JP2016147486A - Molding material - Google Patents

Molding material Download PDF

Info

Publication number
JP2016147486A
JP2016147486A JP2016022749A JP2016022749A JP2016147486A JP 2016147486 A JP2016147486 A JP 2016147486A JP 2016022749 A JP2016022749 A JP 2016022749A JP 2016022749 A JP2016022749 A JP 2016022749A JP 2016147486 A JP2016147486 A JP 2016147486A
Authority
JP
Japan
Prior art keywords
modeling material
yarn
fiber
twisted
yarns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016022749A
Other languages
Japanese (ja)
Other versions
JP6706506B2 (en
Inventor
迫部 唯行
Tadayuki Sakobe
唯行 迫部
雄俊 中谷
Taketoshi Nakatani
雄俊 中谷
こゆ 田代
Koyu Tashiro
こゆ 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Publication of JP2016147486A publication Critical patent/JP2016147486A/en
Application granted granted Critical
Publication of JP6706506B2 publication Critical patent/JP6706506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a molding material having easy handling property for a hot-melt layering 3D printer.SOLUTION: The molding material to be used for a hot-melt layering 3D printer is in a form of a single continuous filament produced by bundling a plurality of thermoplastic synthetic fibers. The molding material is preferably in a form of a single continuous filament produced by braiding and binding two or more bundles each composed of a plurality of thermoplastic synthetic fibers. The molding material is preferably in a form of a single continuous filament produced by twisting and binding two or more bundles each composed of a plurality of thermoplastic synthetic fibers. Otherwise, the molding material preferably comprises thermoplastic synthetic fibers bundled by thermal fusion.SELECTED DRAWING: None

Description

本発明は熱溶解積層法3Dプリンターを用いて三次元造形物を得る際に用いる造形材料に関するものである。   The present invention relates to a modeling material used when a three-dimensional structure is obtained using a hot melt lamination method 3D printer.

コンピュータ上の設計図をもとに三次元のものを作り出す3Dプリンターは、金型や溶融装置を用いなくとも、プラスチック製の部品、治具、製品を容易に作ることができ、企業を中心に急速に普及している。特に、熱可塑性樹脂を造形材料に用いる熱溶解積層方式の3Dプリンターは廉価版も販売され、個人にも普及し始めている。   3D printers that create three-dimensional printers based on computer drawings can easily produce plastic parts, jigs, and products without using molds or melting equipment. It is rapidly spreading. In particular, a low-cost version of a 3D printer using a hot melt lamination method using a thermoplastic resin as a modeling material has been sold and has begun to spread to individuals.

このような熱溶解積層法3Dプリンターに用いる造形材料としては、熱可塑性樹脂を直径数mmで長手方向に連続してなる線状の樹脂成型物(モノフィラメント状物)が使用されている。例えば、特許文献1には、高精度の造形用材料として、平均直径が0・069〜0.074インチ(約1.75〜1.90mm)、長さ20フィート(約6.1m)以上、0.0004インチ(0.01mm)以下の直径の標準偏差を有する造形材料(供給材料)が開示されている。また、このような造形材料を構成する熱可塑性樹脂としては、ABS樹脂、ポリカーボネート、ポリアミド、ポリ乳酸などの熱可塑性樹脂が用いられている。熱溶解積層方式は、材料押出方式ともいう。   As a modeling material used for such a hot melt lamination method 3D printer, a linear resin molded product (monofilament-like product) made of a thermoplastic resin having a diameter of several mm and continuous in the longitudinal direction is used. For example, in Patent Document 1, as a high-precision modeling material, the average diameter is 0.069 to 0.074 inch (about 1.75 to 1.90 mm), the length is 20 feet (about 6.1 m) or more, A build material (feed material) having a standard deviation in diameter of 0.0004 inches (0.01 mm) or less is disclosed. Further, as a thermoplastic resin constituting such a modeling material, a thermoplastic resin such as ABS resin, polycarbonate, polyamide, polylactic acid is used. The hot melt lamination method is also called a material extrusion method.

特表2005−523391Special table 2005-523391

しかし、上記のような連続線状の樹脂成型物(モノフィラメント状物)からなる造形材料は、硬く、取扱い性が良くない。なかでもポリ乳酸からなる造形材料は特に硬く、このような硬い造形材料は、ボビンなどに捲かれている状態から、捲き張力を少し緩めた途端に捲かれた状態が解除されボビンから外れて散らばってバラけた状態となってしまう(このような状態を「クラッシュ発生」とも呼ぶ。)。また、市場にて販売されているポリ乳酸製の造形材料において、結晶化が進んでいないものは、使用中に折れやすいという問題を抱えている。   However, a modeling material made of a continuous linear resin molding (monofilament) as described above is hard and has poor handleability. In particular, the molding material made of polylactic acid is particularly hard, and such a hard modeling material is released from the bobbin when it is released from the bobbin, etc. It will be scattered and scattered (this state is also called "crash occurrence"). Further, among the polylactic acid modeling materials sold in the market, those that have not been crystallized have a problem that they are easily broken during use.

本発明は、この様な現状に鑑みて行われたもので、取扱い性が良好な熱溶解積層法3Dプリンター用の造形材料を提供することを課題とする。   The present invention has been made in view of such a current situation, and an object of the present invention is to provide a modeling material for a hot melt laminating method 3D printer with good handleability.

本発明者らは、上記課題を達成するために鋭意検討した。熱溶解積層法3Dプリンター用の材料の形態としては、いわゆるモノフィラメント状物を用いることが常識であったが、その常識に捉われずに他の形態を適用できるのではないかと検討していたなかで、複数本の合成繊維を集束した紐状物を適用したとところ、柔軟であり、折れることはなく、取扱い性が良好な熱溶解積層法3Dプリンター用造形材料を提供できるということを見出し、本発明に到達した。   The present inventors diligently studied in order to achieve the above problems. As a form of the material for the hot melt lamination method 3D printer, it was common sense to use a so-called monofilament-like material, but while considering that other forms could be applied without being caught by the common sense. When a string-like material in which a plurality of synthetic fibers are bundled is applied, it is found that it is flexible, does not break, and can provide a modeling material for a hot melt lamination method 3D printer with good handleability. The invention has been reached.

本発明は、熱溶解積層法3Dプリンターに用いる造形材料であり、その形態が、複数本の熱可塑性合成繊維が集束されて1本の連続した糸状の形態を呈していることを特徴とする造形材料を要旨とするものである。   The present invention is a modeling material used for a hot melt lamination method 3D printer, and the configuration of the modeling material is characterized in that a plurality of thermoplastic synthetic fibers are converged to form one continuous thread-like configuration. The material is the gist.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、熱溶解積層法3Dプリンターに用いる造形材料とは、熱溶解積層法3Dプリンターに供給して三次元造形物を得る際の材料であって、熱可塑性樹脂によって構成される。この造形材料を使用し、コンピュータ上の設計図に基づき、造形ヘッドにて、造形材料を構成する熱可塑性樹脂を加熱により溶融させ、ノズルから射出・積層して所望の形状の三次元造形物を作成するのである。   In the present invention, the modeling material used for the hot melt laminating method 3D printer is a material for supplying a hot melt laminating method 3D printer to obtain a three-dimensional modeled object, and is composed of a thermoplastic resin. Using this modeling material, based on the design drawing on the computer, with the modeling head, the thermoplastic resin constituting the modeling material is melted by heating, and injected and laminated from the nozzle to obtain a three-dimensional modeled object of the desired shape Create it.

本発明の造形材料は、熱可塑性合成繊維によって構成される。合成繊維を構成する熱可塑性樹脂としては、熱溶解積層法3Dプリンターにおける造形ヘッドの溶融温度で溶融しうるものであれば用いることができ、融点が180℃以下のものがよく、例えば、脂肪族ポリエステル系樹脂、芳香族ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、アクリロニトリル−ブタジエン−スチレン共重合体系樹脂、フッ素樹脂系樹脂が挙げられる。これらの樹脂を混合したものを用いてもよい。なかでも、ポリ乳酸は、反りが発生しにくいため好ましく、D体含有量が低いポリL乳酸は黄色味が帯びにくいため、さらに好ましい。D体含有量を調整することにより、プリンターの温度制御に応じてポリ乳酸の融点を調整することができるが、黄色味を帯びにくくするためには、D体含有量が1.5%未満のものがよい。また、上記した樹脂を用いて合成繊維を製造する方法においても、特に限定するものではないが、結晶性を有する熱可塑性樹脂を用いて繊維を製造する場合は、延伸工程や熱収縮を制御するためのリラックス工程を製造工程中に適用するとよい。   The modeling material of this invention is comprised with a thermoplastic synthetic fiber. As the thermoplastic resin constituting the synthetic fiber, any thermoplastic resin can be used as long as it can be melted at the melting temperature of the modeling head in the hot melt lamination method 3D printer. Examples thereof include polyester resins, aromatic polyester resins, polyamide resins, polyolefin resins, acrylic resins, polycarbonate resins, acrylonitrile-butadiene-styrene copolymer resins, and fluorine resin resins. A mixture of these resins may be used. Among them, polylactic acid is preferable because warpage is unlikely to occur, and poly L-lactic acid having a low D-form content is more preferable because it is difficult to be yellowish. By adjusting the D-form content, the melting point of the polylactic acid can be adjusted according to the temperature control of the printer, but in order to make it less yellowish, the D-form content is less than 1.5%. Things are good. In addition, the method for producing the synthetic fiber using the above-mentioned resin is not particularly limited. However, when the fiber is produced using a crystalline thermoplastic resin, the stretching process and the heat shrinkage are controlled. A relaxation process for applying the process may be applied during the manufacturing process.

本発明の造形材料は、複数本の熱可塑性合成繊維が集束されて1本の連続した糸状の形態を呈している。複数本の合成繊維を集束させる方法としては、撚りをかける方法、製紐する方法、熱処理により熱接着する方法等が挙げられる。より具体的には、複数本の合成繊維に撚りをかけて集束する方法、複数本の合成繊維を引き揃えあるいは撚りをかけた束を2本以上用いて製紐することによって組紐とし集束する方法、複数本の合成繊維を引き揃えたものに熱処理を施すことにより合成繊維を構成する熱可塑性樹脂の一部を溶融または軟化させて繊維同士を熱接着させることにより集束する方法、あるいは、これら(撚り、製紐、熱接着)を組合せた方法が挙げられる。   In the modeling material of the present invention, a plurality of thermoplastic synthetic fibers are bundled to form a single continuous thread form. Examples of the method of bundling a plurality of synthetic fibers include a method of twisting, a method of making a string, a method of heat bonding by heat treatment, and the like. More specifically, a method of twisting and converging a plurality of synthetic fibers, and a method of converging as a braid by using two or more bundles obtained by aligning or twisting a plurality of synthetic fibers , A method of focusing by fusing or softening a part of the thermoplastic resin constituting the synthetic fiber by heat-treating a plurality of synthetic fibers arranged together, or by thermally bonding the fibers together, or these ( A combination of twisting, string making, and thermal bonding).

複数本の合成繊維を引き揃えて撚りをかけて集束する方法においては、片撚りの場合は、端部から解けやすいため、熱処理を施すことにより撚り形態を固定させることが好ましい。熱処理の際に、繊維を構成する熱可塑性樹脂の一部を溶融または軟化する温度で処理を施し、繊維同士を熱接着させて形態を固定させることも好ましい。なお、片撚り以外の撚糸であっても、熱処理によって風合いの調整や、繊維間の集束密度の向上を行うことが可能である。   In the method in which a plurality of synthetic fibers are aligned and twisted and bundled, in the case of single twisting, it is easy to unravel from the end portion, and therefore it is preferable to fix the twisted form by performing heat treatment. In the heat treatment, it is also preferable to perform the treatment at a temperature at which a part of the thermoplastic resin constituting the fiber is melted or softened, and to thermally bond the fibers to fix the form. In addition, even if it is twisted yarn other than a single twist, it is possible to adjust a texture and to improve the focusing density between fibers by heat treatment.

また、片撚りしてなる繊維束2本以上を片撚りの方向とは反対の方向に撚り合わせて集束させ、いわゆる諸撚りを施すことにより、解けにくくすることも好ましい。さらに、諸撚りした後に、熱処理を施し、熱固定あるいは熱接着により形態を固定させることも好ましい。諸撚り前の片撚りしてなる繊維束の撚り方向(下撚りの方向)としては、同一方向に撚られた繊維束を選択するものとし、下撚り回数は、繊度に応じて適宜調整すればよいが50〜1000回/m程度が好ましい。諸撚り(上撚り)の回数は、用いる繊維束の太さや本数に応じて適宜設計するとよい。   It is also preferable that two or more fiber bundles formed by single twisting are twisted in a direction opposite to the direction of single twisting and converged, and so-called various twists are applied to make it difficult to unwind. Furthermore, after twisting, it is also preferable to heat-treat and fix the form by heat fixing or heat bonding. As the twist direction (the direction of the lower twist) of the fiber bundle formed by the single twist before the various twists, the fiber bundle twisted in the same direction is selected, and the number of times of the lower twist is appropriately adjusted according to the fineness. Although it is good, about 50 to 1000 times / m is preferable. The number of twists (top twists) may be appropriately designed according to the thickness and number of fiber bundles used.

繊維束を2本以上用いて製紐することによって集束させる方法においては、平打ち、角打ちおよび丸打ちのいずれを適用してよい。なかでも、現在、熱溶解積層法3Dプリンターへの供給材料として使用されている連続線状物の横断面が円形のものが多く使用されていることから、丸打ちによる組紐がよい。丸打ちの場合、より真円形状とするために、4本打ち以上とすることが好ましく、より好ましくは8本打ち以上であり、さらに好ましくは16本打ちである。また、丸打ち紐の形態として、組紐の長手方向(軸方向)の中心部に芯糸が挿入され、芯糸を中心としてその周囲に側糸として複数本の糸が配されてなる形態の組紐を採用することが好ましい。得られる造形材料の横断面において中心部の密度も密となって、空隙部分が生じにくいためである。   In the method of bundling by using two or more fiber bundles for stringing, either flat punching, square punching or round punching may be applied. In particular, braided braids are preferred because many continuous linear materials having a circular cross section are currently used as feed materials for hot melt lamination method 3D printers. In the case of round punching, in order to obtain a more perfect circle shape, it is preferable to use four or more strikes, more preferably eight or more strikes, and still more preferably 16 strikes. Moreover, as a form of a round string, a braid of a form in which a core thread is inserted into the center part in the longitudinal direction (axial direction) of the braid and a plurality of threads are arranged as side threads around the core thread. Is preferably adopted. This is because, in the cross section of the resulting modeling material, the density of the central portion is also dense, and a void portion is difficult to occur.

