JP6706685B2 - Flow control valve - Google Patents

Flow control valve Download PDF

Info

Publication number
JP6706685B2
JP6706685B2 JP2018551078A JP2018551078A JP6706685B2 JP 6706685 B2 JP6706685 B2 JP 6706685B2 JP 2018551078 A JP2018551078 A JP 2018551078A JP 2018551078 A JP2018551078 A JP 2018551078A JP 6706685 B2 JP6706685 B2 JP 6706685B2
Authority
JP
Japan
Prior art keywords
valve
valve body
seat
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018551078A
Other languages
Japanese (ja)
Other versions
JPWO2018092472A1 (en
Inventor
仁 古舘
仁 古舘
智 飯塚
智 飯塚
三冨士 政徳
政徳 三冨士
石川 亨
石川  亨
川崎 健司
健司 川崎
義人 安川
義人 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2018092472A1 publication Critical patent/JPWO2018092472A1/en
Application granted granted Critical
Publication of JP6706685B2 publication Critical patent/JP6706685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/44Details of seats or valve members of double-seat valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Lift Valve (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Magnetically Actuated Valves (AREA)

Description

本発明は、内燃機関に用いられる流量制御弁であって、印加電圧により全長が伸縮する圧電素子を有し、前記素子の全長の伸縮により弁体の開閉を行う弁に関する。本発明の流量制御弁は、特に、燃料噴射弁に用いるのに好適である。 The present invention relates to a flow control valve used in an internal combustion engine, which has a piezoelectric element whose total length expands and contracts according to an applied voltage, and which opens and closes a valve element by expanding and contracting the total length of the element. The flow control valve of the present invention is particularly suitable for use as a fuel injection valve.

本発明の従来技術として、特開2002−31010号公報(特許文献1)に記載された燃料噴射器がある。特許文献1の燃料噴射器は、通電の開始により圧電素子の伸びを直接弁体に伝えて弁体を押すときに、弁体先端部が弁座から離れることにより、燃料流路を形成し、ここから燃料を噴射している。この燃料噴射器は、通電が終了すると弁体に備えられたスプリングの力により、弁体が引き戻されて弁座と当接し、燃料流路が閉鎖して燃料噴射を終了する。 As a conventional technique of the present invention, there is a fuel injector described in Japanese Patent Application Laid-Open No. 2002-31010 (Patent Document 1). The fuel injector of Patent Document 1 forms a fuel flow path when the tip of the valve element separates from the valve seat when the extension of the piezoelectric element is directly transmitted to the valve element by the start of energization and the valve element is pushed. Fuel is being injected from here. In this fuel injector, when the energization ends, the force of the spring provided in the valve body pulls the valve body back into contact with the valve seat, the fuel flow path is closed, and the fuel injection is terminated.

特開2002−31010号公報JP 2002-31010 A

しかしながら、特許文献1の燃料噴射器では、圧電素子は電圧を印加すると伸長する構造であるために、弁体を押すことにより燃料を噴射する構造となる。弁体先端は円錐形状が一般的であり、生成される噴霧は傘状噴霧となる。通電により弁体を引き上げて燃料を多噴孔より噴射する流量制御弁と比較すると、噴霧レイアウトの自由度が少ない。 However, in the fuel injector of Patent Document 1, since the piezoelectric element has a structure that expands when a voltage is applied, the structure is such that fuel is injected by pushing the valve body. The tip of the valve body is generally conical, and the spray produced is an umbrella spray. Compared with a flow rate control valve in which a valve element is pulled up by energization and fuel is injected from multiple injection holes, the degree of freedom in the spray layout is low.

本発明の目的は、電圧に比例して全長が伸長する駆動素子を備えた流量制御弁において、簡単な構造、駆動方法にて噴射孔から流体を噴出させることを可能とした流量制御弁を提供することにある。 An object of the present invention is to provide a flow rate control valve having a drive element whose total length extends in proportion to a voltage and which is capable of ejecting a fluid from an injection hole with a simple structure and drive method. To do.

上記目的を達成するために、
流体を噴射する噴射孔と、前記噴射孔に通じる流体通路の開閉を協働して行う弁体及び弁座と、通電により伸長して前記弁体を駆動する駆動素子と、前記弁体を前記駆動素子が伸長する向きとは逆向きに付勢する付勢部材と、を備えた流量制御弁において、
前記弁体は、当該弁体の外周から当該弁体の先端中心に向かって形成された弁体先端面により構成される下流側弁体シート部と、前記下流側弁体シート部の上流側に設けられる上流側弁体シート部と、を有し、
当該流量制御弁は、
前記弁体先端面と対向して前記噴射孔の入口が開口する内面を有する噴射孔形成部材を備えると共に、
前記噴射孔形成部材の前記内面により構成される下流側弁座と、前記下流側弁座の上流側に設けられる上流側弁座と、を備え、
前記弁体は、
前記駆動素子への通電が行われていない状態において、前記上流側弁体シート部が前記上流側弁座に当接して前記上流側弁体シート部と前記上流側弁座との間に構成される流体通路を閉じ、
前記駆動素子に第1電圧を通電した場合に、前記下流側弁体シート部が前記下流側弁座に当接して前記下流側弁体シート部と前記下流側弁座との間に構成される流体通路を閉じる。
In order to achieve the above purpose,
An injection hole for injecting a fluid, a valve element and a valve seat that cooperate with each other to open and close a fluid passage leading to the injection hole, a drive element that extends by energization to drive the valve element, and the valve element In a flow control valve including a biasing member that biases the drive element in a direction opposite to the extending direction,
The valve body includes a downstream-side valve body seat constituted by the valve body tip end surface from the outer periphery of the valve body is formed toward the tip center of the valve body, upstream of the downstream valve body seat And an upstream valve body seat portion provided,
The flow control valve is
Rutotomoni comprising an injection hole forming member having an inner surface which inlet opening of the valve body tip end surface opposed to the injection hole,
A downstream valve seat formed by the inner surface of the injection hole forming member, and an upstream valve seat provided upstream of the downstream valve seat,
The valve body is
In a state in which the drive element is not energized, the upstream side valve body seat portion abuts on the upstream side valve seat and is configured between the upstream side valve body seat portion and the upstream side valve seat. The fluid passage
When the drive element is energized with a first voltage, the downstream valve body seat portion comes into contact with the downstream valve seat and is configured between the downstream valve body seat portion and the downstream valve seat. close the fluid passage.

本発明によれば、流量制御弁の構造を簡略化でき、簡単な構造、駆動方法にて多噴孔から燃料を噴出させることができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the structure of the flow control valve can be simplified, and the fuel can be ejected from the multiple injection holes with a simple structure and driving method. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

本発明に係る流量制御弁の第一参照例(参照例1)を示す断面図である。It is sectional drawing which shows the 1st reference example ( reference example 1) of the flow control valve which concerns on this invention. 開弁時の弁体及び弁座部の詳細断面図である。It is a detailed sectional view of a valve element and a valve seat part at the time of valve opening. 閉弁時の弁体及び弁座部の詳細断面図である。It is a detailed sectional view of a valve element and a valve seat portion when the valve is closed. 参照例の駆動素子に印加する電圧を示す図である。It is a figure which shows the voltage applied to the drive element of this reference example. 図1のA部の変更例を示す詳細断面図である。FIG. 8 is a detailed cross-sectional view showing a modified example of a portion A of FIG. 1. 本発明に係る流量制御弁の実施例(実施例)を示す断面図である。 Actual施例flow control valve according to the present invention (Example) is a cross-sectional view illustrating. 本発明に係る実施例の第2シート部(上流側シート部)を示す詳細断面図である。It is a detailed sectional view showing the 2nd seat part (upstream side seat part) of the example concerning the present invention . 駆動素子の印加電圧を示す図である。It is a figure which shows the applied voltage of a drive element. 図1のA部及びB部の拡大図であり、下流側弁体シート部2aと下流側弁座2aとの位置関係及び静止弁12と上流側弁座13との位置関係を示す図である。It is an enlarged view of the A section and B section of FIG. 1, and is a figure which shows the positional relationship between the downstream valve body seat part 2a and the downstream valve seat 2a, and the positional relationship between the stationary valve 12 and the upstream valve seat 13. .. 二参照例の燃料噴射弁の全体の断面図を示す。The whole sectional view of the fuel injection valve of the second reference example is shown. 二参照例の燃料噴射弁の閉弁状態を示す図である。It is a figure which shows the valve closed state of the fuel injection valve of a 2nd reference example. 二参照例の燃料噴射弁の開弁状態を示す図である。It is a figure which shows the valve opening state of the fuel injection valve of a 2nd reference example. 二参照例の圧電素子を説明するための図である。It is a figure for demonstrating the piezoelectric element of a 2nd reference example. 二参照例の燃料噴射弁のキャップ部品の固定方法の一例を示す図である。It is a figure which shows an example of the fixing method of the cap component of the fuel injection valve of a 2nd reference example. 二参照例の燃料噴射弁のキャップ部品の固定方法の一例を示す図である。It is a figure which shows an example of the fixing method of the cap component of the fuel injection valve of a 2nd reference example.

以下に、本発明に係る流量制御弁について、燃料噴射弁を例にとり、その実施例を、図面を参照しながら説明する。なお、以下の説明において、上流側及び下流側は、燃料の流れ方向における上流側及び下流側を表す。また、燃料噴射弁100A、100B,100Cの噴射孔11が設けられる側の端部を先端部(先端側の端部)と呼び、先端部に対して反対側の端部を基端部(基端側の端部)と呼ぶ。先端部は下流側の端部であり、基端部は上流側の端部である。また、説明の中で使用する上下方向を、図1に基づいて定義する。すなわち、基端部は先端部に対して上方にあり、先端部は基端部に対して下方にある。この上下方向は説明を簡便にするために定義するものであり、燃料噴射弁100A、100B,100Cの実装状態における上下方向とは関係が無い。また、上下方向は燃料噴射弁100A、100B,100Cの中心軸線100aに沿う方向及び弁体2の変位方向(開閉弁方向)に一致する。 Hereinafter, the flow rate control valve according to the present invention will be described with reference to the drawings, taking a fuel injection valve as an example and an embodiment thereof. In the following description, the upstream side and the downstream side represent the upstream side and the downstream side in the fuel flow direction. Further, the end of the fuel injection valve 100A, 100B, 100C on the side where the injection hole 11 is provided is called the tip (end on the tip side), and the end opposite to the tip is the base (base). Edge). The front end is the downstream end, and the base end is the upstream end. Also, the vertical direction used in the description will be defined based on FIG. That is, the proximal end is above the distal end and the distal end is below the proximal end. This vertical direction is defined for the sake of simplicity of description, and has no relation to the vertical direction in the mounted state of the fuel injection valves 100A, 100B, 100C. The up-down direction corresponds to the direction along the central axis 100a of the fuel injection valves 100A, 100B, 100C and the displacement direction of the valve body 2 (opening/closing valve direction).

後述する実施例及び参照例では、燃料噴射弁に対して、弁体2に設けられる弁体シート部及び弁体シート部が当接する弁座がそれぞれ一つずつ設けられるもの100A,100Cと、弁体2に二つの弁体シート部が設けられ、二つの弁体シート部に対して弁座が一つずつ設けられるもの100Bがある。二つの弁体シート部及び弁座が設けられる実施例において、燃料噴射弁100Bの先端側に設けられる弁体シート部及び弁座をそれぞれ第1弁体シート部(下流側弁体シート部)及び第1弁座(下流側弁座)と呼び、燃料噴射弁100の基端側に設けられる弁体シート部及び弁座をそれぞれ第2弁体シート部(上流側弁体シート部)及び第2弁座(上流側弁座)と呼ぶ。弁体シート部及び弁座がそれぞれ一つずつ設けられる実施例においては、弁体シート部について、また弁座について、特に区別する必要はないが、便宜上、第1弁体シート部(下流側シート部)及び第1弁座(下流側弁座)と呼んで説明する場合がある。 In Examples and Reference Examples to be described later, a valve body seat portion provided on the valve body 2 and one valve seat with which the valve body seat portion abuts one each for the fuel injection valve 100A, 100C, and There is one 100B in which two valve body seat portions are provided on the body 2 and one valve seat is provided for each of the two valve body seat portions. In the embodiment in which the two valve body seat portions and the valve seats are provided, the valve body seat portion and the valve seat provided on the front end side of the fuel injection valve 100B are respectively replaced by the first valve body seat portion (downstream side valve body seat portion) and Called the first valve seat (downstream valve seat), the valve seat portion and the valve seat provided on the base end side of the fuel injection valve 100 are respectively referred to as a second valve seat portion (upstream valve seat portion) and a second valve seat. It is called a valve seat (upstream valve seat). In the embodiment in which one valve body seat portion and one valve seat are provided, it is not necessary to particularly distinguish between the valve body seat portion and the valve seat, but for convenience, the first valve body seat portion (downstream side seat) Part) and the first valve seat (downstream valve seat).

[実施例1]
図1は、本発明に係る流量制御弁の第一参照例(参照例1)を示す断面図である。図2は、開弁時の弁体及び弁座部の詳細断面図である。図3は、閉弁時の弁体及び弁座部の詳細断面図である。なお図2及び図3は、図1のA部(噴射孔シート部)の拡大図である。
[Example 1]
FIG. 1 is a sectional view showing a first reference example ( reference example 1) of a flow control valve according to the present invention. FIG. 2 is a detailed sectional view of the valve body and the valve seat portion when the valve is opened. FIG. 3 is a detailed sectional view of the valve body and the valve seat portion when the valve is closed. 2 and 3 are enlarged views of the portion A (injection hole sheet portion) of FIG.

図1から図3に示す燃料噴射弁100Aは通常時(電圧未印加時)に開となる制御弁である。弁体2の先端部には弁体シート部(第1弁体シート部、下流側弁体シート部)2aが設けられ、噴射孔が形成された噴射孔形成部材1に下流側弁体シート部2aが当接する弁座(第1弁座、下流側弁座)1aが設けられている。このため、噴射孔形成部材1は弁座部材でもある。弁体2及び弁座1aは、協働して、噴射孔11に通じる流体通路の開閉を行う。下流側弁座1aと弁体2の下流側弁体シート部2aとは、噴射孔11の近傍で燃料の根枯れを遮断する噴射孔シート部(下流側シート部)19を構成する。 The fuel injection valve 100A shown in FIG. 1 to FIG. 3 is a control valve which is opened during normal operation (when no voltage is applied). A valve body seat portion (first valve body seat portion, downstream valve body seat portion) 2a is provided at the tip of the valve body 2, and the downstream valve body seat portion is provided in the injection hole forming member 1 in which the injection holes are formed. A valve seat (first valve seat, downstream valve seat) 1a with which 2a abuts is provided. Therefore, the injection hole forming member 1 is also a valve seat member. The valve body 2 and the valve seat 1a cooperate with each other to open and close the fluid passage leading to the injection hole 11. The downstream side valve seat 1 a and the downstream side valve body seat portion 2 a of the valve body 2 constitute an injection hole seat portion (downstream side seat portion) 19 that blocks the root exhaustion of the fuel in the vicinity of the injection hole 11.

すなわち本参照例では、弁体2は、その先端側の端部に、径方向外周側から先端中心(中心軸線100a)側に向かって形成された径方向面(先端面)2sを有し、径方向面2sが下流側弁体シート部2aを構成している。一方、噴射孔形成部材1は、ノズル3の先端部を閉じるキャップ状に形成され、径方向面2sと対向するように形成された内面1sを有する。内面1sは、円錐形状(テーパ状)を成す弁座(下流側弁座)1aを構成する。弁体2の下流側弁体シート部2aと弁座1aとは相互に接触する円環状の接触部(当接部)20を有する。噴射孔形成部材1側の円環状の接触部20を弁座と呼ぶ場合もある。本実施例では、円環状の接触部20の直径(以下、シート径という)はSD1である。円環状の接触部の直径SD1は弁体2の先端側の端部の直径よりも小さい。また円環状の接触部20は、噴射孔11の入口開口よりも径方向外側に存在する。 That is, in the present reference example, the valve body 2 has a radial surface (tip surface) 2s formed at the tip end side thereof from the radially outer side toward the tip center (center axis 100a) side. The radial surface 2s constitutes the downstream valve body seat portion 2a. On the other hand, the injection hole forming member 1 is formed in a cap shape that closes the tip portion of the nozzle 3, and has an inner surface 1s formed so as to face the radial surface 2s. The inner surface 1s constitutes a valve seat (downstream valve seat) 1a having a conical shape (tapered shape). The downstream valve body seat portion 2a of the valve body 2 and the valve seat 1a have an annular contact portion (contact portion) 20 in contact with each other. The annular contact portion 20 on the injection hole forming member 1 side may be referred to as a valve seat. In this embodiment, the diameter of the annular contact portion 20 (hereinafter referred to as the sheet diameter) is SD1. The diameter SD1 of the annular contact portion is smaller than the diameter of the end portion of the valve body 2 on the tip side. Further, the annular contact portion 20 is located radially outside the inlet opening of the injection hole 11.

燃料噴射弁100Aの上方の燃料供給口8から燃料が供給され、二重円管のすきまの流路を流れノズル3と弁体2の外周面との間の隙間から、弁体シート部2aと弁座1aとの接触部20へと到達する。 Fuel is supplied from the fuel supply port 8 above the fuel injection valve 100A, flows through the flow path of the clearance of the double circular pipe, and from the gap between the nozzle 3 and the outer peripheral surface of the valve body 2 to the valve body seat portion 2a. It reaches the contact portion 20 with the valve seat 1a.

駆動素子6は電圧又は電流に比例して伸長する素子である。駆動素子6は、通常は防水性を有しないために燃料がかからないように、二重円管の内側の燃料流路と隔離された箇所に設置されている。駆動素子6の下方端部には、弁体2の基端側の端部が当接しており、駆動素子6の伸長により弁体2を直接動作させる。すなわち、弁体2は駆動素子6が伸長した寸法分だけ開閉弁方向に変位する。 The drive element 6 is an element that expands in proportion to voltage or current. The drive element 6 is usually installed in a location separated from the fuel flow passage inside the double circular pipe so that fuel is not applied because it is not waterproof. The base end of the valve element 2 is in contact with the lower end of the drive element 6, and the valve element 2 is directly operated by the extension of the drive element 6. That is, the valve body 2 is displaced in the opening/closing valve direction by the dimension in which the drive element 6 is extended.

参照例では、駆動素子6は通電時に伸長することによって弁体2を閉弁方向に駆動する。弁体2はスプリング4により開弁方向に付勢されており、駆動素子6の非通電時或いは駆動電圧又は駆動電流を低下させた状態ではスプリング4の付勢力により開弁方向に変位する。駆動素子6は、スプリング4の付勢力よりも大きな駆動力を発生して、弁体2を閉弁方向に駆動することができる。すなわち、スプリング4は弁体2を駆動素子6が伸長する向きとは逆向きに付勢する付勢部材である。 In the present reference example, the drive element 6 drives the valve body 2 in the valve closing direction by expanding when energized. The valve body 2 is biased in the valve opening direction by the spring 4, and is displaced in the valve opening direction by the biasing force of the spring 4 when the drive element 6 is not energized or when the drive voltage or drive current is reduced. The drive element 6 can generate a drive force larger than the biasing force of the spring 4 to drive the valve body 2 in the valve closing direction. That is, the spring 4 is a biasing member that biases the valve body 2 in the direction opposite to the direction in which the drive element 6 extends.

弁座1aを形成する噴射孔形成部材1はノズル3の先端部にたとえば、外周を溶接等の接合方法にて固定されている。駆動素子6には構成している金属部品(例えばステンレス鋼など)より線膨張率が小さいものがある。この場合、温度が上昇すると、構成している金属は大きく伸びるが駆動素子6は伸びずに弁体2を押し下げる距離が相対的に短くなり、燃料のシールが出来ずに流出し続ける可能性がある。そのため、温度が上昇した場合に、弁座1aと弁体2の弁体シート部2aとの間に隙間ができないように、ダンパー7を設ける。 The injection hole forming member 1 forming the valve seat 1a is fixed to the tip of the nozzle 3 by a joining method such as welding on the outer circumference. Some of the drive elements 6 have a linear expansion coefficient smaller than that of the metal parts (for example, stainless steel) that are included in the drive elements 6. In this case, when the temperature rises, the constituent metal greatly expands, but the drive element 6 does not expand, and the distance to push down the valve body 2 becomes relatively short, and there is a possibility that fuel will not be sealed and will continue to flow out. is there. Therefore, the damper 7 is provided so that a gap is not formed between the valve seat 1a and the valve body seat portion 2a of the valve body 2 when the temperature rises.

ダンパー7は、シリンダ7aとプランジャ7bとからなり、シリンダ7aとプランジャ7bとの隙間にはオイルが封入されている。温度が高くなるとオイルが膨張し、シリンダ7aが伸びる。この伸びにより、弁座1aと弁体2との隙間が発生しない状態となる。 The damper 7 is composed of a cylinder 7a and a plunger 7b, and oil is sealed in a gap between the cylinder 7a and the plunger 7b. When the temperature rises, the oil expands and the cylinder 7a extends. Due to this extension, a gap between the valve seat 1a and the valve body 2 does not occur.

次に、弁体2の駆動方法いついて説明する。
図2は非通電時(電圧未印加時)における弁体2の駆動状態を示している。電圧未印加時は、弁体2に設けられたスプリング4の付勢力により、弁体2の弁体シート部2aが弁座1aから離れており、弁体2は開弁状態にある。すなわちスプリング4は、弁体2を図1〜3上において上側(燃料噴射弁100Aの基端側)に向けて付勢している。これにより弁体シート部2aと弁座1aとの間に隙間が生じ、シート部燃料流路10が開かれた状態(開弁状態)となる。開弁状態において、燃料流路10を流れた燃料は噴射孔11を通過して燃料噴射弁100Aの外部に噴射され、噴霧が生成される。
Next, a method of driving the valve body 2 will be described.
FIG. 2 shows the driving state of the valve body 2 when the power is not supplied (when no voltage is applied). When no voltage is applied, the valve body seat portion 2a of the valve body 2 is separated from the valve seat 1a by the urging force of the spring 4 provided on the valve body 2, and the valve body 2 is in the valve open state. That is, the spring 4 urges the valve body 2 toward the upper side (base end side of the fuel injection valve 100A) in FIGS. As a result, a gap is created between the valve body seat portion 2a and the valve seat 1a, and the seat portion fuel passage 10 is opened (valve open state). In the valve open state, the fuel flowing through the fuel flow path 10 passes through the injection hole 11 and is injected to the outside of the fuel injection valve 100A to generate spray.

図3は通電時(電圧印加時)における弁体2の駆動状態を示している。駆動素子6に通電することによって発生する歪みにより、駆動素子6が伸長し、駆動素子6に当接している弁体2が下方に押し下げられる。これにより、弁座1と弁体2とが当接し、シート部燃料流路10を閉塞する状態(閉弁状態)となり、燃料噴射が終了する。なお、駆動素子8は防水密閉構造になっている又は耐燃料性がある場合は、液中に設置することも可能である。本構造では、弁体2を直接駆動素子6にて駆動し、弁体2の先端面に設けられた弁体シート部2aと対向するように入口開口が設けられた多数の噴射孔11から任意の方向に噴霧を形成することが可能である。また、燃料噴射弁100Aの構造を非常に簡略化することが可能である。 FIG. 3 shows a driving state of the valve body 2 when energized (when a voltage is applied). Due to the distortion generated by energizing the drive element 6, the drive element 6 expands and the valve body 2 in contact with the drive element 6 is pushed down. As a result, the valve seat 1 and the valve body 2 come into contact with each other, and the seat portion fuel flow path 10 is closed (valve closed state), and the fuel injection is terminated. The drive element 8 may be installed in a liquid if it has a waterproof and sealed structure or has fuel resistance. In this structure, the valve element 2 is directly driven by the drive element 6, and any of a large number of injection holes 11 having an inlet opening is provided so as to face the valve element seat portion 2a provided on the tip end surface of the valve element 2. It is possible to form a spray in the direction of. Moreover, the structure of the fuel injection valve 100A can be greatly simplified.

すなわち本参照例の燃料噴射弁100A(流量制御弁)は、表面から連通して開口された1つ以上の噴射孔11を有する弁座1aと、弁座1aと当接することによってシート部燃料流路10(燃料通路)を閉じ、弁座1aから離れることによってシート部燃料流路10を形成する弁体2と、を備えている。そして弁体2が弁座1aに当接する場合に、駆動素子6に電圧を印加又は電流を流し、弁体2が弁座1aから離れる場合に駆動素子6への印加電圧を下げる又は電流を停止させて燃料流路10を形成するように構成した。 That is, the fuel injection valve 100A (flow rate control valve) of the present reference example has a valve seat 1a having one or more injection holes 11 which are open from the surface and communicates with the valve seat 1a. The valve body 2 forms the seat fuel passage 10 by closing the passage 10 (fuel passage) and separating from the valve seat 1a. Then, when the valve body 2 contacts the valve seat 1a, a voltage or current is applied to the drive element 6, and when the valve body 2 separates from the valve seat 1a, the voltage applied to the drive element 6 is lowered or the current is stopped. The fuel flow path 10 is formed by the above.

また本実施例の燃料噴射弁100A(流量制御弁)は、弁体2の駆動手段として電圧又は電流に比例して全長が変位する駆動素子6を内蔵することが望ましい。 Further, it is desirable that the fuel injection valve 100A (flow rate control valve) of the present embodiment has a built-in drive element 6 as a drive means for the valve body 2 whose total length is displaced in proportion to voltage or current.

