JP6701541B2 - Low expansion substrate with glass powder, composite powder and painting layer - Google Patents

Low expansion substrate with glass powder, composite powder and painting layer Download PDF

Info

Publication number
JP6701541B2
JP6701541B2 JP2015034943A JP2015034943A JP6701541B2 JP 6701541 B2 JP6701541 B2 JP 6701541B2 JP 2015034943 A JP2015034943 A JP 2015034943A JP 2015034943 A JP2015034943 A JP 2015034943A JP 6701541 B2 JP6701541 B2 JP 6701541B2
Authority
JP
Japan
Prior art keywords
powder
glass
glass powder
substrate
low expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015034943A
Other languages
Japanese (ja)
Other versions
JP2016104684A (en
Inventor
石原 健太郎
健太郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to PCT/JP2015/081982 priority Critical patent/WO2016084627A1/en
Priority to TW104138859A priority patent/TW201627246A/en
Publication of JP2016104684A publication Critical patent/JP2016104684A/en
Application granted granted Critical
Publication of JP6701541B2 publication Critical patent/JP6701541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ガラス粉末、複合粉末及び絵付層付き低膨張基板に関し、具体的には、絵付層を有する調理器用トッププレート等に好適なガラス粉末、複合粉末及び絵付層付き低膨張基板に関する。   The present invention relates to a glass powder, a composite powder, and a low-expansion substrate with a paint layer, and more particularly to a glass powder, a composite powder, and a low-expansion substrate with a paint layer suitable for a cooker top plate having a paint layer.

低膨張の結晶化ガラス基板は、加熱耐久性や耐熱衝撃性が高いため、調理器用トッププレートとして広く使用されている。   The low-expansion crystallized glass substrate is widely used as a top plate for a cooker because it has high heating durability and high thermal shock resistance.

また、調理器用トッププレートの表面は、美感を高めるために、絵付層で装飾されることがある。絵付層は、一般的に、ガラス粉末と無機顔料粉末等を含む複合粉末の焼結体である。例えば、特許文献1には、質量%で、SiO 55〜70%、B 15〜25%、Al 3〜10%、BaO 0.1〜4.9%、ZnO 0.1〜5%、CaO 0〜3%、MgO 0〜3%、LiO 0.1〜5%、NaO 0〜10%、KO 0.3〜15%、F 0〜2%を含有し、軟化点が600℃以上700℃未満であることを特徴とする絵付層形成用無鉛ガラス粉末が開示されている。 Further, the surface of the cooker top plate may be decorated with a painting layer in order to enhance the aesthetic appearance. The painting layer is generally a sintered body of a composite powder containing glass powder, inorganic pigment powder and the like. For example, Patent Document 1, by mass%, SiO 2 55~70%, B 2 O 3 15~25%, Al 2 O 3 3~10%, BaO 0.1~4.9%, ZnO 0. 1~5%, CaO 0~3%, 0~3 % MgO, Li 2 O 0.1~5%, Na 2 O 0~10%, K 2 O 0.3~15%, F 2 0~2 %, and the softening point is 600° C. or higher and lower than 700° C., and a lead-free glass powder for forming a painted layer is disclosed.

結晶化ガラス基板の表面に絵付層を形成する方法は、以下の通りである。まずガラス粉末と無機顔料粉末等を混合して、複合粉末を得る。次に、得られた複合粉末を有機バインダー、溶剤等を含むビークル中に分散させて、ペースト化する。続いて、得られた複合粉末ペーストをスクリーン印刷法等により結晶化ガラス基板上に転写、乾燥した後、適正な焼成条件により焼成する。複合粉末を焼成すると、複合粉末(ガラス粉末)が軟化流動した後、焼結する。これにより、複合粉末が結晶化ガラス基板上で強く固着されて、絵付層になる。   The method for forming the painting layer on the surface of the crystallized glass substrate is as follows. First, glass powder and inorganic pigment powder are mixed to obtain a composite powder. Next, the obtained composite powder is dispersed in a vehicle containing an organic binder, a solvent and the like to form a paste. Subsequently, the obtained composite powder paste is transferred onto a crystallized glass substrate by a screen printing method or the like, dried, and then fired under appropriate firing conditions. When the composite powder is fired, the composite powder (glass powder) is softened and fluidized and then sintered. As a result, the composite powder is strongly fixed on the crystallized glass substrate to form a painting layer.

特開2007−39294号公報JP, 2007-39294, A

ところで、特許文献1に記載のガラス粉末は、低温で軟化流動するが、熱膨張係数が高いため、絵付層の熱膨張係数を低下させることが困難である。絵付層の熱膨張係数が高いと、絵付層付き結晶化ガラス基板にクラックが発生し易くなる。この傾向は、結晶化ガラス基板の熱膨張係数が低い程、顕在化し易くなる。なお、このクラックは、耐水性、耐酸性等の特性を劣化させるだけでなく、その内部に汚れが滞留して、美観を損ねるという問題も発生させる。   By the way, the glass powder described in Patent Document 1 softens and flows at a low temperature, but has a high coefficient of thermal expansion, and thus it is difficult to reduce the coefficient of thermal expansion of the painting layer. When the thermal expansion coefficient of the painting layer is high, cracks are likely to occur in the crystallized glass substrate with the painting layer. This tendency becomes easier to manifest as the coefficient of thermal expansion of the crystallized glass substrate is lower. The cracks not only deteriorate the properties such as water resistance and acid resistance, but also cause a problem that stains are accumulated inside the cracks and spoil the appearance.

更に、絵付層の熱膨張係数が高いと、絵付層に過大な引張応力が入り、外力により絵付層の機械的強度が劣化し易くなる。   Furthermore, if the thermal expansion coefficient of the painting layer is high, excessive tensile stress is applied to the painting layer, and the mechanical strength of the painting layer is likely to deteriorate due to external force.

また、調理器用トッププレートは、使用時に熱湯、果汁、調味料に曝される。このため、絵付層には、高い耐水性、耐酸性が求められることがある。具体的には、絵付層が調理器用トッププレートの調理面側に配置される場合、調理面とは反対側に絵付層が配置される場合であっても、ガス器具等を通すために穴開け加工がなされる場合等は、高い耐水性、耐酸性が求められる。これに伴い、ガラス粉末にも高い耐水性、耐酸性が求められる。   In addition, the cooker top plate is exposed to boiling water, fruit juice, and seasonings during use. Therefore, the painted layer may be required to have high water resistance and acid resistance. Specifically, when the painting layer is placed on the cooking surface side of the cooker top plate, even if the painting layer is placed on the opposite side of the cooking surface, a hole is opened to allow gas appliances to pass through. When processed, high water resistance and acid resistance are required. Along with this, glass powders are also required to have high water resistance and acid resistance.

本発明は、上記事情に鑑みなされたものであり、その技術的課題は、低温で軟化流動すると共に、熱膨張係数が低く、しかも耐水性、耐酸性が高いガラス粉末及び複合粉末を創案することである。   The present invention has been made in view of the above circumstances, and its technical problem is to create a glass powder and a composite powder having a low coefficient of thermal expansion, softening and flowing at low temperature, and further having high water resistance and acid resistance. Is.

本発明者は、種々の検討を行った結果、SiO−B−Al系ガラス粉末において、LiOを所定量導入すると共に、SiOの含有量を増加させると共に、Bの含有量を低下させることにより、上記技術的課題を解決し得ることを見出し、本発明として、提案するものである。すなわち、本発明のガラス粉末は、ガラス組成として、モル%で、SiO 48〜75%、B 5〜23%、Al 5〜25%、LiO 5〜30%、ZnO 0〜25%を含有し、モル比SiO/Bが3.23以上であることを特徴とする。ここで、「SiO/B」は、SiOの含有量をBの含有量で割った値である。 As a result of various studies, the present inventor introduced a predetermined amount of Li 2 O into the SiO 2 —B 2 O 3 —Al 2 O 3 -based glass powder and increased the content of SiO 2 , The present invention proposes to solve the above technical problems by reducing the content of B 2 O 3 , and proposes the present invention. That is, the glass powder of the present invention, as a glass composition, is mol% in terms of SiO 2 48 to 75%, B 2 O 3 5 to 23%, Al 2 O 3 5 to 25%, Li 2 O 5 to 30%, ZnO is contained in an amount of 0 to 25%, and the molar ratio SiO 2 /B 2 O 3 is 3.23 or more. Here, “SiO 2 /B 2 O 3 ”is a value obtained by dividing the content of SiO 2 by the content of B 2 O 3 .

本発明のガラス粉末は、ガラス組成中にSiOを48〜75モル%、Bを5〜23モル%、Alを5〜25モル%、LiOを5〜30モル%含む。これにより、焼成時に、良好に軟化流動した後に低膨張のβ−石英固溶体を析出させることができる。結果として、軟化流動性と低膨張係数を両立させることが可能になる。 Glass powder of the present invention, the SiO 2 in the glass composition 48-75 mole%, B 2 O 3 of 5 to 23 mol%, the Al 2 O 3 5 to 25 mol%, 5 to 30 mol of Li 2 O % Included. Thereby, the β-quartz solid solution having a low expansion can be deposited after being softened and fluidized favorably during firing. As a result, it becomes possible to achieve both softening fluidity and a low expansion coefficient.