組紐についても、上述した撚糸と同様で、熱処理を行うことで風合いの調整や、繊維間の集束密度の向上を行うことも可能である。   The braid is also the same as the above-described twisted yarn, and it is possible to adjust the texture and improve the convergence density between fibers by performing a heat treatment.

集束性を向上させることや集束密度を向上させることを目的として、あるいは、硬さの調整を目的として、集束させる熱可塑性合成繊維として低融点の熱可塑性合成樹脂からなる繊維を混合させ、撚りや製紐により集束させた後に、低融点の熱可塑性合成樹脂が溶融する温度で熱処理を施して、低融点の熱可塑性合成樹脂を熱接着剤として機能させ、構成繊維同士を熱接着させることも好ましい。また、低融点熱可塑性合成繊維を混合させて熱接着させることによって、造形材料の密度が密になり、保形性も向上する。   For the purpose of improving the bundling property, bundling density, or adjusting the hardness, fibers made of a thermoplastic synthetic resin having a low melting point are mixed as a thermoplastic synthetic fiber to be bundled, It is also preferable to heat-bond the constituent fibers together by performing heat treatment at a temperature at which the low-melting thermoplastic synthetic resin melts after being bundled by the string, and making the low-melting thermoplastic synthetic resin function as a thermal adhesive. . Moreover, the density of a modeling material becomes dense by mixing a low melting point thermoplastic synthetic fiber and heat-bonding, and shape retention property also improves.

本発明において、熱可塑性合成繊維の形態は、全て連続繊維を選択してよいが、特定の繊維長を有する短繊維を用いてもよい。短繊維を用いる場合は、短繊維群を紡績した紡績糸や、連続繊維と短繊維との混繊による混合紡績糸の形態としたものを集束してなる連続した糸状の造形材料としてもよい。このような紡績糸を、組紐や諸撚り糸を得るための熱可塑性合成繊維の束として用いてもよい。また、連続繊維からなる加工糸を用いてもよい。加工糸としてはエアー交絡糸、仮撚り糸、BCF(Bulked Continuou
s Filament)が挙げられる。
In the present invention, continuous fibers may be selected as the form of the thermoplastic synthetic fiber, but short fibers having a specific fiber length may be used. When short fibers are used, a continuous yarn-shaped modeling material obtained by converging a spun yarn obtained by spinning a short fiber group or a mixed spun yarn formed by mixing continuous fibers and short fibers may be used. Such spun yarns may be used as a bundle of thermoplastic synthetic fibers for obtaining braids and plied yarns. Moreover, you may use the processed thread | yarn which consists of continuous fibers. Processed yarn includes air entangled yarn, false twisted yarn, BCF (Bulked Continuous)
s Filament).

造形材料を構成する複数の繊維として、全て連続繊維を選択した場合でも、繊度の異なる連続繊維を混繊させてもよい。また、繊度の異なる連続繊維を用いる場合、繊度の大きいフィラメントの周囲をマルチフィラメントで編組した複合糸や、繊度の大きいフィラメントの周囲をマルチフィラメントで巻き付けた複合糸を、本発明の連続した糸状の造形材料の一形態とすることもできる。繊度の大きいフィラメントとしては、モノフィラメント糸を用いることもできる。例えば、モノフィラメント糸を、造形材料の中心部に配置させることにより中心部の密度が均一になる。また、造形材料の中心部に、低融点の熱接着成分を繊維表面に有するモノフィラメント糸を配置すると、熱処理を施すことにより、周囲に配した繊維と熱接着して良好に一体化して集束するため好ましい。   Even when all the continuous fibers are selected as the plurality of fibers constituting the modeling material, continuous fibers having different fineness may be mixed. When continuous fibers having different fineness are used, a composite yarn in which the periphery of a filament with a high fineness is braided with a multifilament or a composite yarn in which a periphery of a filament with a high fineness is wound with a multifilament is used as the continuous yarn-like shape of the present invention. It can also be set as one form of modeling material. Monofilament yarn can also be used as the filament having a high fineness. For example, by arranging the monofilament yarn at the center of the modeling material, the density of the center becomes uniform. In addition, if a monofilament yarn having a low-melting-point thermoadhesive component on the fiber surface is placed in the center of the modeling material, heat treatment is applied to the surrounding fibers so that they can be well integrated and focused preferable.

熱可塑性合成繊維の単繊維繊度は、集束する際の糸本数や造形材料の直径、集束した際の密度、耐久性を考慮して適宜設計すればよい。例えば、単繊維繊度が大きい場合は摩擦などへの耐久性が高いが、繊維間の隙間が大きくなり造形時にボイドが生じる可能性がある。また単繊維の断面形状についても取扱い性や集束した際の密度などを考慮して適宜設計すればよい。例えば丸形、楕円形、多角形(三角、四角など)、多葉形(十字形、星形など)などが挙げられ、また断面形状の異なる繊維を組み合わせて使用してもよい。   The single fiber fineness of the thermoplastic synthetic fiber may be appropriately designed in consideration of the number of yarns at the time of bundling, the diameter of the modeling material, the density at the time of bundling, and durability. For example, when the single fiber fineness is large, the durability against friction and the like is high, but there is a possibility that a gap between fibers becomes large and a void is generated during modeling. In addition, the cross-sectional shape of the single fiber may be appropriately designed in consideration of the handleability and the density when converging. For example, a round shape, an oval shape, a polygonal shape (triangle, square, etc.), a multileaf shape (cross shape, star shape, etc.), etc. may be mentioned, and fibers having different cross-sectional shapes may be used in combination.

本発明によれば、柔軟であり取扱い性が良好な熱溶解積層法3Dプリンター用の造形材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the modeling material for the hot melt lamination method 3D printer which is flexible and has favorable handleability can be provided.

次に本発明について、実施例によって具体的に説明する。
繊維の物性についてはJIS−L−1013に準じて試験を行った。取扱い性については内径100mmのボビンに1kgを巻き取り評価とした。また3Dプリンターの評価試験についてはアビー社製のSCOOVO C170を用いて、造形温度230℃、積層ピッチ0.1mm、密度100%で1辺が3cmの立方体を作製してその外観を確認した。
Next, the present invention will be specifically described with reference to examples.
The physical properties of the fiber were tested according to JIS-L-1013. For handling, 1 kg was wound around a bobbin having an inner diameter of 100 mm for evaluation. As for the evaluation test of the 3D printer, a cube having a modeling temperature of 230 ° C., a stacking pitch of 0.1 mm, a density of 100%, and a side of 3 cm was prepared using an Abbey SCOOVO C170, and the appearance was confirmed.

実施例1
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いてエクストルダー型紡糸機にて溶融紡糸し延伸して、強度が4.0cN/dtex、伸度が30%の1900dtex/210fのポリ乳酸繊維からなるマルチフィラメントを得た。該ポリ乳酸繊維からなるマルチフィラメントを16本丸打ち製紐機にて製紐し、その後100℃2分で熱セットを行い、実施例1の造形材料を得た。
Example 1
A polylactic acid chip (manufactured by Nature Works (6201D): D body content: 1.4%) is melt-spun and stretched by an extruder-type spinning machine, and has a strength of 4.0 cN / dtex and an elongation of 30%. 1900 dtex / 210f of polylactic acid fiber was obtained. The multifilament made of the polylactic acid fiber was stringed by a 16 round punching machine, and then heat-set at 100 ° C. for 2 minutes to obtain the modeling material of Example 1.

実施例2
ポリ乳酸チップ(ネイチャーワークス製(6400D):D体含有量1.9%)を用いてエクストルダー型紡糸機にて溶融紡糸し延伸して、強度が5.6cN/dtex、伸度が27%の1900dtex/210fのポリ乳酸繊維からなるマルチフィラメントを得た。該ポリ乳酸繊維からなるマルチフィラメントを16本丸打ち製紐機にて製紐し、その後100℃2分で熱セットを行い、実施例2の造形材料を得た。
Example 2
A polylactic acid chip (manufactured by Nature Works (6400D): D-form content 1.9%) is melt-spun and stretched by an extruder-type spinning machine, the strength is 5.6 cN / dtex, and the elongation is 27%. 1900 dtex / 210f of polylactic acid fiber was obtained. A multifilament made of the polylactic acid fiber was stringed with a 16 round stringing machine, and then heat-set at 100 ° C. for 2 minutes to obtain a modeling material of Example 2.

実施例3
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いてエクストルダー型紡糸機にて溶融紡糸し延伸して、強度が4.0cN/dtex、伸度が30%の1900dtex/210fのポリ乳酸繊維からなるマルチフィラメントを得た。該ポリ乳酸繊維からなるマルチフィラメントをリング撚糸機にてS撚り120回/mで2本合撚し、次いで該撚糸を同様にZ撚り100回/mで8本合撚し、その後100℃2分で熱セットを行い、実施例3の造形材料を得た。
Example 3
A polylactic acid chip (manufactured by Nature Works (6201D): D body content: 1.4%) is melt-spun and stretched by an extruder-type spinning machine, and has a strength of 4.0 cN / dtex and an elongation of 30%. 1900 dtex / 210f of polylactic acid fiber was obtained. A multifilament made of the polylactic acid fiber is S-twisted at 120 times / m in a ring twisting machine, and then two twisted yarns are similarly twisted at a Z-twisting 100 times / m, and then 100 ° C. 2 Heat setting was performed in minutes, and the modeling material of Example 3 was obtained.

実施例4
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いてエクストルダー型紡糸機にて溶融紡糸し延伸して、強度が4.0cN/dtex、伸度が30%、乾熱収縮が15%の800dtex/96fのポリ乳酸繊維からなるマルチフィラメント(A)を得た。次いで複合紡糸機を用いて芯にポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%、融点170℃)、鞘にポリ乳酸チップ(ネイチャーワークス製(6302D):D体含有量9.9%、融点130℃)を芯鞘比率1:1で溶融紡糸し延伸して、強度が3.0cN/dtex、伸度が35%の900dtex/96fのポリ乳酸バインダー繊維からなるマルチフィラメント(B)を得た。ポリ乳酸繊維からなるマルチフィラメント(A)とポリ乳酸バインダー繊維からなるマルチフィラメント(B)をリング撚糸機にてS撚り120回/mで2本合撚し16本丸打ち製紐機にて製紐し、その後、140℃2分で熱セットを行い、実施例4の造形材料を得た。
Example 4
A polylactic acid chip (manufactured by Nature Works (6201D): D body content: 1.4%) is melt-spun and stretched by an extruder-type spinning machine, and has a strength of 4.0 cN / dtex and an elongation of 30%. Then, a multifilament (A) made of polylactic acid fibers of 800 dtex / 96 f having a dry heat shrinkage of 15% was obtained. Next, using a compound spinning machine, polylactic acid chips (Nature Works (6201D): D body content: 1.4%, melting point 170 ° C.) in the core and polylactic acid chips (Nature Works (6302D): D body contained) in the sheath 9.9%, melting point 130 ° C.) melt-spun at a core-sheath ratio of 1: 1 and stretched to obtain a multi-lactic acid binder fiber composed of 900 dtex / 96 f of polylactic acid binder fiber having a strength of 3.0 cN / dtex and an elongation of 35% Filament (B) was obtained. A multifilament (A) made of polylactic acid fiber and a multifilament (B) made of polylactic acid binder fiber are S-twisted at 120 times / m in a ring twisting machine, and then twisted in a 16 round punching machine. Then, heat setting was performed at 140 ° C. for 2 minutes to obtain the modeling material of Example 4.

比較例
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いてエクストルダー型紡糸機にて溶融紡糸し延伸して、強度が3.5cN/dtex、伸度が28%の30000dtex(直径約1.75mm)のポリ乳酸モノフィラメントを得た
実施例1〜4および比較例の評価結果を表1に示す。本発明の造形材料は、熱溶解積層法3Dプリンターに適用して良好な三次元立体成型物が得られるとともに、比較例のモノフィラメントに比べて、柔軟で、取扱い性が良好であることが確認できた。
Comparative Example A polylactic acid chip (manufactured by Nature Works (6201D): D body content: 1.4%) was melt-spun and stretched with an extruder-type spinning machine, and the strength was 3.5 cN / dtex and the elongation was 28% 30000 dtex (diameter: about 1.75 mm) polylactic acid monofilaments obtained were evaluated in Examples 1 to 4 and Comparative Example. The modeling material of the present invention can be applied to a hot melt lamination method 3D printer to obtain a good three-dimensional three-dimensional molded product, and can be confirmed to be flexible and easy to handle compared to the monofilament of the comparative example. It was.

実施例5
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いて、エクストルダー型紡糸機にて溶融紡糸し延伸し、560dtex/96フィラメントのポリ乳酸繊維からなる無色のマルチフィラメントを得た。
得られたマルチフィラメント5本を引き揃えた繊維束を、さらに7本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で撚りをかけて集束させた。集束させた撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例5の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 5
Using a polylactic acid chip (manufactured by Nature Works (6201D): D body content: 1.4%), melt spinning and stretching with an extruder-type spinning machine, a colorless multi-layer made of polylactic acid fibers of 560 dtex / 96 filaments A filament was obtained.
Seven fiber bundles obtained by aligning the obtained five multifilaments were further bundled, and they were converged by twisting with an S twist of 150 times / m (S-150) using a ring twisting machine. The bundled twisted yarn was heat-treated at 165 ° C. for 1 minute to obtain a modeling material of Example 5 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.

実施例6
実施例5で用いたマルチフィラメント5本を引き揃えた繊維束を、リング撚糸機を用いてZ撚り60回/m(Z−60)で下撚りをかけて撚糸とし、得られた撚糸(Z−60)を7本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例6の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 6
The fiber bundle in which the five multifilaments used in Example 5 were arranged together was twisted at a Z twist of 60 times / m (Z-60) using a ring twisting machine to obtain a twisted yarn (Z -60) were bundled, and were twisted using a ring twisting machine at an S twist of 150 times / m (S-150). The various plied yarns were heat-treated at 165 ° C. for 1 minute to obtain the modeling material of Example 6 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.

実施例7
実施例6において、下撚り回数をZ撚り180回/m(Z−180)としたこと以外は、実施例6と同様にして、線径1.75mmの実施例7の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 7
In Example 6, the modeling material of Example 7 having a wire diameter of 1.75 mm was obtained in the same manner as in Example 6 except that the number of times of lower twist was set to 180 times of Z twist / m (Z-180). In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.

実施例8
実施例6において、下撚り回数をZ撚り300回/m(Z−300)としたこと以外は、実施例6と同様にして、線径1.75mmの実施例8の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 8
In Example 6, the modeling material of Example 8 having a wire diameter of 1.75 mm was obtained in the same manner as Example 6 except that the number of times of lower twist was set to 300 times / m (Z-300) of Z twist. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.

実施例9
ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いて、エクストルダー型紡糸機にて溶融紡糸し延伸し、得られたフィラメントに機械捲縮を付与した後にカットして、単糸繊度1.7dtex、繊維長51mmのポリ乳酸からなる無色のステープルファイバーを得た。このステープルファイバーを用いた紡績し20番手の紡績糸を得た。
得られた紡績糸8本をリング撚糸機を用いてZ撚り60回/m(Z−60)で下撚りをかけて撚糸とし、得られた撚糸(Z−60)を8本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例9の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 9
Using polylactic acid chips (manufactured by Nature Works (6201D): D body content: 1.4%), melt spinning with an extruder-type spinning machine and drawing, and cutting after applying mechanical crimping to the resulting filament A colorless staple fiber made of polylactic acid having a single yarn fineness of 1.7 dtex and a fiber length of 51 mm was obtained. The staple fiber was spun and a 20th spun yarn was obtained.
Using the ring twisting machine, the obtained eight spun yarns were twisted at a Z twist of 60 times / m (Z-60) to form a twisted yarn, and the obtained eight twisted yarns (Z-60) were bundled to form a ring. Using a twisting machine, an upper twist was applied at an S twist of 150 times / m (S-150) to obtain various twisted yarns. The various plied yarns were heat-treated at 165 ° C. for 1 minute to obtain a modeling material of Example 9 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.

実施例10
実施例9で用いた紡績糸10本をリング撚糸機によりZ撚り60回/m(Z−60)で下撚りをかけて紡績糸の撚糸とした。
一方、実施例5で用いたマルチフィラマント4本をリング撚糸機によりZ撚り60回/m(Z−60)で下撚りをかけてマルチフィラメントの撚糸とした。
紡績糸の撚糸4本とマルチフィラメントの撚糸3本を束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例10の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 10
Ten spun yarns used in Example 9 were twisted with a ring twisting machine at a Z twist of 60 times / m (Z-60) to form a spun yarn of the spun yarn.
On the other hand, four multifilaments used in Example 5 were twisted by a Z twist 60 times / m (Z-60) with a ring twisting machine to form a multifilament twisted yarn.
Four twisted yarns of spun yarn and three twisted yarns of multifilament were bundled and subjected to top twisting at 150 times / m (S-150) using a ring twisting machine to obtain various twisted yarns. The various plied yarns were heat-treated at 165 ° C. for 1 minute to obtain the modeling material of Example 10 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.

実施例11
実施例9で用いた紡績糸2本と実施例5で用いたマルチフィラメント3本を束ねて、リング撚糸機によりZ撚り60回/m(Z−60)で下撚りをかけ、得られた撚糸(Z−60)を7本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例11の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 11
Two spun yarns used in Example 9 and three multifilaments used in Example 5 were bundled and subjected to a lower twist at a Z twist of 60 times / m (Z-60) by a ring twister, and the obtained twisted yarn 7 pieces of (Z-60) were bundled and subjected to top twisting at 150 times / m (S-150) with S twist using a ring twisting machine to obtain various twisted yarns. The various plied yarns were heat-treated at 165 ° C. for 1 minute to obtain the modeling material of Example 11 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.

実施例12
実施例5で用いたマルチフィラメント5本をエアジェットノズルに導通し、8MPaの圧縮空気によりフィラメント間を交絡させてエアー交絡糸を得た。得られたエアー交絡糸を6本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で撚りをかけて集束させた。集束させた撚糸に、165℃×1分の熱処理を行い、線径1.75mmの実施例12の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 12
Five multifilaments used in Example 5 were conducted to an air jet nozzle, and the filaments were entangled with compressed air of 8 MPa to obtain an air entangled yarn. Six of the obtained air entangled yarns were bundled, and they were converged by twisting them with an S twist of 150 times / m (S-150) using a ring twisting machine. The bundled twisted yarn was heat-treated at 165 ° C. for 1 minute to obtain a modeling material of Example 12 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.

実施例13
芯鞘複合繊維が得られるエクストルーダー型紡糸機を用いて、芯にポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4% 融点170℃)、鞘にポリ乳酸チップ(ネイチャーワークス製(6302D):D体含有量9.9% 融点130℃)を配して溶融紡糸し延伸し、560dtex/96フィラメントの2種のポリ乳酸からなり無色の芯鞘複合マルチフィラメント(芯鞘質量比が芯/鞘=3/1)を得た。
得られたマルチフィラメント5本を引き揃えた繊維束を、リング撚糸機を用いてZ撚り60回/m(Z−60)で下撚りをかけて撚糸とし、得られた撚糸(Z−60)を7本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、150℃×1分の熱処理を行い、線径1.75mmの実施例13の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理による熱接着によって溶融固着していた。
Example 13
Using an extruder-type spinning machine from which a core-sheath composite fiber can be obtained, a polylactic acid chip (made by Natureworks (6201D): D-form content 1.4%, melting point 170 ° C.) and a polylactic acid chip (natureworks) in the sheath Product (6302D): D-body content: 9.9% Melting point: 130 ° C., melt-spun, stretched, made of two kinds of polylactic acid of 560 dtex / 96 filaments, colorless core-sheath composite multifilament (core-sheath mass) A ratio of core / sheath = 3/1) was obtained.
The obtained fiber bundle in which five multifilaments are aligned is twisted by applying a lower twist at a Z twist of 60 times / m (Z-60) using a ring twisting machine, and the obtained twisted yarn (Z-60) 7 were bundled and subjected to top twisting at a S twist of 150 times / m (S-150) using a ring twisting machine to obtain various twisted yarns. The various plied yarns were heat-treated at 150 ° C. for 1 minute to obtain the modeling material of Example 13 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were melted and fixed by thermal bonding by heat treatment.

実施例14
実施例5で用いたマルチフィラメント2本と実施例13で用いた芯鞘複合マルチフィラメント3本とを束ねて、リング撚糸機によりZ撚り60回/m(Z−60)で下撚りをかけ、得られた撚糸(Z−60)を7本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、150℃×1分の熱処理を行い、線径1.75mmの実施例14の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理によって熱接着して部分的に溶融固着していた。
Example 14
Two multifilaments used in Example 5 and three core-sheath composite multifilaments used in Example 13 were bundled, and the lower twist was applied at a Z twist of 60 times / m (Z-60) by a ring twisting machine, Seven pieces of the obtained twisted yarn (Z-60) were bundled and subjected to top twisting at 150 times / m (S-150) using a ring twisting machine to obtain various twisted yarns. The various plied yarns were heat-treated at 150 ° C. for 1 minute to obtain the modeling material of Example 14 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were thermally bonded by heat treatment and partially melted and fixed.

実施例15
芯鞘複合繊維が得られるエクストルーダー型紡糸機を用いて、芯にポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4% 融点170℃)、鞘にポリ乳酸チップ(ネイチャーワークス製(6302D):D体含有量9.9% 融点130℃)を配して溶融紡糸し延伸し、得られた芯鞘複合型フィラメントに機械捲縮を付与した後にカットして、単糸繊度2.2dtex、繊維長51mmの2種のポリ乳酸からなる無色の芯鞘複合ステープルファイバー(芯鞘質量比が芯/鞘=1/1)を得た。この芯鞘複合ステープルファイバーを用いて紡績し10番手の紡績糸を得た。
得られた紡績糸4本を引き揃えた繊維束を、リング撚糸機を用いてZ撚り60回/m(Z−60)で下撚りをかけて撚糸とし、得られた撚糸(Z−60)を8本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、150℃×1分の熱処理を行い、線径1.75mmの実施例15の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理による熱接着によって溶融固着していた。
Example 15
Using an extruder-type spinning machine from which a core-sheath composite fiber can be obtained, a polylactic acid chip (made by Natureworks (6201D): D-form content 1.4%, melting point 170 ° C.) and a polylactic acid chip (natureworks) in the sheath Manufactured (6302D): D body content 9.9% melting point 130 ° C), melt-spun and stretched, and the resulting core-sheath composite filament was mechanically crimped and then cut to obtain a single yarn fineness. A colorless core-sheath composite staple fiber (core-sheath mass ratio: core / sheath = 1/1) composed of two types of polylactic acid having 2.2 dtex and a fiber length of 51 mm was obtained. Spinning was performed using this core-sheath composite staple fiber to obtain a 10th spun yarn.
The obtained fiber bundle in which the four spun yarns are aligned is subjected to Z twist 60 times / m (Z-60) using a ring twisting machine to form a twisted yarn, and the obtained twisted yarn (Z-60) 8 were bundled and subjected to top twisting at 150 times / m (S-150) using a ring twisting machine to obtain various twisted yarns. The various plied yarns were heat-treated at 150 ° C. for 1 minute to obtain the modeling material of Example 15 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were melted and fixed by thermal bonding by heat treatment.

実施例16
実施例15で用いた芯鞘複合ステープルファイバーからなる紡績糸2本と、実施例5で得られたマルチフィラメント2本とを束ねて、リング撚糸機を用いてZ撚り60回/m(Z−60)で下撚りをかけて撚糸とし、得られた撚糸(Z−60)を8本束ねて、リング撚糸機を用いてS撚り150回/m(S−150)で上撚りをかけて諸撚糸とした。得られた諸撚糸に、150℃×1分の熱処理を行い、線径1.75mmの実施例16の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理によって熱接着して部分的に溶融固着していた。
Example 16
Two spun yarns composed of the core-sheath composite staple fiber used in Example 15 and two multifilaments obtained in Example 5 were bundled and Z-twisted 60 times / m (Z-) using a ring twisting machine. 60), twisting 8 pieces of the obtained twisted yarn (Z-60), bundling them, and using a ring twisting machine, S twisting 150 times / m (S-150) It was a twisted yarn. The various plied yarns were heat-treated at 150 ° C. for 1 minute to obtain the modeling material of Example 16 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were thermally bonded by heat treatment and partially melted and fixed.

実施例17
16本丸打ち製紐機を用いて、実施例5で用いたマルチフィラメント20本を引き揃えた繊維束を芯糸に配し、側糸として該マルチフィラメントを1本ずつ配して製紐により組紐を得た。得られた組紐に、165℃×1分の熱処理を行い、線径1.75mmの実施例17の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 17
Using a 16-punch stringing machine, a fiber bundle in which 20 multifilaments used in Example 5 are arranged is arranged on the core yarn, and the multifilaments are arranged one by one as a side thread, and the braid is made by the string. Got. The obtained braid was heat-treated at 165 ° C. for 1 minute to obtain a modeling material of Example 17 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.

実施例18
8本丸打ち製紐機を用いて、実施例5で用いたマルチフィラメント20本を引き揃えた繊維束を芯糸に配し、側糸として該マルチフィラメント2本引き揃えた繊維束をそれぞれ配して製紐により組紐を得た。得られた組紐に、165℃×1分の熱処理を行い、線径1.75mmの実施例18の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
Example 18
Using an 8-round stringing machine, a fiber bundle in which 20 multifilaments used in Example 5 are arranged is arranged on the core yarn, and a fiber bundle in which two multifilaments are arranged as side threads is arranged. A braid was obtained from the braid. The obtained braid was heat-treated at 165 ° C. for 1 minute to obtain a modeling material of Example 18 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.

実施例19
実施例17において、芯糸として、下記の諸撚糸を用いたこと以外は、実施例17と同様にして実施例19の造形材料を得た。なお、得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
諸撚糸であるが、実施例5で用いたマルチフィラメント3本を束ねて、リング撚糸機を用いてZ撚り200回/m(Z−200)で下撚りをかけて撚糸とし、得られた撚糸(Z−200)を6本束ねて、リング撚糸機を用いてS撚り120回/m(S−120)で上撚りをかけて諸撚糸とした。得られた諸撚糸を芯糸として用いた。
Example 19
In Example 17, the molding material of Example 19 was obtained in the same manner as in Example 17 except that the following various twisted yarns were used as the core yarn. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.
The twisted yarn obtained by bundling three multifilaments used in Example 5 and twisting them using a ring twisting machine at a Z twist of 200 times / m (Z-200) to form a twisted yarn. Six (Z-200) were bundled and subjected to top twisting at a S twist of 120 times / m (S-120) using a ring twisting machine to obtain various twisted yarns. The obtained twisted yarns were used as core yarns.

実施例20
実施例17において、芯糸として、下記のモノフィラメント糸を用いたこと以外は、実施例17と同様にして実施例20の造形材料を得た。なお、得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
モノフィラメント糸であるが、ポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4%)を用いて、エクストルダー型紡糸機にて溶融紡糸し延伸し、13000dtex/1フィラメントのポリ乳酸からなるモノフィラメント糸を得た。
Example 20
In Example 17, the modeling material of Example 20 was obtained in the same manner as in Example 17 except that the following monofilament yarn was used as the core yarn. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.
Although it is a monofilament yarn, it is melt-spun with an extruder-type spinning machine using a polylactic acid chip (manufactured by Natureworks (6201D): D body content: 1.4%) and stretched, and 13,000 dtex / 1 filament polylactic acid. A monofilament yarn consisting of

実施例21
実施例17において、芯糸として、下記の芯鞘複合モノフィラメント糸を用いたこと以外は、実施例17と同様にして実施例21の造形材料を得た。なお、得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
芯鞘複合モノフィラメント糸であるが、芯鞘複合繊維が得られるエクストルーダー型紡糸機を用いて、芯にポリ乳酸チップ(ネイチャーワークス製(6201D):D体含有量1.4% 融点170℃)、鞘にポリ乳酸チップ(ネイチャーワークス製(6302D):D体含有量9.9% 融点130℃)を配して溶融紡糸し延伸し、13000dtex/1フィラメントの2種のポリ乳酸からなる芯鞘複合モノフィラメント糸を得た。
Example 21
In Example 17, the molding material of Example 21 was obtained in the same manner as in Example 17 except that the following core-sheath composite monofilament yarn was used as the core yarn. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.
Although it is a core-sheath composite monofilament yarn, using an extruder-type spinning machine from which a core-sheath composite fiber can be obtained, a polylactic acid chip (made by Natureworks (6201D): D-body content 1.4%, melting point 170 ° C.) A core sheath made of two types of polylactic acid of 13000 dtex / 1 filament, with a polylactic acid chip (manufactured by Natureworks (6302D): D-form content: 9.9%, melting point: 130 ° C.) melt-spun and stretched A composite monofilament yarn was obtained.

実施例22
16本丸打ち製紐機を用いて、実施例9で用いた紡績糸18本を引き揃えた繊維束を芯糸に配し、側糸として該紡績糸を1本ずつ配して製紐により組紐を得た。得られた組紐に、165℃×1分の熱処理を行い、線径1.75mmの実施例22の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮により固化していた。
Example 22
Using a 16 round stringing machine, a fiber bundle in which 18 spun yarns used in Example 9 are arranged is arranged on the core yarn, and the spun yarns are arranged one by one as side yarns, and the braid is formed by the string. Got. The obtained braid was heat-treated at 165 ° C. for 1 minute to obtain a modeling material of Example 22 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.

実施例23
16本丸打ち製紐機を用いて、下記のエアー交絡糸を16本引き揃えた繊維束を芯糸に配し、側糸として下記のエアー交絡糸を1本ずつ配して製紐により組紐を得た。得られた組紐に、165℃×1分の熱処理を行い、線径1.75mmの実施例23の造形材料を得た。得られた造形材料は、構成繊維が熱処理時の軟化と収縮によって固化していた。
エアー交絡糸であるが、実施例5で用いたマルチフィラメント1本をエアジェットノズルに導通し、8MPaの圧縮空気によりフィラメント間を交絡させてエアー交絡糸を得た。
Example 23
Using a 16 round stringing machine, a fiber bundle in which the following 16 air entangled yarns are aligned is arranged on the core yarn, and the following air entangled yarns are arranged one by one as side yarns, and the braid is formed by the string. Obtained. The obtained braid was heat-treated at 165 ° C. for 1 minute to obtain a modeling material of Example 23 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by softening and shrinkage during heat treatment.
Regarding the air entangled yarn, one multifilament used in Example 5 was conducted to an air jet nozzle, and the filaments were entangled with compressed air of 8 MPa to obtain an air entangled yarn.

実施例24
実施例17において、マルチフィラメントに替えて、実施例13で用いた芯鞘複合マルチフィラメントを用いたこと、得られた組紐に熱処理する際の熱処理温度を150℃としたこと以外は、実施例17と同様にして、実施例24の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理により熱接着して溶融固着していた。
Example 24
In Example 17, Example 17 was used except that the core-sheath composite multifilament used in Example 13 was used in place of the multifilament, and that the heat treatment temperature when heat treating the obtained braid was 150 ° C. In the same manner as described above, the modeling material of Example 24 was obtained. In the obtained modeling material, the constituent fibers were thermally bonded by heat treatment and melted and fixed.

実施例25
16本丸打ち製紐機を用いて、実施例15で用いた紡績糸18本を引き揃えた繊維束を芯糸に配し、側糸として該紡績糸を1本ずつ配して製紐により組紐を得た。得られた組紐に、150℃×1分の熱処理を行い、線径1.75mmの実施例25の造形材料を得た。得られた造形材料は、構成繊維同士が熱処理により熱接着して溶融固着していた。
Example 25
Using a 16 round stringing machine, a fiber bundle in which 18 spun yarns used in Example 15 are arranged is arranged on the core yarn, and the spun yarns are arranged one by one as side yarns, and the braid is formed by the string. Got. The obtained braid was heat-treated at 150 ° C. for 1 minute to obtain a modeling material of Example 25 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were thermally bonded by heat treatment and melted and fixed.

実施例26
8本丸打ち製紐機を用いて、実施例5で用いたマルチフィラメント20本を引き揃えた繊維束を芯糸に配し、側糸として実施例15で用いた紡績糸2本引き揃えた繊維束をそれぞれ配して製紐により組紐を得た。得られた組紐に、150℃×1分の熱処理を行い、線径1.75mmの実施例26の造形材料を得た。得られた造形材料は、その表面は、構成繊維同士が熱接着して溶融固着していた。
Example 26
Using an 8-round stringing machine, a fiber bundle in which 20 multifilaments used in Example 5 are arranged is arranged on the core yarn, and two spun yarns used in Example 15 are used as side yarns. Each bundle was arranged and a braid was obtained from the braid. The obtained braid was heat-treated at 150 ° C. for 1 minute to obtain a modeling material of Example 26 having a wire diameter of 1.75 mm. The surface of the obtained modeling material was melt-fixed by thermally bonding the constituent fibers to each other.

実施例27
8本丸打ち製紐機を用いて、実施例15で用いた紡績糸18本を引き揃えた繊維束を芯糸に配し、側糸として実施例5で用いたマルチフィラメント2本引き揃えた繊維束をそれぞれ配して製紐により組紐を得た。得られた組紐に、150℃×1分の熱処理を行い、線径1.75mmの実施例27の造形材料を得た。得られた造形材料は、構成繊維が熱処理による熱収縮および溶融軟化によって固化していた。
Example 27
Using an 8-round stringing machine, a fiber bundle in which 18 spun yarns used in Example 15 are aligned is arranged on the core yarn, and two multifilaments used in Example 5 are aligned as side yarns. Each bundle was arranged and a braid was obtained from the braid. The obtained braid was heat-treated at 150 ° C. for 1 minute to obtain a modeling material of Example 27 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were solidified by heat shrinkage and melt softening due to heat treatment.

実施例28
8本丸打ち製紐機を用いて、実施例5で用いたマルチフィラメント10本と実施例15で用いた紡績糸9本を引き揃えた繊維束を芯糸に配し、側糸として該マルチフィラメント1本と該紡績糸1本とを引き揃えた繊維束をそれぞれ配して製紐により組紐を得た。得られた組紐に、150℃×1分の熱処理を行い、線径1.75mmの実施例28の造形材料を得た。得られた造形材料は、構成繊維同士が部分的に熱接着により溶融固着していた。
Example 28
Using an 8-round stringing machine, a fiber bundle in which 10 multifilaments used in Example 5 and 9 spun yarns used in Example 15 are aligned is arranged on the core yarn, and the multifilament is used as a side yarn. A fiber bundle in which one spun yarn and one spun yarn were aligned was arranged, and a braid was obtained from the cord. The obtained braid was heat-treated at 150 ° C. for 1 minute to obtain the modeling material of Example 28 having a wire diameter of 1.75 mm. In the obtained modeling material, the constituent fibers were partially melt-fixed by thermal bonding.

実施例5〜28で得られた造形材料を用いて巻き取り評価(ボビン巻き取り性)と、3Dプリンターの評価試験(3Dプリンター出力)を行ったところ、いずれの材料においても、巻き取り評価においては、柔軟で綺麗に巻き取ることが可能であり、3Dプリンター出力においては、綺麗に出力でき光沢感のある造形物が得られた。また、3Dプリンター内に造形材料を送り込む動作においても、送り込み装置において問題なく良好に送り動作がなされていた。

When the winding material evaluation (bobbin winding property) and the 3D printer evaluation test (3D printer output) were performed using the modeling materials obtained in Examples 5 to 28, in any material, in the winding evaluation Can be wound up flexibly and neatly, and in 3D printer output, it was possible to output beautifully and a glossy shaped article was obtained. Further, even in the operation of feeding the modeling material into the 3D printer, the feeding operation has been performed satisfactorily without any problem in the feeding device.

Claims (5)

熱溶解積層法3Dプリンターに用いる造形材料であり、その形態が、複数本の熱可塑性合成繊維が集束されて1本の連続した糸状の形態を呈していることを特徴とする造形材料。 A modeling material used for a hot melt lamination method 3D printer, characterized in that a plurality of thermoplastic synthetic fibers are converged to form one continuous thread-like shape. 複数本からなる熱可塑性合成繊維の束を2本以上製紐することにより集束させて1本の連続した糸状の形態を呈していることを特徴とする請求項1記載の造形材料。 2. The modeling material according to claim 1, wherein two or more bundles of thermoplastic synthetic fibers are bundled to form a single continuous thread-like form. 複数本からなる熱可塑性合成繊維の束を2束以上撚り合わせることにより集束させて1本の連続した糸状の形態を呈していることを特徴とする請求項1記載の造形材料。 The modeling material according to claim 1, wherein two or more bundles of thermoplastic synthetic fibers are bundled together to form a single continuous thread form. 複数本の熱可塑性合成繊維の束は、撚りを有することを特徴とする請求項2または3記載の造形材料。 The modeling material according to claim 2 or 3, wherein the bundle of the plurality of thermoplastic synthetic fibers has a twist. 熱可塑性合成繊維同士が熱融着により集束していることを特徴とする請求項1〜4のいずれか1項記載の造形材料。
The molding material according to any one of claims 1 to 4, wherein the thermoplastic synthetic fibers are converged by heat fusion.
JP2016022749A 2015-02-10 2016-02-09 Molding material Active JP6706506B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015024247 2015-02-10
JP2015024247 2015-02-10

Publications (2)

Publication Number Publication Date
JP2016147486A true JP2016147486A (en) 2016-08-18
JP6706506B2 JP6706506B2 (en) 2020-06-10

Family

ID=56688167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016022749A Active JP6706506B2 (en) 2015-02-10 2016-02-09 Molding material

Country Status (1)

Country Link
JP (1) JP6706506B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236117A (en) * 2009-03-31 2010-10-21 Unitika Ltd Luminescent fibrous structural material
JP2014084549A (en) * 2012-10-26 2014-05-12 Unitika Ltd Method for manufacturing coil made of synthetic resin
US20140291886A1 (en) * 2013-03-22 2014-10-02 Gregory Thomas Mark Three dimensional printing
JP2015000827A (en) * 2013-06-14 2015-01-05 ダイワボウホールディングス株式会社 Cement-reinforcing fiber, production method thereof and cement hardened body
WO2015130401A2 (en) * 2013-12-26 2015-09-03 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236117A (en) * 2009-03-31 2010-10-21 Unitika Ltd Luminescent fibrous structural material
JP2014084549A (en) * 2012-10-26 2014-05-12 Unitika Ltd Method for manufacturing coil made of synthetic resin
US20140291886A1 (en) * 2013-03-22 2014-10-02 Gregory Thomas Mark Three dimensional printing
JP2015000827A (en) * 2013-06-14 2015-01-05 ダイワボウホールディングス株式会社 Cement-reinforcing fiber, production method thereof and cement hardened body
WO2015130401A2 (en) * 2013-12-26 2015-09-03 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts
JP2017502862A (en) * 2013-12-26 2017-01-26 テキサス・テック・ユニバーシティー・システム Local heating of CNT-filled polymer composites by microwave induction to enhance internal bead diffusion bonding of shaped articles by hot melt filament manufacturing method

Also Published As

Publication number Publication date
JP6706506B2 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
KR101576509B1 (en) Fishing line of core-sheath structure containing short fibers
EP0717133B1 (en) Production and application of a shrinkable and shrinked, permanently deformable textil material made out of hybrid yarn
US20170028601A1 (en) Method of making a composite preform
JP6728160B2 (en) Tape-shaped dry fiber reinforcement
WO2016129613A1 (en) Molding material
EP3125711A1 (en) Synthetic fill materials having composite fiber structures
JP4856099B2 (en) Tapered multifilament yarn and method for producing the same
JP6706501B2 (en) Molding material
MX2012002000A (en) Textile core having continuous glass fibers.
JP6037438B2 (en) Manufacturing method of synthetic resin coil
WO2018207418A1 (en) Racket string and production method therefor
US20070251206A1 (en) Recyclable chenille yarn
JP2008048867A (en) Filament for racket string, racket string using the filament and manufacturing method therefor
JP6706506B2 (en) Molding material
TWI270536B (en) Continuous strand mats, methods of producing continuous strand mats, and systems for producing continuous strand mats
TWI374089B (en) Synthetic blown insulation
JP6604583B2 (en) Textile thermoforming method
JP2017105153A (en) Molding material
JP6675891B2 (en) Modeling method
KR102389445B1 (en) Thermoforming of textile products
JP5614796B2 (en) Manufacturing method of shoe wiping mat
JP7022976B2 (en) Plastic-like mesh and its manufacturing method
JP2017148473A (en) String for gut
JP6359214B1 (en) Production method of fishing net
US1221005A (en) Garment-stiffener.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200518

R150 Certificate of patent or registration of utility model

Ref document number: 6706506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150