図4は、本参照例の駆動素子に印加する電圧を示す図である。
駆動素子6に電圧が印加されている場合、図3に示すように弁座1aと弁体2とが当接し、燃料流路が閉塞されて、燃料は流出しない。このときの電圧は図4に示すように0V以上としなければならない。負の電圧を印加すると、駆動素子6が破損する可能性がある。このため、駆動電圧を0V以上とし、駆動素子6を破損から保護する。
FIG. 4 is a diagram showing a voltage applied to the drive element of this reference example.
When a voltage is applied to the drive element 6, as shown in FIG. 3, the valve seat 1a and the valve body 2 come into contact with each other, the fuel passage is closed, and the fuel does not flow out. The voltage at this time must be 0 V or higher as shown in FIG. Applying a negative voltage may damage the drive element 6. Therefore, the drive voltage is set to 0 V or higher to protect the drive element 6 from damage.

次に、図5を参照して、図1のA部の変更例について説明する。図5は、図1のA部の変更例を示す詳細断面図である。 Next, with reference to FIG. 5, a modification of the portion A of FIG. 1 will be described. FIG. 5 is a detailed cross-sectional view showing a modified example of the portion A in FIG.

弁体2は、上端部(基端側の端部)の一部に、径が細くなった小径部16が設けられている。小径部16の基端側の端部は駆動素子6の下端部に当接している。小径部16が形成された部分は、べローズ5の内側に挿通される弁体2の部分2bの上端部に形成されており、この弁体部分2bは弁体シート部2aが形成された弁体2の先端側部分と一体に形成されてもよいし、弁体2の先端側部分とは別体のものが弁体2の先端側部分に一体に組み付けられたものであってもよい。 The valve body 2 is provided with a small-diameter portion 16 having a reduced diameter on a part of the upper end portion (end portion on the base end side). The proximal end of the small diameter portion 16 is in contact with the lower end of the drive element 6. The portion where the small diameter portion 16 is formed is formed at the upper end portion of the portion 2b of the valve body 2 which is inserted inside the bellows 5, and the valve body portion 2b is a valve where the valve body seat portion 2a is formed. It may be integrally formed with the tip side portion of the body 2, or may be a separate body from the tip side portion of the valve body 2 and may be integrally assembled with the tip side portion of the valve body 2.

固定部品14には弁体2の小径部16と摺動する穴部(貫通孔)14aを有しており、この穴部14aの下端部が開口する固定部品14の下端面15と、弁体小径部16と弁体2の先端側の大径部との間の段差面2cとが当接することにより、弁体2の上方(基端側)への移動が規制される。これにより、弁体2の開弁量(ストローク)が規定される。駆動素子6は温度により伸び量が異なるために、弁体2と固定部品14にて一定のストローク量となるよう設定する。これにより、弁体のストローク量が一定となり、流量のばらつきが低減する。 The fixed part 14 has a hole (through hole) 14a that slides with the small-diameter part 16 of the valve body 2, and the lower end surface 15 of the fixed part 14 in which the lower end of this hole 14a is open, and the valve body The stepped surface 2c between the small-diameter portion 16 and the large-diameter portion on the tip side of the valve body 2 comes into contact with each other, so that the upward movement (base end side) of the valve body 2 is restricted. This defines the valve opening amount (stroke) of the valve body 2. Since the amount of expansion of the drive element 6 varies depending on the temperature, the valve element 2 and the fixed part 14 are set to have a constant stroke amount. As a result, the stroke amount of the valve element becomes constant, and the variation in the flow rate is reduced.

なお固定部品14は、駆動素子6を収容するケーシング21に一体に形成されており、駆動素子6の下方に、駆動素子6の下端部との間に間隔を有するように設けられている。固定部品14は、ケーシング21とは別体の部品で構成され、ケーシング21に一体に組み付けられたものであってもよい。固定部品14は弁体2の移動量を規制するストッパを構成する。 The fixed component 14 is formed integrally with the casing 21 that houses the drive element 6, and is provided below the drive element 6 so as to have a space between the lower end portion of the drive element 6. The fixed component 14 may be a component separate from the casing 21 and may be integrally assembled with the casing 21. The fixed component 14 constitutes a stopper that regulates the movement amount of the valve body 2.

[実施例]
図6は、本発明に係る流量制御弁の実施例(実施例)を示す断面図である。図7は、本発明に係る実施例の第2シート部(上流側シート部)を示す詳細断面図である。
[ Example]
Figure 6 is a cross-sectional view showing actual施例flow control valve according to the present invention (Example). FIG. 7 is a detailed sectional view showing the second seat portion (upstream seat portion) of the embodiment according to the present invention .

本実施例の燃料噴射弁(流体制御弁)100Bは、第一参照例で説明した燃料噴射弁100Aの構成を備えており、以下で説明する構成が第一参照例の燃料噴射弁100Aの構成と相違している。燃料の流れも第一参照例とほぼ同様である。以下、第一参照例の燃料噴射弁100Aの構成と相違する部分について説明する。また、第一参照例の燃料噴射弁100Aと同様の構成(実質的に同じ構成を含む)には、第一参照例と同じ符号を付して説明する。 The fuel injection valve (fluid control valve) 100B of the present embodiment has the configuration of the fuel injection valve 100A described in the first reference example, and the configuration described below is the configuration of the fuel injection valve 100A of the first reference example. Is different from The flow of fuel is almost the same as in the first reference example. Hereinafter, parts different from the configuration of the fuel injection valve 100A of the first reference example will be described. Further, in the similar to the fuel injection valve 100A of the first reference example configuration (including substantially the same configuration), it is designated by the same reference numerals as the first reference example.

本実施例では、下流側弁座(第1弁座)1aと弁体2の下流側弁体シート部(第1弁体シート部)2aとにより、噴射孔シート部(下流側シート部)19が構成される。そして、噴射孔シート部19の上流側に、静止弁シート部(上流側シート部)23が設けられている。噴射孔シート部19の構成及び動作は第一実施例と同様である。 In this embodiment, the downstream side valve seat (first valve seat) 1a and the downstream side valve body seat portion (first valve body seat portion) 2a of the valve body 2 are used to form the injection hole seat portion (downstream side seat portion) 19 Is configured. A stationary valve seat portion (upstream seat portion) 23 is provided on the upstream side of the injection hole seat portion 19. The structure and operation of the injection hole sheet portion 19 are the same as in the first embodiment.

静止弁シート部23は、上流側弁座(第2弁座)13と、下流側弁体シート部2aに対して弁体2の基端側に設けられた静止弁12と、により構成される。上流側弁座13は、弁体2及びスプリング4の外周側を囲むケーシング17に形成され、テーパー状を成している。静止弁12の上流側弁座13と対向する側の表面は、なだらかな球面を成し、上流側弁体シート部12aを構成する。 The stationary valve seat portion 23 includes an upstream valve seat (second valve seat) 13 and a stationary valve 12 provided on the base end side of the valve body 2 with respect to the downstream valve body seat portion 2a. .. The upstream valve seat 13 is formed in a casing 17 that surrounds the outer peripheral side of the valve body 2 and the spring 4, and has a tapered shape. The surface of the stationary valve 12 on the side facing the upstream valve seat 13 forms a gentle spherical surface and constitutes the upstream valve body seat portion 12a.

静止弁シート部23では、上流側弁体シート部12aが上流側弁座13に当接することにより、両者の間に形成される燃料通路が閉じられ、燃料の流れが遮断される。また、上流側弁体シート部12aが上流側弁座13から離間することにより、両者の間に形成される燃料通路が開かれ、燃料の流れが許容される。上流側弁座13のシート面を球面とし、静止弁12の上流側弁体シート部12aをテーパー状にすることも可能である。 In the stationary valve seat portion 23, the fuel passage formed between the upstream valve body seat portion 12a and the upstream valve seat 13 is closed by the abutment of the upstream valve body seat portion 12a, and the flow of fuel is shut off. Further, by separating the upstream side valve body seat portion 12a from the upstream side valve seat 13, the fuel passage formed between the two is opened, and the flow of fuel is allowed. It is also possible that the seat surface of the upstream valve seat 13 is spherical and the upstream valve body seat portion 12a of the stationary valve 12 is tapered.

