JP4839912B2 - Purification method of contaminated water - Google Patents

Purification method of contaminated water Download PDF

Info

Publication number
JP4839912B2
JP4839912B2 JP2006080298A JP2006080298A JP4839912B2 JP 4839912 B2 JP4839912 B2 JP 4839912B2 JP 2006080298 A JP2006080298 A JP 2006080298A JP 2006080298 A JP2006080298 A JP 2006080298A JP 4839912 B2 JP4839912 B2 JP 4839912B2
Authority
JP
Japan
Prior art keywords
aeration
volatile organic
contaminated water
air
aeration chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006080298A
Other languages
Japanese (ja)
Other versions
JP2007253056A (en
Inventor
圭一 鈴木
俊明 坂元
努 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006080298A priority Critical patent/JP4839912B2/en
Publication of JP2007253056A publication Critical patent/JP2007253056A/en
Application granted granted Critical
Publication of JP4839912B2 publication Critical patent/JP4839912B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treating Waste Gases (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、揮発性有機化合物を含有する地下水等の汚染水の浄化方法に関するものである。   The present invention relates to a method for purifying contaminated water such as groundwater containing a volatile organic compound.

地下水および工場廃水のトリクロロエチレン、テトラクロロエチレン等の揮発性有機化合物による汚染が課題となっているが、この汚染水の浄化方法として、揮発性有機化合物を気相に移行させて活性炭で吸着除去する方法、汚染水中の揮発性有機化合物などの汚染物質を水相中において除去する方法、紫外線酸化処理方法、その他各種の処理、浄化方法があるが、これらの内代表的なものとして下記の浄化方法が知られている。   Contamination of groundwater and factory wastewater with volatile organic compounds such as trichlorethylene and tetrachlorethylene has become a problem. There are methods for removing contaminants such as volatile organic compounds in the contaminated water in the aqueous phase, ultraviolet oxidation methods, and other various treatment and purification methods. Among these, the following purification methods are known. It has been.

揚水ポンプで汲み上げられた地下水は送水管を介して曝気装置に導入され、曝気された気体が吸引ブロワーによって、気液分離槽を通って活性炭槽に導入される。大気中の空気は空気乾燥器を介してオゾンガス発生装置に導入され、生成されたオゾンガスを含む気体が曝気装置に導入される。曝気装置では、地下水が噴霧される位置に、紫外線ランプとその周囲に保護管が設けられており、地下水は保護管の表面を流下する際に薄い液層となる。その際、地下水中にオゾンが吸収されるとともに、オゾンが紫外線によってラジカル化され、地下水中に含まれる揮発性汚染物質が酸化分解されるものである(例えば特許文献1参照)。
特開2001−129540号公報
The groundwater pumped up by the pump is introduced into the aeration apparatus through the water pipe, and the aerated gas is introduced into the activated carbon tank through the gas-liquid separation tank by the suction blower. Air in the atmosphere is introduced into the ozone gas generator through an air dryer, and the gas containing the generated ozone gas is introduced into the aeration apparatus. In the aeration apparatus, an ultraviolet lamp and a protective tube are provided around the ultraviolet lamp at a position where the groundwater is sprayed, and the groundwater becomes a thin liquid layer when flowing down the surface of the protective tube. At that time, ozone is absorbed into the groundwater, the ozone is radicalized by ultraviolet rays, and volatile pollutants contained in the groundwater are oxidatively decomposed (see, for example, Patent Document 1).
JP 2001-129540 A

しかしながら、前記した特許文献1に記載されたものは、曝気装置、活性炭槽の他にオゾンガス発生装置、紫外線ランプと保護管、汚染地下水の噴霧装置の構成要素およびこれらの接続が必要となり、装置全体が複雑となるとともに多数の異なる構成要素の最適条件への維持管理にも工数を要する課題がある。また地下水が噴霧される位置に、紫外線ランプの保護管の表面に地下水を順次流下させ薄い液層として処理するため、汚染地下水の処理能力に限界がある。   However, what is described in Patent Document 1 described above requires an aeration apparatus, an activated carbon tank, an ozone gas generation apparatus, an ultraviolet lamp and a protective tube, components of a contaminated groundwater spraying apparatus, and their connection, and the entire apparatus. However, there is a problem that man-hours are required to maintain and manage many different components to the optimum conditions. In addition, since groundwater flows down on the surface of the UV lamp protection tube at the position where the groundwater is sprayed and processed as a thin liquid layer, there is a limit to the ability to treat contaminated groundwater.

本発明は、前記従来の課題を解決するもので浄化装置の構成を簡素化するとともに揮発性有機化合物による汚染水の処理能力を向上させ、除去効率の優れた汚染水の浄化方法を提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems and provides a purification method of contaminated water with excellent removal efficiency by simplifying the configuration of the purification device and improving the treatment capacity of the contaminated water with volatile organic compounds. It is intended.

本発明は、前記従来の課題を解決するもので、曝気槽と、前記曝気槽を仕切壁により複数に分割した曝気室と、各々の曝気室に充填した充填材と、前記各々の曝気室への空気供給手段と、揮発性有機化合物を吸着する吸着材を備え、各々の曝気室に汚染水を順次流動させて充填材により気液接触を促進させ、揮発性有機化合物を汚染水から前記各々の曝気室に供給した空気に移行させ後、吸着材に吸着させて除去し、前記各々の曝気室に対応させた前記吸着材を有する複数の吸着ユニットを備え、前記各々の曝気室からの揮発性有機化合物を前記各々の曝気室ごとに空気に移行した揮発性有機化合物の異なる濃度に対応して設けた前記吸着ユニットの前記吸着材に吸着させるようにしたことを特徴とする汚染水の浄化方法としたものである。 The present invention solves the above-mentioned conventional problems. An aeration tank, an aeration chamber obtained by dividing the aeration tank into a plurality of partitions by a partition wall, a filler filled in each aeration chamber, and the respective aeration chambers Air supply means and an adsorbent that adsorbs volatile organic compounds, the contaminated water sequentially flows into each aeration chamber to promote gas-liquid contact with the filler, and the volatile organic compounds are separated from the contaminated water respectively. And a plurality of adsorption units having the adsorbent corresponding to each of the aeration chambers, and are volatilized from each of the aeration chambers. The contaminated water is purified by adsorbing the adsorbent of the adsorbing unit provided corresponding to different concentrations of the volatile organic compound transferred to the air for each aeration chamber. It is a method.

以上のように本発明の汚染水の浄化方法によれば、曝気室ごとに空気に移行した揮発性有機化合物の異なる濃度に対応させて吸着材の最大吸着能力を最適に設定することができ、また、浄化装置の構成を簡素化するとともに揮発性有機化合物による汚染水の処理能力を向上させ、除去効率の優れた汚染水の浄化方法とすることができる。 According to the purification method of the contaminated water of the present invention as described above, so as to correspond to different concentrations of volatile organic compounds has shifted to the air it can be optimally set the maximum adsorption capacity of the adsorbent for each aeration chamber Moreover, while simplifying the structure of a purification apparatus, the processing capability of the contaminated water by a volatile organic compound can be improved, and it can be set as the purification method of the contaminated water excellent in the removal efficiency.

第1の発明は、曝気槽と、前記曝気槽を仕切壁により複数に分割した曝気室と、各々の曝気室に充填した充填材と、前記各々の曝気室への空気供給手段と、揮発性有機化合物を吸着する吸着材を備え、各々の曝気室に汚染水を順次流動させて充填材により気液接触を促進させ、揮発性有機化合物を汚染水から前記各々の曝気室に供給した空気に移行させ後、吸着材に吸着させて除去し、前記各々の曝気室に対応させた前記吸着材を有する複数の吸着ユニットを備え、前記各々の曝気室からの揮発性有機化合物を前記各々の曝気室ごとに空気に移行した揮発性有機化合物の異なる濃度に対応して設けた前記吸着ユニットの前記吸着材に吸着させるようにしたことを特徴とする汚染水の浄化方法としたものである。 The first invention includes an aeration tank, an aeration chamber obtained by dividing the aeration tank into a plurality of partition walls, a filler filled in each aeration chamber, air supply means to each aeration chamber, and volatile An adsorbent that adsorbs organic compounds is provided. Contaminated water is made to flow sequentially into each aeration chamber to facilitate gas-liquid contact with the filler, and volatile organic compounds are supplied to the air supplied to each aeration chamber from the contaminated water. And a plurality of adsorbing units having the adsorbents corresponding to the respective aeration chambers, the volatile organic compounds from the respective aeration chambers being removed from the respective aeration chambers. This is a method for purifying contaminated water, characterized in that it is adsorbed on the adsorbent of the adsorption unit provided corresponding to different concentrations of volatile organic compounds transferred to air for each chamber .

これによって、複数の曝気室ごとに空気に移行した揮発性有機化合物の異なる濃度に対応させて吸着材の最大吸着能力を最適に設定することができ、また吸着材を分割して吸着ユニットを小型化するとともに吸着材の交換を容易に行うことができる。また、曝気槽、吸着材以外の構成要素および維持管理工数を削減できるとともに、曝気槽を仕切壁により複数に分割した充填材を有する曝気室を、汚染水を順次流動させて揮発性有機化合物を汚染水から空気に確実に移行させることができる。したがって、浄化装置の構成を簡素化するとともに揮発性有機化合物による汚染水の処理能力を向上させ、除去効率の優れた汚染水の浄化方法とすることができる。 This makes it possible to optimally set the maximum adsorption capacity of the adsorbent corresponding to the different concentrations of volatile organic compounds transferred to the air for each of the multiple aeration chambers. And the adsorbent can be easily replaced. In addition to reducing the number of components and maintenance man-hours other than the aeration tank and the adsorbent, the volatile organic compound can be removed by flowing the contaminated water sequentially in the aeration chamber having the filler divided into a plurality of aeration tanks by the partition wall. The polluted water can be reliably transferred to the air. Therefore, while simplifying the structure of a purification apparatus, the processing capability of the contaminated water by a volatile organic compound can be improved, and it can be set as the purification method of the contaminated water excellent in the removal efficiency.

の記載の発明は、第の発明において、各々の曝気室の下方部から噴出させる空気量を調節可能にしたことを特徴とする汚染水の浄化方法としたものである。 Invention of the second aspect, in the first invention is obtained by a method of purifying contaminated water, characterized in that the amount of air jetted from the lower portion of each aeration chamber and adjustable.

これによって、曝気室の各々に対して必要最小限でかつ最適条件に空気量を設定するこが可能となり、揮発性有機化合物を地下水から空気に確実に移行させることができる。また曝気による騒音を低下させることができるとともに、吸着ユニットの吸着材による揮発性有機化合物の吸着効率を向上させることができる。   This makes it possible to set the amount of air to the minimum necessary and optimum conditions for each of the aeration chambers, and to reliably transfer volatile organic compounds from groundwater to air. Moreover, noise due to aeration can be reduced, and the adsorption efficiency of the volatile organic compound by the adsorbent of the adsorption unit can be improved.

の記載の発明は、第1または2の発明において、各々の曝気室の下方部から微細気泡を噴出させることを特徴とする汚染水の浄化方法としたものである。 According to a third aspect of the invention, in the first or second aspect of the invention, a method for purifying contaminated water is characterized in that fine bubbles are ejected from the lower part of each aeration chamber.

これによって、気液接触をさらに促進させ、揮発性有機化合物を地下水から空気に確実に移行させることができる。   As a result, the gas-liquid contact can be further promoted, and the volatile organic compound can be reliably transferred from the groundwater to the air.

の記載の発明は、第1〜3のいずれかの発明において、地中の帯水層から揚水した揮発性有機化合物を含有する地下水を、各々の曝気室を通過させた後、帯水層へ導入することを特徴とする汚染水の浄化方法としたものである。 After the invention of the fourth aspect, in the first to third any one of the, where the underground water containing the pumping from the ground aquifer of volatile organic compounds, is passed through each of the aeration chamber, Obisui This is a method for purifying contaminated water, characterized by being introduced into a layer.

これによって、帯水層に存在する地下水中の揮発性有機化合物の微生物分解を促進させることができる。   Thereby, microbial decomposition of volatile organic compounds in the groundwater present in the aquifer can be promoted.

以下、本発明の実施例について図1、図2を参照しながら説明する。図1は参考例1の汚染水の浄化方法を実施するための装置の基本構成図、図2は実施例の汚染水の浄化方法を実施するための装置の基本構成図である。 Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a basic configuration diagram of an apparatus for carrying out the contaminated water purification method of Reference Example 1, and FIG. 2 is a basic configuration diagram of an apparatus for carrying out the contaminated water purification method of Example 1 .

参考例1)
図1において、地中1中の帯水層2に到達する揚水井戸3を設け、この揚水井戸3に揚水管4の一端を位置させている。揚水管4の経路に揚水する地下水の異物を除去するフイルター5、吸引させるポンプ6を設けて曝気槽7に揚水井戸3から揮発性有機化合物を含有する汚染水である地下水を供給する。
( Reference Example 1)
In FIG. 1, a pumping well 3 reaching the aquifer 2 in the underground 1 is provided, and one end of the pumping pipe 4 is positioned in the pumping well 3. A filter 5 for removing foreign matter from the groundwater to be pumped and a pump 6 for suction are provided in the path of the pumping pipe 4, and groundwater that is contaminated water containing volatile organic compounds is supplied from the pumping well 3 to the aeration tank 7.

曝気槽7は仕切壁8、9、10、11、12によって分割されており、複数の曝気室13、14、15、16、17、18を構成している。さらに前記複数の曝気室13、14、15、16、17、18の各々には充填材19、20、21、22、23、24が充填されている。なお前記充填材19、20、21、22、23、24は、気液接触を十分に促進させるものであれば良く特に限定はされないが、ラシヒリング、球状等の形状のものを曝気室13、14、15、16、17、18に不規則に充填したものである。   The aeration tank 7 is divided by partition walls 8, 9, 10, 11, and 12, and constitutes a plurality of aeration chambers 13, 14, 15, 16, 17, and 18. Further, each of the plurality of aeration chambers 13, 14, 15, 16, 17, 18 is filled with fillers 19, 20, 21, 22, 23, 24. The fillers 19, 20, 21, 22, 23, and 24 are not particularly limited as long as they can sufficiently promote gas-liquid contact, but those having shapes such as Raschig rings and spheres are provided in the aeration chambers 13 and 14. , 15, 16, 17 and 18 are irregularly filled.

また、複数の曝気室13、14、15、16、17、18の下方部から、ブロア(空気供給手段)25、供給管26、小孔を有する散気管27、28、29、30、31、32、流量調節弁33、34、35、36、37、38を介して曝気用の空気を供給するように構成してある。なお揚水した地下水は揚水管4の多端に位置する多数の小孔を有する散水管39から曝気室13に供給するものである。   Further, from the lower part of the plurality of aeration chambers 13, 14, 15, 16, 17, 18, a blower (air supply means) 25, a supply pipe 26, and a diffuser pipe 27, 28, 29, 30, 31, having a small hole, 32, aeration air is supplied through the flow rate adjusting valves 33, 34, 35, 36, 37, and 38. The groundwater pumped up is supplied to the aeration chamber 13 from a sprinkling pipe 39 having a large number of small holes located at multiple ends of the pumping pipe 4.

前記複数の曝気室13、14、15、16、17、18の各々の上部空間を覆うように集気板40を設け、気液接触により地下水から移行した揮発性有機化合物を含有する空気(気相)を排気管41、切替弁42を介して活性炭等の吸着材43を有する吸着ユニット44および活性炭等の吸着材45を有する吸着ユニット46に供給する。切替弁42により吸着ユニット44、吸着ユニット46のいずれか一方または両者に揮発性有機化合物を含有する空気を供給するものである。   A gas collecting plate 40 is provided so as to cover each upper space of the plurality of aeration chambers 13, 14, 15, 16, 17, and 18, and air (gas) containing a volatile organic compound transferred from groundwater by gas-liquid contact. Phase) is supplied via an exhaust pipe 41 and a switching valve 42 to an adsorption unit 44 having an adsorbent 43 such as activated carbon and an adsorption unit 46 having an adsorbent 45 such as activated carbon. The switching valve 42 supplies air containing a volatile organic compound to one or both of the adsorption unit 44 and the adsorption unit 46.

曝気室18を経た地下水を排水管47から排出するが、切替弁48により戻管49を介して注入井戸50に供給し、帯水層に戻す構成となっている。なお図中の矢印は地下水の流れを示す。   Groundwater that has passed through the aeration chamber 18 is discharged from the drain pipe 47, and is supplied to the injection well 50 via the return pipe 49 by the switching valve 48 and returned to the aquifer. The arrows in the figure indicate the flow of groundwater.

次に、前記基本構成の装置における動作を説明する。揚水井戸3から揮発性有機化合物を含有する汚染水である地下水を曝気槽7に供給するが、まず地下水は曝気槽7の曝気室13に散水管39から供給され下方に向けて流動する。曝気室13の下部からは仕切壁8の下端と曝気槽7との間隙から曝気室14に入り、上方に向けて流動する。曝気室14から仕切壁9の上端を越えて曝気室15に入り、上方に向けて流動する。以降、順次各仕切壁10、12の下端と曝気槽7との間隙、仕切壁11の上端を越えて曝気室15、16、17、18へと地下水が流動する。このとき地下水は曝気室13、14、15、16、17、18に充填した充填材19、20、21、22、23、24の間隙を通過して流動する。   Next, the operation of the basic configuration apparatus will be described. Groundwater, which is contaminated water containing a volatile organic compound, is supplied to the aeration tank 7 from the pumping well 3. From the lower part of the aeration chamber 13, it enters the aeration chamber 14 through the gap between the lower end of the partition wall 8 and the aeration tank 7 and flows upward. It enters the aeration chamber 15 from the aeration chamber 14 beyond the upper end of the partition wall 9 and flows upward. Thereafter, the groundwater flows sequentially to the aeration chambers 15, 16, 17 and 18 over the gap between the lower ends of the partition walls 10 and 12 and the aeration tank 7 and the upper end of the partition wall 11. At this time, the groundwater flows through the gaps between the fillers 19, 20, 21, 22, 23, 24 filled in the aeration chambers 13, 14, 15, 16, 17, 18.

また、曝気室13、14、15、16、17、18の下方部から、ブロア(空気供給手段)25、供給管26、散気管27、28、29、30、31、32、流量調節弁33、34、35、36、37、38を介して供給した曝気用の空気は、充填した充填材19、20、21、22、23、24の間隙を浮力により通過して上昇する。   Further, from the lower part of the aeration chambers 13, 14, 15, 16, 17, 18, a blower (air supply means) 25, a supply pipe 26, an air diffusion pipe 27, 28, 29, 30, 31, 32, and a flow control valve 33 are provided. , 34, 35, 36, 37, 38, the aeration air passes through the gaps between the filled fillers 19, 20, 21, 22, 23, 24 by buoyancy and rises.

曝気室13、14、15、16、17、18内で、流動する地下水と上昇する曝気用の空気との気液接触により、揮発性有機化合物を地下水から空気に移行させる。このとき充填材19、20、21、22、23、24により、地下水は様々な方向に、かつ細流化して流動する。また充填材19、20、21、22、23、24により、上昇する曝気用の空気も地下水中を上昇する過程で、気泡の合体を生じることがなく細かい気泡となる。 さらに地下水および空気の偏流が防止される。これらの作用により地下水と曝気用の空気との気液接触を促進させ、揮発性有機化合物を地下水から空気に効率よく移行させることができる。   In the aeration chambers 13, 14, 15, 16, 17, and 18, the volatile organic compound is transferred from the groundwater to air by gas-liquid contact between the flowing groundwater and the rising aeration air. At this time, by the fillers 19, 20, 21, 22, 23, and 24, groundwater flows in various directions and trickles. Further, due to the fillers 19, 20, 21, 22, 23, and 24, the rising aeration air also becomes fine bubbles without causing bubble coalescence in the process of rising in the groundwater. Furthermore, drift of groundwater and air is prevented. By these actions, gas-liquid contact between groundwater and aeration air can be promoted, and volatile organic compounds can be efficiently transferred from groundwater to air.

さらに、複数の曝気室13、14、15、16、17、18の各々の上部空間を覆うように設けた集気板40により、気液接触により地下水から移行した揮発性有機化合物を含有する空気(気相)を排気管41、切替弁42を介して活性炭等の吸着材43、45を有する吸着ユニット44、吸着ユニット46に供給する。吸着ユニット44、吸着ユニット46の活性炭等からなる吸着材43、45に揮発性有機化合物を吸着させて除去するものである。   Furthermore, the air containing the volatile organic compound transferred from the groundwater by gas-liquid contact by the air collecting plate 40 provided so as to cover the upper spaces of the plurality of aeration chambers 13, 14, 15, 16, 17, 18 (Gas phase) is supplied to an adsorption unit 44 and an adsorption unit 46 having adsorbents 43 and 45 such as activated carbon through an exhaust pipe 41 and a switching valve 42. A volatile organic compound is adsorbed and removed by the adsorbents 43 and 45 made of activated carbon or the like of the adsorption unit 44 and the adsorption unit 46.

切替弁42により一定の吸着能力を有する吸着ユニット44、46のいずれか一方または両者に揮発性有機化合物を含有する空気を供給する。例えば、吸着ユニット44のみに揮発性有機化合物を含有する空気を供給する場合は、他方の吸着ユニット46を待機させた状態とし、吸着ユニット44の吸着能力が一定以下になったとき、切替弁42を動作させ吸着ユニット46側に流路を切り替えて揮発性有機化合物を含有する空気を供給する。これによって、単一の吸着ユニットのみを備えた装置に比べ、吸着ユニットの交換または揮発性有機化合物の吸着材からの脱着作業にともなう浄化処理の稼動を停止させる必要がない。したがって浄化処理装置としての処理能力の向上を図ることができる。   The switching valve 42 supplies air containing a volatile organic compound to one or both of the adsorption units 44 and 46 having a certain adsorption capacity. For example, when air containing a volatile organic compound is supplied only to the adsorption unit 44, the other adsorption unit 46 is put in a standby state, and when the adsorption capacity of the adsorption unit 44 becomes below a certain level, the switching valve 42 Is operated to switch the flow path to the adsorption unit 46 side to supply air containing a volatile organic compound. Accordingly, it is not necessary to stop the operation of the purification process associated with the replacement of the adsorption unit or the desorption operation of the volatile organic compound from the adsorbent, as compared with an apparatus having only a single adsorption unit. Therefore, it is possible to improve the processing capability as the purification processing apparatus.

単一で大型の吸着ユニットのみを備えて、交換期間をより長くする手段も考えられるが、吸着能力が徐々に低下し限界近くでの使用時間が長く、揮発性有機化合物の濃度変動等によって十分な除去が困難な場合を生じる。   Although it is possible to provide only a single large adsorption unit and increase the replacement period, the adsorption capacity gradually decreases and the use time near the limit is long, which is sufficient due to fluctuations in the concentration of volatile organic compounds. That can be difficult to remove.

また、切替弁42により吸着ユニット44、46の両者に揮発性有機化合物を含有する空気を供給することを可能とすることによって、地下水中の揮発性有機化合物の濃度が一時的に高くなった場合等に、除去するために十分な吸着能力を確保することができる。なお吸着ユニット44、46の2ユニットの例で説明したが、これに限定されるものではなくさらに多くの吸着ユニットを備えてもよい。   Further, when the concentration of the volatile organic compound in the groundwater is temporarily increased by allowing the air containing the volatile organic compound to be supplied to both the adsorption units 44 and 46 by the switching valve 42. For example, it is possible to ensure sufficient adsorption capacity for removal. In addition, although demonstrated by the example of 2 units | suction units 44 and 46, it is not limited to this, You may provide more adsorption units.

また、曝気室13、14、15、16、17、18を流動し、気液接触により揮発性有機化合物を除去した地下水は、曝気室18の上部から排水管47により排出するが、切替弁48により戻管49を介して注入井戸50に供給し、帯水層2に戻すことを可能としてある。この場合には曝気室13、14、15、16、17、18で好気性化した地下水および繁殖した好気性微生物を帯水層2に供給することによって、帯水層2に存在する地下水中の揮発性有機化合物の微生物分解を促進させることができる。   The groundwater that has flowed through the aeration chambers 13, 14, 15, 16, 17, 18 and removed volatile organic compounds by gas-liquid contact is discharged from the upper portion of the aeration chamber 18 through the drain pipe 47, but the switching valve 48. Thus, the water can be supplied to the injection well 50 through the return pipe 49 and returned to the aquifer 2. In this case, by supplying groundwater aerobic in the aeration chambers 13, 14, 15, 16, 17, and 18 and the aerobic microorganisms propagated to the aquifer 2, It can promote microbial degradation of volatile organic compounds.

なお、汚染水を地下水としたが、工場等からの汚染排水の浄化処理にも適用できるものでさらに地下水、工場等からの汚染排水を、貯留タンクを介して曝気室13、14、15、16、17、18に供給してもよい。   Although the contaminated water is groundwater, it can also be applied to the purification treatment of contaminated wastewater from factories and the like. Furthermore, groundwater and contaminated wastewater from factories and the like are supplied to the aeration chambers 13, 14, 15, 16 through a storage tank. , 17 and 18 may be supplied.

また、曝気室13、14、15、16、17、18の下方部から、ブロア(空気供給手段)25、供給管26、散気管27、28、29、30、31、32、曝気用の供給空気量を調節する流量調節弁33、34、35、36、37、38を介して曝気用の空気を供給する。前記流量調節弁33、34、35、36、37、38を設けたことによって、曝気室13、14、15、16、17、18の各々に対して、必要最小限でかつ最適条件に空気量を設定するこが可能となり、曝気による騒音を低下させることができる。さらに吸着ユニット44、吸着ユニット46の活性炭等からなる吸着材43、45による揮発性有機化合物の吸着効率を向上させることができる。   Further, a blower (air supply means) 25, a supply pipe 26, an aeration pipe 27, 28, 29, 30, 31, 32, supply for aeration from the lower part of the aeration chambers 13, 14, 15, 16, 17, 18 Aeration air is supplied through flow control valves 33, 34, 35, 36, 37, and 38 that adjust the amount of air. By providing the flow rate control valves 33, 34, 35, 36, 37, 38, the air amount is set to the minimum and optimum condition for each of the aeration chambers 13, 14, 15, 16, 17, 18. Can be set, and noise caused by aeration can be reduced. Furthermore, the adsorption efficiency of the volatile organic compounds by the adsorbents 43 and 45 made of activated carbon or the like of the adsorption unit 44 and the adsorption unit 46 can be improved.

また、地下水中の揮発性有機化合物の濃度または地下水の流動量が変動した場合にも、流量調節弁33、34、35、36、37、38により曝気用の供給空気量を調節し、揮発性有機化合物を地下水から空気に確実に移行させることができる。さらに曝気室13、14、15、16、17、18の各々で曝気用の供給空気量を最適条件に調節することによって、揮発性有機化合物を、後段の曝気室18を流動する地下水から空気に確実に移行させることができる。   Further, even when the concentration of the volatile organic compound in the ground water or the flow amount of the ground water fluctuates, the supply air amount for aeration is adjusted by the flow control valves 33, 34, 35, 36, 37, 38, An organic compound can be reliably transferred from groundwater to air. Furthermore, by adjusting the supply air amount for aeration in each of the aeration chambers 13, 14, 15, 16, 17, 18 to an optimum condition, volatile organic compounds are converted from the groundwater flowing through the aeration chamber 18 in the subsequent stage to the air. It can be reliably transferred.

なお、流量調節弁33、34、35、36、37、38による供給空気量の調節とブロア(空気供給手段)25の回転数制御を併用させてもよく、この場合には、最適な供給空気量に対してさらにきめ細かい対応が可能となる。   The adjustment of the supply air amount by the flow rate adjusting valves 33, 34, 35, 36, 37, and 38 and the rotation speed control of the blower (air supply means) 25 may be used in combination. A more detailed response to the quantity is possible.

また、一定容積の曝気槽7において、曝気室13、14、15、16、17、18の数または容積を仕切壁8、9、10、11、12の枚数によって任意に設定することができる。さらに仕切壁8、9、10、11、12の枚数を一定として位置を個別に変えることによって、曝気室13、14、15、16、17、18の各々を異なる容積(地下水の流動方向の幅)に設定できる。これらによって揮発性有機化合物を地下水から空気に確実に移行させるように最適条件の設定を行うことができる。仕切壁8、9、10、11、12の枚数または位置を個別に変えることは、簡単な構造で実現することができる。   Further, in the aeration tank 7 having a constant volume, the number or volume of the aeration chambers 13, 14, 15, 16, 17, 18 can be arbitrarily set according to the number of partition walls 8, 9, 10, 11, 12. Furthermore, by changing the position of each of the partition walls 8, 9, 10, 11, 12 to be constant, the aeration chambers 13, 14, 15, 16, 17, 18 each have a different volume (the width in the direction of groundwater flow). ). By these, optimal conditions can be set so that volatile organic compounds can be reliably transferred from groundwater to air. Changing the number or position of the partition walls 8, 9, 10, 11, 12 individually can be realized with a simple structure.

これらによって、従来のように複数の曝気塔または大きさの異なる曝気塔を用意する必要がなく、装置の簡素化および設備費用を削減することができる。さらに揮発性有機化合物を地下水から空気に確実に移行させることができる。   As a result, it is not necessary to prepare a plurality of aeration towers or aeration towers of different sizes as in the prior art, and it is possible to simplify the apparatus and reduce equipment costs. Furthermore, volatile organic compounds can be reliably transferred from groundwater to air.

また、前記した構成においては、曝気室13、14、15、16、17、18の下方部に位置する小孔を有する散気管27、28、29、30、31、32から曝気用の空気を供給するようにしたが、空気を微細化し、その微細気泡(例えば10〜40μm程度)を曝気室13、14、15、16、17、18に供給することによって、微細気泡全体の表面積の増大、気泡の地下水中での滞留時間が長くなり、気液接触をさらに促進させ、揮発性有機化合物を地下水から空気に確実に移行させることができる。微細気泡発生手段としては、二流体ノズル、気体分散器、気液攪拌器等を用いるものである。
以上のように、参考例1の汚染水の浄化方法によれば、曝気槽7と、前記曝気槽7を仕切壁8、9、10、11、12により複数に分割した曝気室13、14、15、16、17、18と、各々の曝気室13、14、15、16、17、18に充填した充填材19、20、21、22、23、24と、前記各々の曝気室13、14、15、16、17、18へのブロア(空気供給手段)25と、揮発性有機化合物を吸着する吸着材43、45を備え、各々の曝気室13、14、15、16、17、18に汚染水を順次流動させて充填材19、20、21、22、23、24により気液接触を促進させ、揮発性有機化合物を汚染水から前記各々の曝気室13、14、15、16、17、18に供給した空気に移行させ後、吸着材43、45に吸着させて除去することを特徴とする汚染水の浄化方法としたものである。
これによって、曝気槽、吸着材以外の構成要素および維持管理工数を削減できるとともに、曝気槽を仕切壁により複数に分割した充填材を有する曝気室を、汚染水を順次流動させて揮発性有機化合物を汚染水から空気に確実に移行させることができる。したがって、浄化装置の構成を簡素化するとともに揮発性有機化合物による汚染水の処理能力を向上させ、除去効率の優れた汚染水の浄化方法とすることができる。
In the above-described configuration, aeration air is supplied from the diffusion tubes 27, 28, 29, 30, 31, and 32 having small holes located below the aeration chambers 13, 14, 15, 16, 17, and 18. Although it was made to supply, the surface area of the whole fine bubble is increased by refining the air and supplying the fine bubble (for example, about 10 to 40 μm) to the aeration chamber 13, 14, 15, 16, 17, 18. The residence time of the bubbles in the groundwater becomes longer, further promoting the gas-liquid contact, and the volatile organic compound can be reliably transferred from the groundwater to the air. As the fine bubble generating means, a two-fluid nozzle, a gas disperser, a gas-liquid stirrer or the like is used.
As described above, according to the contaminated water purification method of Reference Example 1, the aeration tank 7 and the aeration chambers 13, 14, in which the aeration tank 7 is divided into a plurality of partitions by the partition walls 8, 9, 10, 11, 12. 15, 16, 17, 18, filling materials 19, 20, 21, 22, 23, 24 filled in the respective aeration chambers 13, 14, 15, 16, 17, 18, and the respective aeration chambers 13, 14 15, 15, 17, 18, and a blower (air supply means) 25, and adsorbents 43, 45 that adsorb volatile organic compounds, and each aeration chamber 13, 14, 15, 16, 17, 18 is provided. The contaminated water is sequentially flowed to promote gas-liquid contact by the fillers 19, 20, 21, 22, 23, and 24, and volatile organic compounds are extracted from the contaminated water into the aeration chambers 13, 14, 15, 16, and 17, respectively. , 18 and then adsorbed to the adsorbents 43 and 45. It is obtained by the purification method of the contaminated water, and removing by.
As a result, components other than the aeration tank and the adsorbent and maintenance man-hours can be reduced, and the volatile organic compound is produced by sequentially flowing the contaminated water through the aeration chamber having the filler in which the aeration tank is divided into a plurality of partitions. Can be reliably transferred from the contaminated water to the air. Therefore, while simplifying the structure of a purification apparatus, the processing capability of the contaminated water by a volatile organic compound can be improved, and it can be set as the purification method of the contaminated water excellent in the removal efficiency.

(実施例
図2は実施例の汚染水の浄化方法を実施するための装置の基本構成図である。図1と同一箇所は同一番号を付し、構成、動作の説明を省略する。図1と異なるところは、複数の曝気室に個別に対応させた複数の吸着ユニットを備え、各々の曝気室からの揮発性有機化合物を各々の曝気室に対応して設けた吸着ユニットの吸着材に吸着させるようにしたものである。
(Example 1 )
Figure 2 is a basic configuration diagram of an apparatus for carrying out the method of purifying contaminated water of Example 1. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description of the configuration and operation is omitted. The difference from FIG. 1 is that an adsorbent of an adsorption unit provided with a plurality of adsorption units individually corresponding to a plurality of aeration chambers and provided with a volatile organic compound from each aeration chamber corresponding to each aeration chamber. It is made to adsorb to.

曝気槽7の仕切壁8、9、10、11、12の上端を集気板40まで延長し、複数の曝気室13、14、15、16、17、18の上部空間を区画し、この区画した複数の曝気室13、14、15、16、17、18の上部の集気板40に排気管51、52、53、54、55、56を接続し、これらから吸着ユニット63、64、65、66、67、68に気液接触により地下水から移行した揮発性有機化合物を含有する空気(気相)を供給し、吸着材57、58、59、60、61、62に吸着させて除去するものである。   The upper ends of the partition walls 8, 9, 10, 11, 12 of the aeration tank 7 are extended to the air collecting plate 40, and the upper spaces of the plurality of aeration chambers 13, 14, 15, 16, 17, 18 are partitioned. The exhaust pipes 51, 52, 53, 54, 55, 56 are connected to the air collecting plate 40 above the plurality of aeration chambers 13, 14, 15, 16, 17, 18, and the adsorption units 63, 64, 65 are connected thereto. , 66, 67, 68 are supplied with air (gas phase) containing a volatile organic compound transferred from groundwater by gas-liquid contact, and adsorbed on the adsorbents 57, 58, 59, 60, 61, 62 to be removed. Is.

空気に移行した揮発性有機化合物の濃度は、流動する地下水の上流側が最も高くなり、下流に流動するにつれて低下する。このため曝気室13、14、15、16、17、18の順に空気に移行した揮発性有機化合物の濃度が低下していくことになる。図1の構成においては、曝気室13、14、15、16、17、18からの揮発性有機化合物を含有する空気(気相)を集合させ、吸着材43または45に吸着させているが、本実施例においては、複数の曝気室13、14、15、16、17、18に個別に対応させた複数の吸着ユニット63、64、65、66、67、68を備えたことによって、曝気室13、14、15、16、17、18ごとに空気に移行した揮発性有機化合物の異なる濃度に対応させて吸着材57、58、59、60、61、62の最大吸着能力を最適に設定することができ、また吸着材を分割して吸着ユニット小型化するとともに吸着材の交換を容易に行うことができる。   The concentration of the volatile organic compound transferred to the air is highest on the upstream side of the flowing groundwater and decreases as it flows downstream. For this reason, the density | concentration of the volatile organic compound which moved to the air in order of the aeration chamber 13, 14, 15, 16, 17, 18 will fall. In the configuration of FIG. 1, air (gas phase) containing volatile organic compounds from the aeration chambers 13, 14, 15, 16, 17, and 18 is collected and adsorbed by the adsorbent 43 or 45. In the present embodiment, the aeration chamber is provided by including a plurality of adsorption units 63, 64, 65, 66, 67, 68 individually corresponding to the plurality of aeration chambers 13, 14, 15, 16, 17, and 18. The maximum adsorption capacity of the adsorbents 57, 58, 59, 60, 61, 62 is optimally set corresponding to the different concentrations of the volatile organic compounds transferred to the air for every 13, 14, 15, 16, 17, 18 In addition, the adsorbent can be divided to reduce the size of the adsorbing unit, and the adsorbent can be easily replaced.

なお、複数の曝気室13、14、15、16、17、18に個別に対応させた複数の吸着ユニット63、64、65、66、67、68を備えるようにしたが、例えば隣り合う複数の曝気室に対応させた複数の吸着ユニットを備える構成としてもよい。   Although the plurality of suction units 63, 64, 65, 66, 67, 68 individually associated with the plurality of aeration chambers 13, 14, 15, 16, 17, 18 are provided, for example, a plurality of adjacent aeration chambers are provided. It is good also as a structure provided with the some adsorption | suction unit corresponding to the aeration chamber.

揮発性有害物質を含有する汚染水の浄化の用途に適用できる。   Applicable to the purification of contaminated water containing volatile harmful substances.

参考例1の汚染水の浄化方法を実施するための装置の基本構成図Basic configuration diagram of an apparatus for carrying out the contaminated water purification method of Reference Example 1 実施例の汚染水の浄化方法を実施するための装置の基本構成図The basic block diagram of the apparatus for enforcing the purification method of the contaminated water of Example 1

符号の説明Explanation of symbols

1 地中
2 帯水層
3 揚水井戸
4 揚水管
5 フイルター
6 ポンプ
7 曝気槽
8、9、10、11、12 仕切壁
13、14、15、16、17、18 曝気室
19、20、21、22、23、24 充填材
25 ブロア(空気供給手段)
26 供給管
27、28、29、30、31、32 散気管
33、34、35、36、37、38 流量調節弁
39 散水管
40 集気板
41 排気管
42 切替弁
43 吸着材
44 吸着ユニット
45 吸着材
46 吸着ユニット
47 排水管
48 切替弁
49 戻管
50 注入井戸
51、52、53、54、55、56 排気管
57、58、59、60、61、62 吸着材
63、64、65、66、67、68 吸着ユニット
DESCRIPTION OF SYMBOLS 1 Underground 2 Aquifer 3 Pumping well 4 Pumping pipe 5 Filter 6 Pump 7 Aeration tank 8, 9, 10, 11, 12 Partition wall 13, 14, 15, 16, 17, 18 Aeration chamber 19, 20, 21, 22, 23, 24 Filler 25 Blower (air supply means)
26 Supply pipe 27, 28, 29, 30, 31, 32 Aeration pipe 33, 34, 35, 36, 37, 38 Flow control valve 39 Sprinkling pipe 40 Air collecting plate 41 Exhaust pipe 42 Switching valve 43 Adsorbent 44 Adsorption unit 45 Adsorbent 46 Adsorption unit 47 Drain pipe 48 Switching valve 49 Return pipe 50 Injection well 51, 52, 53, 54, 55, 56 Exhaust pipe 57, 58, 59, 60, 61, 62 Adsorbent 63, 64, 65, 66 , 67, 68 Adsorption unit

Claims (4)

曝気槽と、前記曝気槽を仕切壁により複数に分割した曝気室と、各々の曝気室に充填した充填材と、前記各々の曝気室への空気供給手段と、揮発性有機化合物を吸着する吸着材を備え、各々の曝気室に汚染水を順次流動させて充填材により気液接触を促進させ、揮発性有機化合物を汚染水から前記各々の曝気室に供給した空気に移行させ後、前記吸着材に吸着させて除去し、前記各々の曝気室に対応させた前記吸着材を有する複数の吸着ユニットを備え、前記各々の曝気室からの揮発性有機化合物を前記各々の曝気室ごとに空気に移行した揮発性有機化合物の異なる濃度に対応して設けた前記吸着ユニットの前記吸着材に吸着させるようにしたことを特徴とする汚染水の浄化方法。 An aeration tank, an aeration chamber obtained by dividing the aeration tank into a plurality of partition walls, a filler filled in each aeration chamber, an air supply means to each aeration chamber, and an adsorption for adsorbing volatile organic compounds The material is provided, the contaminated water is sequentially flowed into each aeration chamber, the gas-liquid contact is promoted by the filler, the volatile organic compound is transferred from the contaminated water to the air supplied to each aeration chamber, and then the adsorption A plurality of adsorbing units having the adsorbing material corresponding to each aeration chamber, and removing volatile organic compounds from each aeration chamber into air for each aeration chamber A method for purifying contaminated water, characterized in that the polluted water is adsorbed on the adsorbent of the adsorption unit provided corresponding to different concentrations of the transferred volatile organic compound . 各々の曝気室の下方部から噴出させる空気量を調節可能にしたことを特徴とする請求項に記載の汚染水の浄化方法。 2. The method for purifying contaminated water according to claim 1 , wherein the amount of air ejected from the lower part of each aeration chamber is adjustable. 各々の曝気室の下方部から微細気泡を噴出させることを特徴とする請求項1または2に記載の汚染水の浄化方法。 The method for purifying contaminated water according to claim 1 or 2 , wherein fine bubbles are ejected from the lower part of each aeration chamber. 地中の帯水層から揚水した揮発性有機化合物を含有する地下水を、各々の曝気室を通過させた後、帯水層へ導入することを特徴とする請求項1〜3のいずれか1項に記載の汚染水の浄化方法。 Groundwater containing and pumping from the ground aquifer of volatile organic compounds, after they were passed through each of the aeration chamber, any one of claims 1 to 3, characterized in that the introduction into the aquifer The method for purifying contaminated water described in 1.
JP2006080298A 2006-03-23 2006-03-23 Purification method of contaminated water Expired - Fee Related JP4839912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080298A JP4839912B2 (en) 2006-03-23 2006-03-23 Purification method of contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080298A JP4839912B2 (en) 2006-03-23 2006-03-23 Purification method of contaminated water

Publications (2)

Publication Number Publication Date
JP2007253056A JP2007253056A (en) 2007-10-04
JP4839912B2 true JP4839912B2 (en) 2011-12-21

Family

ID=38627822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080298A Expired - Fee Related JP4839912B2 (en) 2006-03-23 2006-03-23 Purification method of contaminated water

Country Status (1)

Country Link
JP (1) JP4839912B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101426451B1 (en) 2013-11-22 2014-08-05 코스맥 주식회사 The removal device of water pollutants in water purification plant

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050215B2 (en) * 2008-11-05 2012-10-17 株式会社富永製作所 Volatile hydrocarbon recovery treatment equipment
JP5714355B2 (en) * 2011-02-21 2015-05-07 三機工業株式会社 Activated sludge treatment apparatus and treatment method thereof
JP2014124543A (en) * 2012-12-25 2014-07-07 Nissaku:Kk Method and apparatus for aeration treatment of pumped water of voc-polluted ground water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137992A (en) * 1988-11-18 1990-05-28 Honda Motor Co Ltd Method for applying image to outer surface of outer-covering component part
JPH08155435A (en) * 1994-12-07 1996-06-18 Orion Mach Co Ltd Method and apparatus for removing volatile substance
JP2003047952A (en) * 2001-08-07 2003-02-18 Azuma Engineering:Kk Groundwater purification apparatus and groundwater purification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101426451B1 (en) 2013-11-22 2014-08-05 코스맥 주식회사 The removal device of water pollutants in water purification plant

Also Published As

Publication number Publication date
JP2007253056A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
US7279093B2 (en) Module for removing organic compounds from foaming wastewater by oxidation
US20090090240A1 (en) Biofiltration process and apparatus for odour or voc treatment
US5399267A (en) Liquid treatment system with air emission control
US20150145152A1 (en) Scrubber with multi-filtering system
JP4839912B2 (en) Purification method of contaminated water
KR101118510B1 (en) Underground water purification device
KR101772913B1 (en) Mobile apparatus for water treatment
JP4604014B2 (en) Biological deodorization system and biological deodorization apparatus used in this system
US8317903B2 (en) Treatment of contaminated gases
JP4441162B2 (en) Organic exhaust gas treatment method and organic exhaust gas treatment apparatus
JP2007253132A (en) Wastewater treatment method and wastewater treatment equipment
JP2003047952A (en) Groundwater purification apparatus and groundwater purification method
KR20070121497A (en) Gas purifier with deodoriger and mixing system
KR200407311Y1 (en) Dirty Water Purification Apparatus By Using Circulation Method
CN108602691B (en) Device and method for extracting soluble substances dissolved in an aqueous solution
JP2013215638A (en) Ammonia treatment apparatus
WO2002060820A2 (en) Photooxidation water treatment device
JP4172415B2 (en) Multistage treatment equipment for contaminated water
KR102643348B1 (en) Mobile automatic operation control system for urgent purification of chemical accident contaminated water
JP3643979B2 (en) Purification equipment for water containing volatile organic compounds
JP6708864B2 (en) VOC contaminated water purification method
CN214299374U (en) Water/waste water treatment device
JPH1085550A (en) Digestive gas treating device and digestive gas treatment
JP2006281041A (en) Organic material-containing water treating apparatus and its operation method
JP2004344866A (en) Method of removing volatile organic compound or the like, and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R151 Written notification of patent or utility model registration

Ref document number: 4839912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees