュールでは、内側管内に汚染水を通水し、外側管内に圧搾空気を導入することで、前記隔壁の作用によりVOC汚染水側に20μmから1mm未満が中心のサイズ分布を持つ気泡群のマイクロバブルが導入される。 According to the first aspect of the present invention, in the micro-bubble generating module, the contaminated water is passed through the inner pipe, and the compressed air is introduced into the outer pipe, so that the action of the partition wall causes the VOC contaminated water side to reach from 20 μm. Microbubbles, which are a group of bubbles with a size distribution centered on less than 1 mm, are introduced.

マイクロバブルが内側管による隔壁境界でVOC汚染水に接触すると、通常の比較的大きなサイズ(1mm以上)のバブルに接触した場合と比較して、非常に効率良くバブル中にVOCが移行する。この効果により、瞬時にVOCを抽出したマイクロバブルは、隔壁から離れると汚染水内で速やかに結合する。その結果、モジュールの処理水出口側においては、サイズアップしたVOC含有気泡とVOC処理後の汚染水(浄化水)とが混合した状態で存在する。 When microbubbles come into contact with VOC-contaminated water at the boundary of the partition formed by the inner tube, VOCs migrate into the bubbles very efficiently as compared with the case where they come into contact with bubbles of a comparatively large size (1 mm or more). Due to this effect, the microbubbles that have extracted VOCs instantly combine with each other in the contaminated water when they leave the partition wall. As a result, on the treated water outlet side of the module, the size-increased VOC-containing bubbles and the contaminated water (purified water) after the VOC treatment exist in a mixed state.

このようにして、マイクロバブル発生モジュールを縦方向に複数本を並べてユニットとしていることで、設備が小型化できる。 In this way, by arranging a plurality of microbubble generating modules in the vertical direction to form a unit, the equipment can be downsized.

さらに、VOC含有気泡と浄化水との混合物を、モジュール出口側に接続したチャンバー内でシャワー状に放出し、衝撃板に衝突させることにより、衝突の衝撃により浄化水とVOC気泡とが分離され、VOCはチャンバー内に抽出されて、チャンバーから適宜排気のうえ分解や吸着などの後段処理に送ることができるようになる。 Furthermore, a mixture of VOC-containing bubbles and purified water is discharged like a shower in a chamber connected to the module outlet side and collided with an impact plate, whereby the purified water and VOC bubbles are separated by the impact of collision, The VOCs can be extracted into the chamber and appropriately exhausted from the chamber before being sent to the subsequent treatment such as decomposition or adsorption.

また、従来のVOCばっき処理で必要なバブリングを行う水槽を必要とせず、設備が小型化できるとともに、水槽処理での課題であったバブリングの不均一さに起因する処理効率の低さが改善される。 In addition, it does not require a water tank for bubbling required in the conventional VOC bubbling process, the equipment can be downsized, and the low treatment efficiency due to the uneven bubbling, which was a problem in the water tank treatment, is improved. To be done.

ここで、モジュール出口側ですぐにシャワー放出と衝突させることが重要である。VOC含有気泡と浄化水との混合物の状態で時間を与えるとVOCの液相への再溶解が発生するからである。 Here, it is important to immediately collide with the shower discharge on the module exit side. This is because if the time is given in the state of the mixture of the VOC-containing bubbles and the purified water, the VOCs are redissolved in the liquid phase.

請求項記載の本発明は、複数本を並べたマイクロバブル発生モジュールユニットは、処理原水注入水槽に設置することを要旨とするものである。 The present invention according to claim 2 is characterized in that the microbubble generating module unit in which a plurality of microbubbles are arranged is installed in a treated raw water injection water tank.

請求項記載の本発明によれば、マイクロバブル発生モジュールを用いてユニットとすることで、設備が小型化でき、処理原水注入水槽(ばっき槽)に複数のユニットを設置でき、水槽を大型化しないでも処理能力を上げることができる。 According to the present invention as set forth in claim 2, by using the microbubble generating module as a unit, the equipment can be downsized, and a plurality of units can be installed in the treated raw water injection water tank (baking tank), and the water tank can be large. The processing capacity can be increased without conversion.

以上述べたように本発明の汚染水の浄化処理装置は、大量のVOC汚染水を効率よく処理できるもので、従来のような処理水槽の大型化や分割、多段式の導入などを必要としないで、小スペース設置が可能なものである。 As described above, the apparatus for purifying contaminated water according to the present invention can efficiently treat a large amount of VOC contaminated water, and does not require the size and division of the treated water tank and the introduction of a multi-stage system as in the prior art. Therefore, it can be installed in a small space.

以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の汚染水の浄化処理装置の第1実施形態を示す説明図で、図中20はVOC抽出ユニットである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing a first embodiment of a contaminated water purification treatment device of the present invention, in which 20 is a VOC extraction unit.

このVOC抽出ユニット20は、図3〜図7に示すようにマイクロバブル発生管モジュール21を縦方向に複数本並べてフレーム22に固定した。 In this VOC extraction unit 20, as shown in FIGS. 3 to 7, a plurality of microbubble generating tube modules 21 are arranged in the vertical direction and fixed to a frame 22.

図8、図9にマイクロバブル発生管モジュール21を示すと、外側管23と多孔膜管で形成した内側管24との内外管の二重管構造で、20μmから1mm未満が中心のサイズ分布を持つ気泡群のマイクロバブルを発生させるものである。 8 and 9 show a microbubble generating tube module 21, which has a double tube structure of an inner tube and an outer tube of an outer tube 23 and an inner tube 24 formed of a porous membrane tube, and has a size distribution centered on 20 μm to less than 1 mm. This is to generate micro bubbles of a group of bubbles.

図中25はマイクロバブル発生管モジュール21の先端に形成する放出口、26は内側管24に連通する給水口、27は外側管23に連通する送気口で、前記給水口26を介して内側管24内に汚染水を通水し、送気口27を介して外側管23内に圧搾空気を導入する。 In the figure, 25 is a discharge port formed at the tip of the micro bubble generating tube module 21, 26 is a water supply port communicating with the inner pipe 24, 27 is an air supply port communicating with the outer pipe 23, and the inside is provided through the water supply port 26. Contaminated water is passed through the pipe 24, and compressed air is introduced into the outer pipe 23 through the air supply port 27.

マイクロバブル発生管モジュール21は、処理能力に合わせたモジュールの必要数を、モジュールもしくはユニット単位で増設することが可能で、水槽を必ずしも必要としないものである。 The micro-bubble generation tube module 21 can increase the required number of modules according to the processing capacity in module or unit units, and does not necessarily require a water tank.

図1に示すように、マイクロバブル発生管モジュール21が縦方向に複数本を並ぶVOC抽出ユニット20のマイクロバブル発生管モジュール21のモジュール出口側にチャンバー29を設け、このチャンバー29内に衝撃板30を設けて、マイクロバブル発生管モジュール21からチャンバー29内に放出するVOC含有気泡と浄化水との混合物を衝撃板30に衝突させるものとした。 As shown in FIG. 1, a chamber 29 is provided on the module outlet side of the micro-bubble generation tube module 21 of the VOC extraction unit 20 in which a plurality of micro-bubble generation tube modules 21 are arranged in the vertical direction, and an impact plate 30 is provided in the chamber 29. Is provided so that the mixture of the VOC-containing bubbles discharged from the micro bubble generation tube module 21 into the chamber 29 and the purified water collides with the impact plate 30.

なお、衝撃板30は図示ではジグザグつづら折状の屋根タイプのものとしたが、その他傾斜板が併列するものやドーム型等種々の形状のものが採用できる。 Although the impact plate 30 is of a zigzag and zigzag roof type in the drawing, various other types such as those in which inclined plates are arranged in parallel or a dome type can be adopted.

前記マイクロバブル発生管モジュール21は各放出口25がチャンバー29に並んで開口するものであり、これによりチャンバー29内にVOC含有気泡と浄化水との混合物をシャワー状に放出できる。 The micro-bubble generation tube module 21 has its discharge ports 25 opened side by side with the chamber 29, so that the mixture of VOC-containing bubbles and purified water can be discharged into the chamber 29 in a shower shape.

前記VOC抽出ユニット20は圧搾空気源36と、VOC汚染水入口35が接続され、マイクロバブル発生管モジュール21は分岐管としてその給水口26は給水マニホールド37に接続される。 The VOC extraction unit 20 is connected to a compressed air source 36 and a VOC contaminated water inlet 35, and the microbubble generating pipe module 21 is connected as a branch pipe to a water supply port 26 thereof which is connected to a water supply manifold 37.

また、前記チャンバー29には洗浄水出口31とVOCガス出口32が設けられ、このVOCガス出口32は活性炭処理(設備)33を経て清浄ガス出口34となる。 Further, the chamber 29 is provided with a cleaning water outlet 31 and a VOC gas outlet 32, and the VOC gas outlet 32 becomes a clean gas outlet 34 through an activated carbon treatment (equipment) 33.

前記のようにマイクロバブル発生管モジュール21は二重管構造であり、内側管24内に汚染水を通水し、外側管23内に圧搾空気を導入することで、内側管24の隔壁作用によりVOC汚染水側に20μmから1mm未満が中心のサイズ分布を持つ気泡群のマイクロバブルが導入される。 As described above, the micro-bubble generating tube module 21 has a double tube structure, and the contaminated water is passed through the inner tube 24, and the compressed air is introduced into the outer tube 23. On the VOC-contaminated water side, microbubbles of a group of bubbles having a size distribution centered on 20 μm to less than 1 mm are introduced.

このようにして、マイクロバブルが内側管24の隔壁の境界でVOC汚染水に接触すると、通常の比較的大きなサイズのバブルに接触した場合と比較して、非常に効率良くバブル中にVOCが移行する。 In this way, when the micro bubbles come into contact with the VOC-contaminated water at the boundary of the partition wall of the inner tube 24, the VOCs move into the bubbles very efficiently as compared with the case where the micro bubbles come into contact with the bubbles having a relatively large size. To do.

ほぼ瞬時にVOCを抽出したマイクロバブルは、内側管24から離れると汚染水内で速やかに結合する。 The microbubbles from which VOCs have been extracted almost instantly quickly combine in the contaminated water when leaving the inner tube 24.

その結果、マイクロバブル発生管モジュール21の処理水出口側においては、サイズアップしたVOC含有気泡とVOC処理後の汚染水(浄化水)とが混合した状態で存在する。 As a result, on the treated water outlet side of the micro-bubble generating tube module 21, the VOC-containing bubbles that have been increased in size and the contaminated water (purified water) after the VOC treatment exist in a mixed state.

また、VOC含有気泡と浄化水との混合物を、モジュール出口側に接続したチャンバー29内でシャワー状に放出し、衝撃板30に衝突させると、衝突の衝撃により浄化水とVOC気泡とが分離され、VOCはチャンバー内に抽出されて、チャンバーから適宜排気のうえ分解や吸着などの後段処理に送ることができるようになる。 Further, when a mixture of VOC-containing bubbles and purified water is discharged like a shower in the chamber 29 connected to the module outlet side and collides with the impact plate 30, the impact of the collision separates the purified water and the VOC bubbles. , VOCs can be extracted into the chamber, appropriately exhausted from the chamber, and then sent to a subsequent process such as decomposition or adsorption.

ここで、モジュール出口側ですぐにシャワー放出と衝突させることが重要である。VOC含有気泡と浄化水との混合物の状態で時間を与えるとVOCの液相への再溶解が発生するからである。 Here, it is important to immediately collide with the shower discharge on the module exit side. This is because if the time is given in the state of the mixture of the VOC-containing bubbles and the purified water, the VOCs are redissolved in the liquid phase.

図2は本発明の第2実施形態を示すもので、前記マイクロバブル発生管モジュール21が縦方向に複数本を並ぶVOC抽出のユニット20をばっ気槽である処理原水注入水槽40に設置した。本実施形態では図11に示すようにユニット20は処理原水注入水槽40に3台を設置するが、特にこれに限定されるものではない。 FIG. 2 shows a second embodiment of the present invention, in which a VOC extraction unit 20 in which a plurality of microbubble generating tube modules 21 are arranged in the vertical direction is installed in a treated raw water injection water tank 40 which is an aeration tank. In the present embodiment, as shown in FIG. 11, three units 20 are installed in the treated raw water injection water tank 40, but the number is not particularly limited to this.

前記ばっ気槽である処理原水注入水槽40は従来型のものでよく、前記ユニット20には図13、図14に示すようなエアー制御ユニット41が、図10、図12に示すような水制御ユニット42が接続される。 The treated raw water injection water tank 40, which is the aeration tank, may be of a conventional type, and the unit 20 includes an air control unit 41 as shown in FIGS. 13 and 14, and a water control unit as shown in FIGS. The unit 42 is connected.

処理原水注入水槽40内でのマイクロバブル発生管モジュール21によるVOC汚染水の処理は前記第1実施形態と同じであり、マイクロバブル発生管モジュール21では、内側管内に汚染水を通水し、外側管内に圧搾空気を導入することで、隔壁のマイクロバブル/ナノポーラス作用によりVOC汚染水側に20μmから1mm未満が中心のサイズ分布を持つ気泡群のマイクロバブルが導入され、気液分離(ばっ気)が行なわれる。 The treatment of the VOC contaminated water by the micro bubble generation tube module 21 in the treated raw water injection water tank 40 is the same as that of the first embodiment, and in the micro bubble generation tube module 21, the contaminated water is passed through the inside pipe and the outside By introducing compressed air into the pipe, microbubbles of a group of bubbles with a size distribution centering from 20 μm to less than 1 mm are introduced to the VOC-contaminated water side by the microbubble/nanoporous action of the partition wall, and gas-liquid separation (aeration). Is performed.

除去されたVOCガスは活性炭処理されて清浄ガスとなり、また、水はポンプ44により水制御ユニット42へと循環処理される。 The removed VOC gas is treated with activated carbon to become a clean gas, and water is circulated to the water control unit 42 by the pump 44.

本発明の汚染水の浄化処理装置の第1実施形態を示す説明図である。FIG. 1 is an explanatory view showing a first embodiment of a contaminated water purification treatment device of the present invention. 本発明の汚染水の浄化処理装置の第2実施形態を示す説明図である。It is explanatory drawing which shows 2nd Embodiment of the purification processing apparatus of the contaminated water of this invention. VOC抽出ユニットの正面図である。It is a front view of a VOC extraction unit. VOC抽出ユニットの側面図である。It is a side view of a VOC extraction unit. VOC抽出ユニットの背面図である。It is a rear view of a VOC extraction unit. VOC抽出ユニットの平面図である。It is a top view of a VOC extraction unit. VOC抽出ユニットの斜視図である。It is a perspective view of a VOC extraction unit. マイクロバブル発生モジュールの縦断側面図である。It is a vertical side view of a micro-bubble generation module. マイクロバブル発生モジュールの正面図である。It is a front view of a micro-bubble generation module. 本発明の汚染水の浄化処理装置の第2実施形態を示す正面図である。It is a front view which shows 2nd Embodiment of the purification processing apparatus of the contaminated water of this invention. 本発明の汚染水の浄化処理装置の第2実施形態を示す平面図である。It is a top view which shows 2nd Embodiment of the purification processing apparatus of the contaminated water of this invention. 水制御ユニットの平面図である。It is a top view of a water control unit. エアー制御ユニットの平面図である。It is a top view of an air control unit. エアー制御ユニットの正面図である。It is a front view of an air control unit. 従来例を示す説明図である。It is explanatory drawing which shows a prior art example. 他の従来例を示す説明図である。It is explanatory drawing which shows another prior art example.

1…原水槽 2…ばっ気槽
3…原水ポンプ 4…水中エジェクター
5…吸気管 6…気液分離槽
7…活性炭吸着塔 8…ブロア
9…排水ピット 10…排水ポンプ
11…濁水処理設備 12…ばっ気水槽体
13…ばっ気ブロア 14…活性炭吸着槽体
20…ユニット 21…マイクロバブル発生管モジュール
22…フレーム 23…外側管
24…内側管 25…放出口
26…給水口 27…送気口
29…チャンバー 30…衝撃板
31…洗浄水出口 32…VOCガス出口
33…活性炭処理(設備) 34…清浄ガス出口
35…VOC汚染水入口 36…圧搾空気源
37…吸水マニホールド
40…処理原水注入水槽 41…エアー制御ユニット
42…水制御ユニット 44…ポンプ
1... Raw water tank 2... Aeration tank 3... Raw water pump 4... Underwater ejector 5... Intake pipe 6... Gas-liquid separation tank 7... Activated carbon adsorption tower 8... Blower 9... Drainage pit 10... Drainage pump 11... Turbid water treatment facility 12... Aeration water tank body 13... Aeration blower 14... Activated carbon adsorption tank body 20... Unit 21... Micro bubble generation tube module 22... Frame 23... Outer tube 24... Inner tube 25... Outlet port 26... Water supply port 27... Air supply port 29 ... Chamber 30 ... Impact plate 31 ... Wash water outlet 32 ... VOC gas outlet 33 ... Activated carbon treatment (equipment) 34 ... Clean gas outlet 35 ... VOC contaminated water inlet 36 ... Compressed air source 37 ... Water absorption manifold 40 ... Treatment raw water injection water tank 41 … Air control unit 42… Water control unit 44… Pump

Claims (2)

内側管を多孔管で形成した内側管と外側管の二重管構造であり、20μmから1mm未満が中心のサイズ分布を持つ気泡群のマイクロバブルを発生するマイクロバブル発生モジュールを複数本を並べてVOC抽出ユニットとし、該マイクロバブル発生モジュールの内側管内にVOC(揮発性有機化合物)を含有する汚染水を通水し、外側管内に圧搾空気を導入するようにし、マイクロバブル発生モジュール出口側に衝撃板を内蔵するチャンバーを設け、該チャンバー内にシャワー状に放出するVOC含有気泡と浄化水との混合物を衝突させる衝撃板を設けたことを特徴とした汚染水の浄化処理装置。 The VOC has a double-tube structure consisting of an inner tube and an outer tube, each of which is made of a perforated inner tube, and has multiple microbubble generation modules that generate microbubbles of a group of bubbles having a size distribution centered on 20 μm to less than 1 mm. As an extraction unit, contaminated water containing VOC (volatile organic compound) is passed through the inside tube of the microbubble generation module, compressed air is introduced into the outside tube, and impact is applied to the outlet side of the microbubble generation module. An apparatus for purifying contaminated water, comprising a chamber containing a plate, and an impact plate for colliding a mixture of VOC-containing bubbles discharged in a shower shape and purified water in the chamber . 複数本を並べたマイクロバブル発生モジュールユニットは、処理原水注入水槽に設置する請求項1記載の汚染水の浄化処理装置。
The apparatus for purifying contaminated water according to claim 1, wherein the microbubble generating module unit in which a plurality of microbubbles are arranged is installed in a treated raw water injection water tank.
JP2016088927A 2016-04-27 2016-04-27 Contaminated water purification equipment Active JP6708863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016088927A JP6708863B2 (en) 2016-04-27 2016-04-27 Contaminated water purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016088927A JP6708863B2 (en) 2016-04-27 2016-04-27 Contaminated water purification equipment

Publications (2)

Publication Number Publication Date
JP2017196563A JP2017196563A (en) 2017-11-02
JP6708863B2 true JP6708863B2 (en) 2020-06-10

Family

ID=60236933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016088927A Active JP6708863B2 (en) 2016-04-27 2016-04-27 Contaminated water purification equipment

Country Status (1)

Country Link
JP (1) JP6708863B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554082A (en) * 1978-10-17 1980-04-21 Shinko Sangyo Kk Waste water treatment apparatus
JP2005125205A (en) * 2003-10-22 2005-05-19 Japan Techno Mate Corp Air diffuser, foam separator and wastewater purification system
JP2007278003A (en) * 2006-04-11 2007-10-25 Kubota Corp Method and device for purifying sewage force-feed pipeline system
JP5214114B2 (en) * 2006-05-25 2013-06-19 花王株式会社 Method for producing liquid composition containing fine bubbles
JP2008055291A (en) * 2006-08-30 2008-03-13 Toshiba Corp Water treating device
JP5050215B2 (en) * 2008-11-05 2012-10-17 株式会社富永製作所 Volatile hydrocarbon recovery treatment equipment

Also Published As

Publication number Publication date
JP2017196563A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP6266954B2 (en) Water treatment equipment using liquid level plasma discharge
RU2011153973A (en) FUEL PROCESSING PLANT
CN101468285A (en) Device for treating volatile organic gaseous contamination
KR100799663B1 (en) Apparatus for preparing sterilized water by using ozone
US20090250396A1 (en) Drainage water-treating method and drainage water-treating apparatus
TW201018649A (en) Water treating apparatus
KR101789468B1 (en) Multi flow deodoring device
EP3197587B1 (en) Gas scrubber system and method
KR102022704B1 (en) Deodorization device
JP6278796B2 (en) Deodorization device
JP6708863B2 (en) Contaminated water purification equipment
CN211586026U (en) Waste gas catalytic oxidation purifier
RU2490217C2 (en) Method of integrated drinking water treatment
KR101723863B1 (en) High Efficiency Deodorizing Apparatus
CN101638263A (en) High-efficiency ozone sewage sterilization system
JP4839912B2 (en) Purification method of contaminated water
KR101163097B1 (en) Gas dissolution equipment using gaps for treatment of drinking water and wastewater
KR101699049B1 (en) Air stripping devices for using a jet nozzle and VOCs contaminated groundwater purification system using thereof
KR101071501B1 (en) A purify apparatus of noxious gas
KR101545878B1 (en) Reactor for waste water advanced oxidation process
RU2524601C1 (en) Apparatus for reagentless purification and disinfection of water
KR20110060877A (en) The apparatus to treat municipal and industrial wastewater
CN108602691B (en) Device and method for extracting soluble substances dissolved in an aqueous solution
KR101803041B1 (en) Gas and bubble removal type liquid fertilizer producting device
KR100592039B1 (en) Process and plant for wastewater treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200410

R150 Certificate of patent or registration of utility model

Ref document number: 6708863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250