また本実施例では、スプリング4のスプリング押さえ部18は静止弁12に設けられている。すなわちスプリング押さえ部18は、静止弁12の上流側弁体シート部12aが形成された側とは反対側の端面に構成され、この端面にスプリング4が当接している。このために、静止弁12は弁体2の外周面から径方向外方に向かって鍔状に突出し、静止弁12の外径はスプリング4の内径よりも大きく、静止弁12の下端部から弁体2の先端部までの間における弁体2の軸部の直径よりも大きい。 Further, in this embodiment, the spring holding portion 18 of the spring 4 is provided on the stationary valve 12. That is, the spring pressing portion 18 is formed on the end surface of the stationary valve 12 opposite to the side where the upstream valve body seat portion 12a is formed, and the spring 4 is in contact with this end surface. For this reason, the stationary valve 12 protrudes radially outward from the outer peripheral surface of the valve body 2, the outer diameter of the stationary valve 12 is larger than the inner diameter of the spring 4, and the valve from the lower end of the stationary valve 12 It is larger than the diameter of the shaft portion of the valve body 2 up to the tip of the body 2.

機関停止により、電流又は電圧が未印加となると、弁体2と一体となっている静止弁12は、スプリング4の付勢力により上流方向へ押し上げられ、上流側弁体シート部12aが上流側弁座13に押し当てられ、燃料流路が閉塞される。すなわち、静止弁シート部23における燃料流れが遮断される。静止弁シート部23は上流側シート部を構成し、下流側シート部を構成する噴射孔シート部19よりも上流部に構成されているために、静止弁シート部23にて燃料が遮断されると、噴射孔シート部19からの燃料流出は防止される。 When current or voltage is not applied due to engine stop, the stationary valve 12 integrated with the valve body 2 is pushed upward by the urging force of the spring 4, and the upstream side valve body seat portion 12a moves upstream. It is pressed against the seat 13 to close the fuel flow path. That is, the fuel flow in the stationary valve seat portion 23 is shut off. Since the stationary valve seat portion 23 constitutes the upstream side seat portion and is arranged upstream of the injection hole seat portion 19 which constitutes the downstream side seat portion, the stationary valve seat portion 23 shuts off the fuel. Then, the fuel outflow from the injection hole sheet portion 19 is prevented.

図8は、駆動素子の印加電圧を示す図である。図9は、図1のA部及びB部の拡大図であり、下流側弁体シート部2aと下流側弁座2aとの位置関係及び静止弁12と上流側弁座13との位置関係を示す図である。 FIG. 8 is a diagram showing a voltage applied to the drive element. FIG. 9 is an enlarged view of portions A and B of FIG. 1, showing the positional relationship between the downstream valve body seat portion 2a and the downstream valve seat 2a and the positional relationship between the stationary valve 12 and the upstream valve seat 13. FIG.

本実施例では、電圧未印加時(機関停止時)は、弁体2に設けられたスプリング4の付勢力により弁体2の下流側弁体シート部(第1弁体シート部)2aと下流側弁座(第1弁座)1aとが離れた状態(開弁状態)である(図9の(3)の状態)。この場合、上流側弁座13に弁体2に設けられた静止弁12が当接した状態(閉弁状態)であり、これにより燃料を遮断する。すなわち本実施例では、燃料噴射弁100Bは弁体2を稼働させる圧電素子等の駆動素子6に電圧又は電流の印加が停止した場合、弁体2と一体又は別体として形成され、且つ、弁体2と同一の動作を生じる静止弁12が上流側弁座13に当接し、燃料の下流側弁座1a部への流入を遮断する。これにより、機関の停止時において、弁体2は必ず燃料流路を閉塞する構造であり、機関停止時の燃料洩れがなく、安全に機関を停止することが可能となる。すなわち、電圧未印加時(機関停止時)は、静止弁シート部23が閉弁することにより、燃料の流れが遮断される。 In this embodiment, when the voltage is not applied (when the engine is stopped), the downstream side valve body seat portion (first valve body seat portion) 2a of the valve body 2 and the downstream side are driven by the urging force of the spring 4 provided in the valve body 2. The side valve seat (first valve seat) 1a is separated (valve open state) (state (3) in FIG. 9). In this case, the stationary valve 12 provided on the valve body 2 is in contact with the upstream valve seat 13 (valve closed state), thereby shutting off the fuel. That is, in this embodiment, the fuel injection valve 100B is formed integrally with or separately from the valve body 2 when the application of voltage or current to the drive element 6 such as the piezoelectric element for operating the valve body 2 is stopped, and The stationary valve 12 that causes the same operation as the body 2 contacts the upstream valve seat 13 and shuts off the flow of fuel into the downstream valve seat 1a. As a result, when the engine is stopped, the valve body 2 always closes the fuel flow path, and there is no fuel leakage when the engine is stopped, so that the engine can be stopped safely. That is, when the voltage is not applied (when the engine is stopped), the stationary valve seat portion 23 is closed, so that the flow of fuel is shut off.

駆動素子6に対する中間電圧(第2電圧)の印加時は、駆動素子6に発生する歪みにより、駆動素子6が伸長する。このときの駆動素子6による弁体2に対する駆動力はスプリング4の付勢力よりも大きく、弁体2を先端側(下流側弁座1a側)に向けて変位させる。これにより下流側弁座1aと弁体2の下流側弁体シート部2aとが離れた状態(開弁状態)になり、且つ、上流側弁座13と弁体2の上流側弁体シート部12aとが離れた状態(開弁状態)になる(図9の(2)の状態)。これにより、上流側弁座13と弁体2の上流側弁体シート部12aとの間の燃料流路(上流側燃料通路)を流下した燃料はシート部燃料流路(下流側燃料通路)10に流れ、シート部燃料流路10を流下した燃料が噴射孔11から噴射され、燃料噴霧が生成される。 When the intermediate voltage (second voltage) is applied to the drive element 6, the drive element 6 expands due to the strain generated in the drive element 6. The driving force applied to the valve body 2 by the drive element 6 at this time is larger than the biasing force of the spring 4, and the valve body 2 is displaced toward the tip side (downstream side valve seat 1a side). As a result, the downstream valve seat 1a and the downstream valve body seat portion 2a of the valve body 2 are separated (valve open state), and the upstream valve seat 13 and the upstream valve body seat portion of the valve body 2 are provided. It becomes a state (valve open state) apart from 12a (state (2) in FIG. 9). As a result, the fuel that has flowed down the fuel flow path (upstream fuel passage) between the upstream valve seat 13 and the upstream valve body seat portion 12a of the valve body 2 has a seat portion fuel flow path (downstream fuel passage) 10 , And the fuel that has flowed down the seat portion fuel flow path 10 is injected from the injection hole 11 to generate fuel spray.

この場合の中間電圧の値は、図9の(1)における燃料噴射遮断時の電圧(大電圧又は高電圧)より低く、かつ0V以上とする。 The value of the intermediate voltage in this case is lower than the voltage (large voltage or high voltage) when the fuel injection is cut off in (1) of FIG. 9 and is 0 V or more.

図9の(1)では、中間電圧の値よりも大きな大電圧(高電圧、第1電圧)を駆動素子6に通電する。この場合に駆動素子6に発生する歪みにより、駆動素子6が図9の(2)の状態からさらに伸長して弁体2がさらに下方(下流側弁座1a側)に押し下げられる。その結果、弁体2の下流側弁体シート部2aが下流側弁座1aに当接した状態(閉弁状態)となり、シート部燃料流路10を閉塞して燃料噴射を停止させる。このとき、静止弁12の上流側弁体シート部12aは上流側弁座13から離れた状態(開弁状態)である。 In (1) of FIG. 9, a large voltage (high voltage, first voltage) larger than the value of the intermediate voltage is applied to the drive element 6. In this case, due to the strain generated in the drive element 6, the drive element 6 is further extended from the state of (2) in FIG. 9 and the valve body 2 is pushed further downward (downstream side valve seat 1a side). As a result, the downstream valve body seat portion 2a of the valve body 2 is in contact with the downstream valve seat 1a (valve closed state), and the seat portion fuel flow path 10 is closed to stop fuel injection. At this time, the upstream valve body seat portion 12a of the stationary valve 12 is in a state of being separated from the upstream valve seat 13 (valve open state).

機関が稼働している状態では、図9の(1)の状態と(2)の状態とが繰り返され、燃料の噴射状態と噴射停止状態とが繰り返される。そして、機関が停止した場合は、駆動素子6への印加電圧を0Vとすることで図9の(3)の状態に戻り、スプリング4の付勢力により静止弁12と上流側弁座13とを当接させて燃料流路を閉塞することにより、燃料の流出を防止する。 In a state where the engine is operating, the state (1) and the state (2) in FIG. 9 are repeated, and the fuel injection state and the injection stop state are repeated. When the engine is stopped, the voltage applied to the drive element 6 is set to 0 V to return to the state of (3) in FIG. 9, and the stationary valve 12 and the upstream valve seat 13 are separated by the urging force of the spring 4. The fuel is prevented from flowing out by abutting it and closing the fuel flow path.

静止弁12の上流側弁体シート部12aと上流側弁座13とは相互に接触する円環状の接触部(当接部)22を有する。静止弁シート部13側の円環状の接触部22を弁座と呼ぶ場合もある。 The upstream valve body seat portion 12a of the stationary valve 12 and the upstream valve seat 13 have an annular contact portion (contact portion) 22 that is in contact with each other. The annular contact portion 22 on the stationary valve seat portion 13 side may be referred to as a valve seat.

本実施例では、円環状の接触部22の直径(以下、シート径という)はSD2である。そして、円環状の接触部22のシート径SD2は、下流側弁体シート部2aと弁座1aとの円環状の接触部20の直径(シート径)SD1よりも大きい。これにより、静止弁12の上流側弁体シート部12aと上流側弁座13との間の間隔寸法が弁体2の下流側弁体シート部2aと下流側弁座1aとの間の間隔寸法と同じである場合に、上流側弁体シート部12aと上流側弁座13との間の燃料通路断面積を、下流側弁体シート部2aと下流側弁座1aとの間の燃料通路断面積よりも大きくすることができる。このため、弁体2の変位量を必要以上に大きくすることなく、上流側から下流側に向けて燃料を安定して供給することができる。 In this embodiment, the diameter of the annular contact portion 22 (hereinafter referred to as the sheet diameter) is SD2. The seat diameter SD2 of the annular contact portion 22 is larger than the diameter (seat diameter) SD1 of the annular contact portion 20 between the downstream valve body seat portion 2a and the valve seat 1a. As a result, the distance between the upstream valve body seat portion 12a of the stationary valve 12 and the upstream valve seat 13 becomes smaller than the distance between the downstream valve body seat portion 2a of the valve body 2 and the downstream valve seat 1a. Is the same as the above, the fuel passage cross-sectional area between the upstream valve body seat portion 12a and the upstream valve seat 13 is determined to be the same as the fuel passage disconnection between the downstream valve body seat portion 2a and the downstream valve seat 1a. It can be larger than the area. Therefore, the fuel can be stably supplied from the upstream side to the downstream side without increasing the displacement amount of the valve body 2 more than necessary.

上述したように、本実施例においても、第一実施例と同様に、駆動素子6の駆動電圧は0V以上としている。 As described above, also in the present embodiment, the drive voltage of the drive element 6 is set to 0 V or higher, as in the first embodiment.

駆動素子6は、圧電素子のほか、コイルを用いた電磁石等を用いてもよい。しかし駆動素子6は、通電時に伸長する素子の場合に、本実施例の構成を有効に用いることができる。 The drive element 6 may be an electromagnet using a coil or the like, in addition to the piezoelectric element. However, when the drive element 6 is an element that expands when energized, the configuration of this embodiment can be effectively used.

参照
図10は、第二参照例の燃料噴射弁の全体の断面図を示す。
弁体2の先端部に通常時(電圧未印加時)閉とする制御弁である。流量制御弁の上方の燃料供給口8から燃料が供給され、二重円管のすきまの流路を流れノズル3と弁体2のすきまから、弁座部へと到達する。駆動素子6は電圧又は電流に比例して伸長する素子である。なお、この駆動素子は、素線を円周上に巻いたコイル等のソレノイドでもよい。この場合は、コイルに通電したときに、磁気吸引力により弁体2を押し下げる構造とする。駆動素子6の下方端部には、弁体2の先端部が当接しており、駆動素子6の動作によりこれを直接動作させる。弁座1aはノズル3先端外周部に形成されている。ノズル3の先端部にキャップ部品1が設けられている。駆動素子6が動作することにより、当接している弁体2が下方に押し下げられ、弁座1aから弁体2が離れ、シート部燃料流路10を形成して、キャップ部品1に開口している噴射孔11より燃料を噴射する。通電が終了すると弁体2に設けられたスプリング4の力により弁体2と弁座1aが当接し、これにより生じるすきまがシート部燃料流路10を閉塞し噴射が終了する。すなわち、弁座1及び弁体2は噴射孔11に通じる流体通路の開閉を協働して行う。またスプリング4は、駆動素子6が伸長する向きとは逆向きに、弁体2を付勢する付勢部材である。
[ Reference example 2 ]
FIG. 10 is a sectional view of the entire fuel injection valve of the second reference example.
It is a control valve that is normally closed (when no voltage is applied) to the tip of the valve body 2. Fuel is supplied from the fuel supply port 8 above the flow control valve, flows through the clearance passage of the double circular pipe, and reaches the valve seat portion from the clearance between the nozzle 3 and the valve body 2. The drive element 6 is an element that expands in proportion to voltage or current. The drive element may be a solenoid such as a coil having a wire wound around the circumference. In this case, the valve body 2 is pushed down by the magnetic attraction force when the coil is energized. The tip end of the valve element 2 is in contact with the lower end of the drive element 6, and is directly operated by the operation of the drive element 6. The valve seat 1a is formed on the outer peripheral portion of the tip of the nozzle 3. The cap component 1 is provided at the tip of the nozzle 3. When the drive element 6 operates, the abutting valve element 2 is pushed down, the valve element 2 is separated from the valve seat 1a , the seat portion fuel flow path 10 is formed, and the valve element 2 is opened to the cap part 1. Fuel is injected from the injection hole 11 that is present. When the energization is completed, the valve body 2 and the valve seat 1a are brought into contact with each other by the force of the spring 4 provided in the valve body 2, and the clearance generated thereby closes the seat portion fuel flow path 10 and the injection is completed. That is, the valve seat 1 and the valve body 2 cooperate to open and close the fluid passage leading to the injection hole 11. The spring 4 is a biasing member that biases the valve body 2 in the direction opposite to the direction in which the drive element 6 extends.

図11は本参照例の燃料噴射弁の閉弁状態を示す図である。
キャップ部品1には1つ以上の第一の噴射孔11aあり、これと同心円状に第二の噴射孔11bが開口している。なお、第二の噴射孔11bが開口していな場合もある。尚、第二の噴射孔径は第一の噴射孔径より大きく設定する。駆動素子6に通電されると、弁体2が押し下げられて、隙間が生じて、シート部10Aに燃料流路が形成される。燃料はシート部10Aより流出してキャップ部品隙間を通り、第一の噴射孔11aを通り、同心円状に第二の噴射孔11bより噴射される。通電が終了すると弁体2に設けられたスプリング4の力により弁体2と弁座1が当接し、これにより生じるすきまがシート部燃料流路10を閉塞し噴射が終了する。キャップ部品1には隙間213を有するために、燃料噴射終了から開始まで期間が長くなると、隙間に滞留している燃料が流出してしまうため、噴射期間の間隔(噴射開始から次の噴射開始までの期間)が0.5ms以下という高周波数での駆動条件が望ましい。
FIG. 11 is a diagram showing a closed state of the fuel injection valve of this reference example.
The cap component 1 has one or more first injection holes 11a, and a second injection hole 11b is concentrically formed with the first injection holes 11a. The second injection hole 11b may not be opened. The second injection hole diameter is set larger than the first injection hole diameter. When the drive element 6 is energized, the valve body 2 is pushed down, a gap is created, and a fuel passage is formed in the seat portion 10A. The fuel flows out of the seat portion 10A, passes through the gap between the cap parts, passes through the first injection hole 11a, and is concentrically injected through the second injection hole 11b. When the energization is completed, the valve body 2 and the valve seat 1 are brought into contact with each other by the force of the spring 4 provided in the valve body 2, and the clearance generated thereby closes the fuel flow passage 10 in the seat portion and the injection is completed. Since the cap component 1 has the gap 213, if the period from the end of fuel injection to the start becomes long, the fuel staying in the gap will flow out. Therefore, the interval of the injection period (from the start of injection to the start of the next injection) It is desirable to drive at a high frequency of 0.5 ms or less.

以上のように本参照例の燃料噴射弁は軸方向に移動する弁体2と、弁体2が上流側に移動した場合に着座する弁座1aと、弁体2が弁座1aから下流側に移動した場合に弁座1aの下流側で、かつ、弁体2の外周側に形成される燃料通路(シート部燃料流路10)と、を備える。そしてさらに燃料通路(シート部燃料流路10)の下流側に形成される複数の噴射孔と、を備えた。そして1回の噴射において弁体2の開弁時間と弁体2の閉弁時間の和、すなわち噴射期間の間隔が0.5m以下に設定されことが望ましい。 As described above, in the fuel injection valve of this reference example, the valve body 2 that moves in the axial direction, the valve seat 1a that is seated when the valve body 2 moves upstream, and the valve body 2 that is downstream from the valve seat 1a And a fuel passage (seat portion fuel passage 10) formed on the downstream side of the valve seat 1a and on the outer peripheral side of the valve body 2 when moved to. Further, a plurality of injection holes formed on the downstream side of the fuel passage (seat portion fuel passage 10) are provided. The sum of the opening time of the valve body 2 and the valve closing time of the valve body 2 in one injection, that is, the distance between the injection period is Ru is set below 0.5m desirable.

また弁体2はノズル3の先端部より下流側に突出するように構成され、閉弁時にノズル3の先端部に形成された前記座部と当接する。また開弁時に弁体2が下流側に変位し、座部1aより離れた場合に燃料通路(シート部燃料流路10)が形成され、ノズル3の先端部に複数の噴射孔11が形成される中空のキャップ状部品1が取り付けられる。キャップ状部品1はノズル3の先端部を閉じる部品であり、噴射孔11が形成された噴射孔形成部材である。 Further, the valve body 2 is configured so as to protrude downstream from the tip end portion of the nozzle 3, and contacts the seat portion formed at the tip end portion of the nozzle 3 when the valve is closed. Further, when the valve body 2 is displaced to the downstream side when the valve is opened and is separated from the seat portion 1a, a fuel passage (seat portion fuel passage 10) is formed, and a plurality of injection holes 11 are formed at the tip end portion of the nozzle 3. The hollow cap-shaped component 1 is attached. The cap-shaped component 1 is a component that closes the tip end portion of the nozzle 3, and is an injection hole forming member in which an injection hole 11 is formed.

図12は本参照例の燃料噴射弁の開弁状態を示す図である。
駆動素子6に通電され、噴射流量に必要なシート部断面積が得られるような、弁体のストローク量214となるように弁体2が押し下げられた場合、キャップ部品内側底面215と弁体先端部2dとの間に必ずクリアランスを設ける。つまりキャップ状部品1の内径側先端部と開弁時の弁体先端部との間に隙間が形成される。これにより、弁体2の変形を防ぎ、安定して燃料を噴射孔11に流入させることが可能である。
FIG. 12 is a view showing a valve open state of the fuel injection valve of this reference example.
When the drive element 6 is energized and the valve body 2 is pushed down so as to obtain the stroke amount 214 of the valve body so that the seat portion cross-sectional area required for the injection flow rate is obtained, when the valve element 2 is pushed down to the inner bottom surface 215 of the cap component and A clearance is always provided between the tip 2d. That is, a gap is formed between the inner diameter side tip of the cap-shaped component 1 and the valve body tip when the valve is opened. As a result, it is possible to prevent the valve body 2 from being deformed and allow the fuel to stably flow into the injection hole 11.

図13は圧電素子を説明するための図である。
駆動素子6に圧電素子216を用いる。流量制御弁を構成している金属部品(例えばステンレス鋼など)より圧電素子216の構成している部材は線膨張率が小さいものがある。このとき、温度が上昇すると、構成している金属は大きく伸びるが駆動素子6は伸びずに弁体2を押し下げる距離が相対的に短くなり、燃料のシールが出来ずに流出し続ける。そのため、温度が上昇した場合は弁座1と弁対隙間ができないようにダンパー7を設ける。ダンパー7にはシリンダとプランジャからなり、シリンダとプランジャの隙間にはオイルが封入されており、温度が高くなるとオイルが膨張し、シリンダが伸びる。この伸びにより、弁座1と弁体2の隙間が発生しない状態となる。なお、圧電素子216は防水密閉構造になっている又は耐燃料性がある場合は液中に設置することも可能である。圧電素子216は動作周期が非常に速いために、低噴射パルスでの駆動が可能であり、小流量で安定して噴射可能となる。
FIG. 13 is a diagram for explaining the piezoelectric element.
The piezoelectric element 216 is used as the driving element 6. Some members of the piezoelectric element 216 have a linear expansion coefficient smaller than that of the metal parts (such as stainless steel) forming the flow control valve. At this time, when the temperature rises, the constituent metal greatly expands, but the drive element 6 does not expand, and the distance for pushing down the valve body 2 becomes relatively short, and the fuel cannot be sealed and continues to flow out. Therefore, when the temperature rises, the damper 7 is provided so that there is no gap between the valve seat 1 and the valve. The damper 7 is composed of a cylinder and a plunger, and oil is filled in a gap between the cylinder and the plunger. When the temperature rises, the oil expands and the cylinder extends. Due to this extension, a gap between the valve seat 1 and the valve body 2 does not occur. The piezoelectric element 216 can be installed in a liquid if it has a waterproof and airtight structure or has fuel resistance. Since the piezoelectric element 216 has an extremely fast operation cycle, it can be driven with a low ejection pulse, and stable ejection can be performed with a small flow rate.

図14A及び図14Bは第二参照例の燃料噴射弁のキャップ部品の固定方法の一例を示す図である。
ノズル3に圧入されたキャップ部品1は、固定と燃料漏れを防止するために、ノズル段差部3aに溶接217(図14A)又は接着218(図14B)を行う。燃料圧力が高い場合は、ノズル3の先端部外周とキャップ部品1の内径にねじ加工を行う。キャップ部品の端面を楔上にして、ノズル側の部品へと食い込ませて密着させて、加締めることにより、燃料の漏れを防ぐ。この場合、キャップ1とノズル3は硬度差を持つように、材料を選定する。又は、熱処理にて硬度差を有するようにしてもよい。また、溶接部217又は接着部218等の固定部は加締めによる固定部に変えてもよい。
14A and 14B are views showing an example of a method of fixing the cap component of the fuel injection valve of the second reference example.
The cap component 1 press-fitted into the nozzle 3 is welded 217 (FIG. 14A) or bonded 218 (FIG. 14B) to the nozzle step portion 3a in order to fix and prevent fuel leakage. When the fuel pressure is high, the outer circumference of the tip of the nozzle 3 and the inner diameter of the cap component 1 are threaded. The end surface of the cap component is set to be a wedge, and the cap component is bited into and closely adhered to the component on the nozzle side and caulked to prevent fuel leakage. In this case, the materials are selected so that the cap 1 and the nozzle 3 have a hardness difference. Alternatively, the hardness may be different by heat treatment. Further, the fixed portion such as the welded portion 217 or the adhesive portion 218 may be changed to the fixed portion by caulking.

本発明に係る各実施例によれば、電圧に比例して全長が伸長する駆動素子を用いた流量制御弁において、流量制御弁の構造を簡略化でき、噴霧を任意の方向を指向するように噴射することができる噴孔及び弁体を構成することができる。 According to the respective embodiments of the present invention, in the flow control valve using the drive element whose total length extends in proportion to the voltage, the structure of the flow control valve can be simplified and the spray can be directed in any direction. An injection hole and a valve body that can inject can be configured.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部を他の参照例の構成に置き換えることが可能であり、また、実施例の構成に他の参照例の構成を加えることも可能である。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the actual施例described above, but includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all configurations. Further, it is possible to replace a part of the real施例configuration to the configuration of the other reference example, it is also possible to add a configuration of another reference example to the structure of the real施例. Further, it is possible to add/delete/replace other configurations with respect to a part of the configurations of the embodiment.

1 噴射孔形成部材(キャップ部品)
1a 弁座(第1弁座、下流側弁座)
2 弁体
2a 弁体シート部(第1弁体シート部、下流側弁体シート部)
3 ノズル
4 スプリング
5 金属性シール部材
6 駆動素子
7 ダンパー
8 燃料供給口
9 電圧入力端子
10 シート部燃料流路
10A シート部
11 噴射孔
11a 第一の噴射孔
11b 第二の噴射孔
12 静止弁
13 上流側弁座(第2弁座)
13a 静止弁表面
14 固定部品
15 穴部端面
16 弁体小径部
17 ケーシング
18 スプリング押さえ部品
19 噴射孔シート部(下流側シート部)
23 静止弁シート部(上流側シート部)
100A,100B 燃料噴射弁
213 キャップ部品隙間
214 弁体のストローク量
215 キャップ部品内側底面
216 圧電素子
217 溶接箇所
218 接着部
1 Injection hole forming member (cap part)
1a valve seat (first valve seat, downstream valve seat)
2 valve body 2a valve body seat portion (first valve body seat portion, downstream valve body seat portion)
3 Nozzle 4 Spring 5 Metallic Seal Member 6 Drive Element 7 Damper 8 Fuel Supply Port 9 Voltage Input Terminal 10 Seat Fuel Channel 10A Seat 11 Injection Hole 11a First Injection Hole 11b Second Injection Hole 12 Stationary Valve 13 Upstream valve seat (second valve seat)
13a stationary valve surface 14 fixed part 15 hole end face 16 valve body small diameter part 17 casing 18 spring holding part 19 injection hole seat part (downstream side seat part)
23 Stationary valve seat (upstream seat)
100A, 100B Fuel injection valve 213 Cap component gap 214 Stroke amount of valve body 215 Cap component inner bottom surface 216 Piezoelectric element 217 Welding point 218 Bonding section

Claims (4)

流体を噴射する噴射孔と、前記噴射孔に通じる流体通路の開閉を協働して行う弁体及び弁座と、通電により伸長して前記弁体を駆動する駆動素子と、前記弁体を前記駆動素子が伸長する向きとは逆向きに付勢する付勢部材と、を備えた流量制御弁において、
前記弁体は、当該弁体の外周から当該弁体の先端中心に向かって形成された弁体先端面により構成される下流側弁体シート部と、前記下流側弁体シート部の上流側に設けられる上流側弁体シート部と、を有し、
当該流量制御弁は、
前記弁体先端面と対向して前記噴射孔の入口が開口する内面を有する噴射孔形成部材を備えると共に、
前記噴射孔形成部材の前記内面により構成される下流側弁座と、前記下流側弁座の上流側に設けられる上流側弁座と、を備え、
前記弁体は、
前記駆動素子への通電が行われていない状態において、前記上流側弁体シート部が前記上流側弁座に当接して前記上流側弁体シート部と前記上流側弁座との間に構成される流体通路を閉じ、
前記駆動素子に第1電圧を通電した場合に、前記下流側弁体シート部が前記下流側弁座に当接して前記下流側弁体シート部と前記下流側弁座との間に構成される流体通路を閉じることを特徴とする流量制御弁。
An injection hole for injecting a fluid, a valve element and a valve seat that cooperate with each other to open and close a fluid passage leading to the injection hole, a drive element that extends by energization to drive the valve element, and the valve element In a flow control valve including a biasing member that biases the drive element in a direction opposite to the extending direction,
The valve body includes a downstream-side valve body seat constituted by the valve body tip end surface from the outer periphery of the valve body is formed toward the tip center of the valve body, upstream of the downstream valve body seat And an upstream valve body seat portion provided,
The flow control valve is
Rutotomoni comprising an injection hole forming member having an inner surface which inlet opening of the valve body tip end surface opposed to the injection hole,
A downstream valve seat formed by the inner surface of the injection hole forming member, and an upstream valve seat provided upstream of the downstream valve seat,
The valve body is
In a state in which the drive element is not energized, the upstream side valve body seat portion abuts on the upstream side valve seat and is configured between the upstream side valve body seat portion and the upstream side valve seat. The fluid passage
When the drive element is energized with a first voltage, the downstream valve body seat portion comes into contact with the downstream valve seat and is configured between the downstream valve body seat portion and the downstream valve seat. A flow control valve characterized by closing a fluid passage .
請求項に記載の流量制御弁において、
前記駆動素子に印加する電圧は0V以上とし、
前記駆動素子への通電期間中に、0Vよりも大きく前記第1電圧よりも小さい第2電圧を前記駆動素子に印加することにより、前記下流側弁体シート部と前記下流側弁座との間に構成される前記流体通路と、前記上流側弁体シート部と前記上流側弁座との間に構成される前記流体通路と、の両方が開いた状態となるように、前記弁体を変位させることを特徴とする流量制御弁。
The flow control valve according to claim 1 ,
The voltage applied to the drive element is 0 V or higher,
By applying a second voltage larger than 0V and smaller than the first voltage to the drive element during the energization period of the drive element, the space between the downstream valve seat portion and the downstream valve seat is reduced. The valve body is displaced so that both the fluid passage configured as described above and the fluid passage configured between the upstream valve body seat portion and the upstream valve seat are in an open state. A flow control valve, which is characterized by:
請求項に記載の流量制御弁において、
前記上流側弁体シート部と前記上流側弁座とは環状の上流側当接部を構成し、
前記下流側弁体シート部と前記下流側弁座とは環状の下流側当接部を構成し、
前記上流側当接部の直径は前記下流側当接部の直径よりも大きいことを特徴とする流量制御弁。
The flow control valve according to claim 2 ,
The upstream valve body seat portion and the upstream valve seat constitute an annular upstream contact portion,
The downstream valve body seat portion and the downstream valve seat constitute an annular downstream contact portion,
The flow control valve, wherein the diameter of the upstream contact portion is larger than the diameter of the downstream contact portion.
請求項に記載の流量制御弁において、
前記弁体は、前記上流側弁体シート部と前記下流側弁体シート部との間に軸部を備えると共に、前記軸部の上流側端部の外周面から径方向外方に突出した突出部を備え、
前記上流側弁体シート部は前記突出部の上流側の面に構成されたことを特徴とする流量制御弁。
The flow control valve according to claim 3 ,
The valve body includes a shaft portion between the upstream side valve body seat portion and the downstream side valve body seat portion, and a protrusion protruding radially outward from an outer peripheral surface of an upstream end portion of the shaft portion. Section,
The flow control valve according to claim 1, wherein the upstream valve body seat portion is formed on an upstream surface of the protruding portion.
JP2018551078A 2016-11-15 2017-10-12 Flow control valve Expired - Fee Related JP6706685B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016222102 2016-11-15
JP2016222102 2016-11-15
PCT/JP2017/036916 WO2018092472A1 (en) 2016-11-15 2017-10-12 Flow control valve

Publications (2)

Publication Number Publication Date
JPWO2018092472A1 JPWO2018092472A1 (en) 2019-07-11
JP6706685B2 true JP6706685B2 (en) 2020-06-10

Family

ID=62146490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018551078A Expired - Fee Related JP6706685B2 (en) 2016-11-15 2017-10-12 Flow control valve

Country Status (2)

Country Link
JP (1) JP6706685B2 (en)
WO (1) WO2018092472A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109084A (en) * 1996-06-24 1998-01-13 Nissan Motor Co Ltd Piezoelectric fuel injection valve
JP3892146B2 (en) * 1998-02-18 2007-03-14 株式会社日本自動車部品総合研究所 Fluid control valve
JP2000262076A (en) * 1999-03-05 2000-09-22 Honda Motor Co Ltd Ultra magnetostrictive actuator
DE10029296A1 (en) * 2000-06-14 2001-12-20 Bosch Gmbh Robert Valve for fluid flow control eg motor fuel injection has a separate setting unit to adjust the stroke movement of the valve ball at the valve seat in a simplified valve structure
DE10123218A1 (en) * 2001-05-12 2002-11-14 Bosch Gmbh Robert Valve for controlling liquids, especially fuel injection valve for storage injection system, has movement controller between piezo-actuator, valve element, stop limiting valve element movement
JP4085713B2 (en) * 2002-06-19 2008-05-14 日産自動車株式会社 Fuel injection valve for direct injection internal combustion engine
JP6034761B2 (en) * 2013-07-08 2016-11-30 株式会社日本自動車部品総合研究所 Valve device

Also Published As

Publication number Publication date
WO2018092472A1 (en) 2018-05-24
JPWO2018092472A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US11105437B2 (en) Combined inlet and outlet check valve seat
JP3969247B2 (en) Fuel injection valve
JP2001227435A (en) Fuel injection valve for internal combustion engine
JP6655723B2 (en) Fuel injection valve
JP2004518066A (en) Fuel injection valve
CN107923548B (en) Electromagnetic valve
JP6706685B2 (en) Flow control valve
US11162465B2 (en) Fuel injection valve
JP4120632B2 (en) Fuel injection valve
WO2018115197A1 (en) Valve assembly for an injection valve and injection valve
JP2005090233A (en) Fuel injection valve
JP2018123826A (en) Fuel injection valve
CN108779747B (en) Fuel injection device
JP6731492B2 (en) Fuel injection valve
JP6913816B2 (en) Fuel injection valve and its assembly method
JP6482981B2 (en) Flow control valve
JP2017020470A (en) Flow control valve
JP7171448B2 (en) fuel injector
JP6818749B2 (en) Fuel injector control valve gear
JP6857541B2 (en) Fuel injection device
JP6602692B2 (en) High pressure fuel supply pump control method and high pressure fuel supply pump using the same
EP3467299A1 (en) Valve assembly for an injection valve and injection valve
WO2018135262A1 (en) Fuel injection valve
JP2019100219A (en) Fuel injection valve
JP2017066955A (en) Flow control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200518

R150 Certificate of patent or registration of utility model

Ref document number: 6706685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees