JP6706506B2 - Molding material - Google Patents

Molding material Download PDF

Info

Publication number
JP6706506B2
JP6706506B2 JP2016022749A JP2016022749A JP6706506B2 JP 6706506 B2 JP6706506 B2 JP 6706506B2 JP 2016022749 A JP2016022749 A JP 2016022749A JP 2016022749 A JP2016022749 A JP 2016022749A JP 6706506 B2 JP6706506 B2 JP 6706506B2
Authority
JP
Japan
Prior art keywords
molding material
yarn
twisted
bundled
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016022749A
Other languages
Japanese (ja)
Other versions
JP2016147486A (en
Inventor
迫部 唯行
唯行 迫部
雄俊 中谷
雄俊 中谷
こゆ 田代
こゆ 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Publication of JP2016147486A publication Critical patent/JP2016147486A/en
Application granted granted Critical
Publication of JP6706506B2 publication Critical patent/JP6706506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は熱溶解積層法3Dプリンターを用いて三次元造形物を得る造方法に関するものである。
The present invention relates to give Ru granulation type method 3D object using a fused deposition modeling 3D printer.

コンピュータ上の設計図をもとに三次元のものを作り出す3Dプリンターは、金型や溶融装置を用いなくとも、プラスチック製の部品、治具、製品を容易に作ることができ、企業を中心に急速に普及している。特に、熱可塑性樹脂を造形材料に用いる熱溶解積層方式の3Dプリンターは廉価版も販売され、個人にも普及し始めている。 3D printers that create three-dimensional things based on blueprints on computers can easily make plastic parts, jigs, and products without using molds and melting equipment. It is spreading rapidly. In particular, a low-priced 3D printer of a hot melt lamination method using a thermoplastic resin as a molding material is also sold, and it is becoming popular with individuals.

このような熱溶解積層法3Dプリンターに用いる造形材料としては、熱可塑性樹脂を直径数mmで長手方向に連続してなる線状の樹脂成型物(モノフィラメント状物)が使用されている。例えば、特許文献1には、高精度の造形用材料として、平均直径が0・069〜0.074インチ(約1.75〜1.90mm)、長さ20フィート(約6.1m)以上、0.0004インチ(0.01mm)以下の直径の標準偏差を有する造形材料(供給材料)が開示されている。また、このような造形材料を構成する熱可塑性樹脂としては、ABS樹脂、ポリカーボネート、ポリアミド、ポリ乳酸などの熱可塑性樹脂が用いられている。熱溶解積層方式は、材料押出方式ともいう。 As a modeling material used for such a hot melt laminating 3D printer, a linear resin molded product (monofilament-shaped product) made of a thermoplastic resin having a diameter of several mm and continuous in the longitudinal direction is used. For example, in Patent Document 1, as a high-precision molding material, the average diameter is 0.069 to 0.074 inches (about 1.75 to 1.90 mm), and the length is 20 feet (about 6.1 m) or more, A build material (feed) having a standard deviation in diameter of 0.0004 inches (0.01 mm) or less is disclosed. In addition, as a thermoplastic resin constituting such a molding material, a thermoplastic resin such as ABS resin, polycarbonate, polyamide, polylactic acid is used. The hot melt laminating method is also called a material extrusion method.

特表2005−523391Special table 2005-523391

しかし、上記のような連続線状の樹脂成型物(モノフィラメント状物)からなる造形材料は、硬く、取扱い性が良くない。なかでもポリ乳酸からなる造形材料は特に硬く、このような硬い造形材料は、ボビンなどに捲かれている状態から、捲き張力を少し緩めた途端に捲かれた状態が解除されボビンから外れて散らばってバラけた状態となってしまう(このような状態を「クラッシュ発生」とも呼ぶ。)。また、市場にて販売されているポリ乳酸製の造形材料において、結晶化が進んでいないものは、使用中に折れやすいという問題を抱えている。 However, the molding material composed of the continuous linear resin molded product (monofilament-shaped product) as described above is hard and is not easy to handle. Among them, the molding material made of polylactic acid is particularly hard, and such a hard molding material is released from the bobbin by releasing the winding tension from the state wound on the bobbin etc. It will be scattered and scattered (this kind of state is also called "crash occurrence"). Further, among the polylactic acid molding materials sold in the market, those which are not crystallized have a problem that they tend to break during use.

本発明は、この様な現状に鑑みて行われたもので、取扱い性が良好な熱溶解積層法3Dプリンター用の造形材料を用いた造形方法を提供することを課題とする。
The present invention has been made in view of such a current situation, and an object of the present invention is to provide a modeling method using a modeling material for a hot-melt laminating 3D printer, which is easy to handle.

本発明者らは、上記課題を達成するために鋭意検討した。熱溶解積層法3Dプリンター用の材料の形態としては、いわゆるモノフィラメント状物を用いることが常識であったが、その常識に捉われずに他の形態を適用できるのではないかと検討していたなかで、複数本の合成繊維を集束した紐状物を適用したとところ、柔軟であり、折れることはなく、取扱い性が良好な熱溶解積層法3Dプリンター用造形材料を提供できるということを見出し、本発明に到達した。 The present inventors diligently studied to achieve the above object. It was common sense to use a so-called monofilament-like material as the form of the material for the hot melt laminating 3D printer, but it was considered that other forms could be applied without being bound by that common sense. When applying a string-like material that bundles a plurality of synthetic fibers, it was found that it is possible to provide a modeling material for a hot melt laminating 3D printer that is flexible, does not break, and has good handleability. The invention has been reached.

本発明は、下記の形態の造形材料を、熱溶解積層法3Dプリンターに供給して、造形ヘッドにて、造形材料を構成する複数本の熱可塑性合成繊維を構成する熱可塑性樹脂を加熱により溶融させ、ノズルから射出・積層して所望の形状の三次元造形物を作成することを特徴とする造形方法であり、
造形材料の形態が、複数本の熱可塑性合成繊維が集束されて1本の連続した糸状の形態を呈しており、造形材料を構成する複数本の熱可塑性合成繊維は、熱溶解積層法3Dプリンターにおける造形ヘッドにて溶融するものであることを特徴とする造形方法を要旨とするものである。
According to the present invention, a modeling material having the following form is supplied to a hot melt laminating method 3D printer, and a modeling head melts a thermoplastic resin constituting a plurality of thermoplastic synthetic fibers constituting the modeling material by heating. Is a molding method characterized by creating a desired three-dimensional model by injecting and stacking from a nozzle.
The shape of the molding material is a continuous thread-like shape in which a plurality of thermoplastic synthetic fibers are bundled, and the plurality of thermoplastic synthetic fibers constituting the molding material is a hot melt laminating 3D printer. The gist of the present invention is a modeling method characterized in that it is melted by the modeling head in (1).

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明において、熱溶解積層法3Dプリンターに用いる造形材料とは、熱溶解積層法3Dプリンターに供給して三次元造形物を得る際の材料であって、熱可塑性樹脂によって構成される。この造形材料を使用し、コンピュータ上の設計図に基づき、造形ヘッドにて、造形材料を構成する熱可塑性樹脂を加熱により溶融させ、ノズルから射出・積層して所望の形状の三次元造形物を作成するのである。 In the present invention, the modeling material used in the hot-melt laminating method 3D printer is a material for supplying the hot-melt laminating method 3D printer to obtain a three-dimensional structure, and is composed of a thermoplastic resin. Using this modeling material, based on the design drawing on the computer, the modeling head melts the thermoplastic resin that constitutes the modeling material by heating, and it is injected from the nozzle and laminated to form a three-dimensional modeled object of the desired shape. Create it.

本発明における造形材料は、熱可塑性合成繊維によって構成される。合成繊維を構成する熱可塑性樹脂としては、熱溶解積層法3Dプリンターにおける造形ヘッドの溶融温度で溶融しうるものであれば用いることができ、融点が180℃以下のものがよく、例えば、脂肪族ポリエステル系樹脂、芳香族ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、アクリロニトリル−ブタジエン−スチレン共重合体系樹脂、フッ素樹脂系樹脂が挙げられる。これらの樹脂を混合したものを用いてもよい。なかでも、ポリ乳酸は、反りが発生しにくいため好ましく、D体含有量が低いポリL乳酸は黄色味が帯びにくいため、さらに好ましい。D体含有量を調整することにより、プリンターの温度制御に応じてポリ乳酸の融点を調整することができるが、黄色味を帯びにくくするためには、D体含有量が1.5%未満のものがよい。また、上記した樹脂を用いて合成繊維を製造する方法においても、特に限定するものではないが、結晶性を有する熱可塑性樹脂を用いて繊維を製造する場合は、延伸工程や熱収縮を制御するためのリラックス工程を製造工程中に適用するとよい。
The modeling material in the present invention is composed of thermoplastic synthetic fibers. As the thermoplastic resin constituting the synthetic fiber, any resin that can be melted at the melting temperature of the modeling head in the hot melt laminating method 3D printer can be used, and the one having a melting point of 180° C. or lower is preferable, and for example, an aliphatic resin Examples thereof include polyester resins, aromatic polyester resins, polyamide resins, polyolefin resins, acrylic resins, polycarbonate resins, acrylonitrile-butadiene-styrene copolymer resins, and fluororesin resins. You may use what mixed these resins. Of these, polylactic acid is preferable because it is less likely to warp, and poly L lactic acid having a low D-form content is more preferable because it is unlikely to have a yellowish tint. By adjusting the D-form content, the melting point of the polylactic acid can be adjusted according to the temperature control of the printer, but in order to make it less yellowish, the D-form content is less than 1.5%. Things are good. Also, in the method for producing synthetic fibers using the above-mentioned resin, although not particularly limited, when producing fibers using a thermoplastic resin having crystallinity, the stretching step and heat shrinkage are controlled. It is recommended to apply a relaxation process for manufacturing during the manufacturing process.

本発明における造形材料は、複数本の熱可塑性合成繊維が集束されて1本の連続した糸状の形態を呈している。複数本の合成繊維を集束させる方法としては、撚りをかける方法、製紐する方法、熱処理により熱接着する方法等が挙げられる。より具体的には、複数本の合成繊維に撚りをかけて集束する方法、複数本の合成繊維を引き揃えあるいは撚りをかけた束を2本以上用いて製紐することによって組紐とし集束する方法、複数本の合成繊維を引き揃えたものに熱処理を施すことにより合成繊維を構成する熱可塑性樹脂の一部を溶融または軟化させて繊維同士を熱接着させることにより集束する方法、あるいは、これら(撚り、製紐、熱接着)を組合せた方法が挙げられる。
The molding material in the present invention has a single continuous thread-like form in which a plurality of thermoplastic synthetic fibers are bundled. Examples of the method for bundling a plurality of synthetic fibers include a twisting method, a braiding method, and a heat-bonding method by heat treatment. More specifically, a method in which a plurality of synthetic fibers are twisted and bundled, and a method in which two or more bundles in which a plurality of synthetic fibers are aligned or twisted are braided and bundled into a braid , A method in which a part of the thermoplastic resin constituting the synthetic fiber is melted or softened by subjecting a plurality of synthetic fibers aligned to each other to heat treatment, and the fibers are thermally adhered to each other, or these (or A method in which twisting, braiding, and heat bonding) are combined is included.

複数本の合成繊維を引き揃えて撚りをかけて集束する方法においては、片撚りの場合は、端部から解けやすいため、熱処理を施すことにより撚り形態を固定させることが好ましい。熱処理の際に、繊維を構成する熱可塑性樹脂の一部を溶融または軟化する温度で処理を施し、繊維同士を熱接着させて形態を固定させることも好ましい。なお、片撚り以外の撚糸であっても、熱処理によって風合いの調整や、繊維間の集束密度の向上を行うことが可能である。 In the method in which a plurality of synthetic fibers are aligned and twisted to be bundled, it is preferable to fix the twisted form by performing heat treatment, since it is easy to loosen from the end in the case of single twist. During the heat treatment, it is also preferable to perform a treatment at a temperature at which a part of the thermoplastic resin forming the fibers is melted or softened, and the fibers are thermally bonded to fix the shape. Even with twisted yarns other than single-twisted yarns, it is possible to adjust the texture and improve the bundle density between fibers by heat treatment.

また、片撚りしてなる繊維束2本以上を片撚りの方向とは反対の方向に撚り合わせて集束させ、いわゆる諸撚りを施すことにより、解けにくくすることも好ましい。さらに、諸撚りした後に、熱処理を施し、熱固定あるいは熱接着により形態を固定させることも好ましい。諸撚り前の片撚りしてなる繊維束の撚り方向(下撚りの方向)としては、同一方向に撚られた繊維束を選択するものとし、下撚り回数は、繊度に応じて適宜調整すればよいが50〜1000回/m程度が好ましい。諸撚り(上撚り)の回数は、用いる繊維束の太さや本数に応じて適宜設計するとよい。 Further, it is also preferable that two or more single-twisted fiber bundles are twisted in a direction opposite to the single-twisted direction to be bundled, and so-called ply twisting is performed to make it difficult to untwist. Furthermore, it is also preferable to heat-treat after twisting and to fix the shape by heat fixing or heat bonding. As the twisting direction of the single-twisted fiber bundle before ply-twisting (lower twisting direction), a fiber bundle twisted in the same direction shall be selected, and the number of lower twists may be appropriately adjusted according to the fineness. It is good, but about 50 to 1000 times/m is preferable. The number of ply twists (top twists) may be appropriately designed according to the thickness and the number of fiber bundles used.

繊維束を2本以上用いて製紐することによって集束させる方法においては、平打ち、角打ちおよび丸打ちのいずれを適用してよい。なかでも、現在、熱溶解積層法3Dプリンターへの供給材料として使用されている連続線状物の横断面が円形のものが多く使用されていることから、丸打ちによる組紐がよい。丸打ちの場合、より真円形状とするために、4本打ち以上とすることが好ましく、より好ましくは8本打ち以上であり、さらに好ましくは16本打ちである。また、丸打ち紐の形態として、組紐の長手方向(軸方向)の中心部に芯糸が挿入され、芯糸を中心としてその周囲に側糸として複数本の糸が配されてなる形態の組紐を採用することが好ましい。得られる造形材料の横断面において中心部の密度も密となって、空隙部分が生じにくいためである。 In the method of bundling by using two or more fiber bundles for bundling, any of flat striking, square striking and round striking may be applied. Among them, since many continuous linear objects having a circular cross section are currently used as a feed material for the hot melt laminating 3D printer, a braid by round punching is preferable. In the case of round striking, it is preferable that the number of striking is 4 or more, more preferably 8 or more, and further preferably 16 in order to obtain a more perfect circular shape. In addition, as a form of a round braid, a braid is inserted in the center of the braid in the longitudinal direction (axial direction), and a plurality of yarns are arranged as side yarns around the core yarn. Is preferably adopted. This is because in the cross section of the obtained molding material, the density of the central portion is also high, and void portions are unlikely to occur.

組紐についても、上述した撚糸と同様で、熱処理を行うことで風合いの調整や、繊維間の集束密度の向上を行うことも可能である。 Similarly to the above-mentioned twisted yarn, the braid can be heat-treated to adjust the texture and improve the bundle density between fibers.

集束性を向上させることや集束密度を向上させることを目的として、あるいは、硬さの調整を目的として、集束させる熱可塑性合成繊維として低融点の熱可塑性合成樹脂からなる繊維を混合させ、撚りや製紐により集束させた後に、低融点の熱可塑性合成樹脂が溶融する温度で熱処理を施して、低融点の熱可塑性合成樹脂を熱接着剤として機能させ、構成繊維同士を熱接着させることも好ましい。また、低融点熱可塑性合成繊維を混合させて熱接着させることによって、造形材料の密度が密になり、保形性も向上する。 For the purpose of improving the converging property or the converging density, or for the purpose of adjusting the hardness, a fiber made of a thermoplastic synthetic resin having a low melting point is mixed as a thermoplastic synthetic fiber to be bundled, and twisted or It is also preferable to heat the synthetic resin having a low melting point at a temperature at which the thermoplastic synthetic resin having a low melting point is melted after being bundled by a cord, to cause the thermoplastic synthetic resin having a low melting point to function as a thermal adhesive, and to thermally bond the constituent fibers together. .. Further, by mixing the low melting point thermoplastic synthetic fibers and thermally adhering them, the density of the modeling material becomes high and the shape retention property is also improved.

本発明において、熱可塑性合成繊維の形態は、全て連続繊維を選択してよいが、特定の繊維長を有する短繊維を用いてもよい。短繊維を用いる場合は、短繊維群を紡績した紡績糸や、連続繊維と短繊維との混繊による混合紡績糸の形態としたものを集束してなる連続した糸状の造形材料としてもよい。このような紡績糸を、組紐や諸撚り糸を得るための熱可塑性合成繊維の束として用いてもよい。また、連続繊維からなる加工糸を用いてもよい。加工糸としてはエアー交絡糸、仮撚り糸、BCF(Bulked Continuou
s Filament)が挙げられる。
In the present invention, as the form of the thermoplastic synthetic fiber, all continuous fibers may be selected, but short fibers having a specific fiber length may be used. When short fibers are used, a continuous thread-like molding material may be formed by bundling spun yarn obtained by spinning a group of short fibers or a mixed spun yarn obtained by mixing continuous fibers and short fibers. Such spun yarn may be used as a bundle of thermoplastic synthetic fibers to obtain a braid or plied yarn. A textured yarn made of continuous fibers may also be used. As the processed yarn, air entangled yarn, false twisted yarn, BCF (Bulked Continuou)
s Filament).

造形材料を構成する複数の繊維として、全て連続繊維を選択した場合でも、繊度の異なる連続繊維を混繊させてもよい。また、繊度の異なる連続繊維を用いる場合、繊度の大きいフィラメントの周囲をマルチフィラメントで編組した複合糸や、繊度の大きいフィラメントの周囲をマルチフィラメントで巻き付けた複合糸を、本発明の連続した糸状の造形材料の一形態とすることもできる。繊度の大きいフィラメントとしては、モノフィラメント糸を用いることもできる。例えば、モノフィラメント糸を、造形材料の中心部に配置させることにより中心部の密度が均一になる。また、造形材料の中心部に、低融点の熱接着成分を繊維表面に有するモノフィラメント糸を配置すると、熱処理を施すことにより、周囲に配した繊維と熱接着して良好に一体化して集束するため好ましい。 Even when all the continuous fibers are selected as the plurality of fibers constituting the molding material, continuous fibers having different fineness may be mixed. When using continuous fibers having different fineness, a composite yarn in which a filament having a large fineness is braided with a multifilament, or a composite yarn in which a filament having a large fineness is wound with a multifilament is formed into a continuous filamentous shape It can also be a form of the molding material. Monofilament yarn may be used as the filament having a high fineness. For example, by disposing the monofilament yarn in the center of the molding material, the density of the center becomes uniform. Further, when a monofilament yarn having a low-melting point heat-adhesive component on the fiber surface is arranged in the center of the molding material, heat treatment is performed so that the monofilament yarn is heat-bonded to the fibers arranged in the periphery to be well integrated and bundled preferable.

熱可塑性合成繊維の単繊維繊度は、集束する際の糸本数や造形材料の直径、集束した際の密度、耐久性を考慮して適宜設計すればよい。例えば、単繊維繊度が大きい場合は摩擦などへの耐久性が高いが、繊維間の隙間が大きくなり造形時にボイドが生じる可能性がある。また単繊維の断面形状についても取扱い性や集束した際の密度などを考慮して適宜設計すればよい。例えば丸形、楕円形、多角形(三角、四角など)、多葉形(十字形、星形など)などが挙げられ、また断面形状の異なる繊維を組み合わせて使用してもよい。 The single fiber fineness of the thermoplastic synthetic fiber may be appropriately designed in consideration of the number of yarns at the time of bundling, the diameter of the molding material, the density at the time of bundling, and the durability. For example, when the monofilament fineness is large, the durability against friction and the like is high, but the gap between fibers becomes large, and voids may occur during modeling. Also, the cross-sectional shape of the single fiber may be appropriately designed in consideration of handleability and density when bundled. Examples thereof include round shape, elliptical shape, polygonal shape (triangular shape, square shape, etc.), multilobal shape (cross shape, star shape, etc.), and fibers having different cross-sectional shapes may be used in combination.

本発明によれば、柔軟であり取扱い性が良好な熱溶解積層法3Dプリンター用の造形材料を用いた造形方法を提供することができる。
According to the present invention, it is possible to provide a modeling method using a modeling material for a hot melt laminating 3D printer which is flexible and has good handleability.

次に本発明について、実施例によって具体的に説明する。
繊維の物性についてはJIS−L−1013に準じて試験を行った。取扱い性については内径100mmのボビンに1kgを巻き取り評価とした。また3Dプリンターの評価試験についてはアビー社製のSCOOVO C170を用いて、造形温度230℃、積層ピッチ0.1mm、密度100%で1辺が3cmの立方体を作製してその外観を確認した。
Next, the present invention will be specifically described with reference to examples.
The physical properties of the fiber were tested according to JIS-L-1013. For handling, 1 kg was wound on a bobbin having an inner diameter of 100 mm for evaluation. Further, for the evaluation test of the 3D printer, using SCOOVO C170 manufactured by Abbey Co., a cube having a molding temperature of 230° C., a stacking pitch of 0.1 mm, a density of 100% and a side of 3 cm was prepared, and its appearance was confirmed.

実施例1
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いてエクストルダー型紡糸機にて溶融紡糸し延伸して、強度が4.0cN/dtex、伸度が30%の1900dtex/210fのポリ乳酸繊維からなるマルチフィラメントを得た。該ポリ乳酸繊維からなるマルチフィラメントを16本丸打ち製紐機にて製紐し、その後100℃2分で熱セットを行い、実施例1の造形材料を得た。
Example 1
A polylactic acid chip (Nature Works (6201D): D content 1.4%) is melt-spun and stretched by an extruder type spinning machine to have a strength of 4.0 cN/dtex and an elongation of 30%. 1900 dtex/210f of polylactic acid fiber was obtained. Sixteen multifilaments made of the polylactic acid fiber were stringed by a round punching string machine, and then heat set at 100° C. for 2 minutes to obtain a molding material of Example 1.

実施例2
ポリ乳酸チップ(ネイチャーワークス製(6400D):D体含有量1.9%)を用いてエクストルダー型紡糸機にて溶融紡糸し延伸して、強度が5.6cN/dtex、伸度が27%の1900dtex/210fのポリ乳酸繊維からなるマルチフィラメントを得た。該ポリ乳酸繊維からなるマルチフィラメントを16本丸打ち製紐機にて製紐し、その後100℃2分で熱セットを行い、実施例2の造形材料を得た。
Example 2
A polylactic acid chip (Nature Works (6400D): D-form content: 1.9%) is melt-spun and stretched by an extruder type spinning machine to have a strength of 5.6 cN/dtex and an elongation of 27%. 1900 dtex/210f of polylactic acid fiber was obtained. 16 multifilaments made of the polylactic acid fiber were formed by a round punching string making machine, and then heat set at 100° C. for 2 minutes to obtain a modeling material of Example 2.

実施例3
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いてエクストルダー型紡糸機にて溶融紡糸し延伸して、強度が4.0cN/dtex、伸度が30%の1900dtex/210fのポリ乳酸繊維からなるマルチフィラメントを得た。該ポリ乳酸繊維からなるマルチフィラメントをリング撚糸機にてS撚り120回/mで2本合撚し、次いで該撚糸を同様にZ撚り100回/mで8本合撚し、その後100℃2分で熱セットを行い、実施例3の造形材料を得た。
Example 3
A polylactic acid chip (Nature Works (6201D): D content 1.4%) is melt-spun and stretched by an extruder type spinning machine to have a strength of 4.0 cN/dtex and an elongation of 30%. 1900 dtex/210f of polylactic acid fiber was obtained. Two multifilaments composed of the polylactic acid fiber are plied with a ring twisting machine at an S twist of 120 twists/m, and then the twisted yarn is similarly twisted with a Z twist of 100 twists/m, and then at 100° C. 2 Heat setting was performed for minutes to obtain the modeling material of Example 3.

実施例4
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いてエクストルダー型紡糸機にて溶融紡糸し延伸して、強度が4.0cN/dtex、伸度が30%、乾熱収縮が15%の800dtex/96fのポリ乳酸繊維からなるマルチフィラメント(A)を得た。次いで複合紡糸機を用いて芯にポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%、融点170℃)、鞘にポリ乳酸チップ(ネイチャーワークス製(6302D):D体含有量9.9%、融点130℃)を芯鞘比率1:1で溶融紡糸し延伸して、強度が3.0cN/dtex、伸度が35%の900dtex/96fのポリ乳酸バインダー繊維からなるマルチフィラメント(B)を得た。ポリ乳酸繊維からなるマルチフィラメント(A)とポリ乳酸バインダー繊維からなるマルチフィラメント(B)をリング撚糸機にてS撚り120回/mで2本合撚し16本丸打ち製紐機にて製紐し、その後、140℃2分で熱セットを行い、実施例4の造形材料を得た。
Example 4
A polylactic acid chip (Nature Works (6201D): D content 1.4%) is melt-spun and stretched by an extruder type spinning machine to have a strength of 4.0 cN/dtex and an elongation of 30%. A multifilament (A) made of 800 dtex/96f polylactic acid fiber having a dry heat shrinkage of 15% was obtained. Then, using a composite spinning machine, polylactic acid chips (made by Nature Works (6201D): D content 1.4%, melting point 170°C) are used for the core, and polylactic acid chips (made by Nature Works (6302D): D content are used for the sheath. 9.9%, melting point 130°C) is melt-spun at a core-sheath ratio of 1:1 and stretched to form a multi-fiber made of 900 dtex/96f polylactic acid binder fiber having a strength of 3.0 cN/dtex and an elongation of 35%. A filament (B) was obtained. A multifilament (A) made of polylactic acid fiber and a multifilament (B) made of polylactic acid binder fiber are S twisted 120 times/m by a ring twisting machine, and two twisted yarns are twisted at a rate of 16 times Then, heat setting was performed at 140° C. for 2 minutes to obtain the modeling material of Example 4.

比較例
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いてエクストルダー型紡糸機にて溶融紡糸し延伸して、強度が3.5cN/dtex、伸度が28%の30000dtex(直径約1.75mm)のポリ乳酸モノフィラメントを得た
実施例1〜4および比較例の評価結果を表1に示す。本発明の造形方法によれば、熱溶解積層法3Dプリンターに適用して良好な三次元立体成型物が得られるとともに、本発明における造形材料は、比較例のモノフィラメントに比べて、柔軟で、取扱い性が良好であることが確認できた。
Comparative Example Polylactic acid chips (Nature Works (6201D): D-form content 1.4%) were melt-spun and stretched by an extruder type spinning machine to obtain a strength of 3.5 cN/dtex and an elongation of 28% of polylactic acid monofilament having 30,000 dtex (diameter: about 1.75 mm) was obtained .
Table 1 shows the evaluation results of Examples 1 to 4 and Comparative Example. According to the modeling method of the present invention, a good three-dimensional three-dimensional molded product can be obtained by applying it to a hot melt laminating 3D printer, and the modeling material of the present invention is more flexible and easier to handle than the monofilament of Comparative Example. It was confirmed that the property was good.

実施例5
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いて、エクストルダー型紡糸機にて溶融紡糸し延伸し、560dtex/96フィラメントのポリ乳酸繊維からなる無色のマルチフィラメントを得た。
得られたマルチフィラメント5本を引き揃えた繊維束を、さらに7本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で撚りをかけて集束させた。集束させた撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例5の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 5
Using a polylactic acid chip (Nature Works (6201D): D-form content 1.4%), melt spinning and stretching with an extruder type spinning machine, a colorless multi-fiber made of polylactic acid fiber of 560 dtex/96 filaments. A filament was obtained.
Seven fiber bundles obtained by aligning the obtained five multifilaments were further bundled, and were twisted at an S twist of 150 times/m (S-150) using a ring twisting machine to be bundled. The bundled twisted yarn was heat-treated at 165° C. for 1 minute to obtain a modeling material of Example 5 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.

実施例6
実施例5で用いたマルチフィラメント5本を引き揃えた繊維束を、リング撚糸機を用いてZ撚り60回/m(Z−60)で下撚りをかけて撚糸とし、得られた撚糸(Z−60)を7本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例6の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 6
The fiber bundle prepared by aligning the five multifilaments used in Example 5 was Z-twisted at 60 times/m (Z-60) using a ring twisting machine to obtain a twisted yarn, and the obtained twisted yarn (Z -60) were bundled into seven and twisted by S twist 150 times/m (S-150) using a ring twisting machine to obtain plied yarns. The obtained plied yarn was heat-treated at 165° C. for 1 minute to obtain a modeling material of Example 6 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.

実施例7
実施例6において、下撚り回数をZ撚り180回/m(Z−180)としたこと以外は、実施例6と同様にして、線径1.75mmの実施例7の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 7
A molding material of Example 7 having a wire diameter of 1.75 mm was obtained in the same manner as in Example 6 except that the number of times of lower twisting was changed to Z twisting 180 times/m (Z-180). In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.

実施例8
実施例6において、下撚り回数をZ撚り300回/m(Z−300)としたこと以外は、実施例6と同様にして、線径1.75mmの実施例8の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 8
A molding material of Example 8 having a wire diameter of 1.75 mm was obtained in the same manner as in Example 6 except that the number of times of initial twisting was Z twisting 300 times/m (Z-300). In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.

実施例9
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いて、エクストルダー型紡糸機にて溶融紡糸し延伸し、得られたフィラメントに機械捲縮を付与した後にカットして、単糸繊度1.7dtex、繊維長51mmのポリ乳酸からなる無色のステープルファイバーを得た。このステープルファイバーを用いた紡績し20番手の紡績糸を得た。
得られた紡績糸8本をリング撚糸機を用いてZ撚り60回/m(Z−60)で下撚りをかけて撚糸とし、得られた撚糸(Z−60)を8本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例9の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 9
Polylactic acid chips (Nature Works (6201D): D content 1.4%) are melt-spun and stretched by an extruder type spinning machine, and the resulting filaments are mechanically crimped and then cut. Thus, a colorless staple fiber made of polylactic acid having a single yarn fineness of 1.7 dtex and a fiber length of 51 mm was obtained. Spinning using this staple fiber gave a spun yarn of 20 count.
8 spun yarns obtained were subjected to undertwisting at Z twist 60 times/m (Z-60) by using a ring twisting machine to obtain twisted yarns, and 8 obtained twisted yarns (Z-60) were bundled to form a ring. Using a twisting machine, ply-twisting was carried out at an S twist of 150 times/m (S-150) to obtain plied yarns. The obtained plied yarn was heat-treated at 165° C. for 1 minute to obtain a modeling material of Example 9 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.

実施例10
実施例9で用いた紡績糸10本をリング撚糸機によりZ撚り60回/m(Z−60)で下撚りをかけて紡績糸の撚糸とした。
一方、実施例5で用いたマルチフィラマント4本をリング撚糸機によりZ撚り60回/m(Z−60)で下撚りをかけてマルチフィラメントの撚糸とした。
紡績糸の撚糸4本とマルチフィラメントの撚糸3本を束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例10の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 10
Ten spun yarns used in Example 9 were subjected to undertwisting at a Z twist of 60 times/m (Z-60) by a ring twisting machine to obtain twisted spun yarns.
On the other hand, four multifilamants used in Example 5 were subjected to undertwisting at a Z twist of 60 times/m (Z-60) by a ring twisting machine to obtain a multifilament twisted yarn.
Four twisted yarns of spun yarn and three twisted yarns of multifilament were bundled and subjected to upper twisting at S twist 150 times/m (S-150) using a ring twisting machine to obtain various twisted yarns. The obtained plied yarn was heat-treated at 165° C. for 1 minute to obtain a modeling material of Example 10 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.

実施例11
実施例9で用いた紡績糸2本と実施例5で用いたマルチフィラメント3本を束ねて、リング撚糸機によりZ撚り60回/m(Z−60)で下撚りをかけ、得られた撚糸(Z−60)を7本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例11の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 11
Two spun yarns obtained by bundling two spun yarns used in Example 9 and three multifilaments used in Example 5 and subjecting them to Z-twisting 60 times/m (Z-60) by a ring twisting machine were obtained. Seven (Z-60) were bundled and plied with S twist 150 times/m (S-150) using a ring twisting machine to obtain plied yarns. The obtained plied yarn was heat-treated at 165° C. for 1 minute to obtain a modeling material of Example 11 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.

実施例12
実施例5で用いたマルチフィラメント5本をエアジェットノズルに導通し、8MPaの圧縮空気によりフィラメント間を交絡させてエアー交絡糸を得た。得られたエアー交絡糸を6本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で撚りをかけて集束させた。集束させた撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例12の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 12
Five multifilaments used in Example 5 were conducted to an air jet nozzle, and the filaments were entangled with compressed air of 8 MPa to obtain an air entangled yarn. Six of the obtained air entangled yarns were bundled and twisted at a S twist of 150 times/m (S-150) using a ring twisting machine to be bundled. The bundled twisted yarn was heat-treated at 165° C. for 1 minute to obtain a modeling material of Example 12 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.

実施例13
芯鞘複合繊維が得られるエクストルーダー型紡糸機を用いて、芯にポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4% 融点170℃)、鞘にポリ乳酸チップ(ネイチャーワークス製(6302D):D体含有量9.9% 融点130℃)を配して溶融紡糸し延伸し、560dtex/96フィラメントの2種のポリ乳酸からなり無色の芯鞘複合マルチフィラメント(芯鞘質量比が芯/鞘=3/1)を得た。
得られたマルチフィラメント5本を引き揃えた繊維束を、リング撚糸機を用いてZ撚り60回/m(Z−60)で下撚りをかけて撚糸とし、得られた撚糸(Z−60)を7本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、150℃×1分の熱処理を行い、線径1.75mmの実施例13の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理による熱接着によって溶融固着していた。
Example 13
Using an extruder type spinning machine capable of obtaining a core-sheath composite fiber, polylactic acid chips (made by Nature Works (6201D): D content 1.4%, melting point 170°C) are used for the core, and polylactic acid chips (Nature Works) for the sheath. (6302D): D-form content 9.9%, melting point 130° C., melt-spun, stretched, and composed of two polylactic acids of 560 dtex/96 filaments, colorless core-sheath composite multifilament (core-sheath mass) A ratio of core/sheath=3/1) was obtained.
The obtained fiber bundle in which five multifilaments are aligned is Z-twisted at 60 times/m (Z-60) using a ring twisting machine to form a twisted yarn to obtain a twisted yarn (Z-60). 7 were bundled and plied with S twisting 150 times/m (S-150) using a ring twisting machine to obtain plied yarns. The obtained plied yarn was heat-treated at 150° C. for 1 minute to obtain a modeling material of Example 13 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were melted and fixed to each other by thermal bonding by heat treatment.

実施例14
実施例5で用いたマルチフィラメント2本と実施例13で用いた芯鞘複合マルチフィラメント3本とを束ねて、リング撚糸機によりZ撚り60回/m(Z−60)で下撚りをかけ、得られた撚糸(Z−60)を7本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、150℃×1分の熱処理を行い、線径1.75mmの実施例14の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理によって熱接着して部分的に溶融固着していた。
Example 14
Two multifilaments used in Example 5 and three core-sheath composite multifilaments used in Example 13 were bundled and subjected to Z-twisting 60 times/m (Z-60) by a ring twisting machine, Seven twisted yarns (Z-60) thus obtained were bundled and subjected to upper twisting with S twisting 150 times/m (S-150) using a ring twisting machine to obtain plied yarns. The obtained plied yarn was heat-treated at 150° C. for 1 minute to obtain a modeling material of Example 14 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were heat-bonded to each other by heat treatment and partially melted and fixed.

実施例15
芯鞘複合繊維が得られるエクストルーダー型紡糸機を用いて、芯にポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4% 融点170℃)、鞘にポリ乳酸チップ(ネイチャーワークス製(6302D):D体含有量9.9% 融点130℃)を配して溶融紡糸し延伸し、得られた芯鞘複合型フィラメントに機械捲縮を付与した後にカットして、単糸繊度2.2dtex、繊維長51mmの2種のポリ乳酸からなる無色の芯鞘複合ステープルファイバー(芯鞘質量比が芯/鞘=1/1)を得た。この芯鞘複合ステープルファイバーを用いて紡績し10番手の紡績糸を得た。
得られた紡績糸4本を引き揃えた繊維束を、リング撚糸機を用いてZ撚り60回/m(Z−60)で下撚りをかけて撚糸とし、得られた撚糸(Z−60)を8本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、150℃×1分の熱処理を行い、線径1.75mmの実施例15の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理による熱接着によって溶融固着していた。
Example 15
Using an extruder type spinning machine capable of producing a core-sheath composite fiber, a polylactic acid chip (made by Nature Works (6201D): D content 1.4%, melting point 170° C.) is used for the core, and a polylactic acid chip (Nature Works) is used for the sheath. (6302D): D-body content 9.9%, melting point 130° C.), melt-spun and stretched, and the resulting core-sheath composite filament is mechanically crimped and then cut to obtain a single yarn fineness. A colorless core-sheath composite staple fiber (core-sheath mass ratio of core/sheath=1/1) made of two kinds of polylactic acid having 2.2 dtex and a fiber length of 51 mm was obtained. This core-sheath composite staple fiber was spun to obtain a spun yarn of 10th count.
The obtained fiber bundle in which four spun yarns are aligned is subjected to undertwisting at a Z twist of 60 times/m (Z-60) using a ring twisting machine to obtain a twisted yarn, and the obtained twisted yarn (Z-60) 8 were bundled and subjected to upper twisting with S twisting 150 times/m (S-150) using a ring twisting machine to obtain plied yarns. The obtained plied yarn was heat-treated at 150° C. for 1 minute to obtain a modeling material of Example 15 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were melted and fixed to each other by thermal bonding by heat treatment.

実施例16
実施例15で用いた芯鞘複合ステープルファイバーからなる紡績糸2本と、実施例5で得られたマルチフィラメント2本とを束ねて、リング撚糸機を用いてZ撚り60回/m(Z−60)で下撚りをかけて撚糸とし、得られた撚糸(Z−60)を8本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、150℃×1分の熱処理を行い、線径1.75mmの実施例16の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理によって熱接着して部分的に溶融固着していた。
Example 16
Two spun yarns consisting of the core-sheath composite staple fibers used in Example 15 and two multifilaments obtained in Example 5 were bundled and Z twist 60 times/m (Z- 60) is twisted to make a twisted yarn, 8 of the obtained twisted yarns (Z-60) are bundled, and an S twist of 150 times/m (S-150) is applied using a ring twisting machine. It was twisted. The obtained plied yarn was heat-treated at 150° C. for 1 minute to obtain a modeling material of Example 16 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were heat-bonded to each other by heat treatment and partially melted and fixed.

実施例17
16本丸打ち製紐機を用いて、実施例5で用いたマルチフィラメント20本を引き揃えた繊維束を芯糸に配し、側糸として該マルチフィラメントを1本ずつ配して製紐により組紐を得た。得られた組紐に、165℃×1分の熱処理を行い、線径1.75mmの実施例17の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 17
Using a 16 round striking cord making machine, a fiber bundle in which 20 multifilaments used in Example 5 are aligned and arranged on a core yarn, and the multifilaments are arranged one by one as side yarns, a braid is formed by a cord. Got The obtained braid was heat-treated at 165° C. for 1 minute to obtain a modeling material of Example 17 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.

実施例18
8本丸打ち製紐機を用いて、実施例5で用いたマルチフィラメント20本を引き揃えた繊維束を芯糸に配し、側糸として該マルチフィラメント2本引き揃えた繊維束をそれぞれ配して製紐により組紐を得た。得られた組紐に、165℃×1分の熱処理を行い、線径1.75mmの実施例18の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 18
Using the eight-round striking machine, the fiber bundle in which 20 multifilaments used in Example 5 are aligned is arranged on the core yarn, and the fiber bundles in which 2 multifilaments are aligned are arranged as side yarns. A braid was obtained from the braid. The obtained braid was heat-treated at 165° C. for 1 minute to obtain a modeling material of Example 18 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.

実施例19
実施例17において、芯糸として、下記の諸撚糸を用いたこと以外は、実施例17と同様にして実施例19の造形材料を得た。なお、得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
諸撚糸であるが、実施例5で用いたマルチフィラメント3本を束ねて、リング撚糸機を用いてZ撚り200回/m(Z−200)で下撚りをかけて撚糸とし、得られた撚糸(Z−200)を6本束ねて、リング撚糸機を用いてS撚り120回/m(S−120)で上撚りをかけて諸撚糸とした。得られた諸撚糸を芯糸として用いた。
Example 19
A molding material of Example 19 was obtained in the same manner as in Example 17, except that the following plied yarn was used as the core yarn. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.
Although it is a plied yarn, three multifilaments used in Example 5 are bundled and subjected to undertwisting at a Z twist of 200 times/m (Z-200) using a ring twisting machine to obtain a twisted yarn, which is obtained. Six (Z-200) were bundled and subjected to S twisting 120 times/m (S-120) using a ring twisting machine to obtain plied yarns. The obtained plied yarn was used as a core yarn.

実施例20
実施例17において、芯糸として、下記のモノフィラメント糸を用いたこと以外は、実施例17と同様にして実施例20の造形材料を得た。なお、得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
モノフィラメント糸であるが、ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いて、エクストルダー型紡糸機にて溶融紡糸し延伸し、13000dtex/1フィラメントのポリ乳酸からなるモノフィラメント糸を得た。
Example 20
A molding material of Example 20 was obtained in the same manner as in Example 17, except that the following monofilament yarn was used as the core yarn. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.
Although it is a monofilament yarn, it is melt-spun and stretched with an extruder type spinning machine using polylactic acid chips (Nature Works (6201D): D-form content 1.4%) to obtain 13,000 dtex/1 filament polylactic acid. A monofilament yarn consisting of

実施例21
実施例17において、芯糸として、下記の芯鞘複合モノフィラメント糸を用いたこと以外は、実施例17と同様にして実施例21の造形材料を得た。なお、得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
芯鞘複合モノフィラメント糸であるが、芯鞘複合繊維が得られるエクストルーダー型紡糸機を用いて、芯にポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4% 融点170℃)、鞘にポリ乳酸チップ(ネイチャーワークス製(6302D):D体含有量9.9% 融点130℃)を配して溶融紡糸し延伸し、13000dtex/1フィラメントの2種のポリ乳酸からなる芯鞘複合モノフィラメント糸を得た。
Example 21
A molding material of Example 21 was obtained in the same manner as in Example 17, except that the following core-sheath composite monofilament yarn was used as the core yarn. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.
Although it is a core-sheath composite monofilament yarn, a polylactic acid chip (made by Nature Works (6201D): D-body content 1.4%, melting point 170° C.) is used for the core by using an extruder type spinning machine capable of obtaining the core-sheath composite fiber. , A core sheath consisting of two kinds of polylactic acid of 13000 dtex/1 filament, in which a polylactic acid chip (Nature Works (6302D): D-body content 9.9%, melting point 130° C.) is placed in the sheath, melt-spun and stretched. A composite monofilament yarn was obtained.

実施例22
16本丸打ち製紐機を用いて、実施例9で用いた紡績糸18本を引き揃えた繊維束を芯糸に配し、側糸として該紡績糸を1本ずつ配して製紐により組紐を得た。得られた組紐に、165℃×1分の熱処理を行い、線径1.75mmの実施例22の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮により固化していた。
Example 22
Using a 16 round striking cord making machine, a fiber bundle in which 18 spun yarns used in Example 9 are aligned and arranged on a core yarn, and the spun yarns are arranged one by one as side yarns and braided by a cord. Got The obtained braid was heat-treated at 165° C. for 1 minute to obtain a modeling material of Example 22 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during heat treatment.

実施例23
16本丸打ち製紐機を用いて、下記のエアー交絡糸を16本引き揃えた繊維束を芯糸に配し、側糸として下記のエアー交絡糸を1本ずつ配して製紐により組紐を得た。得られた組紐に、165℃×1分の熱処理を行い、線径1.75mmの実施例23の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
エアー交絡糸であるが、実施例5で用いたマルチフィラメント1本をエアジェットノズルに導通し、8MPaの圧縮空気によりフィラメント間を交絡させてエアー交絡糸を得た。
Example 23
Using a 16 round punching machine, arrange a fiber bundle in which 16 of the following air entangled yarns are aligned and arrange the core yarns, and arrange each of the following air entangled yarns as side yarns to form a braid with a cord. Obtained. The braid obtained was heat-treated at 165° C. for 1 minute to obtain a modeling material of Example 23 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were solidified by softening and shrinking during the heat treatment.
Regarding the air entangled yarn, one multifilament used in Example 5 was conducted to an air jet nozzle, and the filaments were entangled with compressed air of 8 MPa to obtain an air entangled yarn.

実施例24
実施例17において、マルチフィラメントに替えて、実施例13で用いた芯鞘複合マルチフィラメントを用いたこと、得られた組紐に熱処理する際の熱処理温度を150℃としたこと以外は、実施例17と同様にして、実施例24の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理により熱接着して溶融固着していた。
Example 24
Example 17 except that the core-sheath composite multifilament used in Example 13 was used in place of the multifilament in Example 17 and the heat treatment temperature when heat-treating the obtained braid was 150°C. A molding material of Example 24 was obtained in the same manner as in. In the obtained molding material, the constituent fibers were heat-bonded and melt-fixed by the heat treatment.

実施例25
16本丸打ち製紐機を用いて、実施例15で用いた紡績糸18本を引き揃えた繊維束を芯糸に配し、側糸として該紡績糸を1本ずつ配して製紐により組紐を得た。得られた組紐に、150℃×1分の熱処理を行い、線径1.75mmの実施例25の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理により熱接着して溶融固着していた。
Example 25
Using a 16 round striking cord making machine, a fiber bundle in which 18 spun yarns used in Example 15 are aligned is arranged on a core yarn, and the spun yarns are arranged as side yarns one by one and braided by a cord. Got The obtained braid was heat-treated at 150° C. for 1 minute to obtain a modeling material of Example 25 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were heat-bonded and melt-fixed by the heat treatment.

実施例26
8本丸打ち製紐機を用いて、実施例5で用いたマルチフィラメント20本を引き揃えた繊維束を芯糸に配し、側糸として実施例15で用いた紡績糸2本引き揃えた繊維束をそれぞれ配して製紐により組紐を得た。得られた組紐に、150℃×1分の熱処理を行い、線径1.75mmの実施例26の造形材料を得た。得られた造形材料は、その表面は、構成繊維同士が熱接着して溶融固着していた。
Example 26
A fiber bundle obtained by aligning 20 multifilaments used in Example 5 was arranged on a core yarn using an eight-round string making machine, and two spun yarns used in Example 15 were aligned as side yarns. Each bundle was arranged and a braid was obtained by braiding. The obtained braid was heat-treated at 150° C. for 1 minute to obtain a modeling material of Example 26 having a wire diameter of 1.75 mm. On the surface of the obtained molding material, the constituent fibers were heat-bonded and melted and fixed.

実施例27
8本丸打ち製紐機を用いて、実施例15で用いた紡績糸18本を引き揃えた繊維束を芯糸に配し、側糸として実施例5で用いたマルチフィラメント2本引き揃えた繊維束をそれぞれ配して製紐により組紐を得た。得られた組紐に、150℃×1分の熱処理を行い、線径1.75mmの実施例27の造形材料を得た。得られた造形材料は、構成繊維が熱処理による熱収縮および溶融軟化によって固化していた。
Example 27
A fiber bundle obtained by aligning 18 spun yarns used in Example 15 was arranged on a core yarn using an 8-round string making machine, and two multifilaments used in Example 5 were aligned as side yarns. Each bundle was arranged and a braid was obtained by braiding. The obtained braid was heat-treated at 150° C. for 1 minute to obtain a modeling material of Example 27 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by heat shrinkage and melt softening due to heat treatment.

実施例28
8本丸打ち製紐機を用いて、実施例5で用いたマルチフィラメント10本と実施例15で用いた紡績糸9本を引き揃えた繊維束を芯糸に配し、側糸として該マルチフィラメント1本と該紡績糸1本とを引き揃えた繊維束をそれぞれ配して製紐により組紐を得た。得られた組紐に、150℃×1分の熱処理を行い、線径1.75mmの実施例28の造形材料を得た。得られた造形材料は、構成繊維同士が部分的に熱接着により溶融固着していた。
Example 28
A multi-filament was arranged as a side yarn by placing a fiber bundle in which 10 multifilaments used in Example 5 and 9 spun yarns used in Example 15 were aligned on a core yarn using an eight-round stringing machine. A fiber bundle obtained by aligning one of the spun yarns and one of the spun yarns was arranged to obtain a braid by braiding. The braid thus obtained was heat-treated at 150° C. for 1 minute to obtain a modeling material of Example 28 having a wire diameter of 1.75 mm. In the obtained molding material, the constituent fibers were partially melt-bonded by thermal bonding.

実施例5〜28で得られた造形材料を用いて巻き取り評価(ボビン巻き取り性)と、3Dプリンターの評価試験(3Dプリンター出力)を行ったところ、いずれの材料においても、巻き取り評価においては、柔軟で綺麗に巻き取ることが可能であり、3Dプリンター出力においては、綺麗に出力でき光沢感のある造形物が得られた。また、3Dプリンター内に造形材料を送り込む動作においても、送り込み装置において問題なく良好に送り動作がなされていた。

Winding evaluation (bobbin winding property) and 3D printer evaluation test (3D printer output) were carried out using the molding materials obtained in Examples 5 to 28. Is flexible and can be rolled up neatly, and a 3D printer output can be neatly output and a molded article with a glossy feeling can be obtained. Further, also in the operation of feeding the molding material into the 3D printer, the feeding operation was performed favorably without any problem in the feeding device.

Claims (6)

下記の形態の造形材料を、熱溶解積層法3Dプリンターに供給して、造形ヘッドにて、造形材料を構成する複数本の熱可塑性合成繊維を構成する熱可塑性樹脂を加熱により溶融させ、ノズルから射出・積層して所望の形状の三次元造形物を作成することを特徴とする造形方法であり、The molding material of the following form is supplied to the hot melt laminating method 3D printer, and the molding head melts the thermoplastic resin constituting the plurality of thermoplastic synthetic fibers constituting the molding material by heating, and from the nozzle. It is a molding method characterized by creating a three-dimensional molded object of a desired shape by injecting and laminating.
造形材料の形態が、複数本の熱可塑性合成繊維が集束されて1本の連続した糸状の形態を呈しており、造形材料を構成する複数本の熱可塑性合成繊維は、熱溶解積層法3Dプリンターにおける造形ヘッドにて溶融するものであることを特徴とする造形方法。The shape of the molding material is one continuous thread-like shape in which a plurality of thermoplastic synthetic fibers are bundled, and the plurality of thermoplastic synthetic fibers constituting the molding material is a hot melt laminating 3D printer. A method for modeling, characterized in that it is melted by a modeling head in 1.
熱可塑性合成繊維を構成する熱可塑性樹脂の融点が180℃以下であることを特徴とする
請求項1記載の造形方法
The molding method according to claim 1, wherein the melting point of the thermoplastic resin that constitutes the thermoplastic synthetic fiber is 180° C. or lower.
複数本からなる熱可塑性合成繊維の束を2本以上製紐することにより集束させて1本の連
続した糸状の形態を呈していることを特徴とする請求項1または2記載の造形方法
The molding method according to claim 1 or 2, wherein a bundle of a plurality of thermoplastic synthetic fibers is made into a string by concatenating by bundling two or more strings to form one continuous thread-like form.
複数本からなる熱可塑性合成繊維の束を2束以上撚り合わせることにより集束させて1本
の連続した糸状の形態を呈していることを特徴とする請求項1〜3のいずれか1項記載の
造形方法
The thermoplastic synthetic fiber bundle consisting of a plurality of strands is twisted in two or more bundles to be bundled to form a single continuous thread-like form. Modeling method .
複数本の熱可塑性合成繊維の束は、撚りを有することを特徴とする請求項1〜4のいずれ
か1項記載の造形方法
The molding method according to any one of claims 1 to 4, wherein a bundle of a plurality of thermoplastic synthetic fibers has a twist.
熱可塑性合成繊維同士が熱融着により集束していることを特徴とする請求項1〜5のいず
れか1項記載の造形方法
The molding method according to claim 1, wherein the thermoplastic synthetic fibers are bundled by heat fusion.
JP2016022749A 2015-02-10 2016-02-09 Molding material Active JP6706506B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015024247 2015-02-10
JP2015024247 2015-02-10

Publications (2)

Publication Number Publication Date
JP2016147486A JP2016147486A (en) 2016-08-18
JP6706506B2 true JP6706506B2 (en) 2020-06-10

Family

ID=56688167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016022749A Active JP6706506B2 (en) 2015-02-10 2016-02-09 Molding material

Country Status (1)

Country Link
JP (1) JP6706506B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236117A (en) * 2009-03-31 2010-10-21 Unitika Ltd Luminescent fibrous structural material
JP6037438B2 (en) * 2012-10-26 2016-12-07 ユニチカ株式会社 Manufacturing method of synthetic resin coil
WO2014153535A2 (en) * 2013-03-22 2014-09-25 Gregory Thomas Mark Three dimensional printing
JP2015000827A (en) * 2013-06-14 2015-01-05 ダイワボウホールディングス株式会社 Cement-reinforcing fiber, production method thereof and cement hardened body
EP3086914A2 (en) * 2013-12-26 2016-11-02 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts

Also Published As

Publication number Publication date
JP2016147486A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
KR101576509B1 (en) Fishing line of core-sheath structure containing short fibers
JP5780968B2 (en) Spun yarn and intermediate for fiber reinforced resin, and fiber reinforced resin molded product using the same
US20170028601A1 (en) Method of making a composite preform
WO2016129613A1 (en) Molding material
JP5107454B2 (en) Tapered multifilament yarn
JP7075716B2 (en) How to make overmolded brush pieces
JPH08284035A (en) Composite yarn and parmanently deformable textile material prepared of it,its preparation and its use
JP6706501B2 (en) Molding material
JP3004896B2 (en) Heterofilament composite yarn
WO2018207418A1 (en) Racket string and production method therefor
US20070251206A1 (en) Recyclable chenille yarn
JP6706506B2 (en) Molding material
JP6037438B2 (en) Manufacturing method of synthetic resin coil
JP2008048867A (en) Filament for racket string, racket string using the filament and manufacturing method therefor
TWI270536B (en) Continuous strand mats, methods of producing continuous strand mats, and systems for producing continuous strand mats
RO114988B1 (en) Process for manufacturing textile thread
JP6604583B2 (en) Textile thermoforming method
CA3187836A1 (en) Twisted and heat-set bcf yarn comprising side-by-side bi-component filament, method for forming such yarn and a floor covering material comprising such yarn
JP2017105153A (en) Molding material
JP6675891B2 (en) Modeling method
JP6744627B2 (en) String for gut
JP7104958B2 (en) tie
JP6057634B2 (en) Manufacturing method of synthetic resin coil
KR102389445B1 (en) Thermoforming of textile products
JP7022976B2 (en) Plastic-like mesh and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200518

R150 Certificate of patent or registration of utility model

Ref document number: 6706506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150