JP6698512B2 - 水素製造装置 - Google Patents

水素製造装置 Download PDF

Info

Publication number
JP6698512B2
JP6698512B2 JP2016248047A JP2016248047A JP6698512B2 JP 6698512 B2 JP6698512 B2 JP 6698512B2 JP 2016248047 A JP2016248047 A JP 2016248047A JP 2016248047 A JP2016248047 A JP 2016248047A JP 6698512 B2 JP6698512 B2 JP 6698512B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen production
reaction
light absorbing
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016248047A
Other languages
English (en)
Other versions
JP2017210400A (ja
Inventor
秋山 雅英
雅英 秋山
丈司 大隈
丈司 大隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JP2017210400A publication Critical patent/JP2017210400A/ja
Application granted granted Critical
Publication of JP6698512B2 publication Critical patent/JP6698512B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本開示は、水素製造装置に関する。
近年、化石燃料の消費に伴う二酸化炭素の増加による地球温暖化などの問題の解決策として、化石燃料に代わって二酸化炭素を排出しないクリーンな再生可能エネルギーが注目されている。
再生可能エネルギーの一つである太陽光エネルギーは枯渇の心配が無い。また、温室効果ガスの削減に貢献できる。このような状況の中、一次エネルギーを太陽光に求め、二次エネルギーを水素で支える形は理想的なクリーンエネルギーシステムの一つであり、その確立が急務である。
例えば、太陽光エネルギーを化学エネルギーに変換する方法を適用した例として、セラミック部材を反応系担体として用いた水素製造装置が提案されている(例えば、特許文献1を参照)。この水素製造装置は、セラミック部材が加熱された際に起こる還元−酸化の反応を利用している。
特開2009−263165号公報
しかしながら、特許文献1に開示された発明の場合、生成した水素がその水素の生成反応の進行を低下させるという問題がある。
従って、本発明は、水素の生成反応の低下を抑えることのできる水素製造装置を提供することを目的とする。
本発明の水素製造装置は、太陽光エネルギーを受けて酸化・還元反応を起こす反応部と、該反応部に水を供給する水供給部と、前記反応部から発生する水素を回収する回収部とを備えており、前記反応部に隣接させて水素吸蔵部材が設けられているものである。
本発明によれば、水素の生成反応の低下を抑えることができる。
本実施形態の水素製造装置を稼働させたときの状態を模式的に示す断面図であり、(a)は、水素製造用部材から酸素が生成している状態、(b)は同水素製造用部材から水素が生成している状態である。 本実施形態の水素製造装置の反応部を構成する光吸収部材の例を示すものであり、(a)は、光吸収部材が金属粒子含有複合体である場合、(b)は、光吸収部材が金属膜積層体である場合である。 水素製造装置の反応部に適用されている水素製造用部材の例を模式的に示す断面図である。 反応部の外観構造を模式的に示す斜視図である。(a)は平板型、(b)は同軸タイプの中空円筒型、(c)は非同軸タイプの中空円筒型である。 光吸収部材と水素製造用部材との間に金属膜を設けた反応部の構成を示す断面模式図である。
本実施形態の水素製造装置について図1に基づいて説明する。図1は、本実施形態の水素製造装置を稼働させたときの状態を模式的に示す断面図であり、(a)は、水素製造用部材から酸素が生成している状態、(b)は同水素製造用部材から水素が生成している状態である。
本実施形態の水素製造装置Aは、容器1内に反応部3と水素吸蔵部材5とが据えられた構成となっている。また、容器1には、反応部1から酸素を排出させるための排出口7が取り付けられている。また、容器1には、反応部3に水を供給する水供給部9と、反応部3から発生する水素ガスを回収する回収部11とが取り付けられている。また、容器1の上面板1aには、太陽光を取り込むための窓1bが設けられている。この場合、窓1bには透明板が設置される。
また、この水素製造装置Aには、反応部1が太陽光を受けたり、遮ったりするための遮蔽板13が設けられている。遮蔽板13は不透明の板状のものであれば良く、材料としては、プラスチック、金属および木材などを使用できる。
反応部3は、太陽光エネルギー(図1(a)に示した白地の矢印)を受けて酸化・還元反応を起こす部分である。反応部3は、太陽光を熱に変える光吸収部材3aと、加熱されたときに水素を生成する水素製造用部材3bとで構成されている。
本実施形態の水素製造装置によれば、水素が発生する反応部3に対して、これに隣接させるようにして水素吸蔵部材5が設けられていることから、反応部3から発生する水素を逐次水素吸蔵部材5に取り込むことができる。これにより反応部3における酸化・還元反応の速度の低下が抑えられ、水素の回収率を高めることができる。
以下、本実施形態の水素製造装置を構成する各部材の特徴とその効果について説明する。
図2は、本実施形態の水素製造装置の反応部を構成する光吸収部材の例を示すものであり、(a)は、光吸収部材が金属粒子含有複合体である場合、(b)は、光吸収部材が金属膜積層体である場合である。
図2(a)に示す光吸収部材3aは、緻密な誘電体3aaの内部に金属粒子またはセラミック粒子のいずれかの粒子状物質3abを含有させたものである。以下、これを粒子状物質含有複合体という場合がある。金属粒子としては、タングステン、モリブデン、ニオブ、ニッケル、銅、銀、金、白金およびパラジウムの群から選ばれる1種の金属を選ぶことができる。また、セラミック粒子としては、上記した金属の代わりに、金属に炭素(C)または窒素(N)、あるいは炭素(C)および窒素(N)の両方が結合した化合物も適用することができる。当該化合物としては、炭化タンタル(TaC)、炭化バナジウム(VC)、窒化チタン(TiN)、炭化チタン(TiC)、炭窒化チタン(TiCN)、炭化ニオブ(NbC)および窒化ニオブ(NbN)の群から選ばれる少なくとも1種を挙げることができる。
光吸収部材3aを構成する粒子状物質3abの平均粒径は、例えば、5〜50nmが良
い。一方、粒子状物質3abを取り囲む誘電体3aaの開気孔率としては5%以下であるのが良い。誘電体3aaの材料としては、光の透過性が高く、耐熱性に優れるという点から酸化ケイ素を主成分とする低熱膨張性のガラスが好適なものとなる。なお、誘電体3aaとしては、後述する水素製造用部材3bを構成する絶縁体3bbの材料と同様の成分からなるものを適用することもできる。
また、光吸収部材3aとしては、上記した緻密な誘電体3aaの内部に粒子状物質3abを含有させたものに代えて、金属系膜の積層体を適用することもできる。これを以下、金属系膜積層体という場合がある。金属系膜積層体としては、例えば、タングステン膜3ac、ケイ化鉄(FeSi)膜3adおよび酸化ケイ素膜3aeが層状に形成された積層体を挙げることができる。この場合、酸化ケイ素膜3aeの下層側に形成されたタングステン膜3acおよびケイ化鉄膜3adが特定の波長領域の光を吸収する役割を担う。また同時に、誘電体である酸化ケイ素膜3aeが下層側のタングステン膜3acおよびケイ化鉄膜3adからの輻射を抑える機能を果たすものとなる。
次に、水素製造用部材3bから水素が生成する反応について説明する。図3は、水素製造装置の反応部に適用されている水素製造用部材の一実施形態を模式的に示す断面図である。この場合、水素製造用部材3bは、微細なセラミック粒子3baが多孔質の絶縁体3bb中に分散されたセラミック複合体によって構成されている。