一方、ガラス組成中のSiOの含有量を低下させつつ、Bの含有量を増加させると、ガラス粉末の軟化流動性が向上するものの、β−石英固溶体が析出した後にガラスマトリクスの耐水性、耐酸性が低下し易くなる。そこで、本発明のガラス粉末は、ガラス組成中のモル比SiO/Bを3.23以上に規制している。これにより、結晶析出後のガラスマトリクスの耐水性、耐酸性が向上するため、絵付層の耐水性、耐酸性を的確に高めることができる。 On the other hand, when the content of SiO 2 in the glass composition is decreased and the content of B 2 O 3 is increased, the softening fluidity of the glass powder is improved, but after the β-quartz solid solution is precipitated, the glass matrix Water resistance and acid resistance are likely to decrease. Therefore, the glass powder of the present invention regulates the molar ratio SiO 2 /B 2 O 3 in the glass composition to 3.23 or more. Thereby, the water resistance and the acid resistance of the glass matrix after crystal precipitation are improved, so that the water resistance and the acid resistance of the painting layer can be appropriately increased.

第二に、本発明のガラス粉末は、ガラス組成中のBの含有量が16モル%以下であることが好ましい。 Secondly, in the glass powder of the present invention, the content of B 2 O 3 in the glass composition is preferably 16 mol% or less.

第三に、本発明のガラス粉末は、ガラス組成中のZnOの含有量が0.1〜7.6モル%であることが好ましい。このようにすれば、焼成時に、異種結晶の析出を抑制しつつ、β−石英固溶体の析出量を増加させることができる。結果として、熱膨張係数の焼成温度依存性を低下させることが可能になり、焼成後に局所的に歪な応力が残留したり、局所的に熱膨張係数が異なる箇所が発生する事態を防止し易くなる。また製造ロット間で絵付層の熱膨張係数が異なる事態を防止し易くなる。   Thirdly, in the glass powder of the present invention, the content of ZnO in the glass composition is preferably 0.1 to 7.6 mol %. This makes it possible to increase the precipitation amount of the β-quartz solid solution while suppressing the precipitation of different crystals during firing. As a result, it becomes possible to reduce the firing temperature dependence of the thermal expansion coefficient, and it is easy to prevent the situation where a locally distorted stress remains after firing or a location where the thermal expansion coefficient locally differs. Become. Further, it becomes easy to prevent a situation in which the coefficient of thermal expansion of the painting layer differs between manufacturing lots.

第四に、本発明のガラス粉末は、ガラス組成中に更にTiOとZrOを合量で0.1〜15モル%含むことが好ましい。 Fourth, the glass powder of the present invention preferably further contains TiO 2 and ZrO 2 in a total amount of 0.1 to 15 mol% in the glass composition.

第五に、本発明のガラス粉末は、ガラス組成中に実質的にPbOとBiを含まないことが好ましい。ここで、「実質的に〜を含まない」とは、明示の成分が不純物レベルで混入する場合を許容する趣旨であり、具体的には、明示の成分の含有量が0.1質量%未満の場合を指す。 Fifth, it is preferable that the glass powder of the present invention does not substantially contain PbO and Bi 2 O 3 in the glass composition. Here, “substantially does not include” means that the explicit component is mixed at an impurity level, and specifically, the content of the explicit component is less than 0.1% by mass. Refers to the case.

第六に、本発明のガラス粉末は、700℃10分間の条件で焼成した後の熱膨張係数が25×10−7/℃以下であることが好ましい。ここで、「熱膨張係数」は、TMA装置を用いて、30〜350℃の温度範囲で測定した値である。なお、測定試料として、ガラス粉末の圧粉体を700℃10分間の焼成条件で緻密に焼結させた後、所定形状に加工したものを用いた。 Sixth, the glass powder of the present invention preferably has a coefficient of thermal expansion of 25×10 −7 /° C. or less after firing at 700° C. for 10 minutes. Here, the “thermal expansion coefficient” is a value measured in a temperature range of 30 to 350° C. using a TMA device. As a measurement sample, a powder compact of glass powder, which was densely sintered under a firing condition of 700° C. for 10 minutes and then processed into a predetermined shape, was used.

第七に、本発明のガラス粉末は、700℃10分間の条件で焼成すると、主結晶としてβ−石英固溶体が析出することが好ましい。ここで、「主結晶」は、X線回折法で測定した時に、ピーク強度が最も大きい結晶を指す。   Seventh, when the glass powder of the present invention is fired at 700° C. for 10 minutes, it is preferable that β-quartz solid solution is precipitated as a main crystal. Here, the "main crystal" refers to a crystal having the highest peak intensity when measured by the X-ray diffraction method.

第八に、本発明のガラス粉末は、マクロ型DTA装置で測定した軟化点が550〜700℃であることが好ましい。ここで、マクロ型DTA装置で測定した軟化点は、図1に示す第四屈曲点の温度(Ts)を指す。なお、マクロ型DTA装置による測定は、空気中で行い、昇温速度を10℃/分とする。   Eighth, it is preferable that the glass powder of the present invention has a softening point of 550 to 700° C. measured by a macro type DTA device. Here, the softening point measured by the macro type DTA device indicates the temperature (Ts) of the fourth bending point shown in FIG. The measurement by the macro type DTA device is performed in air, and the temperature rising rate is 10° C./min.

第九に、本発明の複合粉末は、ガラス粉末 55〜100質量%、無機顔料粉末 0〜45質量%、耐火性フィラー粉末 0〜40質量%を含有する複合粉末であって、ガラス粉末が、上記のガラス粉末であることが好ましい。   Ninth, the composite powder of the present invention is a composite powder containing 55 to 100 mass% of glass powder, 0 to 45 mass% of inorganic pigment powder, and 0 to 40 mass% of refractory filler powder, and the glass powder is It is preferably the above glass powder.

第十に、本発明の複合粉末は、無機顔料粉末がCr-Cu系複合酸化物であることが好ましい。ここで、「〜系複合酸化物」とは、明示の成分を必須成分として含む複合酸化物を指す。   Tenth, in the composite powder of the present invention, the inorganic pigment powder is preferably a Cr-Cu-based composite oxide. Here, the term "-based complex oxide" refers to a complex oxide containing an explicit component as an essential component.

第十一に、本発明の絵付層付き低膨張基板は、低膨張基板の表面に絵付層を有する絵付層付き低膨張基板であって、絵付層が複合粉末の焼結体であり、且つ複合粉末が上記の複合粉末であることが好ましい。ここで、「低膨張基板」は、30〜350℃の温度範囲における熱膨張係数が35×10−7/℃以下の基板を指す。 Eleventh, the low-expansion substrate with a painting layer of the present invention is a low-expansion substrate with a painting layer having a painting layer on the surface of the low-expansion substrate, wherein the painting layer is a sintered body of a composite powder, and The powder is preferably the above composite powder. Here, the “low expansion substrate” refers to a substrate having a thermal expansion coefficient of 35×10 −7 /° C. or less in the temperature range of 30 to 350° C.

第十二に、本発明の絵付層付き低膨張基板は、絵付層にβ−石英固溶体が析出していることが好ましい。   Twelfth, in the low expansion substrate with a paint layer of the present invention, it is preferable that β-quartz solid solution is precipitated in the paint layer.

第十三に、本発明の絵付層付き低膨張基板は、低膨張基板が透明結晶化ガラス基板であり、且つ主結晶としてβ−石英固溶体が析出していることが好ましい。   Thirteenth, it is preferable that the low-expansion substrate with a painted layer of the present invention is a low-expansion substrate which is a transparent crystallized glass substrate, and β-quartz solid solution is deposited as a main crystal.

第十四に、本発明の絵付層付き低膨張基板は、低膨張基板が石英基板であることが好ましい。   Fourteenth, it is preferable that the low expansion substrate with a painting layer of the present invention is a quartz substrate.

第十五に、本発明の絵付層付き低膨張基板は、調理器用トッププレートに用いることが好ましい。   Fifteenth, it is preferable that the low expansion substrate with a paint layer of the present invention is used for a top plate for a cooker.

マクロ型DTA装置で測定した軟化点、結晶化温度を示すチャートである。It is a chart which shows the softening point and the crystallization temperature measured by the macro type DTA apparatus.

本発明のガラス粉末は、ガラス組成として、モル%で、SiO 48〜75%、B 5〜23%、Al 5〜25%、LiO 5〜30%、ZnO 0〜25%を含有し、モル比SiO/Bが3.23以上であることを特徴とする。上記のように各成分の含有範囲を限定した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示はモル%を指す。 The glass powder of the present invention has a glass composition of, in mol %, SiO 2 48 to 75%, B 2 O 3 5 to 23%, Al 2 O 3 5 to 25%, Li 2 O 5 to 30%, and ZnO 0. ˜25%, and the molar ratio SiO 2 /B 2 O 3 is 3.23 or more. The reason why the content range of each component is limited as described above is shown below. In the description of the content range of each component,% indication means mol%.

SiOは、ガラス骨格を形成する成分であり、またβ−石英固溶体の結晶構成成分であり、更に結晶析出後のガラスマトリクスの耐水性、耐酸性を高める成分である。SiOの含有量は48〜75%であり、好ましくは50〜68%、52〜66%、54〜64%、特に56〜62%である。SiOの含有量が少な過ぎると、熱的安定性が不当に低くなり、ガラス粉末が十分に焼結する前に結晶が析出し易くなる。また焼成時にβ−石英固溶体が析出し難くなり、結果として絵付層の熱膨張係数を低下させ難くなる。更に結晶析出後のガラスマトリクスの耐水性、耐酸性が低下し易くなる。一方、SiOの含有量が多過ぎると、軟化点が上昇して、ガラス粉末の軟化流動性が低下し易くなる。 SiO 2 is a component that forms a glass skeleton, is a crystal constituent component of the β-quartz solid solution, and is a component that enhances water resistance and acid resistance of the glass matrix after crystal precipitation. The content of SiO 2 is 48 to 75%, preferably 50 to 68%, 52 to 66%, 54 to 64%, and particularly 56 to 62%. If the content of SiO 2 is too small, the thermal stability will be unduly low, and crystals will be likely to precipitate before the glass powder is sufficiently sintered. Further, it becomes difficult for the β-quartz solid solution to precipitate during firing, and as a result, it becomes difficult to reduce the thermal expansion coefficient of the painting layer. Furthermore, the water resistance and acid resistance of the glass matrix after crystal precipitation are likely to decrease. On the other hand, if the content of SiO 2 is too large, the softening point rises, and the softening fluidity of the glass powder tends to decrease.

は、ガラス骨格を形成する成分であり、また熱膨張係数を上昇させずに、軟化点を低下させる成分である。Bの含有量は5〜23%であり、好ましくは7〜19%、9〜16%、10〜14%、特に10〜12%である。Bの含有量が少な過ぎると、熱的安定性が不当に低くなり、ガラス粉末が十分に焼結する前に結晶が析出し易くなる。更に軟化点が上昇して、ガラス粉末の軟化流動性が低下し易くなる。一方、Bの含有量が多過ぎると、結晶析出後のガラスマトリクスの耐水性、耐酸性が低下し易くなる。 B 2 O 3 is a component that forms a glass skeleton and is a component that lowers the softening point without increasing the thermal expansion coefficient. The content of B 2 O 3 is 5 to 23%, preferably 7 to 19%, 9 to 16%, 10 to 14%, and particularly 10 to 12%. If the content of B 2 O 3 is too small, the thermal stability becomes unduly low, and crystals tend to precipitate before the glass powder is sufficiently sintered. Furthermore, the softening point rises, and the softening fluidity of the glass powder tends to decrease. On the other hand, when the content of B 2 O 3 is too large, the water resistance and acid resistance of the glass matrix after crystal precipitation are likely to decrease.

モル比SiO/Bは3.23以上であり、好ましくは3.5以上、3.9以上4.2〜10、4.5〜8、4.8〜7、特に5〜6である。モル比SiO/Bが小さ過ぎると、結晶析出後のガラスマトリクスの耐水性、耐酸性が低下し易くなり、絵付層の耐水性、耐酸性が低下し易くなる。一方、モル比SiO/Bが大き過ぎると、β−スポジュメン等の異種結晶が析出して、β−石英固溶体の析出量が低下し易くなる。 Molar ratio SiO 2 / B 2 O 3 is at 3.23 or more, preferably 3.5 or more, 3.9 or more 4.2~10,4.5~8,4.8~7, especially 5-6 Is. If the molar ratio SiO 2 /B 2 O 3 is too small, the water resistance and acid resistance of the glass matrix after crystal precipitation are likely to decrease, and the water resistance and acid resistance of the painting layer are likely to decrease. On the other hand, if the molar ratio SiO 2 /B 2 O 3 is too large, heterogeneous crystals such as β-spodumene are deposited, and the amount of β-quartz solid solution deposited is likely to decrease.

Alは、β−石英固溶体の結晶構成成分であり、また耐酸性を高める成分である。Alの含有量は5〜25%であり、好ましくは6〜20%、7〜16%、8〜13%、特に9〜11%である。Alの含有量が少な過ぎると、焼成時にβ−石英固溶体が析出し難くなり、結果として絵付層の熱膨張係数を低下させ難くなる。Alの含有量が多過ぎると、軟化点が上昇して、ガラス粉末の軟化流動性が低下し易くなる。 Al 2 O 3 is a crystal constituent component of the β-quartz solid solution and a component that enhances acid resistance. The content of Al 2 O 3 is 5 to 25%, preferably 6 to 20%, 7 to 16%, 8 to 13%, and particularly 9 to 11%. When the content of Al 2 O 3 is too small, the β-quartz solid solution is less likely to be deposited during firing, and as a result, the thermal expansion coefficient of the painting layer is less likely to be lowered. If the content of Al 2 O 3 is too large, the softening point rises, and the softening fluidity of the glass powder tends to decrease.

LiOは、β−石英固溶体の結晶構成成分であり、また熱膨張係数を上昇させずに、軟化点を低下させる成分である。LiOの含有量は5〜30%であり、好ましくは7〜25%、10〜22%、12〜20%、13〜18%、特に14〜16%である。LiOの含有量が少な過ぎると、軟化点が上昇して、ガラス粉末の軟化流動性が低下し易くなる。更に焼成時にβ−石英固溶体が析出し難くなり、結果として絵付層の熱膨張係数を低下させ難くなる。一方、LiOの含有量が多過ぎると、耐酸性が低下し易くなる。 Li 2 O is a crystal constituent component of the β-quartz solid solution and is a component that lowers the softening point without increasing the thermal expansion coefficient. The content of Li 2 O is 5 to 30%, preferably 7 to 25%, 10 to 22%, 12 to 20%, 13 to 18%, and particularly 14 to 16%. If the content of Li 2 O is too small, the softening point rises, and the softening fluidity of the glass powder tends to decrease. Furthermore, the β-quartz solid solution is less likely to precipitate during firing, and as a result, the thermal expansion coefficient of the painting layer is less likely to decrease. On the other hand, if the content of Li 2 O is too large, the acid resistance tends to decrease.

ZnOは、熱膨張係数をあまり上昇させずに、軟化点を低下させる成分である。また結晶化を促進させる成分である。ZnOの含有量は0〜25%であり、好ましくは0〜20%、0〜16%、1〜14%、2〜12%、3〜10%、特に4〜7.6%である。また、異種結晶の析出を抑制しつつ、β−石英固溶体の析出量を増加させたい場合、ZnOの含有量は0.1〜7.6%、1〜5%、特に1.5〜3%である。ZnOの含有量が多過ぎると、結晶析出後のガラスマトリクスの耐水性、耐酸性が低下し易くなり、更にLi−Si−Zn系の異種結晶が析出し易くなり、β−石英固溶体の析出量が低下し易くなる。   ZnO is a component that lowers the softening point without significantly increasing the thermal expansion coefficient. It is also a component that promotes crystallization. The content of ZnO is 0 to 25%, preferably 0 to 20%, 0 to 16%, 1 to 14%, 2 to 12%, 3 to 10%, and particularly 4 to 7.6%. When it is desired to increase the precipitation amount of the β-quartz solid solution while suppressing the precipitation of heterogeneous crystals, the ZnO content is 0.1 to 7.6%, 1 to 5%, and particularly 1.5 to 3%. Is. When the content of ZnO is too large, the water resistance and acid resistance of the glass matrix after crystal precipitation are likely to be lowered, and further, a different crystal of Li-Si-Zn system is likely to be precipitated, and the amount of β-quartz solid solution is precipitated. Is likely to decrease.

上記成分以外にも、例えば、以下の成分を導入してもよい。   In addition to the above components, for example, the following components may be introduced.

NaOとKOは、軟化点を低下させる成分であるが、その含有量が多過ぎると、焼成時にβ−石英固溶体が析出し難くなり、結果として絵付層の熱膨張係数を低下させ難くなる。更に耐酸性が低下し易くなる。よって、NaOとKOの合量は、好ましくは0〜8%未満、0〜6%、0〜4%、0〜2%、特に0〜1%未満である。NaOの含有量は、好ましくは0〜8%未満、0〜6%、0〜4%、0〜2%、特に0〜1%未満である。KOの含有量は、好ましくは0〜8%未満、0〜6%、0〜4%、0〜2%、特に0〜1%未満である。モル比LiO/(LiO+NaO+KO)は、好ましくは0.5以上、0.6以上、0.7以上、0.8以上、特に0.9以上である。なお、「LiO/(LiO+NaO+KO)」は、LiOの含有量をLiO、NaO及びKOの合量で割った値である。 Na 2 O and K 2 O are components that lower the softening point, but if the content is too large, the β-quartz solid solution is less likely to precipitate during firing, and as a result, the thermal expansion coefficient of the painting layer is reduced. It gets harder. Furthermore, the acid resistance tends to decrease. Therefore, the total amount of Na 2 O and K 2 O is preferably 0 to less than 8%, 0 to 6%, 0 to 4%, 0 to 2%, and particularly 0 to less than 1%. The content of Na 2 O is preferably 0 to less than 8%, 0 to 6%, 0 to 4%, 0 to 2%, and particularly 0 to less than 1%. The content of K 2 O is preferably 0 to less than 8%, 0 to 6%, 0 to 4%, 0 to 2%, and particularly 0 to less than 1%. The molar ratio Li 2 O/(Li 2 O+Na 2 O+K 2 O) is preferably 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, and particularly 0.9 or more. Note that “Li 2 O/(Li 2 O+Na 2 O+K 2 O)” is a value obtained by dividing the content of Li 2 O by the total amount of Li 2 O, Na 2 O, and K 2 O.

TiOとZrOは、結晶性を高める成分であり、また結晶析出後のガラスマトリクスの耐水性、耐酸性を高める成分であるが、その含有量が多過ぎると、軟化点が上昇して、ガラス粉末の軟化流動性が低下し易くなる。更に熱的安定性が不当に低くなり、ガラス粉末が十分に焼結する前に結晶が析出し易くなる。TiOとZrOの合量は、好ましくは0〜15%、0〜12%、0.1〜10%、1〜8%、特に2〜6%である。TiOの含有量は、好ましくは0〜15%、0〜12%、0.1〜10%、1〜8%、特に2〜6%である。ZrOの含有量は、好ましくは0〜10%、0〜5%、0〜3%未満、0〜2%、特に0〜1%である。 TiO 2 and ZrO 2 are components that enhance the crystallinity, and also enhance the water resistance and acid resistance of the glass matrix after crystal precipitation, but if the content is too large, the softening point increases, The softening fluidity of the glass powder is likely to decrease. Furthermore, the thermal stability becomes unduly low, and crystals tend to precipitate before the glass powder is sufficiently sintered. The total amount of TiO 2 and ZrO 2 is preferably 0 to 15%, 0 to 12%, 0.1 to 10%, 1 to 8%, and particularly 2 to 6%. The content of TiO 2 is preferably 0 to 15%, 0 to 12%, 0.1 to 10%, 1 to 8%, and particularly 2 to 6%. The content of ZrO 2 is preferably 0 to 10%, 0 to 5%, 0 to less than 3%, 0 to 2%, and particularly 0 to 1%.

MgOは、熱的安定性を高める成分である。MgOの含有量は、好ましくは0〜7%、0〜5%、0〜3%、特に0〜1%である。MgOの含有量が多過ぎると、軟化点が上昇して、ガラス粉末の軟化流動性が低下し易くなる。   MgO is a component that enhances thermal stability. The content of MgO is preferably 0 to 7%, 0 to 5%, 0 to 3%, and particularly 0 to 1%. If the content of MgO is too large, the softening point rises, and the softening fluidity of the glass powder tends to decrease.

BaOは、熱的安定性を高める成分である。BaOの含有量は、好ましくは0〜7%、0〜5%、特に0.1〜3%である。BaOの含有量が多過ぎると、熱膨張係数が不当に上昇して、絵付層の熱膨張係数を低下させ難くなる。   BaO is a component that enhances thermal stability. The content of BaO is preferably 0 to 7%, 0 to 5%, and particularly 0.1 to 3%. When the content of BaO is too large, the coefficient of thermal expansion rises unduly, and it becomes difficult to reduce the coefficient of thermal expansion of the painting layer.

CuOは、ガラスを黒色に着色させるための成分である。CuOの含有量は、好ましくは0〜7%、0〜5%、0〜3%、特に0〜1%である。CuOの含有量が多過ぎると、熱的安定性が不当に低くなり、ガラス粉末が十分に焼結する前に結晶が析出し易くなる。   CuO is a component for coloring the glass black. The content of CuO is preferably 0 to 7%, 0 to 5%, 0 to 3%, and particularly 0 to 1%. If the content of CuO is too large, the thermal stability becomes unduly low, and crystals tend to precipitate before the glass powder is sufficiently sintered.

上記成分以外にも、必要に応じて、他の成分を例えば15%、10%、5%、特に1%まで導入することができる。具体的には、CaO、SrO、Cr、MnO、SnO、CeO、P、La、Nd、Co、F、Cl等を合量又は個別に、例えば15%、10%、5%、特に1%まで導入することができる。 In addition to the above components, other components can be introduced, if desired, for example up to 15%, 10%, 5%, especially 1%. Specifically, CaO, SrO, Cr 2 O 3, MnO, SnO 2, CeO 2, P 2 O 5, La 2 O 3, Nd 2 O 3, Co 2 O 3, F, the total amount of Cl and the like or It can be introduced individually, for example up to 15%, 10%, 5%, in particular up to 1%.

なお、環境的観点から、実質的にPbOを含有させないことが好ましく、実質的にBiも含有させないことが好ましい。 From an environmental point of view, it is preferable that PbO is not substantially contained, and that Bi 2 O 3 is not substantially contained.

ガラス粉末の平均粒子径D50は15μm以下、0.5〜10μm、特に0.7〜5μmが好ましい。ガラス粉末の粒度が大き過ぎると、スクリーン印刷性が低下し易くなり、また絵付層の色調が不均一になり易い。ここで、「平均粒子径D50」」とは、レーザー回折装置で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す(以下、同様)。 The average particle diameter D 50 of the glass powder is 15 μm or less, preferably 0.5 to 10 μm, and particularly preferably 0.7 to 5 μm. If the particle size of the glass powder is too large, the screen printability tends to deteriorate, and the color tone of the painting layer tends to become uneven. Here, the “average particle diameter D 50 ” refers to a value measured by a laser diffractometer, and in the volume-based cumulative particle size distribution curve when measured by a laser diffraction method, the cumulative amount is from the smaller particles. The cumulative particle size is 50% (hereinafter the same).

マクロ型DTA装置で測定したガラス粉末の軟化点は、好ましくは550〜700℃、570〜695℃、590〜690℃、特に620〜685℃である。軟化点が低い程、焼成温度を低下させることが可能になり、無機顔料粉末の発色性が向上するが、軟化点が低過ぎると、他の特性、特に結晶析出後のガラスマトリクスの耐水性、耐酸性が低下し易くなる。一方、軟化点が高過ぎると、焼成温度が不当に上昇し、焼成コストを高騰させる虞がある。   The softening point of the glass powder measured by a macro type DTA apparatus is preferably 550 to 700°C, 570 to 695°C, 590 to 690°C, and particularly 620 to 685°C. The lower the softening point, the more it is possible to lower the firing temperature, the color developability of the inorganic pigment powder is improved, but if the softening point is too low, other properties, especially water resistance of the glass matrix after crystal precipitation, Acid resistance is likely to decrease. On the other hand, if the softening point is too high, the firing temperature may be unduly increased, which may increase the firing cost.

マクロ型DTA装置で測定したガラス粉末の結晶化温度は、好ましくは650〜750℃、660〜740℃、特に670〜730℃である。結晶化温度が低過ぎると、焼成時にガラス粉末が十分に焼結する前に、結晶が析出してしまい、絵付層の緻密性が低下し易くなる。一方、結晶化温度が高過ぎると、焼成時に絵付層に結晶が析出し難くなり、絵付層の熱膨張係数を低下させることが困難になる。ここで、マクロ型DTA装置で測定した結晶化温度は、図1に示す結晶析出による発熱ピーク温度(Tc)を指す。   The crystallization temperature of the glass powder measured by a macro type DTA device is preferably 650 to 750°C, 660 to 740°C, and particularly 670 to 730°C. If the crystallization temperature is too low, crystals will precipitate before the glass powder is sufficiently sintered during firing, and the denseness of the painting layer tends to be reduced. On the other hand, if the crystallization temperature is too high, it becomes difficult for crystals to precipitate in the painting layer during firing, and it becomes difficult to reduce the thermal expansion coefficient of the painting layer. Here, the crystallization temperature measured by the macro type DTA device refers to the exothermic peak temperature (Tc) due to the crystal precipitation shown in FIG.

700℃10分間の焼成条件でガラス粉末を焼成した後の焼結体の熱膨張係数は、好ましくは25×10−7/℃以下、15×10−7/℃以下、10×10−7/℃以下、特に−10×10−7〜5×10−7/℃である。ガラス粉末の焼結体の熱膨張係数が高過ぎると、絵付層の熱膨張係数を低下させ難くなり、絵付層付き低膨張基板にクラックが発生し易くなる。また絵付層の脱落等も発生し易くなる。 The coefficient of thermal expansion of the sintered body after firing the glass powder under the firing conditions of 700° C. for 10 minutes is preferably 25×10 −7 /° C. or less, 15×10 −7 /° C. or less, 10×10 −7 / C. or less, especially −10×10 −7 to 5×10 −7 /° C. If the coefficient of thermal expansion of the sintered body of glass powder is too high, it becomes difficult to lower the coefficient of thermal expansion of the painting layer, and cracks easily occur in the low expansion substrate with the painting layer. In addition, the painting layer is likely to come off.

700℃10分間の条件でガラス粉末を焼成すると、主結晶としてβ−石英固溶体が析出することが好ましい。このようにすれば、絵付層の熱膨張係数が大幅に低下するため、絵付層付き低膨張基板にクラックが発生する事態を的確に防止することができる。   When the glass powder is fired under the condition of 700° C. for 10 minutes, β-quartz solid solution as a main crystal is preferably precipitated. By doing so, the coefficient of thermal expansion of the painting layer is significantly reduced, so that it is possible to accurately prevent the occurrence of cracks in the low expansion substrate with the painting layer.

本発明の複合粉末は、少なくともガラス粉末と無機顔料粉末を含み、必要に応じて、耐火性フィラー粉末等を含む。ガラス粉末は、無機顔料粉末を分散させて、低膨張基板に固着させるための成分である。無機顔料粉末は、黒色等に着色させて、装飾性を高めるための成分である。耐火性フィラー粉末は、任意成分であり、機械的強度を高める成分であり、また熱膨張係数を調整するための成分である。なお、上記以外にも、発色性を高めるために、Cu粉末等の金属粉末を添加してもよい。   The composite powder of the present invention contains at least glass powder and inorganic pigment powder, and if necessary, refractory filler powder and the like. The glass powder is a component for dispersing the inorganic pigment powder and fixing it to the low expansion substrate. The inorganic pigment powder is a component that is colored black or the like to enhance the decorative property. The refractory filler powder is an optional component, a component for increasing the mechanical strength, and a component for adjusting the thermal expansion coefficient. In addition to the above, metal powder such as Cu powder may be added in order to enhance the color developability.

本発明の複合粉末は、ガラス粉末 55〜100質量%、無機顔料粉末 0〜45質量%、耐火性フィラー粉末 0〜40質量%を含有することが好ましい。   The composite powder of the present invention preferably contains 55 to 100 mass% of glass powder, 0 to 45 mass% of inorganic pigment powder, and 0 to 40 mass% of refractory filler powder.

ガラス粉末の含有量は、好ましくは55〜100質量%、55〜95質量%、55〜90質量%、55〜85質量%、60〜80質量%、特に65〜75質量%である。ガラス粉末の含有量が少な過ぎると、絵付層と低膨張基板の固着性が低下し易くなる。なお、ガラス粉末の含有量が多過ぎると、無機顔料粉末が相対的に少なくなり、絵付層の装飾性が低下し易くなる。   The content of the glass powder is preferably 55 to 100% by mass, 55 to 95% by mass, 55 to 90% by mass, 55 to 85% by mass, 60 to 80% by mass, and particularly 65 to 75% by mass. If the content of the glass powder is too low, the adhesiveness between the painting layer and the low expansion substrate tends to deteriorate. In addition, when the content of the glass powder is too large, the amount of the inorganic pigment powder becomes relatively small, and the decorative property of the painting layer is likely to deteriorate.

無機顔料粉末の含有量は、好ましくは0〜45質量%、5〜45質量%、10〜45質量%、13〜45質量%、特に15〜30質量%である。無機顔料粉末の含有量が少な過ぎると、装飾性が低下し易くなる。一方、無機顔料粉末の含有量が多過ぎると、ガラス粉末が相対的に少なくなり、絵付層と低膨張基板の固着性が低下し易くなる。更に無機顔料粉末の含有量が多過ぎると、絵付層の表面平滑性が低下して、絵付層の耐水性、耐酸性が低下し易くなる。   The content of the inorganic pigment powder is preferably 0 to 45% by mass, 5 to 45% by mass, 10 to 45% by mass, 13 to 45% by mass, and particularly 15 to 30% by mass. If the content of the inorganic pigment powder is too small, the decorative property tends to deteriorate. On the other hand, when the content of the inorganic pigment powder is too large, the amount of the glass powder becomes relatively small, and the adhesiveness between the painting layer and the low expansion substrate tends to decrease. Further, if the content of the inorganic pigment powder is too large, the surface smoothness of the painting layer is lowered, and the water resistance and acid resistance of the painting layer are likely to be lowered.

無機顔料粉末は、種々の材料が使用可能であり、例えばNiO(緑色)、MnO(黒色)、CoO(黒色)、Fe(茶褐色)、Cr(緑色)、TiO(白色)等の着色酸化物、Cr−Al系スピネル(ピンク色)、Sn−Sb−V系ルチル(グレー色)、Ti−Sb−Ni系ルチル(黄色)、Zr−V系バデライト(黄色)等の酸化物、Co−Zn−Al系スピネル(青色)、Zn−Fe−Cr系スピネル(茶色)、Cr−Cu−Mn系スピネル等の複合酸化物、Ca−Cr−Si系ガーネット(ビクトリアグリーン色)、Ca−Sn−Si−Cr系スフェイン(ピンク色)、Zr−Si−Fe系ジルコン(サーモンピンク色)、Co−Zn−Si系ウイレマイト(紺青色)、Co−Si系カンラン石(紺青色)等のケイ酸塩があり、これらは所望の色を得るように、上記の割合で混合することができる。また、上記無機顔料粉末の他に、例えば、絵付層の隠蔽性及び耐磨耗性を向上させるために、ZrSiO4やタルク等を適量混合させてもよい。 Various materials can be used for the inorganic pigment powder, for example, NiO (green), MnO 2 (black), CoO (black), Fe 2 O 3 (brown brown), Cr 2 O 3 (green), TiO 2 ( Colored oxides such as white), Cr-Al spinel (pink), Sn-Sb-V rutile (gray), Ti-Sb-Ni rutile (yellow), Zr-V baderite (yellow), etc. Oxide, Co-Zn-Al spinel (blue), Zn-Fe-Cr spinel (brown), Cr-Cu-Mn spinel, and other complex oxides, Ca-Cr-Si garnet (Victorian green color) ), Ca-Sn-Si-Cr-based sphene (pink), Zr-Si-Fe-based zircon (salmon pink), Co-Zn-Si-based willemite (dark blue), Co-Si-based olivine (dark blue) ) And the like, which can be mixed in the above proportions so as to obtain the desired color. In addition to the above-mentioned inorganic pigment powder, for example, in order to improve the hiding property and abrasion resistance of the painting layer, ZrSiO 4 , talc, etc. may be mixed in appropriate amounts.

無機顔料粉末の平均粒子径D50は9μm以下、特に0.5〜4μmが好ましい。無機顔料粉末の最大粒子径Dmaxは10μm以下、特に2〜8μmが好ましい。無機顔料粉末の粒度が大き過ぎると、スクリーン印刷性が低下し易くなり、また絵付層の発色性が低下し易くなる。 The average particle diameter D 50 of the inorganic pigment powder is 9 μm or less, and preferably 0.5 to 4 μm. The maximum particle diameter D max of the inorganic pigment powder is preferably 10 μm or less, and particularly preferably 2 to 8 μm. If the particle size of the inorganic pigment powder is too large, the screen printability tends to deteriorate, and the coloring property of the painting layer tends to deteriorate.

耐火性フィラー粉末の含有量は、好ましくは0〜40質量%、0〜20質量%、0〜15質量%、0〜10質量%、0〜5質量%、0〜1質量%、特に0〜0.1質量%未満である。耐火性フィラー粉末の含有量が多過ぎると、絵付層と低膨張基板の固着性が低下し易くなる。   The content of the refractory filler powder is preferably 0 to 40% by mass, 0 to 20% by mass, 0 to 15% by mass, 0 to 10% by mass, 0 to 5% by mass, 0 to 1% by mass, and particularly 0 to It is less than 0.1% by mass. If the content of the refractory filler powder is too large, the adhesiveness between the painting layer and the low expansion substrate tends to decrease.

耐火性フィラー粉末として、コーディエライト、ウイレマイト、アルミナ、リン酸ジルコニウム、ジルコン、ジルコニア、酸化スズ、ムライト、シリカ、β−ユークリプタイト、β−スポジュメン、β−石英固溶体、リン酸タングステン酸ジルコニウム等が使用可能である。   As the refractory filler powder, cordierite, willemite, alumina, zirconium phosphate, zircon, zirconia, tin oxide, mullite, silica, β-eucryptite, β-spodumene, β-quartz solid solution, zirconium phosphate tungstate, etc. Can be used.

本発明の複合粉末は、ビークルと混合して、複合粉末ペーストとして使用に供される。ビークルは、主に溶媒と樹脂で構成される。溶媒は、樹脂を溶解させつつ、複合粉末を均一に分散させる目的で添加される。樹脂は、ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。   The composite powder of the present invention is mixed with a vehicle and used as a composite powder paste. The vehicle is mainly composed of a solvent and a resin. The solvent is added for the purpose of uniformly dispersing the composite powder while dissolving the resin. The resin is added for the purpose of adjusting the viscosity of the paste. Moreover, a surfactant, a thickener, etc. can be added if necessary.

樹脂として、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、エチルセルロースは、熱分解性が良好であるため、好ましい。   As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid ester and ethyl cellulose are preferable because they have good thermal decomposability.

溶媒として、パインオイル、N、N’−ジメチルホルムアミド(DMF)、α−ターピネオール、高級アルコール、γ−ブチルラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、N−メチル−2−ピロリドン等が使用可能である。特に、α−ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。   As a solvent, pine oil, N,N'-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyl lactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl. Ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether , Tripropylene glycol monobutyl ether, propylene carbonate, N-methyl-2-pyrrolidone and the like can be used. In particular, α-terpineol is preferable because it has high viscosity and good solubility of resin and the like.

複合粉末ペーストは、例えば、複合粉末とビークルを混合した後、3本ロールミルで均一に混練することにより作製される。   The composite powder paste is prepared, for example, by mixing the composite powder and the vehicle and then kneading the mixture uniformly with a three-roll mill.

複合材料ペーストは、スクリーン印刷機等の塗布機を用いて低膨張基板上に塗布された後、乾燥工程、焼成工程に供される。これにより、低膨張基板の表面に絵付層を形成することができる。乾燥工程の条件は、70〜150℃で10〜60分間が一般的である。焼成工程は、樹脂を分解揮発させると共に、複合粉末を焼結させて、低膨張基板の表面に絵付層を固着させる工程である。焼成工程の条件は、650〜850℃で5〜30分間が一般的である。焼成工程で焼成温度が低い程、生産効率が向上すると共に、無機顔料粉末の発色性が向上するが、その一方で絵付層と低膨張基板の固着性が低下する。   The composite material paste is applied to a low expansion substrate by using a coating machine such as a screen printing machine, and then subjected to a drying step and a firing step. Thereby, the painting layer can be formed on the surface of the low expansion substrate. The conditions for the drying step are generally at 70 to 150° C. for 10 to 60 minutes. The firing step is a step of decomposing and volatilizing the resin and sintering the composite powder to fix the painting layer on the surface of the low expansion substrate. The conditions for the firing step are generally at 650 to 850° C. for 5 to 30 minutes. As the firing temperature is lower in the firing step, the production efficiency is improved and the color developability of the inorganic pigment powder is improved, but on the other hand, the adhesion between the painting layer and the low expansion substrate is lowered.

本発明の絵付層付き低膨張基板は、低膨張基板の表面に絵付層を有する絵付層付き低膨張基板であって、絵付層が複合粉末の焼結体であり、且つ複合粉末が上記の複合粉末であることが好ましい。本発明の絵付層付き低膨張基板は、本発明の複合粉末の技術的特徴を含むが、その内容は記載済みであるため、便宜上、その説明を省略する。   The low-expansion substrate with a painting layer of the present invention is a low-expansion substrate with a painting layer having a painting layer on the surface of the low-expansion substrate, wherein the painting layer is a sintered body of composite powder, and the composite powder is the above-mentioned composite. It is preferably a powder. The low-expansion substrate with a painted layer of the present invention includes the technical features of the composite powder of the present invention, but since its content has already been described, its explanation is omitted for convenience.

本発明の絵付層付き低膨張基板は、絵付層にβ−石英固溶体が析出していることが好ましい。このようにすれば、絵付層の熱膨張係数が大幅に低下するため、絵付層付き低膨張基板にクラックが発生する事態を的確に防止することができる。   In the low expansion substrate with a paint layer of the present invention, it is preferable that β-quartz solid solution is deposited on the paint layer. By doing so, the coefficient of thermal expansion of the painting layer is significantly reduced, so that it is possible to accurately prevent the occurrence of cracks in the low expansion substrate with the painting layer.

本発明の絵付層付き低膨張基板において、低膨張基板は、結晶化ガラス基板(特に透明結晶化ガラス基板)が好ましく、また主結晶としてβ−石英固溶体が析出していることも好ましい。このようにすれば、加熱耐久性、耐熱衝撃性を高めることができる。   In the low expansion substrate with a painted layer of the present invention, the low expansion substrate is preferably a crystallized glass substrate (particularly a transparent crystallized glass substrate), and it is also preferable that β-quartz solid solution is precipitated as a main crystal. With this, heating durability and thermal shock resistance can be improved.

結晶化ガラス基板の熱膨張係数は、−10×10−7〜30×10−7/℃、特に−5×10−7〜10×10−7/℃が好ましい。結晶化ガラス基板の熱膨張係数を低下させると、結晶化ガラス基板の加熱耐久性、耐熱衝撃性が向上する。その結果、使用時に急加熱、急冷却による熱衝撃が加わる調理器用トッププレートに好適となる。なお、調理器としては、電磁調理器、電気調理器、ガス調理器等がある。 The coefficient of thermal expansion of the crystallized glass substrate is preferably −10×10 −7 to 30×10 −7 /° C., and particularly preferably −5×10 −7 to 10×10 −7 /° C. When the coefficient of thermal expansion of the crystallized glass substrate is lowered, the heating durability and thermal shock resistance of the crystallized glass substrate are improved. As a result, it is suitable for a cooker top plate to which thermal shock due to rapid heating and rapid cooling is applied during use. Note that the cooker includes an electromagnetic cooker, an electric cooker, a gas cooker, and the like.

本発明の絵付層付き低膨張基板において、絵付層の厚みは1〜30μm、特に2〜10μmが好ましい。絵付層の厚みが小さ過ぎると、絵付の模様が不明確になる虞がある。一方、絵付層の厚みが厚過ぎると、絵付の模様にクラックが発生する虞がある。   In the low expansion substrate with a paint layer of the present invention, the thickness of the paint layer is preferably 1 to 30 μm, and particularly preferably 2 to 10 μm. If the thickness of the painting layer is too small, the pattern of the painting may become unclear. On the other hand, if the thickness of the painting layer is too thick, cracks may occur in the painting pattern.

以下、実施例に基づいて、本発明を説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。   Hereinafter, the present invention will be described based on examples. The following embodiments are merely examples. The present invention is not limited to the following examples.

表1は、本発明の実施例(試料No.1〜9)及び比較例(試料No.10、11)を示している。   Table 1 has shown the Example (sample No. 1-9) and comparative example (sample No. 10, 11) of this invention.

まず表中に記載のガラス組成になるように、原料を調合し、均一に混合し、ガラスバッチを得た後、ガラスバッチを白金坩堝に入れて、1400℃で3時間溶融した。その後、溶融ガラスをフィルム状に成形した。続いて、得られたガラスフィルムをボールミルにて粉砕した後、空気分級して、平均粒子径D50が2.5μmのガラス粉末を得た。 First, raw materials were blended so as to have the glass composition shown in the table and uniformly mixed to obtain a glass batch, which was then put into a platinum crucible and melted at 1400° C. for 3 hours. Then, the molten glass was formed into a film. Then, the obtained glass film was crushed by a ball mill and then air-classified to obtain a glass powder having an average particle diameter D 50 of 2.5 μm.

各ガラス粉末について、マクロ型DTA装置を用いて、軟化点及び結晶化温度を測定した。ここで、測定は、空気中で行い、昇温速度を10℃/分とした。なお、軟化点は、第四変曲点の温度を指しており、結晶化温度は、結晶析出による発熱ピーク温度を指している。   The softening point and crystallization temperature of each glass powder were measured using a macro type DTA device. Here, the measurement was performed in air, and the temperature rising rate was 10° C./min. The softening point refers to the temperature at the fourth inflection point, and the crystallization temperature refers to the exothermic peak temperature due to crystal precipitation.

主結晶は、ガラス粉末の圧粉体を700℃10分間の焼成条件で緻密に焼結させた後、所定形状に加工したものを測定試料とし、X線回折法で測定した時に、ピーク強度が最も大きかった結晶である。   The main crystal has a peak intensity when measured by X-ray diffractometry, which is obtained by densely sintering a green compact of glass powder under a firing condition of 700° C. for 10 minutes and then processing it into a predetermined shape. The largest crystal.

ガラス粉末の熱膨張係数は、TMA装置を用いて、30〜350℃の温度範囲で測定した値である。ここで、測定試料として、ガラス粉末の圧粉体を700℃10分間の焼成条件で緻密に焼結させた後、所定形状に加工したものを用いた。   The thermal expansion coefficient of the glass powder is a value measured in a temperature range of 30 to 350° C. using a TMA device. Here, as a measurement sample, a powder compact of glass powder was densely sintered under a firing condition of 700° C. for 10 minutes and then processed into a predetermined shape.

以下のようにしてガラス粉末の耐水性を評価した。すなわち、ガラス粉末の圧粉体を700℃10分間の焼成条件で緻密に焼結させた後、所定形状に加工したものを測定試料とし、90℃の水に2時間浸漬した時に、外観変化が認められなかったものを「○」、外観変化が認められたものを「×」として評価した。
The water resistance of the glass powder was evaluated as follows. That is, after compacting a green compact of a glass powder under a firing condition of 700° C. for 10 minutes, it was processed into a predetermined shape and used as a measurement sample, and when it was immersed in water at 90° C. for 2 hours, a change in appearance was observed. Those that were not recognized were evaluated as “◯”, and those that were observed in appearance change were evaluated as “x”.

次に、ガラス粉末と無機顔料粉末を表中に記載の割合(合計100%)で混合し、複合粉末を得た。ここで、無機顔料粉末として、Cr−Cu−Mn系複合酸化物(平均粒径D50が1.5μm、最大粒径Dmaxが4.0μm)を用いた。 Next, the glass powder and the inorganic pigment powder were mixed in the proportions shown in the table (total 100%) to obtain a composite powder. Here, as the inorganic pigment powder, a Cr—Cu—Mn-based composite oxide (average particle diameter D 50 is 1.5 μm, maximum particle diameter D max is 4.0 μm) is used.

更に、得られた複合粉末とビークルを混合後、3本ロールミルで均一に混練し、複合粉末ペーストを得た。なお、ビークルとして、エチルセルロースをα−テルピネオールに溶解させたものを用い、質量比で複合粉末/ビークルを2〜3に調整した。   Further, the obtained composite powder and the vehicle were mixed and then uniformly kneaded with a three-roll mill to obtain a composite powder paste. A vehicle prepared by dissolving ethyl cellulose in α-terpineol was used as the vehicle, and the composite powder/vehicle was adjusted to 2-3 by mass ratio.

続いて、複合粉末ペーストを10cm角の透明結晶化ガラス基板(日本電気硝子株式会社製N−0、主結晶:β−石英固溶体)の片面全体にスクリーン印刷した後、120℃で20分間乾燥した上で、700℃の電気炉に投入して、10分間焼成し、室温まで自然冷却することにより、厚み10μmの絵付層付き透明結晶化ガラス基板を得た。   Subsequently, the composite powder paste was screen-printed on one side of a 10 cm square transparent crystallized glass substrate (N-0 manufactured by Nippon Electric Glass Co., Ltd., main crystal: β-quartz solid solution), and then dried at 120° C. for 20 minutes. The above was placed in an electric furnace at 700° C., baked for 10 minutes, and naturally cooled to room temperature to obtain a transparent crystallized glass substrate with a paint layer having a thickness of 10 μm.

クラックの有無は、絵付層付き透明結晶化ガラス基板を観察して、クラックが認められなかったものを「○」、クラックが認められたものを「×」として評価した。   The presence or absence of cracks was evaluated by observing the transparent crystallized glass substrate with the paint layer, and those in which no cracks were observed were evaluated as “◯”, and those in which cracks were observed were evaluated as “x”.

耐摩耗性は、#1000のサンドペーパーを用いて、絵付層を荷重1.3kg、片道100mm/秒の速度で100回往復した後、絵付層が剥離しなかったものを「○」、絵付層が剥離したものを「×」として評価した。   Abrasion resistance is "○" when the painting layer was not peeled off after reciprocating 100 times with a load of 1.3 kg and a speed of 100 mm/sec for one way using sandpaper of #1000, and the painting layer What peeled off was evaluated as "x".

絵付層の耐水性は、90℃の水に24時間浸漬した時に、絵付層に外観変化が認められなかったものを「○」、外観変化が僅かに認められたものを「△」、外観変化が明確に認められたものを「×」として評価した。   The water resistance of the paint layer was "○" when no change was observed in the paint layer when it was immersed in water at 90°C for 24 hours, and "△" when the appearance change was slightly observed. What was clearly recognized was evaluated as "x".

絵付層の耐酸性は、40℃の0.1質量%HCl水溶液に1時間浸漬した時に、絵付層に外観変化が認められなかったものを「○」、外観変化が僅かに認められたものを「△」、外観変化が明確に認められたものを「×」として評価した。   The acid resistance of the paint layer is "○" when no change in appearance was observed in the paint layer when immersed in a 0.1% by mass HCl aqueous solution at 40°C for 1 hour, and when the appearance change was slightly observed. The evaluation was evaluated as “x” when “Δ” and the change in appearance was clearly recognized.

表1から明らかなように、試料No.1〜9は、熱膨張係数が低く、耐水性、耐酸性の評価が良好であった。一方、試料No.10は、モル比SiO/Bが小さかったため、耐水性、耐酸性の評価が不良であった。また、試料No.11は、焼成後に結晶が析出せず、絵付層付き透明結晶化ガラス基板とした場合に、クラックが発生した。 As is clear from Table 1, the sample No. Nos. 1 to 9 had a low coefficient of thermal expansion, and the evaluation of water resistance and acid resistance was good. On the other hand, sample No. In No. 10, since the molar ratio SiO 2 /B 2 O 3 was small, the evaluation of water resistance and acid resistance was poor. In addition, the sample No. In No. 11, crystals did not precipitate after firing, and cracks occurred in the case of a transparent crystallized glass substrate with a painting layer.

表2は、本発明の実施例(試料No.12〜16)を示している。   Table 2 has shown the Example (sample No. 12-16) of this invention.

まず表中に記載のガラス組成になるように、原料を調合し、均一に混合し、ガラスバッチを得た後、ガラスバッチを白金坩堝に入れて、1400℃で3時間溶融した。その後、溶融ガラスをフィルム状に成形した。続いて、得られたガラスフィルムをボールミルにて粉砕した後、空気分級して、平均粒子径D50が2.5μmのガラス粉末を得た。 First, raw materials were blended so as to have the glass composition shown in the table and uniformly mixed to obtain a glass batch. The glass batch was put into a platinum crucible and melted at 1400° C. for 3 hours. Then, the molten glass was formed into a film. Then, the obtained glass film was crushed by a ball mill and then air-classified to obtain a glass powder having an average particle diameter D 50 of 2.5 μm.

各ガラス粉末について、マクロ型DTA装置を用いて、軟化点及び結晶化温度を測定した。ここで、測定は、空気中で行い、昇温速度を10℃/分とした。なお、軟化点は、第四変曲点の温度を指しており、結晶化温度は、結晶析出による発熱ピーク温度を指している。   The softening point and crystallization temperature of each glass powder were measured using a macro type DTA device. Here, the measurement was performed in air, and the temperature rising rate was 10° C./min. The softening point refers to the temperature at the fourth inflection point, and the crystallization temperature refers to the exothermic peak temperature due to crystal precipitation.

主結晶は、ガラス粉末の圧粉体を700℃10分間の焼成条件で緻密に焼結させた後、所定形状に加工したものを測定試料とし、X線回折法で測定した時に、ピーク強度が最も大きかった結晶である。なお、試料No.12〜16の内、試料No.16がβ−石英固溶体の析出量が最も多く、異種結晶(β−スポジュメン)の析出量が最も少なかった。   The main crystal has a peak intensity when measured by X-ray diffractometry, which is obtained by densely sintering a green compact of glass powder under a firing condition of 700° C. for 10 minutes and then processing it into a predetermined shape. The largest crystal. Sample No. Sample No. No. 16 had the largest amount of β-quartz solid solution deposited, and the smallest amount of heterogeneous crystals (β-spodumene) deposited.

ガラス粉末の熱膨張係数は、TMA装置を用いて、30〜350℃の温度範囲で測定した値である。ここで、測定試料として、ガラス粉末の圧粉体を表中の焼成条件で緻密に焼結させた後、所定形状に加工したものを用いた。   The thermal expansion coefficient of the glass powder is a value measured in a temperature range of 30 to 350° C. using a TMA device. Here, as a measurement sample, a powder compact of glass powder was densely sintered under the firing conditions shown in the table and then processed into a predetermined shape.

以下のようにしてガラス粉末の耐水性を評価した。すなわち、ガラス粉末の圧粉体を700℃10分間の焼成条件で緻密に焼結させた後、所定形状に加工したものを測定試料とし、90℃の水に2時間浸漬した時に、外観変化が認められなかったものを「○」、外観変化が認められたものを「×」として評価した。   The water resistance of the glass powder was evaluated as follows. That is, after compacting a green compact of a glass powder under a firing condition of 700° C. for 10 minutes, it was processed into a predetermined shape and used as a measurement sample, and when it was immersed in water at 90° C. for 2 hours, a change in appearance was observed. Those that were not recognized were evaluated as “◯”, and those that were observed in appearance change were evaluated as “x”.

次に、ガラス粉末と無機顔料粉末を表中に記載の割合(合計100%)で混合し、複合粉末を得た。ここで、無機顔料粉末として、Cr−Cu−Mn系複合酸化物(平均粒径D50が1.5μm、最大粒径Dmaxが4.0μm)を用いた。 Next, the glass powder and the inorganic pigment powder were mixed in the proportions shown in the table (total 100%) to obtain a composite powder. Here, as the inorganic pigment powder, a Cr—Cu—Mn-based composite oxide (average particle diameter D 50 is 1.5 μm, maximum particle diameter D max is 4.0 μm) is used.

更に、得られた複合粉末とビークルを混合後、3本ロールミルで均一に混練し、複合粉末ペーストを得た。なお、ビークルとして、エチルセルロースをα−テルピネオールに溶解させたものを用い、質量比で複合粉末/ビークルを2〜3に調整した。   Further, the obtained composite powder and the vehicle were mixed and then uniformly kneaded with a three-roll mill to obtain a composite powder paste. A vehicle prepared by dissolving ethyl cellulose in α-terpineol was used as a vehicle, and the composite powder/vehicle was adjusted to 2-3 by mass ratio.

続いて、複合粉末ペーストを10cm角の透明結晶化ガラス基板(日本電気硝子株式会社製N−0、主結晶:β−石英固溶体)の片面全体にスクリーン印刷した後、120℃で20分間乾燥した上で、700℃の電気炉に投入して、10分間焼成し、室温まで自然冷却することにより、厚み10μmの絵付層付き透明結晶化ガラス基板を得た。   Subsequently, the composite powder paste was screen-printed on one side of a 10 cm square transparent crystallized glass substrate (N-0 manufactured by Nippon Electric Glass Co., Ltd., main crystal: β-quartz solid solution), and then dried at 120° C. for 20 minutes. The above was placed in an electric furnace at 700° C., baked for 10 minutes, and naturally cooled to room temperature to obtain a transparent crystallized glass substrate with a paint layer having a thickness of 10 μm.

クラックの有無は、絵付層付き透明結晶化ガラス基板を観察して、クラックが認められなかったものを「○」、クラックが認められたものを「×」として評価した。   The presence or absence of cracks was evaluated by observing the transparent crystallized glass substrate with the paint layer, and those in which no cracks were observed were evaluated as “◯”, and those in which cracks were observed were evaluated as “x”.

耐摩耗性は、#1000のサンドペーパーを用いて、絵付層を荷重1.3kg、片道100mm/秒の速度で100回往復した後、絵付層が剥離しなかったものを「○」、絵付層が剥離したものを「×」として評価した。   Abrasion resistance is "○" when the paint layer was not peeled after 100 times of reciprocating the paint layer with a load of 1.3 kg and a speed of 100 mm/sec one way using #1000 sandpaper. What peeled off was evaluated as "x".

絵付層の耐水性は、90℃の水に24時間浸漬した時に、絵付層に外観変化が認められなかったものを「○」、外観変化が僅かに認められたものを「△」、外観変化が明確に認められたものを「×」として評価した。   The water resistance of the paint layer was "○" when no change was observed in the paint layer when it was immersed in water at 90°C for 24 hours, and "△" when the appearance change was slightly observed. What was clearly recognized was evaluated as "x".

絵付層の耐酸性は、40℃の0.1質量%HCl水溶液に1時間浸漬した時に、絵付層に外観変化が認められなかったものを「○」、外観変化が僅かに認められたものを「△」、外観変化が明確に認められたものを「×」として評価した。   Regarding the acid resistance of the paint layer, when the paint layer was not immersed in 0.1% by mass HCl aqueous solution at 40° C. for 1 hour, the appearance change was not observed. The evaluation was evaluated as “x” when “Δ” and the change in appearance was clearly recognized.

表2から明らかなように、試料No.12〜16は、熱膨張係数が低く、耐水性、耐酸性の評価が良好であった。特に、試料No.12、14、16は、ガラス組成中にZnOを少量含むため、焼成温度が変動しても、熱膨張係数の変動幅が小さかった。つまり熱膨張係数の焼成温度依存性が小さかった。   As is clear from Table 2, the sample No. Nos. 12 to 16 had a low coefficient of thermal expansion, and were evaluated for water resistance and acid resistance. In particular, the sample No. Since Nos. 12, 14 and 16 contained a small amount of ZnO in the glass composition, the fluctuation range of the thermal expansion coefficient was small even if the firing temperature was changed. That is, the dependence of the coefficient of thermal expansion on the firing temperature was small.

本発明は、ガラス粉末、複合粉末及び絵付層付き低膨張基板は、絵付層を有する調理器用トッププレート等に好適であるが、石英基板、Si基板等の低膨張基板の被覆、封着等の用途にも応用可能である。なお、本発明の複合粉末を封着、被覆等の用途に適用する場合は、無機顔料粉末を導入しなくてもよく、代わりに、機械的強度を高めるために、耐火性フィラー粉末を0.1質量%以上導入してもよい。 The present invention, glass powder, low expansion substrate with the composite powder and the decorative layer is suitable to top plate for a cooking appliance or the like having a decorative layer, a quartz substrate, Si 3 N 4 coating of low expansion substrate such as a substrate, sealing It is also applicable to uses such as clothes. When the composite powder of the present invention is applied to applications such as sealing and coating, it is not necessary to introduce an inorganic pigment powder, and instead, a refractory filler powder is added in an amount of 0. You may introduce 1 mass% or more.

Claims (14)

ガラス組成として、モル%で、SiO 48〜75%、B 5〜23%、Al 5〜25%、LiO 10〜30%、ZnO 0〜25%、NaO 0〜4%、TiO 0.1〜12%を含有し、モル比SiO/Bが4.2以上であり、700℃10分間の条件で焼成すると、主結晶としてβ−石英固溶体が析出することを特徴とするガラス粉末。 As a glass composition, in mol%, SiO 2 48~75%, B 2 O 3 5~23%, Al 2 O 3 5~25%, Li 2 O 10~30%, 0~25% ZnO, Na 2 O 0 to 4%, TiO 2 0.1 to 12%, the molar ratio SiO 2 /B 2 O 3 is 4.2 or more, and β-quartz as a main crystal when fired at 700° C. for 10 minutes. A glass powder characterized in that a solid solution is deposited. ガラス組成中のBの含有量が16モル%以下であることを特徴とする請求項1に記載のガラス粉末。 Glass powder according to claim 1, wherein the content of B 2 O 3 in the glass composition is less than 16 mol%. ガラス組成中のZnOの含有量が0.1〜7.6モル%であることを特徴とする請求項1又は2に記載のガラス粉末。   Content of ZnO in a glass composition is 0.1-7.6 mol%, The glass powder of Claim 1 or 2 characterized by the above-mentioned. ガラス組成中に更にTiOとZrOを合量で0.1〜15モル%含むことを特徴とする請求項1〜3の何れかに記載のガラス粉末。 The glass powder according to any one of claims 1 to 3, further comprising TiO 2 and ZrO 2 in a total amount of 0.1 to 15 mol% in the glass composition. ガラス組成中に実質的にPbOとBiを含まないことを特徴とする請求項1〜4の何れかに記載のガラス粉末。 Glass powder according to claim 1, wherein the substantially contains no PbO and Bi 2 O 3 in the glass composition. 700℃10分間の条件で焼成した後の熱膨張係数が25×10−7/℃以下であることを特徴とする請求項1〜5の何れかに記載のガラス粉末。 The glass powder according to claim 1, which has a thermal expansion coefficient of 25×10 −7 /° C. or less after firing under the condition of 700° C. for 10 minutes. マクロ型DTA装置で測定した軟化点が550〜700℃であることを特徴とする請求項1〜6の何れかに記載のガラス粉末。   The softening point measured by a macro type DTA device is 550 to 700°C, and the glass powder according to any one of claims 1 to 6. ガラス粉末 55〜100質量%、無機顔料粉末 0〜45質量%、耐火性フィラー粉末 0〜40質量%を含有する複合粉末であって、
ガラス粉末が、請求項1〜7の何れかに記載のガラス粉末であることを特徴とする複合粉末。
A composite powder containing 55 to 100% by mass of glass powder, 0 to 45% by mass of inorganic pigment powder, and 0 to 40% by mass of refractory filler powder,
A composite powder, wherein the glass powder is the glass powder according to any one of claims 1 to 7.
無機顔料粉末がCr-Cu系複合酸化物であることを特徴とする請求項8に記載の複合粉末。   The composite powder according to claim 8, wherein the inorganic pigment powder is a Cr-Cu-based composite oxide. 低膨張基板の表面に絵付層を有する絵付層付き低膨張基板であって、
絵付層が複合粉末の焼結体であり、且つ複合粉末が請求項8又は9に記載の複合粉末であることを特徴とする絵付層付き低膨張基板。
A low expansion substrate with a painting layer having a painting layer on the surface of the low expansion substrate,
A low expansion substrate with a paint layer, wherein the paint layer is a sintered body of the composite powder, and the composite powder is the composite powder according to claim 8 or 9.
絵付層にβ−石英固溶体が析出していることを特徴とする請求項10に記載の絵付層付き低膨張基板。   The low expansion substrate with a paint layer according to claim 10, wherein the β-quartz solid solution is deposited on the paint layer. 低膨張基板が透明結晶化ガラス基板であり、且つ主結晶としてβ−石英固溶体が析出していることを特徴とする請求項10又は11に記載の絵付層付き低膨張基板。   The low expansion substrate with a paint layer according to claim 10 or 11, wherein the low expansion substrate is a transparent crystallized glass substrate, and β-quartz solid solution is deposited as a main crystal. 低膨張基板が石英基板であることを特徴とする請求項10又は11に記載の絵付層付き低膨張基板。 The low expansion substrate with a painted layer according to claim 10 or 11 , wherein the low expansion substrate is a quartz substrate. 調理器用トッププレートに用いることを特徴とする請求項10〜12の何れかに記載の絵付層付き低膨張基板。   The low expansion substrate with a painted layer according to claim 10, which is used as a top plate for a cooker.
JP2015034943A 2014-11-25 2015-02-25 Low expansion substrate with glass powder, composite powder and painting layer Expired - Fee Related JP6701541B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/081982 WO2016084627A1 (en) 2014-11-25 2015-11-13 Glass powder, composite powder, and low expansion substrate with decorative layer
TW104138859A TW201627246A (en) 2014-11-25 2015-11-24 Glass powder, composite powder, and low expansion substrate with decorative layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014237635 2014-11-25
JP2014237635 2014-11-25

Publications (2)

Publication Number Publication Date
JP2016104684A JP2016104684A (en) 2016-06-09
JP6701541B2 true JP6701541B2 (en) 2020-05-27

Family

ID=56102298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034943A Expired - Fee Related JP6701541B2 (en) 2014-11-25 2015-02-25 Low expansion substrate with glass powder, composite powder and painting layer

Country Status (2)

Country Link
JP (1) JP6701541B2 (en)
TW (1) TW201627246A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070774A1 (en) * 2019-10-08 2021-04-15 日本電気硝子株式会社 Cooker top plate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303547A (en) * 1979-12-28 1981-12-01 International Business Machines Corporation Luminescent material
JP3858292B2 (en) * 1995-11-02 2006-12-13 日本電気硝子株式会社 Low expansion crystallized glass decorative composition and decorative low expansion crystallized glass plate
DE19721737C1 (en) * 1997-05-24 1998-11-12 Schott Glas Lead- and cadmium-free glass composition for glazing, enamelling and decorating glasses or glass ceramics as well as processes for the production of a glass ceramic coated with them
DE19834801C2 (en) * 1998-08-01 2002-08-08 Schott Glas Lead and cadmium-free glass composition for glazing, enamelling and decorating glasses or glass ceramics as well as processes for the production of a glass ceramic coated with them
JP3988467B2 (en) * 2002-01-17 2007-10-10 鳴海製陶株式会社 Conductive paste, conductive coating-coated glass substrate and method for producing the same
US20070123410A1 (en) * 2005-11-30 2007-05-31 Morena Robert M Crystallization-free glass frit compositions and frits made therefrom for microreactor devices
JP2007161542A (en) * 2005-12-15 2007-06-28 Narumi China Corp Glass paste and abrasion-resistant glass plate using the same
JP2008285384A (en) * 2007-05-21 2008-11-27 Asahi Glass Co Ltd Fluorescent glass particles
JP2011084447A (en) * 2009-10-19 2011-04-28 Nippon Electric Glass Co Ltd Non-lead glass and composite material
JPWO2011132753A1 (en) * 2010-04-21 2013-07-18 旭硝子株式会社 Manufacturing method of glass member, flat lens and glass paste
JP2013055269A (en) * 2011-09-06 2013-03-21 Nippon Electric Glass Co Ltd Wavelength conversion member and light-emitting device

Also Published As

Publication number Publication date
JP2016104684A (en) 2016-06-09
TW201627246A (en) 2016-08-01

Similar Documents

Publication Publication Date Title
US8007930B2 (en) Zinc containing glasses and enamels
KR20160014580A (en) Composite powder, composite powder paste, and glass plate with colored layer
KR20160106574A (en) Composite powder and paste of composite powder
JP4930897B2 (en) Bi2O3-B2O3 sealing material
JP4586184B2 (en) Glass powder for ceramic color and ceramic color composition
CN104478217A (en) Environment-friendly copper ruby glass glaze, preparation method of environment-friendly copper ruby glass glaze and method for preparing copper ruby glass glaze surface from environment-friendly copper ruby glass glaze
JP6260770B2 (en) Glass, glass powder, composite powder and glass plate with colored layer
JP6701541B2 (en) Low expansion substrate with glass powder, composite powder and painting layer
WO2016084627A1 (en) Glass powder, composite powder, and low expansion substrate with decorative layer
JP6686410B2 (en) Crystallized glass substrate with glass powder, composite powder and painting layer
JP5668322B2 (en) Optical glass, glass frit and translucent substrate with glass layer
US10934206B2 (en) Top plate for cooking device
JP2013103871A (en) Low expansion glass and pasty glass composition
JP2011121809A (en) Glass composition for masking ink, masking ink, filter substrate and method for manufacturing the filter substrate, and display device
WO2018066295A1 (en) Borosilicate glass, composite powder material, and composite powder material paste
JP2011173762A (en) Glossing glaze for low temperature-fired tile with reduced gas generation
JP2015137190A (en) Composite powder and paste of composite powder
JP6587128B2 (en) Glass powder and composite powder using the same
JP2009078955A (en) Lead-free ceramic color composition
WO2016175093A1 (en) Glass powder and composite powder using same
JP2023028281A (en) Powder material, powder material paste and fired film
JPH07291659A (en) Colored ceramic composition, glass plate produced therefrom and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200416

R150 Certificate of patent or registration of utility model

Ref document number: 6701541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees