JP6694584B2 - Mold fixing device and method for manufacturing forged product - Google Patents

Mold fixing device and method for manufacturing forged product Download PDF

Info

Publication number
JP6694584B2
JP6694584B2 JP2016070530A JP2016070530A JP6694584B2 JP 6694584 B2 JP6694584 B2 JP 6694584B2 JP 2016070530 A JP2016070530 A JP 2016070530A JP 2016070530 A JP2016070530 A JP 2016070530A JP 6694584 B2 JP6694584 B2 JP 6694584B2
Authority
JP
Japan
Prior art keywords
mold
titanium alloy
alloy plate
fixing device
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016070530A
Other languages
Japanese (ja)
Other versions
JP2017177192A (en
Inventor
松本 英樹
英樹 松本
藤田 悦夫
悦夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016070530A priority Critical patent/JP6694584B2/en
Publication of JP2017177192A publication Critical patent/JP2017177192A/en
Application granted granted Critical
Publication of JP6694584B2 publication Critical patent/JP6694584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱間鍛造等に用いる金型固定装置および鍛造製品の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a die fixing device used for hot forging and the like and a method for manufacturing a forged product.

近年、中・大型航空機用ジェットエンジン、発電所用蒸気タービン等を構成する大型の熱間鍛造製品の需要が大きく伸びている。例えば、航空機ジェットエンジンのタービンディスクは、回転体状で直径1メートルを超える大きさがある。さらに、これらの用途に用いられるニッケル基超耐熱合金、チタン合金等は難加工性材料であるため、その鍛造に際しては、加熱した鍛造素材の温度低下を抑制するために、加熱した金型を用いるホットダイ鍛造、金型の温度を所定の範囲内に制御して鍛造する恒温鍛造等が適用されている。   In recent years, the demand for large-sized hot forged products that constitute jet engines for medium and large aircraft, steam turbines for power plants, etc., has increased significantly. For example, the turbine disk of an aircraft jet engine is in the form of a rotary body and has a diameter of more than 1 meter. Furthermore, since nickel-base superalloys, titanium alloys, etc. used for these purposes are difficult-to-process materials, use a heated mold to suppress the temperature drop of the heated forging material during the forging. Hot die forging, isothermal forging in which the temperature of the die is controlled within a predetermined range for forging, and the like are applied.

上述のように金型を加熱して鍛造を行う場合に用いる金型装置には、加熱した金型からの熱が逃げることを防ぐため、金型とプレス機本体のプラテンとの間に断熱構造を設けることが提案されている(例えば特開2006−192502号公報(特許文献1))。特許文献1では、断熱性を確保しながら断熱手段の厚さを低減するために、金型と金型の支持要素(プラテン)との間に、セラミック、マイカ等の異なる種類の断熱手段を置くことを開示している。
また、特開2013−49071号公報(特許文献2)は、断熱構造材の強度と耐久性を向上させることを目的として、複数の断熱用素材とその外周を保持する保持枠、および底板と押さえ板で一体化された断熱構造材を開示する。ここで断熱用素材、保持枠として例示されているのは、それぞれジルコニアセラミックス、ステンレスである。
As described above, the mold device used when the mold is heated and forged includes a heat insulating structure between the mold and the platen of the press main body in order to prevent heat from escaping from the heated mold. Is provided (for example, Japanese Patent Laid-Open No. 2006-192502 (Patent Document 1)). In Patent Document 1, in order to reduce the thickness of the heat insulating means while ensuring heat insulating properties, different types of heat insulating means such as ceramics and mica are placed between the mold and the supporting element (platen) of the mold. Is disclosed.
Further, Japanese Patent Laid-Open No. 2013-49071 (Patent Document 2) discloses a plurality of heat insulating materials, a holding frame for holding the outer periphery thereof, and a bottom plate and a presser for the purpose of improving the strength and durability of the heat insulating structure. Disclosed is a heat insulating structure integrated with a plate. Examples of the heat insulating material and the holding frame here are zirconia ceramics and stainless steel, respectively.

特開2006−192502号公報JP, 2006-192502, A 特開2013−49071号公報JP, 2013-49071, A

しかしながら、大型の鍛造製品を製造する場合のように鍛造荷重が大きい場合には、特許文献1に記載されているような構成では、断熱材の強度が不十分である。一方、特許文献2のように、断熱材の強度を金型用鋼の枠体で補おうとすると、かかる枠体を通じた熱伝達が原因で金型温度の低下を十分に抑制することができないという問題が生じる。
そこで、本発明は、加熱された金型を用いた鍛造において、金型温度の低下を抑制しつつ、大きな鍛造荷重にも耐えうる金型固定装置および鍛造製品の製造方法を提供することを目的とする。
However, when the forging load is large as in the case of manufacturing a large forged product, the strength of the heat insulating material is insufficient with the configuration described in Patent Document 1. On the other hand, if an attempt is made to supplement the strength of the heat insulating material with the frame of the steel for molds as in Patent Document 2, it is impossible to sufficiently suppress the decrease of the mold temperature due to the heat transfer through the frame. The problem arises.
Therefore, the present invention, in forging using a heated die, an object of the present invention is to provide a die fixing device that can withstand a large forging load and a method for manufacturing a forged product while suppressing a decrease in die temperature. And

本発明は、加熱された金型を固定するための金型固定装置であって、前記金型に接する面に配置されたチタン合金板と、前記チタン合金板を支持する熱間金型用鋼からなる基材とを有することを特徴とする。   The present invention is a mold fixing device for fixing a heated mold, comprising a titanium alloy plate arranged on a surface in contact with the mold, and a hot mold steel for supporting the titanium alloy plate. It has a base material consisting of.

また、前記金型固定装置において、前記基材に設けられた凹部に前記チタン合金板が配置されていることが好ましい。
さらに、前記金型固定装置において、前記チタン合金板が複数の個片からなることが好ましい。
さらに、前記金型固定装置において、前記チタン合金板と前記基材との間の一部に前記チタン合金よりも熱伝導率が低い断熱材が配置されていることが好ましい。
Further, in the mold fixing device, it is preferable that the titanium alloy plate is arranged in a recess provided in the base material.
Further, in the mold fixing device, it is preferable that the titanium alloy plate is composed of a plurality of pieces.
Further, in the mold fixing device, it is preferable that a heat insulating material having a thermal conductivity lower than that of the titanium alloy is arranged in a part between the titanium alloy plate and the base material.

別の本発明は、加熱された鍛造素材を金型で熱間鍛造する鍛造製品の製造方法であって、前記金型を加熱して金型固定装置に固定する第1の工程と、加熱された鍛造素材を前記金型に載置する第2の工程と、前記金型によって前記鍛造素材を圧下する第3の工程とを有し、前記金型装置は、前記金型に接する面に配置されたチタン合金板と、前記チタン合金板を支持する熱間金型用鋼からなる基材とを有することを特徴とする。   Another aspect of the present invention is a method for manufacturing a forged product in which a heated forging material is hot forged with a die, the first step of heating the die to fix the die to a die fixing device, and heating the die. A forging material is placed on the die, and a third step of pressing down the forging material with the die, wherein the die device is arranged on a surface in contact with the die. And a base material made of hot die steel for supporting the titanium alloy plate.

また、鍛造製品の製造方法において、前記前記チタン合金板と前記基材との間の一部に前記チタン合金よりも熱伝導率が低い断熱材が配置されていることが好ましい。   Further, in the method for manufacturing a forged product, it is preferable that a heat insulating material having a lower thermal conductivity than that of the titanium alloy is arranged in a part between the titanium alloy plate and the base material.

本発明の金型固定装置および鍛造製品の製造方法によれば、加熱された金型を用いた鍛造において、金型温度の低下の抑制と大荷重での鍛造との両立が可能になる。   According to the die fixing device and the method for manufacturing a forged product of the present invention, in forging using a heated die, it is possible to suppress the decrease in die temperature and forge with a large load.

本発明に係る金型固定装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the die fixing apparatus which concerns on this invention. 本発明に係る金型固定装置の他の実施形態を示す図である。It is a figure which shows other embodiment of the metal mold fixing apparatus which concerns on this invention. 本発明に係る金型固定装置の他の実施形態を示す図である。It is a figure which shows other embodiment of the metal mold fixing apparatus which concerns on this invention. 本発明に係る金型固定装置の他の実施形態を示す図である。It is a figure which shows other embodiment of the metal mold fixing apparatus which concerns on this invention. 鍛造製品の製造方法に用いるプレス機の構成例を示す図である。It is a figure which shows the structural example of the press used for the manufacturing method of a forged product. 金型固定装置に載置した金型の温度推移を示す図である。It is a figure which shows the temperature transition of the metal mold | die mounted in the metal mold fixing device.

本発明は、加熱された金型を固定するための金型固定装置であって、金型に接する面に配置されたチタン合金板と、かかるチタン合金板を支持する熱間金型用鋼からなる基材とを有する金型固定装置である。チタン合金は熱間金型用鋼よりも、熱伝導率が低いため、断熱材として機能する。しかも、高温強度に優れ、高荷重に耐えることができるため、金型に接する面に配置することができる。すなわち熱間金型用鋼で覆うなどの必要がないため、チタン合金が持つ断熱性を有効に利用することができるのである。
なお、金型固定装置を上型側で用い、チタン合金板が基材の下側になる場合であっても、チタン合金板が基材に固定されている限り、基材はチタン合金板を「支持」するものとして取り扱う。
The present invention is a mold fixing device for fixing a heated mold, comprising a titanium alloy plate arranged on a surface in contact with the mold, and a hot mold steel for supporting the titanium alloy plate. A mold fixing device having a base material. Titanium alloy has a lower thermal conductivity than that of hot die steel and thus functions as a heat insulating material. Moreover, since it is excellent in high temperature strength and can withstand a high load, it can be arranged on the surface in contact with the mold. That is, since there is no need to cover with hot die steel, the heat insulating property of the titanium alloy can be effectively utilized.
Even when the mold fixing device is used on the upper mold side and the titanium alloy plate is on the lower side of the base material, the base material is the titanium alloy plate as long as the titanium alloy plate is fixed to the base material. Treat as “supporting”.

本実施形態に係る金型固定装置は、型彫り面を有する金型を用いた熱間鍛造等において、加熱された金型をプレス機本体に固定するためのものである。ここでいう熱間鍛造には、熱間プレス、恒温鍛造、ホットダイ等も含む。なお、加熱された金型を固定する態様としては、予め加熱炉等で加熱した金型をプレス機本体に固定する態様の他、予め金型をプレス機本体に固定し、プレス機本体に固定された状態で金型を加熱する態様も含まれる。
以下、本発明に係る金型固定装置の実施形態を、図を用いて具体的に説明するが、本発明はこれに限定されるものではない。また、本実施形態において説明する各構成は、その機能を損なわない限りにおいて互いに組み合わせることが可能である。
The mold fixing device according to the present embodiment is for fixing a heated mold to a press body in hot forging or the like using a mold having a carved surface. The hot forging mentioned here includes hot pressing, isothermal forging, hot die and the like. As a mode of fixing the heated mold, in addition to a mode of fixing the mold heated in a heating furnace or the like to the press body in advance, the mold is fixed to the press machine body in advance and fixed to the press machine body. A mode in which the mold is heated in the heated state is also included.
Hereinafter, embodiments of the mold fixing device according to the present invention will be specifically described with reference to the drawings, but the present invention is not limited thereto. Further, the respective configurations described in this embodiment can be combined with each other as long as the functions thereof are not impaired.

図1に金型固定装置の一実施形態を示す。図1(a)は金型固定装置を上下方向(z方向)から見た平面図、図1(b)は、図1(a)のA−Aの位置でのxz断面図である。金型固定装置100は、金型に接する面に配置されたチタン合金板1と、チタン合金板1を支持する熱間金型用鋼からなる基材2を有する。金型が載置される金型固定装置100は受圧プレートとも称される。チタン合金板1は熱間鍛造用金型用鋼等で覆われていないため、金型固定装置100の表面に露出し、載置される金型に直接接する。チタン合金板1はボルト等の固定治具(図示せず)によって基材2に固定され、金型固定装置100もボルト、クランプ等の固定治具によってプレス機本体に固定される。金型固定装置100は、下型、上型の一方に用いることもできるが、断熱効果を高めるためには、下型および上型の両方に用いることがより好ましい。   FIG. 1 shows an embodiment of the mold fixing device. FIG. 1A is a plan view of the mold fixing device seen from the vertical direction (z direction), and FIG. 1B is an xz sectional view taken along the line AA in FIG. 1A. The mold fixing device 100 has a titanium alloy plate 1 arranged on a surface in contact with the mold, and a base member 2 made of hot mold steel for supporting the titanium alloy plate 1. The mold fixing device 100 on which the mold is placed is also referred to as a pressure receiving plate. Since the titanium alloy plate 1 is not covered with hot forging die steel or the like, it is exposed on the surface of the die fixing device 100 and directly contacts the placed die. The titanium alloy plate 1 is fixed to the base material 2 by a fixing jig (not shown) such as a bolt, and the mold fixing device 100 is also fixed to the press body by a fixing jig such as a bolt and a clamp. The mold fixing device 100 can be used for either the lower mold or the upper mold, but it is more preferable to use it for both the lower mold and the upper mold in order to enhance the heat insulating effect.

基材2を構成する熱間金型用鋼の材質はこれを特に限定するものではなく、強度とコストを勘案して、JIS G4404で規定されるSKD61、SKT4等の熱間金型用鋼やその改良鋼を用いることができる。また、チタン合金板1の材質もこれを特に限定するものではない。例えば、Ti−5Al−2.5Sn、Ti−15V−3Cr−3Sn−3Al、Ti−6Al−4V、その他質量%含有量でTiが最も多い合金を用いることができる。上記のSKD61等の熱間金型用鋼の熱伝導率はおおよそ30W/(m・K)程度あるのに対して、上記のようなTiを主成分とするチタン合金の熱伝導率は8W/(m・K)以下であり、熱間金型用鋼の1/3以下である。そのためチタン合金板1は断熱材として機能するのである。しかも、上述のチタン合金の強度は、一般に耐力で900MPa以上を示すことから、鍛造荷重を受けるのに十分な強度を備える。したがって、チタン合金板を備えた図1に示す金型固定装置100によれば、加熱された金型を用いた熱間鍛造において、金型温度低下の抑制と大荷重での鍛造との両立が可能になる。   The material of the hot die steel forming the base material 2 is not particularly limited, and in consideration of strength and cost, hot die steels such as SKD61 and SKT4 specified in JIS G4404 and The modified steel can be used. Also, the material of the titanium alloy plate 1 is not particularly limited. For example, Ti-5Al-2.5Sn, Ti-15V-3Cr-3Sn-3Al, Ti-6Al-4V, and other alloys containing the most Ti in mass% content can be used. The heat conductivity of the hot die steel such as SKD61 is about 30 W / (m · K), whereas the heat conductivity of the titanium alloy containing Ti as the main component is 8 W / (M · K) or less, which is 1/3 or less of that of hot die steel. Therefore, the titanium alloy plate 1 functions as a heat insulating material. Moreover, since the above-mentioned titanium alloy generally has a proof stress of 900 MPa or more, the titanium alloy has sufficient strength to bear a forging load. Therefore, according to the die fixing device 100 including the titanium alloy plate shown in FIG. 1, in hot forging using a heated die, suppression of die temperature decrease and forging under a large load are compatible. It will be possible.

図1に示す実施形態では、取扱いのしやすさ等からチタン合金板1および基材2の外形は四角形状であるが、これに限定されるものではない。また、金型固定装置100に載置する金型の外形形状は、円形状でもよいし、四角形状でもよい。金型を金型固定装置に載置した際に金型の一部がチタン合金板1に接し、一部が基材2に接するようにすれば、鍛造荷重の一部を基材2で受け、高い鍛造荷重に対応することも可能である。ただし、チタン合金板1による断熱効果を効率よく発揮させるためには、金型固定装置100に金型を載置した際に、金型の底面の外縁がチタン合金板1の外縁よりも内側に位置するように、すなわち金型がチタン合金板1の外縁からはみ出さないようにチタン合金板1の大きさ、形状、配置を設定することが好ましい。
チタン合金板1が存在することで断熱効果が発揮されるとともに、チタン合金板1は基材2に支持されているので、チタン合金板の厚さ(z方向の寸法)は特に限定するものではない。断熱効果をより高める観点および作製の容易さ等の観点からは10mm以上であることが好ましい。一方、チタン合金板1が厚くなると材料コストが増えることから、チタン合金板の厚さは例えば30mm以下が好ましい。
In the embodiment shown in FIG. 1, the outer shapes of the titanium alloy plate 1 and the base material 2 are quadrangular for ease of handling, but the present invention is not limited to this. Further, the outer shape of the mold mounted on the mold fixing device 100 may be circular or square. If a part of the mold contacts the titanium alloy plate 1 and a part contacts the base material 2 when the mold is placed on the mold fixing device, the base material 2 receives part of the forging load. It is also possible to handle high forging loads. However, in order to efficiently exhibit the heat insulating effect of the titanium alloy plate 1, when the mold is placed on the mold fixing device 100, the outer edge of the bottom surface of the mold is located inside the outer edge of the titanium alloy plate 1. It is preferable to set the size, shape, and arrangement of the titanium alloy plate 1 so that the titanium alloy plate 1 is positioned, that is, the mold does not protrude from the outer edge of the titanium alloy plate 1.
The presence of the titanium alloy plate 1 exerts a heat insulating effect, and since the titanium alloy plate 1 is supported by the base material 2, the thickness (dimension in the z direction) of the titanium alloy plate is not particularly limited. Absent. The thickness is preferably 10 mm or more from the viewpoint of further enhancing the heat insulating effect and the ease of manufacturing. On the other hand, since the material cost increases as the titanium alloy plate 1 becomes thicker, the thickness of the titanium alloy plate is preferably 30 mm or less.

チタン合金板1は十分な強度を有するため、周囲を熱間金型用鋼等の強度補助部材で囲うことなく基材2の表面上に配置した構成も適用可能である。ただし、図1に示す実施形態のように、基材に設けられた凹部4にチタン合金板1が配置された構成を採用することで、より大きな鍛造荷重にも耐えることが可能になる。また、仮に熱間鍛造中にチタン合金板1に割れが発生しても、凹部4内にチタン合金板が留まるため、断熱性能や金型固定装置の機能を維持することができる。図1に示す実施形態では、凹部に挿入されたチタン合金板1の表面と、その周囲の基材の表面とは略面一となっている。凹部4の内周面がなす形状は、チタン合金板1の外周面がなす形状に倣って構成されており、凹部4の内周面とチタン合金板1の外周面との間には、組立性と鍛造時の変形を考慮して若干の隙間が設けられている。   Since the titanium alloy plate 1 has sufficient strength, a configuration in which the titanium alloy plate 1 is arranged on the surface of the base material 2 without being surrounded by a strength auxiliary member such as hot die steel is also applicable. However, by adopting the configuration in which the titanium alloy plate 1 is arranged in the concave portion 4 provided in the base material as in the embodiment shown in FIG. 1, it becomes possible to withstand a larger forging load. Further, even if the titanium alloy plate 1 is cracked during hot forging, the titanium alloy plate remains in the recesses 4, so that the heat insulating performance and the function of the mold fixing device can be maintained. In the embodiment shown in FIG. 1, the surface of the titanium alloy plate 1 inserted in the recess is substantially flush with the surface of the base material around it. The shape formed by the inner peripheral surface of the concave portion 4 is configured to follow the shape formed by the outer peripheral surface of the titanium alloy plate 1, and an assembly between the inner peripheral surface of the concave portion 4 and the outer peripheral surface of the titanium alloy plate 1 is performed. A slight gap is provided in consideration of the flexibility and the deformation during forging.

図2に金型固定装置の他の実施形態を示す。図2(a)は金型固定装置を上下方向(z方向)から見た平面図、図2(b)は、図2(a)のB−Bの位置でのxz断面図である。図2に示す金型固定装置200は、チタン合金板3が複数の個片からなる点が、図1に示す実施形態と異なる。それ以外の構成は図1に示す実施形態と同様であるので説明を省略する。図2に示す金型固定装置200のチタン合金板3は、主面が四角形状の二つの個片で構成されているが、個片の数としてはこれに限定されるものではない。二つ以上の個片でチタン合金板を構成する分割型のチタン合金板を採用することで、個々のチタン合金板を小さくし、チタン合金板作製にかかる負荷、コストを低減することができる。   FIG. 2 shows another embodiment of the mold fixing device. FIG. 2A is a plan view of the mold fixing device seen from the up-down direction (z direction), and FIG. 2B is an xz sectional view taken along the line BB in FIG. 2A. The mold fixing device 200 shown in FIG. 2 differs from the embodiment shown in FIG. 1 in that the titanium alloy plate 3 is composed of a plurality of individual pieces. The rest of the configuration is the same as that of the embodiment shown in FIG. The titanium alloy plate 3 of the mold fixing device 200 shown in FIG. 2 is composed of two pieces each having a quadrangular main surface, but the number of pieces is not limited to this. By adopting a split type titanium alloy plate in which the titanium alloy plate is composed of two or more pieces, it is possible to reduce the size of each titanium alloy plate, and to reduce the load and cost required for producing the titanium alloy plate.

図3に金型固定装置の他の実施形態を示す。図3(a)は金型固定装置を上下方向(z方向)から見た平面図、図3(b)は図3(a)のC−Cの位置でのxz断面図、図3(c)は図3(b)と同じ断面図で見た分解図である。図3に示す金型固定装置300は、チタン合金板3と基材4との間の一部にチタン合金よりも熱伝導率が低い断熱材5が配置されている点が図2に示す実施形態と異なる。なお、図3(a)では、チタン合金板3の下側に部分的に配置された断熱材5の位置を便宜的に点線で示してある。チタン合金板3と基材4との間に、チタン合金よりも熱伝導率が低い断熱材5を配置することで断熱性を高め、基材4に逃げる熱を更に低減することができる。断熱材の厚さ(z方向の寸法)はこれを特に限定するものではないが、より高い断熱性、取扱いのし易さの観点からは厚い方が好ましく、例えば1mm以上が好ましい。一方、厚くなりすぎると断熱材の材料コストが増えること、断熱材を収容する凹部の形成が煩雑になることから、例えば20mm以下が好ましい。図3に示す金型固定装置300では、基材4の凹部6の底部に、さらに断熱材5を配置するための凹部7が設けられており、かかる凹部7に断熱材5が収容されている。断熱材5と凹部7の嵌めあいは軽圧入程度で収容されている。かかる構成によれば、断熱材5の外周を基材4で囲むため、チタン合金板に比べて強度が落ちる断熱材を用いる場合でも、断熱材の強度が障害になることを回避することができる。   FIG. 3 shows another embodiment of the mold fixing device. 3A is a plan view of the mold fixing device seen from the up-down direction (z direction), FIG. 3B is an xz sectional view taken along the line CC of FIG. 3A, and FIG. ) Is an exploded view seen from the same sectional view as FIG. In the mold fixing device 300 shown in FIG. 3, the heat insulating material 5 having a lower thermal conductivity than that of the titanium alloy is arranged in a part between the titanium alloy plate 3 and the base material 4 as shown in FIG. Different from the form. In addition, in FIG. 3A, the position of the heat insulating material 5 partially arranged on the lower side of the titanium alloy plate 3 is shown by a dotted line for convenience. By disposing the heat insulating material 5 having a lower thermal conductivity than the titanium alloy between the titanium alloy plate 3 and the base material 4, it is possible to enhance the heat insulating property and further reduce the heat escaping to the base material 4. The thickness (dimension in the z direction) of the heat insulating material is not particularly limited, but from the viewpoint of higher heat insulating property and easy handling, it is preferably thick, for example, 1 mm or more. On the other hand, if the thickness is too thick, the material cost of the heat insulating material increases and the formation of the recess for accommodating the heat insulating material becomes complicated. In the mold fixing device 300 shown in FIG. 3, a recess 7 for disposing the heat insulating material 5 is further provided at the bottom of the recess 6 of the base material 4, and the heat insulating material 5 is accommodated in the recess 7. . The fitting between the heat insulating material 5 and the recess 7 is accommodated by light press-fitting. According to such a configuration, since the outer periphery of the heat insulating material 5 is surrounded by the base material 4, even when a heat insulating material whose strength is lower than that of the titanium alloy plate is used, it is possible to prevent the strength of the heat insulating material from being an obstacle. .

図3に示す金型装置300では、外形が円形状の金型を固定することを想定しており、断熱材5はかかる金型の載置範囲に配置すれば十分であるので、断熱材5の外形は固定する金型の外形に倣って円形状にしてある。また、断熱材5は一体で構成することもできるが、二つ以上の個片で断熱材5を構成する分割型の断熱材を採用することで、断熱材5の組立性向上、コスト低減が可能である。図3に示す金型装置300では、断熱材5は全体で円環状をなしている。かかる断熱材5は周方向に密接に配置された複数の扇形状の個片で構成されている。
さらに、図3に示す金型装置の変形例を図4に示す。図4は金型固定装置を上下方向(z方向)から見た平面図である。図4に示す金型固定装置400の基材9は、熱間鍛造終了後に鍛造素材を取り出すためのノックアウトピン用の貫通孔10を有する。また二つのチタン合金板8においても、貫通孔10に対応する位置に半円状の切欠きが設けられ、かかる切欠きを並置することでチタン合金板にも貫通孔部分が構成されている。一つのチタン合金板に貫通孔を設けるよりも、複数のチタン合金板に設けられた切欠き同士を向い合せて貫通孔部分を作製する方が製造が容易であり、コスト低減にも有利である。
In the mold apparatus 300 shown in FIG. 3, it is assumed that a mold having a circular outer shape is fixed, and it is sufficient to dispose the heat insulating material 5 within the mounting range of the mold, and therefore the heat insulating material 5 The outer shape of is shaped like a circle following the outer shape of the mold to be fixed. Further, the heat insulating material 5 can be configured integrally, but by adopting a split type heat insulating material in which the heat insulating material 5 is composed of two or more pieces, the assembling property of the heat insulating material 5 is improved and the cost is reduced. It is possible. In the mold device 300 shown in FIG. 3, the heat insulating material 5 has an annular shape as a whole. The heat insulating material 5 is composed of a plurality of fan-shaped pieces that are closely arranged in the circumferential direction.
Furthermore, FIG. 4 shows a modified example of the mold apparatus shown in FIG. FIG. 4 is a plan view of the mold fixing device seen from the up-down direction (z direction). The base material 9 of the mold fixing device 400 shown in FIG. 4 has a through hole 10 for a knockout pin for taking out the forging material after the hot forging is completed. Further, in the two titanium alloy plates 8 as well, a semicircular cutout is provided at a position corresponding to the through hole 10, and the through holes are also formed in the titanium alloy plate by arranging these cutouts in parallel. Rather than providing through holes in one titanium alloy plate, it is easier to manufacture the through hole parts by facing the notches provided in multiple titanium alloy plates, and it is also advantageous in cost reduction. .

上述の金型固定装置を適用した鍛造製品の製造方法について以下説明する。
かかる鍛造製品の製造方法の一例は、加熱された鍛造素材を金型で熱間鍛造する鍛造製品の製造方法であって、金型を加熱して金型固定装置に固定する第1の工程と、加熱された鍛造素材を金型に載置する第2の工程と、金型によって鍛造素材を圧下する第3の工程とを有する。第3の工程を経て、さらには適宜加工等を施して、鍛造製品が得られる。第1の工程で使用する金型固定装置は、金型に接する面に配置されたチタン合金板と、チタン合金板を支持する熱間金型用鋼からなる基材とを有する。かかる鍛造素材の製造方法によれば、加熱された金型を用いた熱間鍛造において、金型温度低下の抑制と大荷重での鍛造との両立が可能になる。チタン合金板と基材との間の一部にチタン合金よりも熱伝導率が低い断熱材を配置すれば、より確実に金型温度低下を抑制することができる。金型固定装置の具体的な構成や利点は上述のとおりであるので説明を省略する。
A method for manufacturing a forged product to which the above-mentioned mold fixing device is applied will be described below.
An example of such a method for manufacturing a forged product is a method for manufacturing a forged product in which a heated forging material is hot forged by a die, and includes a first step of heating the die and fixing it to a die fixing device. The method includes a second step of placing the heated forging material on the die, and a third step of pressing down the forging material with the die. A forged product is obtained through the third step and further appropriate processing. The mold fixing device used in the first step has a titanium alloy plate arranged on a surface in contact with the mold, and a base material made of hot mold steel for supporting the titanium alloy plate. According to such a method for manufacturing a forging material, in hot forging using a heated die, both suppression of die temperature decrease and forging under a large load can be achieved. By disposing a heat insulating material having a lower thermal conductivity than the titanium alloy in a part between the titanium alloy plate and the base material, it is possible to more reliably suppress the mold temperature decrease. The specific structure and advantages of the mold fixing device are as described above, and thus the description thereof is omitted.

図5は鍛造製品の製造方法に用いるプレス機の概略構成図である。図5に示すプレス機500は、金型11、15を加熱して、それぞれ金型固定装置12、16に固定する第1の工程が終了した状態を示している。なお、金型表面14、18(型彫り面)の形状等詳細は省略してある。金型11は下型、金型15は上型であり、これらが対となって鍛造素材の圧下が行われる。金型11、15が固定された金型固定装置12、16は、ボルト、クランプ等を用いてそれぞれプレス機本体13(下ラム)、17(上ラム)に固定される。   FIG. 5 is a schematic configuration diagram of a press used in the method for manufacturing a forged product. The press machine 500 shown in FIG. 5 shows a state in which the first step of heating the molds 11 and 15 and fixing them to the mold fixing devices 12 and 16 has been completed. It should be noted that details such as the shapes of the mold surfaces 14 and 18 (carved surface) are omitted. The die 11 is a lower die, and the die 15 is an upper die, and these are paired to reduce the forging material. The mold fixing devices 12 and 16 to which the molds 11 and 15 are fixed are fixed to the press machine main bodies 13 (lower ram) and 17 (upper ram) using bolts and clamps, respectively.

金型温度低下の抑制と大荷重での鍛造との両立を可能にする、上述の金型固定装置および鍛造製品の製造方法は、熱間鍛造の中でも、特に大型の熱間プレス機を用いた熱間鍛造への適用が好適である。例えば400MN以上の大型の熱間プレス機を用いる場合、直径1mを超える大型の製品を熱間鍛造等に好適である。
鍛造製品は、タービンディスク、タービンブレード等の、鍛造を経て製造される製品であり、鍛造素材は最終的な鍛造製品形状を得るための予備成形体である。鍛造素材には、ビレットの他、複数回(複数ブロー)の熱間鍛造を行う場合の途中段階の中間素材も含まれる。鍛造素材の材質としては、例えばNi基超耐熱合金、Ti合金等を用いることができる。
Among the hot forgings, a particularly large hot pressing machine was used for the method for manufacturing the die fixing device and the forged product described above, which enables both suppression of the die temperature decrease and forging under a large load. The application to hot forging is suitable. For example, when a large hot press machine of 400 MN or more is used, a large product having a diameter of 1 m or more is suitable for hot forging and the like.
The forged product is a product manufactured through forging, such as a turbine disk and a turbine blade, and the forged material is a preform for obtaining a final forged product shape. The forging material includes not only the billet but also an intermediate material in the middle stage when performing hot forging a plurality of times (a plurality of blows). As the material of the forging material, for example, a Ni-base super heat resistant alloy, a Ti alloy, or the like can be used.

(実施例)
図4に示す構成の金型固定装置を作製した。チタン合金板として厚さ25.4mmのTi−6Al−4V(質量%)板を、基材として厚さ200mmのSKT4を用いた。熱伝導率は、Ti−6Al−4Vで7.5W/(m・K)、SKT4で37W/(m・K)である。チタン合金板は基材に設けられた凹部に収容され、ボルトで固定した。基材の中央部には貫通孔を設けた。チタン合金板は半円状の切欠きを有する二つの個片からなり、半円状の切欠きを向い合せて配置してチタン合金板に基材の貫通孔に対応した貫通孔を形成した。また、チタン合金板と基材との間には断熱材として厚さ5mmのガラス樹脂系断熱材ミオレックスPGX−595(菱電化成株式会社製)を円環状に配置した。かかる円環状の断熱材は、大きさの異なる扇形状の個片を周方向に交互に配置して構成した。かかる個片の数は六つであった。尚、かかる円環状の断熱材の内径はφ400mm、外径はφ1300mmであった。
上記金型固定装置を用いて、以下のように熱間鍛造により鍛造製品を作製した。金型を予熱炉で550℃に加熱して上述の金型固定装置に固定した(第1の工程)。この際、金型底面の外縁がチタン合金板の外縁よりも内側になるように配置した。さらに、かかる金型固定装置をプレス機に固定した後、1000℃に加熱された外径φ1000mmの鍛造素材ニッケル基超耐熱合金(Alloy718)を金型に載置した(第2の工程)。その後、プレス機を作動させ、金型によって鍛造素材を圧下し、外径φ1300mmの円盤状の鍛造製品を得た(第3の工程)。圧下に要した鍛造荷重は500MNであった。
(Example)
A mold fixing device having the structure shown in FIG. 4 was produced. A Ti-5Al-4V (mass%) plate having a thickness of 25.4 mm was used as a titanium alloy plate, and SKT4 having a thickness of 200 mm was used as a base material. The thermal conductivity is 7.5 W / (m · K) for Ti-6Al-4V and 37 W / (m · K) for SKT4. The titanium alloy plate was housed in a recess provided in the base material and fixed with a bolt. A through hole was provided in the center of the base material. The titanium alloy plate was composed of two pieces each having a semicircular cutout, and the semicircular cutouts were arranged facing each other to form through holes corresponding to the through holes of the base material in the titanium alloy plate. Further, a glass resin heat insulating material Myorex PGX-595 (manufactured by Ryoden Kasei Co., Ltd.) having a thickness of 5 mm was arranged in an annular shape between the titanium alloy plate and the base material as a heat insulating material. Such a ring-shaped heat insulating material is formed by alternately arranging fan-shaped pieces of different sizes in the circumferential direction. The number of such pieces was six. The annular heat insulating material had an inner diameter of 400 mm and an outer diameter of 1300 mm.
A forged product was produced by hot forging as follows using the die fixing device. The mold was heated to 550 ° C. in a preheating furnace and fixed to the mold fixing device described above (first step). At this time, it was arranged so that the outer edge of the bottom surface of the mold was inside the outer edge of the titanium alloy plate. Further, after fixing the die fixing device to a pressing machine, a forging material nickel base super heat resistant alloy (Alloy 718) having an outer diameter of φ1000 mm heated to 1000 ° C. was placed on the die (second step). After that, the press machine was operated and the forging material was pressed down by the die to obtain a disc-shaped forged product having an outer diameter of φ1300 mm (third step). The forging load required for the reduction was 500 MN.

予熱炉から金型を取出し、金型固定装置に固定した状態で温度推移を測定した結果を図6に示す。加熱温度からの温度低下は従来よりも抑制され、30分後で40℃以内、60分後でも60℃以内であり、金型固定の段取り時間を考慮しても十分な水準であった。また、鍛造終了後においても、金型固定装置に破損等の不具合はなんら認められなかった。これらの結果から、実施例に係る金型固定装置および鍛造製品の製造方法によって、金型温度の低下の抑制と大荷重での鍛造との両立が可能になることがわかった。   FIG. 6 shows the results of measuring the temperature transition in a state where the mold was taken out from the preheating furnace and fixed to the mold fixing device. The temperature decrease from the heating temperature was suppressed more than before, and was within 40 ° C. after 30 minutes and within 60 ° C. after 60 minutes, which was a sufficient level even considering the setup time for fixing the mold. Further, even after the completion of forging, no defect such as breakage was found in the mold fixing device. From these results, it has been found that the mold fixing device and the method for manufacturing a forged product according to the embodiment make it possible to suppress the decrease in the mold temperature and to forge under a large load.

1:チタン合金板
2:基材
3:チタン合金板
4:基材
5:断熱材
6:凹部
7:凹部
8:チタン合金板
9:基材
10:貫通孔
11:金型
12:金型固定装置
13:プレス機本体(下ラム)
14:金型表面(型彫り面)
15:金型
16:金型固定装置
17:プレス機本体(下ラム)
18:金型表面(型彫り面)
100、200、300、400:金型固定装置
500:プレス機

1: Titanium alloy plate 2: Base material 3: Titanium alloy plate 4: Base material 5: Heat insulating material 6: Recess 7: Recess 8: Titanium alloy plate 9: Base material 10: Through hole 11: Mold 12: Mold fixing Device 13: Press machine body (lower ram)
14: Mold surface (molded surface)
15: Mold 16: Mold fixing device 17: Press machine body (lower ram)
18: Mold surface (carved surface)
100, 200, 300, 400: Mold fixing device 500: Press machine

Claims (4)

加熱された金型を固定するための金型固定装置であって、
前記金型に接する面に配置されたチタン合金板と、前記チタン合金板を支持する熱間金型用鋼からなる基材とを有し、前記チタン合金板と前記基材との間の一部に前記チタン合金板よりも熱伝導率が低い断熱材が配置された金型固定装置。
A mold fixing device for fixing a heated mold,
A titanium alloy plate disposed on a surface in contact with the mold, the titanium alloy plate is perforated and a substrate made of hot die steel for supporting the one between the substrate and the titanium alloy plate A mold fixing device in which a heat insulating material having a lower thermal conductivity than that of the titanium alloy plate is disposed in a portion .
前記基材に設けられた凹部に前記チタン合金板が配置された請求項1に記載の金型固定装置。   The mold fixing device according to claim 1, wherein the titanium alloy plate is arranged in a recess provided in the base material. 前記チタン合金板が複数の個片からなる請求項1または2に記載の金型固定装置。   The mold fixing device according to claim 1, wherein the titanium alloy plate is composed of a plurality of pieces. 加熱された鍛造素材を金型で熱間鍛造する鍛造製品の製造方法であって、
前記金型を加熱して金型固定装置に固定する第1の工程と、
加熱された鍛造素材を前記金型に載置する第2の工程と、
前記金型によって前記鍛造素材を圧下する第3の工程とを有し、
前記金型固定装置は、前記金型に接する面に配置されたチタン合金板と、前記チタン合金板を支持する熱間金型用鋼からなる基材とを有し、前記チタン合金板と前記基材との間の一部に前記チタン合金板よりも熱伝導率が低い断熱材が配置されたものである鍛造製品の製造方法。
A method of manufacturing a forged product in which a heated forging material is hot forged with a die,
A first step of heating the mold to fix it to a mold fixing device;
A second step of placing the heated forging material on the die,
A third step of rolling down the forging material by the die,
Wherein the mold fixation device comprises a titanium alloy plate disposed on a surface in contact with the mold, the have a titanium alloy plate made of hot die steel for supporting the substrate, and the titanium alloy plate A method for producing a forged product, in which a heat insulating material having a lower thermal conductivity than the titanium alloy plate is arranged in a part between the base material and the titanium alloy plate .
JP2016070530A 2016-03-31 2016-03-31 Mold fixing device and method for manufacturing forged product Active JP6694584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016070530A JP6694584B2 (en) 2016-03-31 2016-03-31 Mold fixing device and method for manufacturing forged product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070530A JP6694584B2 (en) 2016-03-31 2016-03-31 Mold fixing device and method for manufacturing forged product

Publications (2)

Publication Number Publication Date
JP2017177192A JP2017177192A (en) 2017-10-05
JP6694584B2 true JP6694584B2 (en) 2020-05-20

Family

ID=60004763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070530A Active JP6694584B2 (en) 2016-03-31 2016-03-31 Mold fixing device and method for manufacturing forged product

Country Status (1)

Country Link
JP (1) JP6694584B2 (en)

Also Published As

Publication number Publication date
JP2017177192A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US4051585A (en) Method of forming a turbine rotor
JP5869934B2 (en) Forging die equipment
JP2016068122A (en) Mold
JP2013215746A (en) Method for heating forging die device
JP5040485B2 (en) Disc forging manufacturing equipment
JP6369753B2 (en) Hot forging method
CN107931613A (en) A kind of turbo blade hip treatment special tooling
JP2009041068A (en) Quenching tool and quenching method
CN105081687B (en) The method for manufacturing axis
JP6694584B2 (en) Mold fixing device and method for manufacturing forged product
JP5902978B2 (en) Forging die equipment
US10858945B2 (en) Apparatus and method for selective bonding to form hollow components
JP6410135B2 (en) Hot forging die
CN113369659B (en) Electron beam welding tool
KR101047155B1 (en) Main shaft forming apparatus for wind power generation and main shaft manufacturing method using the same
JP6774623B2 (en) Manufacturing method of materials for turbine blades
JP6677902B2 (en) Method of manufacturing material for turbine blade
JP6924377B2 (en) Hot forging dies and their manufacturing methods and forging material manufacturing methods
JP6941283B2 (en) Manufacturing method of materials for turbine blades
JP6519857B2 (en) Mold equipment for hot forging
JP6120144B2 (en) Die for rotary forging
JP2017148813A (en) Hot forging mold and hot forging method
JP6528940B2 (en) Preheating member and hot forging method using the same
JP7021757B1 (en) Molds, forging equipment, and forging methods
JP6657522B2 (en) Gripping jig for forged manipulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200401

R150 Certificate of patent or registration of utility model

Ref document number: 6694584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350