絶縁体3bbは、セラミック粒子3baとは主成分の異なる材料によって形成されている。絶縁体3bbの材料としては、酸化ケイ素、酸化アルミニウム、酸化亜鉛、アルカリ土類元素の酸化物、希土類元素の酸化物およびこれらの複合酸化物が好適な材料となる。この場合、絶縁体3bbは多数の開気孔3bcを有しており、その開気孔3bcは水素製造用部材3bを構成しているセラミック複合体の外表面3Baから内部のセラミック粒子3baに達するように延びている。この場合、水素製造用部材3bの開気孔率は10%以上であるのが良い。水素製造用部材3bの開気孔率はセラミック粒子3baを含めたセラミック複合体について測定した値を用いる。これはセラミック粒子3baが緻密体であり、絶縁体3bbの気孔率がそのままセラミック複合体3Bの気孔率に相当するものとなるからである。
セラミック粒子3baは、AXO3±δ(但し、0≦δ≦1、A:希土類元素、アルカリ土類元素、およびアルカリ金属元素のうちの少なくとも一種、X:遷移金属元素およびメタロイド元素のうちの少なくとも一種、O:酸素)、酸化セリウムおよび酸化ジルコニウムの群から選ばれる少なくとも1種を主成分とするものである。この場合、セラミック粒子3baの平均粒径(図3では符号Dとして表す。)は5〜200nmであるのが良い。ここで、希土類元素としては、周期表第6周期のランタニド元素の中から選ばれる少なくとも1種が良い。遷移金属元素としては、Ti、V、Cr、Mn、Zr、NbおよびTaの群から選ばれる少なくとも1種が良い。メタロイド元素としては、B、Si、Ge、As、Se、Sb、Te、PoおよびAtの群から選ばれる少なくとも1種が良い。なお、AXO3±δ、酸化セリウムおよび酸化ジルコニウムの群から複数種を組み合せた例としては、酸化ジルコニウムの一部を酸化セリウムで置換された複合酸化物を挙げることができる。
ここで、主成分とは、例えば、水素製造用部材3bについてX線回折を用いたリートベルト解析を行った場合に、絶縁体3bbに該当する材料のX線回折ピークを除いたX線回折ピークの中で求められる割合で60質量%以上となっているものを言う。
次に、図3に示した水素製造用部材3bにおける反応過程について説明する。まず、上記した水素製造用部材3bが高温の環境下に置かれると、それを構成するセラミック粒子
3baには、下記(1)式に示す欠陥反応が起きる。
Figure 0006698512
この場合、水素製造用部材3bを構成しているセラミック粒子3baが微粒であることから、上記の欠陥反応によってセラミック粒子3ba内に生成した電子が、そのセラミック粒子3baの表面に止まりやすくなる。これによりセラミック粒子3baにおいて表面プラズモン効果が高まる。こうして水素製造用部材3b自体を高温状態に変化させることができる。その結果、セラミック粒子3ba自体が光を吸収する機能を有するようになる。
このような反応を起こすセラミック粒子3baを多孔質の絶縁体3bb中に存在させた状態にすると、セラミック粒子3baは、高温の状態では、(2)式のように、酸素が放出する反応(以下、酸素放出反応という場合がある。)を起こすものとなる。一方、酸素放出反応が起きる温度よりも低い温度においては、(3)式に示すような水素が生成する反応(以下、水素生成反応という場合がある。)を起こすものとなる。
Figure 0006698512
Figure 0006698512
これは水素製造用部材3bを構成する絶縁体3bbの内部において、セラミック粒子3baに上記した欠陥反応によって表面プラズモン効果が現れることに加えて、化2および化3として示した還元・酸化反応が起きるためである。
また、セラミック粒子3baの表面プラズモン効果を高められるという点から、セラミック複合体3B中に含まれるセラミック粒子3baの割合は体積比で20〜80%であるのが良い。また、セラミック粒子3baは個数比で90%以上が絶縁体3bb中に単一の粒子として孤立した状態で分散して存在しているのが良い。つまり、この水素製造用部材3bでは、セラミック粒子3baが絶縁体3bbを構成する材料を介して個数比で90%以上の割合で個々に存在しているのが良い。
なお、水素製造用部材3bの内部に存在するセラミック粒子3baの割合は、セラミック複合体3Bの断面を電子顕微鏡およびこれに付設の分析器(EPMA)を用いて求める。例えば、水素製造用部材3bを研磨してセラミック粒子3baを露出させ、その断面に存在するセラミック粒子3baが30〜100個入る所定の領域を指定する。次に、この領域の面積およびこの領域内に存在するセラミック粒子3baの合計面積を求め、領域の面積に対するセラミック粒子3baの合計面積を求める。こうして求めた面積割合を体積割合とする。セラミック粒子3baが絶縁体3bb中において単一の粒子として孤立した状態で存在しているか否かの判定も上記の観察から個数をカウントして行う。
次に、本実施形態の水素製造装置Aを稼働させたときの状態について説明する。この水素製造装置Aは、図1(a)に示すように、反応部3の上面から遮蔽板13を移動させると、反応部3が光(太陽光)を受けるようになる。これにより反応部3内に設置した水素製造用部材3bが高温の状態となり、水素製造用部材3bに還元反応が起こり酸素が発生する。
次に、図1(b)に示すように、反応部3を遮蔽板13で覆うようにすると、反応部3は太陽光が遮られる。このとき反応部3に水を供給して、水を水素製造用部材3bに接触させると、水素製造用部材3bは、還元反応が起こっていた図1(a)に示す状態から冷やされる。これにより還元反応が納まる。
次に、反応部3においては、水との反応によって酸化反応が起こり、水素製造用部材3bの内部に水素ガスが発生する。本実施形態の水素製造装置Aによれば、太陽光からの熱を効率良く吸収して水素の生成効率を高めることができる。
この水素製造装置Aでは、水素を生成させる反応部3に水素吸蔵部材5が設けられている。この場合、水素吸蔵部材5としては、以下に例示する水素吸蔵合金を適用するのが良い。反応部3に水素吸蔵部材5を隣接させておくと、反応部3から排出される水素ガスを一旦固体である水素吸蔵部材5中に溜めることができる。この場合、反応部3を含む容器1内の水素量を一時的に減らすことができるため、上記化3式で示される水素の生成反応を絶えず右辺側へ導くことができる。これにより水素の反応速度を高めることができる。また、生成する水素(ガス)が固体である水素吸蔵部材5に吸収されることから、生成した水素の体積を大幅に減らすことができる。これにより反応部3が収納された容器1および回収部11の小型化を図ることができる。
この水素製造装置Aの場合、水素が生成するときの水素製造用部材3bの温度は、せいぜい300〜700℃である。水素の生成する温度がこうした比較的低い温度であることから、上記した化3の反応は、水素が反応系に止まることによって影響を受けやすい。このため生成した水素が容器1内において可能な限り水素が生成する反応系に影響を及ぼさないようにしなければならない。つまり、水素が生成している間、その水素が水素製造用部材3bの中に存在し続けるのを極力回避することが必要となる。そのため水素吸蔵部材5は水素製造用部材3bに隣接する配置とするのが良い。
なお、水素吸蔵部材5は、反応部3に接した状態よりも、図1(a)(b)に示すように、反応部3との間に所定の間隔を空けるように空間15を設けて配置するのが良い。水素吸蔵部材5を反応部3との間に空間15を設けた配置にすると、反応部3において生成した水素を一旦空間15に溜めることができるため、水素が水素吸蔵部材5へ吸蔵されるときの速度を調整することができる。こうして上記化3式に示した水素の生成反応を安定に進行させることが可能になる。
水素吸蔵部材5に適用可能な水素吸蔵合金としては、AB2型である、チタン、マンガ
ン、ジルコニウム、ニッケルなどの遷移元素の合金をベースとしたもの。AB5型である、希土類元素、ニオブ、ジルコニウムに対して触媒効果を持つ遷移元素(ニッケル、コバルト、アルミニウムなど)を含む合金をベースとしたもの(LaNi、ReNiなど)。ならびに、Ti−Fe系、V系、Mg合金、Pd系およびCa系合金を挙げることができる。
ここで、反応部3は、図1(a)(b)に示すように、容器1の中に減圧された状態で収容されているのが良い。これにより光吸収部材3aによって生成した熱が反応部3以外の外界へ移動するのを防ぐことができる。これにより光吸収部材3aによって供給される熱を反応部3内に止めて水素製造用部材3bへ効率良く供給することができる。
また、反応部3を減圧した状態にすると、反応部3の水素製造用部材3b側で酸素欠陥が形成されやすくなることから、水素製造用部材3bの還元反応が進み、水素製造用部材3bから生成する不定比組成の金属酸化物量をさらに増加させることができる。
この場合、反応部3および水素吸蔵部材5を配置した容器1には、当該容器1内から気体を吸引するための吸気口を設ける必要があるが、本実施形態の水素製造装置Aでは、容器1に2つの吸気口17a、17bを設けておくのが良い。この場合、図1(a)(b)に示した模式図を例にすれば、2つの吸気口17a、17bのうち、一方(この場合、吸気口17a)は容器1内の全体を減圧するのに用いるものとなる。これは光吸収部材3aの周囲から熱が容器1の周囲に移動するのを抑えるためである。他方の吸気口(この場合、吸気口17b)は、光吸収部材3aを貫通させて水素製造用部材3bに達するようにしておくのが良い。これは、容器1内に設置された反応部3の中で、水素製造用部材3bの内部の圧力を調整するためのものである。例えば、水素製造用部材3bの内部の圧力を光吸収部材3aの周囲よりも高い圧力に調整するためである。こうすると、水素製造用部材3bの内部に水蒸気が供給されたときに、その内部において、酸化反応が進みやすくなり、生成する水素の量をさらに増やすことができる。
図4は、反応部の外観構造を模式的に示す斜視図である。(a)は平板型、(b)は同軸タイプの中空円筒型、(c)は非同軸タイプの中空円筒型である。つまり、本実施形態の水素製造装置Aを構成する反応部3としては、図3(a)に示す平板型の積層構造体、図4(b)に示す同軸タイプの中空円筒管型の積層構造体あるいは図4(c)に示す非同軸タイプの中空円筒型の積層構造体が好適なものとなる。
ここで、中空円筒管型の積層構造体に関して同軸タイプとは、円筒形状の水素製造用部材33bの断面の中心軸C1と円筒形状の光吸収部材33aの断面の中心軸C2とが同じ位置にある構造のことを言う。言い換えると、反応部33の内側に配置された水素製造用部材33bの中心軸C1が反応部33の外周(光吸収部材33aの外周)を周縁としたときの中心軸C0と重なっている構造である。
一方、非同軸タイプとは、円筒形状の水素製造用部材33bの断面の中心軸C1と円筒形状の光吸収部材33aの断面の中心軸C2とが重なっていない構造(非同軸構造)のことを言う。言い換えると、反応部33の内側に配置された水素製造用部材33bの中心軸C1が反応部33の外周(光吸収部材33aの外周)を周縁としたときの中心軸C0からずれた位置にある。
つまり、非同軸タイプでは、例えば、図4(c)に示すように、光吸収部材33aの断面の厚みがt1>t2の関係となり異なっている。この場合、円筒形状の水素製造用部材33bの断面も光吸収部材33aを含めた反応部33の断面の形状に相似形であるのが良い。
平板型の積層構造体の場合、平板状の水素製造用部材33bを上下から光吸収部材33aが挟む構造となる。このため水素製造装置Aの薄型化を図ることができる。これにより軽量化が可能になるため家屋の屋根などに設置するのに好適なものとなる。
中空円筒管型の積層構造は円筒形状の水素製造用部材33bの外側に円筒形状の光吸収部材33aが取り巻く構造となる。この構造の場合に、中空円筒管型の反応部33を複数本並列に並ぶように配置する構造にすると、光吸収部材33aの表面積を大きくすることができる。これにより光吸収率の高い反応部33を完成させることができる。
中空円筒管型の積層構造体については、光吸収率を高められるという点で、同軸タイプの中空円筒管型よりも非同軸タイプの中空円筒型の積層構造体の方が良い。非同軸タイプの中空円筒型の積層構造体の場合、図4(c)に示すように、光吸収部材33aの断面の厚みの厚い方を太陽光が照射される上側にすると、光吸収部材33aの体積割合が大きくなり、光の吸収量を高めることができる。
このとき円筒形状の水素製造用部材33bの断面の形状と光吸収部材33aの断面の形状とが相似形であり、水素製造用部材33bの厚みの厚い側と光吸収部材33aの断面の厚みの厚い側とが、中心軸C0を中心にして同じ側にあると、太陽光が照射される方向において、光吸収量および水素の生成量の両方を同時に高めることができる。
図5は、光吸収部材と水素製造用部材との間に金属膜を設けた反応部の構成を示す断面模式図である。図5では、光吸収部材3aとして、図2(a)に示した粒子状物質含有複合体を適用した例を示しているが、光吸収部材3aとしては、これに限らず、図2(b)に示した金属膜積層体も同様に適用することができる。
図5に示すように、反応部3としては、光吸収部材3aと水素製造用部材3bとの間に金属膜3cを介層させておくのが良い。光吸収部材3aと水素製造用部材3bとの間に金属膜3cが設けられると、光吸収部材3aに入ってきた光が金属膜3cの表面で反射する。これにより光吸収部材3aに入ってきた光が水素製造用部材3b側にまで透過し難くなり、光吸収部材3aの内部に光が集中するようになる。こうして光吸収部材3aでの発熱量を高めることができる。金属膜3cの材料としては、光の反射性の高い金属であれば良い。例えば、タングステン、モリブデン、ニッケル、銅、銀、金、白金およびパラジウムなどが好適なものとなる。
以下、水素製造装置を以下の仕様にて作製し、水素の生成量を評価した。まず、容器、排出口、水供給部、回収部、吸気口および遮蔽板をSUS−316材を用いて作製し、図1の構造になるように組み立てた。
次に、La0.8Sr0.2MnOを主成分とし、MnサイトにFeを0.5モル置換したペロブスカイト材料を用いて水素製造用部材を作製した。このペロブスカイト材料は、それぞれ金属アルコキシドを準備し、上記組成となるように調製した後、噴霧熱分解を行って合成した。次いで、合成した粉末を水中に投入し、時間毎の沈降状態を確認して分級操作を行い、平均粒径が55nmのペロブスカイト材料(セラミック粒子)の粉末を得た。
次に、得られたペロブスカイト材料の粉末にガラス粉末(ホウ珪酸ガラス)を混合して混合粉末を調製した。この場合、混合粉末の組成は、ペロブスカイト材料の粉末が70質量%、ガラス粉末が30質量%となるようにした。これは水素製造用部材中におけるペロ
ブスカイト材料の割合が45体積%となる割合である。
次に、得られた混合粉末に有機バインダとしてPVA(ポリビニルアルコール)を10質量%添加して、成形体を作製し、脱脂後、大気中、赤外線イメージ炉を用いて最高温度1400℃、保持時間約1秒の条件にて加熱を行い、水素製造用部材となるセラミック複合体を得た。
作製した水素製造用部材は、サイズが10mm×10mm×5mmとなるように研磨加工した。また、作製した水素製造用部材の断面を電子顕微鏡およびこれに付設の分析器(EPMA)を用いて分析した。この場合、水素製造用部材を構成しているセラミック粒子は粒成長がほとんど無く、その平均粒径は加熱前の状態と同等であった。
光吸収部材には、平均粒径が40nmのタングステン粒子を30質量%ほどシリカガラス中に分散させた粒子状物質含有複合体を適用した。加熱の条件は水素製造用部材の場合と同様の条件とした。
次に、作製した光吸収部材の一方の表面に金属膜として金(Au)を蒸着して、これに水素製造用部材を重ねて加熱して反応部を作製した。
次に、水素吸蔵部材としてLaNiを準備し、これを図1に示すように、反応部との間を2mmほど空けて容器内に取り付けた。
水素(ガス)の生成量は水素製造装置の回収部にガスクロマトグラフ装置を設置して測定した。この場合、水素製造装置は反応部を減圧した上で太陽光を1SUNの状態で受けるようにして、10サイクルを経て得られた生成量を測定した。
ここでは、反応部に水素吸蔵部材を隣接させた本例の構成と、容器内に水素吸蔵部材を設置しない比較例の構成との間で水素の生成量を比較した。本例の構成での水素の生成量は、1.65ml/gであったが、水素吸蔵部材を設置しない比較例の構成では、1.1ml/gであった。本例の方では水素の生成反応の低下が抑えられていた。
A・・・・・・・・・水素製造装置
1・・・・・・・・・容器
1b・・・・・・・・窓
3・・・・・・・・・反応部
3a、33a・・・・光吸収部材
3aa・・・・・・・誘電体
3ab・・・・・・・粒子状物質
3b、33b・・・・水素製造用部材
3ba・・・・・・・セラミック粒子
3bb・・・・・・・絶縁体
3c・・・・・・・・金属膜
5・・・・・・・・・水素吸蔵部材
7・・・・・・・・・排出口
9・・・・・・・・・水供給部
11・・・・・・・・回収部
13・・・・・・・・遮蔽板
15・・・・・・・・空間
17a、17b・・・吸気口

Claims (14)

  1. 太陽光エネルギーを受けて酸化・還元反応を起こす反応部と、
    該反応部に水を供給する水供給部と、
    前記反応部から発生する水素を回収する回収部と
    を備えており、前記反応部に隣接させて水素吸蔵部材が設けられている
    ことを特徴とする水素製造装置。
  2. 前記水素吸蔵部材が前記反応部との間に空間を設けて配置されていることを特徴とする請求項1に記載の水素製造装置。
  3. 前記反応部が減圧可能な容器内に収容されていることを特徴とする請求項1または2に記載の水素製造装置。
  4. 前記容器には、2つ以上の吸気口が設けられていることを特徴とする請求項3に記載の水素製造装置。
  5. 前記2つの吸気口のうちの一方は、前記容器内全体の減圧に供するものであり、他方は前記反応部内の減圧に供するものであることを特徴とする請求項4に記載の水素製造装置。
  6. 前記容器には、太陽光を取り込むための窓が設けられていることを特徴とする請求項3乃至5のうちいずれかに記載の水素製造装置。
  7. 前記反応部が、平板状の水素製造用部材と平板状の光吸収部材との積層構造体であることを特徴とする請求項1乃至6のうちいずれかに記載の水素製造装置。
  8. 前記反応部は、円筒形状の水素製造用部材を円筒形状の光吸収部材が取り巻く中空円筒型の積層構造体であることを特徴とする請求項1乃至6のうちいずれかに記載の水素製造装置。
  9. 前記中空円筒型の積層構造体は、円筒形状の水素製造用部材の断面の中心軸が円筒形状の光吸収部材の断面の中心軸と重なっていない非同軸構造であることを特徴とする請求項8に記載の水素製造装置。
  10. 前記水素製造用部材は、平均粒径が5〜200nmである複数のセラミック粒子が、該セラミック粒子とは異なる組成を有する多孔質の絶縁体中に分散されたものであり、前記セラミック粒子が、AXO3±δ(但し、0≦δ≦1、A:希土類元素、アルカリ土類元素、およびアルカリ金属元素のうちの少なくとも一種、X:遷移金属元素およびメタロイド元素のうちの少なくとも一種、O:酸素)、酸化セリウムおよび酸化ジルコニウムの群から選ばれる少なくとも1種を主成分とするセラミック複合体からなることを特徴とする請求項1乃至9のうちいずれかに記載の水素製造装置。
  11. 前記水素製造用部材中における前記セラミック粒子の割合が20〜80体積%であることを特徴とする請求項10に記載の水素製造装置。
  12. 前記複数のセラミック粒子は、個数比で90%以上が孤立して存在していることを特徴とする請求項10または11に記載の水素製造装置。
  13. 前記光吸収部材が、誘電体中に金属粒子が分散された金属粒子含有複合体、または金属
    系膜と誘電体とが積層された金属系膜積層体であることを特徴とする請求項7乃至12のうちいずれかに記載の水素製造装置。
  14. 前記水素製造用部材と前記光吸収部材との間に金属膜が設けられていることを特徴とする請求項7乃至13のうちいずれかに記載の水素製造装置。
JP2016248047A 2016-05-20 2016-12-21 水素製造装置 Active JP6698512B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016101596 2016-05-20
JP2016101596 2016-05-20

Publications (2)

Publication Number Publication Date
JP2017210400A JP2017210400A (ja) 2017-11-30
JP6698512B2 true JP6698512B2 (ja) 2020-05-27

Family

ID=60474474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016248047A Active JP6698512B2 (ja) 2016-05-20 2016-12-21 水素製造装置

Country Status (1)

Country Link
JP (1) JP6698512B2 (ja)

Also Published As

Publication number Publication date
JP2017210400A (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
Carrillo et al. Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials
JP5594800B2 (ja) 熱化学燃料製造用触媒及び熱化学燃料製造方法
US10371416B2 (en) Spectrally selective coatings for optical surfaces
JP4261566B2 (ja) 水素吸蔵合金、水素分離膜、水素貯蔵タンクおよび水素吸蔵放出方法
CN101876490B (zh) 一种太阳能中高温选择性吸热涂层
CA2873873A1 (en) Ciht power system
JP6276480B2 (ja) 水素製造用部材および水素製造装置
Zhao et al. Investigation of the relationship between electronic properties and reactivity of 3DOM LaFe1− xCoxO3 for methane reforming to produce syngas
EP2913604B1 (en) Use of heat-to-light conversion member
Yuan et al. Coke and sintering resistant nickel atomically doped with ceria nanosheets for highly efficient solar driven hydrogen production from bioethanol
JP6224871B1 (ja) 水素製造用部材および水素製造装置
JP6698512B2 (ja) 水素製造装置
Furler Solar thermochemical CO₂ and H₂O splitting via ceria redox reactions
JP6021034B1 (ja) 熱光起電力発電装置用の輻射ユニットおよびこれを用いた熱光起電力発電装置
JP2007330877A (ja) 水素貯蔵材料およびその製造方法
JP6787826B2 (ja) 水素生成用セル、集光型水素生成用セルおよび水素製造装置
Vossier et al. Hybrid PV–CSP Systems
Kildahl et al. Thermal and thermochemical energy conversion and storage
Dan et al. 14 Nanotechnology and energy conversion: A solution using spectrally selective solar absorbers and thermoelectrics
Le Preparation of transition metal oxide thin films used as solar absorbers
WO2015019815A1 (ja) 集熱レシーバー及び太陽熱発電装置
Agrafiotis et al. Material technologies developments for solar hydrogen
CN116154198A (zh) 掺杂的纳米碳化硅及其在氢燃料电池中的应用
CN112011777A (zh) 一种具有尖晶石结构的高温太阳能吸收涂层
JP2011151328A (ja) p型化合物半導体層の製造方法及び化合物薄膜太陽電池セル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6698512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150