JP6528940B2 - Preheating member and hot forging method using the same - Google Patents

Preheating member and hot forging method using the same Download PDF

Info

Publication number
JP6528940B2
JP6528940B2 JP2015081401A JP2015081401A JP6528940B2 JP 6528940 B2 JP6528940 B2 JP 6528940B2 JP 2015081401 A JP2015081401 A JP 2015081401A JP 2015081401 A JP2015081401 A JP 2015081401A JP 6528940 B2 JP6528940 B2 JP 6528940B2
Authority
JP
Japan
Prior art keywords
hot forging
preheating
mold
preheating member
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015081401A
Other languages
Japanese (ja)
Other versions
JP2016198802A (en
Inventor
松本 英樹
英樹 松本
福井 毅
毅 福井
大吾 大豊
大吾 大豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015081401A priority Critical patent/JP6528940B2/en
Publication of JP2016198802A publication Critical patent/JP2016198802A/en
Application granted granted Critical
Publication of JP6528940B2 publication Critical patent/JP6528940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Description

本発明は、熱間鍛造用金型に形成された型彫り面を保温する熱間鍛造に用いられる予熱部材及びそれを用いた熱間鍛造方法に関するものである。   TECHNICAL FIELD The present invention relates to a preheating member used for hot forging for keeping warm a die-cutting surface formed on a hot forging die and a hot forging method using the same.

例えば、Alloy718やTi合金等の難加工性材の熱間鍛造(恒温鍛造やホットダイ等を含む)は700℃以上の高温で行われる。前述の難加工性材の熱間鍛造においては、温度の変化によって熱間加工性が変化してしまうため、できるだけ同一条件下で鍛造を行うことが好ましい。
しかしながら、たとえ被鍛造材の温度を同一としても、熱間鍛造用金型の温度は熱間鍛造温度よりも低温であることから、熱間鍛造用金型と被鍛造材との接触により、被鍛造材の温度が低下してしまう。この被鍛造材の温度低下は、熱間加工性を低下させたり、熱間鍛造用金型の摩耗量を増加させるため、熱間鍛造用金型の寿命が短くなってしまう。
この問題に対し、例えば特開2002−96134号公報(特許文献1)には、対向配置された鍛造用の第1の金型と第2の金型とを加熱するための加熱治具として、中央部にヒータを設け、且つ、一方の表面を第1の金型の鍛造面形状に沿った形状とし、他方の表面を第2の金型の鍛造面形状に沿った形状とした鍛造用金型の加熱治具を用いる発明が提案されている。
また、例えば、特開2004−230397号公報(特許文献2)には、金型内に加熱したワークを挿入し、プレスラムスライドによって型締めを行い、金型内に挿入したワークを成形する鍛造方法であって、型締め完了後型開きまでの間、ワークの熱を金型に伝達可能な位置にプレスラムスライドを停止させる工程を含む鍛造方法の発明が提案されている。
また、例えば、特開2001−340935号公報(特許文献3)には、温間あるいは熱間鍛造用金型の金型加熱方法において、前記金型の外周部に、加熱用ヒータ線として、柔軟性のあるニクロム線を内在させた複数のセラミック製碍子を組み合わせた構造のヒータを用いる金型の加熱方法の発明が提案されている。
For example, hot forging (including constant temperature forging, hot die and the like) of difficult-to-process materials such as Alloy 718 and Ti alloy is performed at a high temperature of 700 ° C. or higher. In hot forging of the above-mentioned difficult-to-process material, since hot workability will change with changes of temperature, it is preferable to forge under the same conditions as possible.
However, even if the temperature of the forging material is the same, the temperature of the hot forging die is lower than the hot forging temperature, so the contact of the hot forging die and the forging material causes The temperature of the forging material decreases. Since the temperature drop of the forging material reduces the hot workability or increases the wear amount of the hot forging die, the life of the hot forging die becomes short.
In order to address this problem, for example, in JP-A-2002-96134 (Patent Document 1), as a heating jig for heating a first mold and a second mold for forging disposed opposite to each other, A forging metal is provided with a heater at the center and one surface has a shape along the forged surface shape of the first mold, and the other surface has a shape along the forged surface shape of the second mold. An invention using a mold heating jig has been proposed.
Further, for example, in Japanese Patent Application Laid-Open No. 2004-230397 (Patent Document 2), a forged work is inserted into a mold, clamped by a press ram slide, and a forged work for forming the work inserted into the mold. A method of the forging method is proposed which includes the step of stopping the press ram slide at a position where the heat of the work can be transferred to the mold between the completion of the clamping and the opening of the mold.
Further, for example, in JP 2001-340935 A (patent document 3), in the mold heating method for warm or hot forging mold, the outer peripheral portion of the mold is flexible as a heating heater wire. The invention of a method of heating a mold using a heater having a structure in which a plurality of ceramic insulators in which a conductive nichrome wire is embedded is combined has been proposed.

特開2002−096134号公報Japanese Patent Application Laid-Open No. 2002-096134 特開2004−230397号公報JP 2004-230397 A 特開2001−340935号公報JP 2001-340935 A

上述した特許文献1に示される加熱治具を用いる方法は、治具内に設けられたヒータからの熱伝導によって加熱治具表面の温度を高めるものである。また、特許文献2に示される熱間鍛造方法は、被鍛造材の保有熱を下型、上型に伝達して、金型を必要な温度に加熱、保温して、金型から製品を離型した後に実施される潤滑剤の塗布工程において、必要な金型温度を保持し、潤滑剤の水分を円滑に気化させて、金型に良好な潤滑剤皮膜を生成することができるものである。
また、特許文献3においても、加熱用ヒータを用いて金型の表面温度を高めるものである。
特許文献1や特許文献3のように加熱用ヒータを利用して金型表面の温度を高める方法は、簡便な方法であり、局所的な加熱ができる利点がある。
また、特許文献2のように型締め後の鍛造材の保有熱を利用する方法は、比較的小型の金型を保熱するには適している。
ところで、最近、プレス荷重が数万トン規模の大型鍛造装置が導入されている。このような大型鍛造装置に用いられる金型は大型のものとなり、局所的な加熱を行っても金型自体が大きいため、ヒータを取り除いた後の金型表面温度の低下が直ぐに進行するという問題が生じることを知見した。特に、熱間鍛造の各ショット間に生じる待機時間において、金型の表面温度が低下してしまうと、熱間鍛造条件が変化することにつながる。
本発明の目的は、熱間鍛造用金型の表面温度の低下を抑制することが可能な予熱部材及びそれを用いた熱間鍛造方法を提供する。
The method of using the heating jig shown in Patent Document 1 described above is to raise the temperature of the surface of the heating jig by heat conduction from a heater provided in the jig. Further, the hot forging method disclosed in Patent Document 2 transmits the heat possessed by the forging material to the lower and upper molds, heats and heats the mold to a necessary temperature, and separates the product from the mold. In the lubricant application step carried out after molding, the required mold temperature can be maintained, and the moisture of the lubricant can be evaporated smoothly to form a good lubricant film on the mold. .
Moreover, also in patent document 3, the surface temperature of a metal mold | die is raised using the heater for heaters.
The method of raising the temperature of the mold surface using a heater as in Patent Document 1 and Patent Document 3 is a simple method, and has an advantage that local heating can be performed.
Further, as in Patent Document 2, the method of utilizing the heat stored in the forged material after clamping is suitable for retaining heat in a relatively small mold.
By the way, recently, a large forging device having a press load of tens of thousands of tons has been introduced. The mold used for such a large forging apparatus becomes large, and the mold itself is large even if local heating is performed, so the problem of the mold surface temperature falling immediately after removing the heater proceeds Was found to occur. In particular, if the surface temperature of the mold is lowered during the waiting time occurring between each shot of hot forging, the hot forging conditions will change.
An object of the present invention is to provide a preheating member capable of suppressing a decrease in surface temperature of a hot forging die and a hot forging method using the same.

本発明は上述した課題に鑑みてなされたものである。
すなわち本発明は、上型と下型とでなる一対の熱間鍛造用金型に形成された型彫り面を保温する予熱部材であって、前記予熱部材はNi基超耐熱合金またはステンレス鋼からなり、前記型彫り面に沿った形状を有し、前記予熱部材は、前記上型に形成された型彫り面を予熱する予熱部品と前記下型に形成された型彫り面を予熱する予熱部品の組立て体である予熱部材である。
The present invention has been made in view of the problems described above.
That is, the present invention is a preheating member for keeping the engraved surface formed on a pair of hot forging dies consisting of an upper mold and a lower mold, wherein the preheating member is made of a Ni-based super heat resistant alloy or stainless steel. The preheating member has a shape along the embossing surface, the preheating member preheats the embossing surface formed on the upper mold, and the preheating component preheats the embossing surface formed on the lower mold. A preheating member which is an assembly of

また本発明は、前記予熱部材を用いた熱間鍛造方法であって、前記予熱部材を熱間鍛造温度+100℃〜熱間鍛造温度−300℃に加熱し、一対の熱間鍛造用金型の上型に形成された型彫り面と下型に形成された型彫り面との間に前記予熱部材を挟み込み、前記予熱部材を加圧しつつ、前記予熱部材で前記一対の熱間鍛造用金型を予熱する金型予熱工程と、前記金型予熱工程により予熱された前記一対の熱間鍛造用金型から前記予熱部材を取り除く予熱部材除去工程と、前記予熱部材除去工程後、前記一対の熱間鍛造用金型を用いて被鍛造材を熱間鍛造して鍛造材とする熱間鍛造工程と、を含む熱間鍛造方法である。
本発明の熱間鍛造方法において、前記予熱部材の表面に硝子潤滑被膜が形成されることが好ましい。
The present invention is a hot forging method using the preheating member, wherein the preheating member is heated to a hot forging temperature + 100 ° C. to a hot forging temperature -300 ° C., and a pair of hot forging dies The preheating member is sandwiched between a die engraving surface formed on the upper mold and a die engraving surface formed on the lower mold, and the pair of hot forging dies is formed by the preheating member while pressing the preheating member. Preheating member removing step for removing the preheating member from the pair of hot forging dies preheated by the die preheating step, and the pair of heat after the preheating member removing step A hot forging method including a hot forging step of hot forging a material to be forged using an inter-forging die to form a forging material.
In the hot forging method of the present invention, a glass lubricating film is preferably formed on the surface of the preheating member.

本発明によれば、熱間鍛造の各ショット間に生じる待機時間において、熱間鍛造用金型の表面温度の低下を防止または抑制することができる。また、ヒータのような特別な加熱手段を用いないため、経済的にも有利である。   According to the present invention, it is possible to prevent or suppress the decrease in the surface temperature of the hot forging die in the waiting time occurring between each shot of the hot forging. In addition, it is economically advantageous because no special heating means such as a heater is used.

本発明の予熱部材の一例を示す模式図である。It is a schematic diagram which shows an example of the preheating member of this invention. 本発明の別な予熱部材の一例を示す模式図である。It is a schematic diagram which shows an example of another pre-heating member of this invention. 本発明の予熱部材を上型と下型とで挟み込んだ一例を示す模式図である。It is a schematic diagram which shows an example which clamped the preheating member of this invention with the upper mold | type and the lower mold | type.

以下に本発明を詳しく説明する。
上述したように、本発明の重要な特徴は、熱間鍛造に用いる熱間鍛造用金型の型彫り面が形成された表面の温度を十分に高めることにある。
なお、本発明でいう「熱間鍛造」としては、熱間鍛造の他、恒温鍛造、ホットダイ鍛造、熱間プレスを含むものである。
(予熱部材)
図1及び図2に示すように、本発明の予熱部材1は上型と下型とでなる一対の熱間鍛造用金型に形成された型彫り面を保温する予熱部材である。そのため、予熱部材が上型と下型に接触する面は金型の型彫り面に沿った、上型と下型に形成された型彫り面形状と略同形状の面形状を有している。これにより、上型と下型の型彫り面全体を保温することができる。これは型彫り面形状と予熱部材の面形状がほぼ同一形状であれば、型彫り面内の温度をほぼ同一温度とすることができるためである。また、予熱部材の面形状が型彫り面に沿った略同一形状であると、予熱部材1と上型と下型との隙間も少なくすることが可能なため、外気と触れ合うことによる熱間鍛造用金型表面の温度低下をより確実に防止することができる。勿論、金型の型彫り面を含んで、上型と下型が対向する面全面と略同一形状の面を有する予熱部材としても良い。
なお、予熱部材の面を型彫り面形状と略同一とするには、例えば、予熱部材とする素材を試圧によって熱間鍛造し、その熱間鍛造により型彫り面形状と略同一の面を有する予熱部材とすることが好ましい。また、予熱部材の材質は熱伝達係数の小さいものが好ましい。熱伝達係数が小さいものであると、予熱部材の予熱効果を高めることができる。そのための材質としては、例えば、Ni基の超耐熱合金やステンレス鋼であればよい。中でも718合金のように、Niを50質量%以上含有するNi基の超耐熱合金は酸化スケールが生じ難く、熱伝達係数が小さいため、これを予熱部材として用いると予熱・保熱効果が大きいことから特に好ましい。
また、この予熱・保熱効果を高めるには、予熱部材表面に硝子潤滑被膜を形成しておくのが良い。硝子潤滑被膜は保熱効果を有するため、予熱部材による熱間鍛造用金型の予熱・保熱効果を高めることができる。
The present invention will be described in detail below.
As described above, an important feature of the present invention is to sufficiently increase the temperature of the surface of the hot forging die used for hot forging on which the engraved surface is formed.
The term "hot forging" in the present invention includes constant temperature forging, hot die forging and hot pressing in addition to hot forging.
(Preheating member)
As shown in FIG. 1 and FIG. 2, the preheating member 1 of the present invention is a preheating member for keeping warm the engraved surface formed on a pair of hot forging dies consisting of an upper die and a lower die. Therefore, the surface of the preheating member in contact with the upper and lower molds has a surface shape along the mold engraving surface of the mold that has substantially the same shape as the shape of the engraved surface formed on the upper and lower molds. . This allows the entire upper and lower mold engraving surfaces to be kept warm. This is because if the surface shape of the die-cutting surface and the surface shape of the preheating member are substantially the same, the temperature in the surface of the die-cutting can be made substantially the same. In addition, since it is possible to reduce the gap between the preheating member 1 and the upper and lower molds if the surface shape of the preheating member is substantially the same along the engraved surface, hot forging by contact with the outside air The temperature drop on the mold surface can be prevented more reliably. Of course, it is also possible to use a preheating member having a surface having substantially the same shape as the entire surface where the upper and lower molds face each other, including the mold engraving surface of the mold.
In order to make the surface of the preheating member substantially the same as the shape of the die-cut surface, for example, the material to be used as the preheat member is hot-forged by test pressure, and the surface substantially the same as the shape of the die-cut surface It is preferable to set it as the preheating member which it has. The material of the preheating member is preferably one having a small heat transfer coefficient. If the heat transfer coefficient is small, the preheating effect of the preheating member can be enhanced. As a material therefor, for example, a Ni-based super heat-resistant alloy or stainless steel may be used. Among them, Ni-based super heat-resistant alloys containing 50% by mass or more of Ni, such as 718 alloy, are hard to produce oxide scale and have a small heat transfer coefficient. Are particularly preferred.
In order to enhance the preheating and heat retaining effects, it is preferable to form a glass lubricating film on the surface of the preheating member. Since the glass lubricating film has a heat retaining effect, it is possible to enhance the preheating and heat retaining effect of the hot forging die by the preheating member.

本発明の前記予熱部材は、前記上型に成形された型彫り面を予熱する予熱部品2aと前記下型に成形された型彫り面を予熱する予熱部品2bの組立て体である。組立て体とすることで保熱部材の保有熱量を大きくすることができ、ホットダイ鍛造や恒温鍛造を行う前の上型と下型とを十分に保温することができる。また、数万トン規模の鍛造荷重で熱間鍛造を行おうとすると、金型自体の総重量も30トンを超える場合もある。そのため、予熱部材により効果的に型彫り面を保温しようとすると予熱部材も大型化することになるが、予熱部品を組立てることで予熱部品の保有熱熱量を金型の総重量に合せて大きくすることができ、特に、1万トン以上の大型熱間鍛造装置用の金型の保熱には大きな効果を奏する。例えば、5万トン規模の大型鍛造装置用の熱間鍛造用金型に予熱部材を用いて型彫り面を予熱しようとした場合、例えば、一体物で予熱部材を作製すると、その重量は1トンを超える場合がある。これを所定の形状の予熱部材としようとすると作製が困難となることから、本発明の組立て体とする方法は大型の予熱部材とするには好適な方法である。
なお、図1や図2では2つの予熱部品の組立て体として示しているが、3つ以上としても良い。
また、本発明の予熱部材1は、例えば、複数個の予熱部品を積層するように組立てた後に溶接やボルト等の締結部品により予熱部品同士を結合させて組立て体(積層体)とするのが簡便である。その場合、積層して組立てるのが困難な形状であれば、図2に示すように、予熱部品を積層する接触面を機械加工などにより積層し易くして組立て体としても良い。
The preheating member of the present invention is an assembly of a preheating part 2a for preheating a mold engraving surface formed in the upper mold and a preheating part 2b for preheating a molding surface formed in the lower mold. By forming an assembly, the heat storage amount of the heat retaining member can be increased, and the upper mold and the lower mold can be sufficiently kept warm before hot die forging or constant temperature forging. In addition, when performing hot forging with a forging load on the order of tens of thousands, the total weight of the mold itself may exceed 30 tons. Therefore, although it is necessary to enlarge the preheating member if the preheating member is used to keep the die-cutting surface more effectively, the preheating parts are assembled to increase the heat capacity of the preheating parts according to the total weight of the mold. In particular, the heat retention of a mold for a large-scale hot forging device of 10,000 tons or more is greatly effective. For example, in the case of using a preheating member in a hot forging die for a large forging device for 50,000 ton scale, when preheating the mold engraving surface is to be preheated, for example, when making the preheating member in one piece, its weight is 1 ton May be exceeded. The method of making the assembly of the present invention is a suitable method for making a large-sized preheating member, since it becomes difficult to manufacture if it is used as a preheating member of a predetermined shape.
In addition, although shown as an assembly body of two preheating parts in FIG.1 and FIG.2, it is good also as three or more.
The preheating member 1 of the present invention is, for example, assembled so as to laminate a plurality of preheating parts and then bonding the preheating parts by a fastening part such as welding or bolt to form an assembly (laminated body). It is simple. In that case, if it is a shape that is difficult to stack and assemble, as shown in FIG. 2, the contact surface on which the preheated parts are stacked may be easily stacked by machining or the like to form an assembly.

ところで、予熱部材の体積が大きいほど予熱部材の保有熱量も大きくなるため、予熱部材の体積は、熱間鍛造後の鍛造材の2倍以上の体積を有する予熱部材とするのが好ましい。体積が2倍以上となると、熱間鍛造用金型の型彫り面(作業面)の温度低下を防止しつつ、一対の熱間鍛造用金型自体の温度低下も抑制することができ、熱間鍛造の各ショット毎の条件のばらつきを抑制することができる。より好ましくは、熱間鍛造後の鍛造材の体積の2.5倍以上の予熱部材を用意すると良い。なお、予熱部材の体積の上限については特に限定しないが、熱間鍛造後の鍛造材の寸法、製品形状、予熱時間などを勘案して適宜決定するのが良く、過度に予熱部材の体積が大きくなると、予熱部材自体を所望の温度に昇温するのに時間がかかることや、予熱部材の保有熱により熱間鍛造用金型の硬さが低下するおそれがある。そのため、予熱部材の体積の上限は5倍とすると良い。
例えば、被鍛造材と同材質で同形状のものを試圧によって熱間鍛造したものを予熱部品とし、その予熱部品を複数個用意し、それを組立てて組立て体としたものを予熱部材として用いることができる。また、予熱部材を被鍛造材の材質と同一なものとすると、予熱管理が容易となるだけでなく、型彫り面内での熱膨張も整合するため、型彫り面内を効率よく予熱することができ、特に好ましい。
By the way, the larger the volume of the preheating member, the larger the amount of heat stored in the preheating member. Therefore, the volume of the preheating member is preferably a preheating member having a volume twice or more that of the forged material after hot forging. When the volume is twice or more, the temperature drop of the pair of hot forging dies themselves can be suppressed while preventing the temperature decrease of the mold engraving surface (working surface) of the hot forging die, and the heat It is possible to suppress the variation in the conditions for each shot of the forging between the two. More preferably, it is better to prepare a preheating member 2.5 times or more the volume of the forged material after hot forging. Although the upper limit of the volume of the preheating member is not particularly limited, it may be appropriately determined in consideration of the dimensions of the forged material after hot forging, the product shape, the preheating time, etc. If so, it takes time to raise the temperature of the preheating member itself to a desired temperature, and there is a risk that the hardness of the mold for hot forging may decrease due to the heat stored in the preheating member. Therefore, the upper limit of the volume of the preheating member may be five times.
For example, the same material as the material to be forged and having the same shape and subjected to hot forging with a test pressure is used as a preheated component, and a plurality of such preheated components are prepared and assembled into an assembly to be used as a preheated member be able to. Further, if the preheating member is made of the same material as the material to be forged, not only preheating management becomes easy, but also thermal expansion in the engraving surface is matched, so that the inside of the engraving surface can be efficiently preheated. Especially preferred.

次に、上記の予熱部材を用いた本発明の熱間鍛造方法について説明する。
(金型予熱工程)
先ず、本発明では、図2に示すように一対の熱間鍛造用金型(上型11、下型12)に、熱間鍛造温度+100℃〜熱間鍛造温度−300℃に加熱した予熱部材1を挟み込み、上型11の重量を利用して予熱部材1を加圧しつつ、一定時間保持する金型予熱工程を行う。なお、本発明でいう一対の熱間鍛造用金型とは、上型11と下型12を指すものである。また、予熱部材1は従来のようなヒータを備えていないものである。
本発明では、前述の一対の熱間鍛造用金型に、熱間鍛造温度+100℃〜熱間鍛造温度−300℃に加熱した予熱部材1を挟み込む。予熱部材の温度を熱間鍛造温度+100℃〜熱間鍛造温度−300℃としたのは、被鍛造材を下型に載置したときに被鍛造材の急激な温度低下を防止するためである。予熱部材1の温度の上限が熱間鍛造温度+100℃より高温であると予熱部材が熱膨張して金型に嵌め合うことができなくなるおそれがある。また、予熱部材1の温度の下限が熱間鍛造温度−300℃より低温であると、特に、大型の熱間鍛造用金型を用いたときに、予熱部材の有する保有熱が短時間で低温になってしてしまい、被鍛造材を下型2に載置したときに、被鍛造材が冷却されやすくなる。
そのため、本発明では予熱部材1の温度を熱間鍛造温度+100℃〜熱間鍛造温度−300℃とする。なお、好ましい予熱部材の加熱温度の上限は熱間鍛造温度+50℃である。また、好ましい予熱部材の加熱温度の下限は熱間鍛造温度−100℃である。
Next, the hot forging method of the present invention using the above-described preheating member will be described.
(Mold preheating process)
First, in the present invention, as shown in FIG. 2, a preheating member heated to a hot forging temperature + 100 ° C. to a hot forging temperature -300 ° C. in a pair of hot forging dies (upper mold 11 and lower mold 12). A mold preheating step of holding for 1 hour while pressing the preheating member 1 using the weight of the upper mold 11 is performed. In the present invention, the pair of hot forging dies refers to the upper die 11 and the lower die 12. Further, the preheating member 1 does not have a heater as in the prior art.
In the present invention, the preheating member 1 heated to the hot forging temperature + 100 ° C. to the hot forging temperature -300 ° C. is inserted into the above-described pair of hot forging dies. The reason for setting the temperature of the preheating member to hot forging temperature + 100 ° C. to hot forging temperature -300 ° C. is to prevent a rapid temperature drop of the forging material when the forging material is placed on the lower die. . If the upper limit of the temperature of the preheating member 1 is higher than the hot forging temperature + 100 ° C., there is a possibility that the preheating member thermally expands and can not fit in the mold. In addition, when the lower limit of the temperature of the preheating member 1 is lower than the hot forging temperature -300 ° C, particularly when using a large-sized hot forging die, the holding heat possessed by the preheating member is low in a short time When the material to be forged is placed on the lower die 2, the material to be forged tends to be cooled.
Therefore, in the present invention, the temperature of the preheating member 1 is set to a hot forging temperature + 100 ° C to a hot forging temperature-300 ° C. The upper limit of the heating temperature of the preheating member is preferably the hot forging temperature + 50 ° C. Moreover, the minimum of the heating temperature of a preferable preheating member is hot forging temperature -100 degreeC.

また、本発明では前述の予熱部材1を挟み込み、一定時間保持する。予熱部材は上下一対の熱間鍛造用金型で挟み込まれるため、上型の重量によって加圧され、熱間鍛造用金型表面の温度低下を防止することができる。勿論、例えば、熱間鍛造機のプレス荷重によって特定の荷重を加えてもよい。この場合のプレス荷重は100〜25,000トンの間で適宜選択すると良い。なお、本発明者の検討によれば、プレス荷重は数百トンレベルで十分に予熱することができる。
そして、この予熱部材を挟み込んだ状態で一定時間保持する。保持時間は特に限定しないが、上型と下型の材質、予熱部材の温度を考慮すると良い。
例えば、上型、下型の材質がJIS−G4404(合金工具鋼鋼材)中「熱間金型用」として記されるもの(以下、熱間金型用鋼)であれば、本発明で規定する温度範囲に加熱された予熱部材を上型と下型に挟み込んだときに、長時間の予熱によって上型と下型の硬さが低下するおそれがある。そのため、上型や下型が熱間金型用鋼である場合は、予熱部材を挟み込む時間を20分以内とするのが好ましい。
また、前述の「熱間金型用」の鋼を用いた上型や下型であっても、例えばNi基超耐熱合金の肉盛層が形成されている場合は、30分程度までの予熱を行っても差し支えなく、また、上型と下型が共に例えばNi基超耐熱合金である場合は、例えば30分を超えて2時間程度までの予熱を行っても差し支えない。
なお、熱間鍛造用金型の材質としては、上記の熱間金型用鋼として記されるものであれば、比較的安価であるため好ましい。より好ましくは、上記の熱間金型用鋼にNi基超耐熱合金の肉盛層を形成したものである。または、熱間鍛造時に被鍛造材の変形量が大きな部位をNi基超耐熱合金製の入子型として用いて、熱間金型用鋼とNi基超耐熱合金製の入子型の複合金型として用いるのが良い。このNi基超耐熱合金を用いることで、金型の高強度化による高寿命化がはかれ、更に、保熱効果を向上させることができる。
Further, in the present invention, the above-described preheating member 1 is sandwiched and held for a predetermined time. Since the preheating member is sandwiched between the upper and lower hot forging dies, it is pressurized by the weight of the upper die, and it is possible to prevent the temperature decrease of the hot forging die surface. Of course, for example, a specific load may be applied by the press load of a hot forging machine. The press load in this case may be appropriately selected between 100 and 25,000 tons. According to the study of the inventor, the press load can be sufficiently preheated at a level of several hundred tons.
Then, while holding this preheating member, it is held for a fixed time. The holding time is not particularly limited, but it is preferable to consider the materials of the upper and lower molds and the temperature of the preheating member.
For example, if the material of the upper mold and the lower mold is described as “for hot mold” in JIS-G 4404 (alloy tool steel), it is defined in the present invention if it is a steel for hot mold (hereinafter, steel for hot mold). When the preheating member heated to the above temperature range is sandwiched between the upper mold and the lower mold, the hardness of the upper mold and the lower mold may be reduced by long-time preheating. Therefore, when the upper mold and the lower mold are steel for hot die, it is preferable to set the time for sandwiching the preheating member within 20 minutes.
Moreover, even if it is an upper mold or a lower mold using the above-mentioned "for hot metal mold" steel, for example, when a buildup layer of Ni-based super heat resistant alloy is formed, preheating for up to about 30 minutes In the case where both the upper and lower molds are, for example, a Ni-based super heat-resistant alloy, it may be preheated for, for example, more than 30 minutes to about 2 hours.
In addition, as a material of the metal mold | die for hot forgings, if it is described as said steel for hot metal molds, since it is comparatively cheap, it is preferable. More preferably, a buildup layer of a Ni-based super heat-resistant alloy is formed on the above-described steel for hot die. Alternatively, using a portion having a large amount of deformation of the material to be forged during hot forging as a core made of a Ni-based super heat resistant alloy, a composite metal of a steel for hot die and a core made of Ni-based super heat resistant alloy It is good to use as a type. By using this Ni-based super heat-resistant alloy, the life of the mold can be increased by increasing its strength, and the heat retention effect can be further improved.

なお、予熱部材の効果を最大限発揮させるには、熱間鍛造に用いる一対の熱間鍛造用金型を予め予熱しておくと良い。熱間鍛造用金型自体を予熱することで、予熱部材を一対の熱間鍛造用金型で挟み込んだときに、予熱部材の有する保有熱の熱間鍛造用金型への拡散を遅らせることができ、熱間鍛造用金型を保温することも可能となる。
前記の熱間鍛造用金型の予熱温度は、例えば上型、下型の材質がJIS−G4404(合金工具鋼鋼材)中に示される「熱間金型用」として記されるものであれば、焼戻し温度を予熱温度の上限とする。
また、予熱部材自体の予熱については、被鍛造材を鍛造温度に加熱する際に、予熱部材も一緒に加熱しておくことが好ましい。これにより、予熱部材を加熱する加熱炉を別に用意する必要がなくなり、経済的である。
In order to maximize the effects of the preheating member, it is preferable to preheat a pair of hot forging dies used for hot forging. By preheating the hot forging die itself, when the preheating member is sandwiched between the pair of hot forging dies, the diffusion of the holding heat of the preheating member to the hot forging die can be delayed. It is also possible to keep the hot forging die warm.
The preheating temperature of the above-described hot forging die is, for example, the material for the upper die and the lower die described as “for hot die” indicated in JIS-G 4404 (alloy tool steel). The tempering temperature is the upper limit of the preheating temperature.
Further, with regard to preheating of the preheating member itself, it is preferable to heat the preheating member together when heating the forging material to the forging temperature. This eliminates the need for separately preparing a heating furnace for heating the preheating member, which is economical.

(予熱部材除去工程)
次に、本発明では、前述の金型予熱工程により予熱された一対の金型から予熱部材を取り除く。予熱部材の除去はマニピュレータを用いるのが簡便である。
予熱部材を取り除くタイミングとしては、被鍛造材を予熱炉から取り出すタイミングで十分である。
以上、説明する本発明の熱間鍛造方法によれば、熱間鍛造用金型表面の温度低下を十分に抑制することができ、熱間鍛造条件のばらつきを抑制するだけでなく、熱間鍛造用金型の寿命を向上させることも可能である。
特に本発明の熱間鍛造は、例えば、6Al−4V−Ti合金等のTi合金や、Alloy718等のNi基超耐熱合金の難加工性材の熱間鍛造に好適である。
(Preheating member removal process)
Next, in the present invention, the preheating members are removed from the pair of molds preheated by the above-described mold preheating step. It is convenient to use a manipulator to remove the preheating member.
As the timing for removing the preheating member, it is sufficient to take out the forging material from the preheating furnace.
As described above, according to the hot forging method of the present invention to be described, it is possible to sufficiently suppress the temperature decrease of the surface of the mold for hot forging, and not only to suppress the variation of the hot forging conditions It is also possible to improve the life of the casting mold.
In particular, the hot forging according to the present invention is suitable for hot forging of a difficult-to-work material of a Ti alloy such as 6Al-4V-Ti alloy or a Ni-based super heat resistant alloy such as Alloy 718, for example.

(実施例1)
先ず、実際の熱間鍛造を行う前に、本発明の予熱部材の効果を確認した。
熱間鍛造にて、718合金製のディスク材(熱間鍛造材)を熱間鍛造することを模擬したものである。用意した予熱部材は2つであり、材質は718合金である。
予熱部材は予め熱間鍛造に使用する熱間鍛造用金型で熱間プレス(試圧)したものであり、それにより上型と下型に形成された型彫り面形状と略同形状の面が形成されている。なお、この予熱部材は、図1に示した構造をしている。また、予熱部材の一つには硝子潤滑剤を塗布したものを用い、もう一つには硝子潤滑剤の塗布は行わなかった。なお、試圧の温度は、実際の熱間鍛造温度プラスマイナス100℃程度の範囲で行うと良い。
前述の予熱部材を熱間鍛造温度と同じ1000℃に加熱し、上下一対の熱間鍛造用金型はおおよそ500℃に加熱した。なお、熱間鍛造用金型の表面温度が500℃以上であると、熱間鍛造時に用いる硝子潤滑剤の摩擦条件が良好となり、熱間鍛造条件を適正とすることができる。
上下一対の熱間鍛造用金型に前述の予熱部材を挟み込み、1つは200トンの軽荷重、もう1つは20,000トンの荷重を加え、熱間鍛造温度の変化を確認した。なお、予熱部材を用いない場合は、500℃の温度を有する熱間鍛造用金型は、3分経過後には約460℃程度まで金型の表面温度が低下することを確認した。
また、用いた熱間鍛造用金型は、最大荷重50,000トン用の大型鍛造品用の熱間鍛造用金型であり、材質はJIS−SKD61(以下、SKD61と記す)である。SKD61の焼戻し温度は650℃である。
結果を表1に示す。表1は、予熱部材を挟み込む前(予熱部材加温前)、予熱部材による予熱を終了し、上型を離した直後(加熱終了直後)、予熱部材を金型から除去した1分後、2分後、3分後、4分後の上型、下型の表面温度を測定した結果を示している。なお、「加熱終了直後」の下型の温度は、予熱部材が下型上に載置してあるため、下型の表面温度の測定は行わなかった。
Example 1
First, the effect of the preheating member of the present invention was confirmed before actual hot forging.
The hot forging simulates the hot forging of a 718 alloy disk material (hot forging material). There are two preheating members prepared, and the material is 718 alloy.
The preheating member is previously hot pressed (testing pressure) with a hot forging die used for hot forging, and thereby a surface having substantially the same shape as the shape of the engraved surface formed on the upper mold and the lower mold. Is formed. The preheating member has the structure shown in FIG. Further, one to which a glass lubricant was applied was used as one of the preheating members, and no glass lubricant was applied to the other. The temperature of the test pressure may be in the range of the actual hot forging temperature plus or minus 100 ° C. or so.
The above-described preheating member was heated to 1000 ° C., which is the same as the hot forging temperature, and the pair of upper and lower hot forging dies was heated to approximately 500 ° C. When the surface temperature of the hot forging die is 500 ° C. or more, the friction condition of the glass lubricant used at the time of hot forging becomes good, and the hot forging condition can be made appropriate.
The above-described preheating members were inserted into a pair of upper and lower hot forging dies, one with a light load of 200 tons and the other with a load of 20,000 tons, and changes in the hot forging temperature were confirmed. When the preheating member was not used, it was confirmed that the surface temperature of the mold for hot forging having a temperature of 500 ° C. decreased to about 460 ° C. after 3 minutes.
The hot forging die used is a hot forging die for large forgings for a maximum load of 50,000 tons, and the material is JIS-SKD61 (hereinafter referred to as SKD61). The tempering temperature of SKD 61 is 650.degree.
The results are shown in Table 1. Table 1 shows that, before sandwiching the preheating member (before heating the preheating member), the preheating by the preheating member is finished, and immediately after releasing the upper mold (immediately after the heating is completed), one minute after removing the preheating member from the mold 2 The results of measuring the surface temperatures of the upper mold and the lower mold after 3 minutes, 3 minutes and 4 minutes are shown. The temperature of the lower mold “immediately after the end of heating” was not measured for the surface temperature of the lower mold because the preheating member was placed on the lower mold.

Figure 0006528940
Figure 0006528940

表1に示すように、加熱終了直後の温度も熱間鍛造用金型(SKD61)の焼戻し温度を超えていないことが分かる。また、3分経過後においても上下の熱間鍛造用金型の表面温度は500℃を超える温度を維持していることが分かる。また、予熱部材の形状が上型と下型に形成された型彫り面形状と略同形状であることと、硝子潤滑剤の塗布を行った効果のため、荷重が軽荷重(200トン)を加えたときの温度変化と大荷重(20,000トン)を加えたときの温度変化には大きな有意差はなかった。
この結果から、本発明で用いた予熱部材は熱間鍛造用金型が有する機械的特性を劣化させることなく、熱間鍛造の各ショット間に生じる待機時間において、金型の表面温度の低下を防止し、500℃以上の温度に熱間鍛造用金型の表面温度を維持することができることを確認した。
As shown in Table 1, it can be seen that the temperature immediately after the end of heating does not exceed the tempering temperature of the hot forging die (SKD 61). Moreover, it turns out that the surface temperature of the metal mold | die for hot forgings of the upper and lower sides is maintaining the temperature over 500 degreeC even after 3 minutes progress. In addition, due to the fact that the shape of the preheating member is approximately the same shape as the shape of the engraved surface formed on the upper mold and the lower mold and the effect of applying the glass lubricant, the load is light (200 tons) There was no significant difference between the temperature change when added and the temperature change when heavy load (20,000 tons) was added.
From this result, the preheating member used in the present invention does not deteriorate the mechanical properties of the hot forging die, and the surface temperature of the die decreases in the waiting time generated between each shot of the hot forging. It confirmed that it could prevent and maintain the surface temperature of the die for hot forgings at the temperature of 500 ° C or more.

(実施例2)
次に、実際に熱間鍛造を行った。用いた熱間鍛造用金型の型彫り面形状と予熱部材の形状は上記実施例1で用いたものと同じとした。また、用意した予熱部材1は図1に示すように2つの予熱部品(2a,2b)を積層するように組立てた後、溶接により一体化した組立て体である。
また、熱間鍛造用金型の型彫り面のうち、特に荷重が加わる箇所はNi基超耐熱合金の肉盛層を形成したものを用いた。熱間鍛造機は最大荷重が50,000トンの大型鍛造機を用いた。
熱間鍛造は硝子潤滑剤で被覆した718合金製のディスク材(熱間鍛造材)を熱間鍛造するものである。用意した予熱部材1の体積は前記718合金製のディスク材(熱間鍛造材)の2倍であり、予熱部材1の表面には硝子潤滑剤を塗布した。予熱部材1と被鍛造材は同一の加熱炉内で鍛造温度の1000℃に加熱した。一対の熱間鍛造用金型は500℃に予熱を行った。
次に、大型鍛造機に熱間鍛造用金型をセットし、上型11と下型12とでなる一対の熱間鍛造用金型に、1000℃に加熱した予熱部材を挟み込み、一対の熱間鍛造用金型を5分間予熱して熱間鍛造用金型の型彫り面を500℃以上の温度に保った。
次に、加熱炉から被鍛造材を取り出すと共に、予熱中の一対の金型から予熱部材1を取り除いて、8分後に熱間鍛造を開始した。熱間鍛造前の金型の型彫り面(表面)温度は530℃であり、予熱部材による金型表面温度の低下の防止効果を確認した。
一対の熱間鍛造用金型の温度低下を防止したため、熱間鍛造時には硝子潤滑の摩擦条件が良好となり、熱間鍛造条件を適正とすることができたため、焼き付きなどの問題は発生しなかった。
この熱間鍛造を複数回繰返した。熱間鍛造の各ショット間に生じる待機時間には、鍛造温度と同じ1000℃に再加熱を行った予熱部材を用いて一対の熱間鍛造用金型の表面温度を500〜600℃の範囲内に維持することができ、各ショット後の熱間鍛造品には焼き付きなどの問題は発生しなかった。
(Example 2)
Next, hot forging was actually performed. The shape of the engraved surface of the hot forging die used and the shape of the preheating member were the same as those used in Example 1 above. Further, the prepared preheating member 1 is an assembly integrated by welding after assembling so as to laminate two preheating parts (2a, 2b) as shown in FIG.
In addition, among portions of the mold engraving surface of the hot forging die, a portion to which a load is applied is, in particular, one having a buildup layer of a Ni-based super heat-resistant alloy formed. The hot forging machine used a large forging machine with a maximum load of 50,000 tons.
Hot forging is for hot forging a disk material (hot forging material) made of 718 alloy coated with a glass lubricant. The volume of the prepared preheating member 1 was twice that of the disk material (hot forging material) made of the 718 alloy, and a glass lubricant was applied to the surface of the preheating member 1. The preheating member 1 and the forging material were heated to a forging temperature of 1000 ° C. in the same heating furnace. The pair of hot forging dies were preheated to 500 ° C.
Next, the hot forging die is set in a large forging machine, and the preheating member heated to 1000 ° C. is sandwiched between the pair of hot forging dies consisting of the upper die 11 and the lower die 12, and the pair of heat The forging die was preheated for 5 minutes to keep the die-cutting surface of the hot forging die at a temperature of 500 ° C. or more.
Next, the forged material was taken out from the heating furnace, and the preheated member 1 was removed from the pair of molds being preheated, and after 8 minutes, hot forging was started. The temperature at which the die surface of the die before hot forging was 530 ° C., and the effect of preventing the decrease in the die surface temperature by the preheating member was confirmed.
Since the temperature decrease of the pair of hot forging dies was prevented, the friction condition of glass lubrication was good at the time of hot forging, and the hot forging conditions could be made appropriate, so problems such as seizure did not occur. .
This hot forging was repeated several times. In the waiting time which occurs between each shot of hot forging, the surface temperature of the pair of hot forging dies is within the range of 500 to 600 ° C. using the preheating member reheated to the same 1000 ° C. as the forging temperature. The hot forged products after each shot did not suffer from seizure and the like.

以上の結果から、熱間鍛造の各ショット間に生じる待機時間において、金型の表面温度の低下を防止し、熱間鍛造条件をほぼ一定の条件下で行えることが確認された。特に、今後益々大型化する鍛造品を製造するにあたり、ヒータ等の加熱手段を用いることもないため、エネルギーコストの削減にも有利である。   From the above results, it was confirmed that the reduction of the surface temperature of the mold is prevented and the hot forging conditions can be performed under almost constant conditions in the waiting time occurring between each shot of hot forging. In particular, there is no need to use a heating means such as a heater when producing a forged product that will become larger in size in the future, which is also advantageous in reducing energy costs.

1 予熱部材
2a,2b 予熱部品
11 上型
12 下型
1 Preheating member 2a, 2b Preheating part 11 Upper mold 12 Lower mold

Claims (3)

上型と下型とでなる一対の熱間鍛造用金型に形成された型彫り面を保温する予熱部材であって、前記予熱部材はNi基超耐熱合金またはステンレス鋼からなり、前記型彫り面に沿った形状を有し、
前記予熱部材は、前記上型に形成された型彫り面を予熱する予熱部品と前記下型に形成された型彫り面を予熱する予熱部品の組立て体であることを特徴とする予熱部材。
It is a preheating member for keeping warm the mold engraving surface formed in a pair of hot forging molds consisting of an upper mold and a lower mold, wherein the preheating member is made of a Ni-based super heat resistant alloy or stainless steel, Has a shape along the surface,
The preheating member is an assembly of a preheating part for preheating a mold engraving surface formed on the upper mold and a preheating part for preheating a mold engraving surface formed on the lower mold.
請求項1に記載の予熱部材を用いた熱間鍛造方法であって、
前記予熱部材を熱間鍛造温度+100℃〜熱間鍛造温度−300℃に加熱し、一対の熱間鍛造用金型の上型に形成された型彫り面と下型に形成された型彫り面との間に前記予熱部材を挟み込み、前記予熱部材を加圧しつつ、前記予熱部材で前記一対の熱間鍛造用金型を予熱する金型予熱工程と、
前記金型予熱工程により予熱された前記一対の熱間鍛造用金型から前記予熱部材を取り除く予熱部材除去工程と、
前記予熱部材除去工程後、前記一対の熱間鍛造用金型を用いて被鍛造材を熱間鍛造して鍛造材とする熱間鍛造工程と、
を含むことを特徴とする熱間鍛造方法。
A hot forging method using the preheating member according to claim 1, wherein
The preheating member is heated to a hot forging temperature + 100 ° C. to a hot forging temperature -300 ° C., and a pair of mold engraving surfaces formed on the upper mold of the hot forging die and a mold engraving surface formed on the lower mold And a mold preheating step of preheating the pair of hot forging dies with the preheating member while sandwiching the preheating member between them and pressurizing the preheating member;
A preheating member removing step of removing the preheating member from the pair of hot forging dies preheated by the die preheating step;
A hot forging step of hot forging the forging material using the pair of hot forging dies after the preheating member removing step to make the forging material;
A hot forging method characterized by including.
前記予熱部材の表面には硝子潤滑被膜が形成されていることを特徴とする請求項2に記載の熱間鍛造方法。   The hot forging method according to claim 2, wherein a glass lubricating film is formed on the surface of the preheating member.
JP2015081401A 2015-04-13 2015-04-13 Preheating member and hot forging method using the same Active JP6528940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015081401A JP6528940B2 (en) 2015-04-13 2015-04-13 Preheating member and hot forging method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015081401A JP6528940B2 (en) 2015-04-13 2015-04-13 Preheating member and hot forging method using the same

Publications (2)

Publication Number Publication Date
JP2016198802A JP2016198802A (en) 2016-12-01
JP6528940B2 true JP6528940B2 (en) 2019-06-12

Family

ID=57422174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015081401A Active JP6528940B2 (en) 2015-04-13 2015-04-13 Preheating member and hot forging method using the same

Country Status (1)

Country Link
JP (1) JP6528940B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018107251A1 (en) * 2017-04-14 2018-10-18 Denso Corporation Method and system for producing a component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444039A (en) * 1982-04-26 1984-04-24 Kabushiki Kaisha Kobe Seiko Sho Die forging press
JPS6397695A (en) * 1986-10-14 1988-04-28 Agency Of Ind Science & Technol Lubricant for use in forging and casting of metal
JPH0776432B2 (en) * 1987-07-24 1995-08-16 本田技研工業株式会社 Coating method for hot plastic working materials
JP2002096134A (en) * 2000-09-21 2002-04-02 Mitsubishi Heavy Ind Ltd Heating jig for forging metal mold and heating method for forging metal mold using this jig
JP5845135B2 (en) * 2012-05-08 2016-01-20 株式会社神戸製鋼所 Forging die equipment

Also Published As

Publication number Publication date
JP2016198802A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
CN102896267B (en) Isothermal forging method of TC17 titanium alloy disc-shaped forge piece
JP6214751B2 (en) Articles, systems, and methods for forging alloys
JP5532148B2 (en) Die forging method and forged product manufacturing method
RU2572639C2 (en) Methods of lubing for better straining at moulding
CN109622865B (en) Forging method of GH4169 series high-temperature alloy turbine disc for aero-engine
CN109482796B (en) Beta forging and heat treatment method of TC4 titanium alloy disc forging
JP5904431B1 (en) Method for producing Ni-base superalloy
US10875080B2 (en) Method of producing forged product
JP2016512172A5 (en)
JP2013508550A (en) Stress relaxation heat treatment of titanium alloy parts
JP5266676B2 (en) Warm forming method and molded product produced by the warm forming method
JP2016144814A (en) Hot forging mold device and hot forging method using the same
JP6528940B2 (en) Preheating member and hot forging method using the same
JP6399297B2 (en) Hot forging method
JP6508568B2 (en) Method of correcting shape of material for turbine blade and method of manufacturing material for turbine blade
JP2009095857A (en) METHOD FOR FORMING TiAl INTERMETALLIC COMPOUND BASED ALLOY, AND FORMED ARTICLE PRODUCED BY THE METHOD
EP3199262A1 (en) Method for manufacturing alloy ingot
CN107282740A (en) A kind of drawing forming method of vanadium alloy plate
JP2023116806A (en) Manufacturing method for hot-forged member
CN105441659A (en) Anti-deformation thermal treatment tool for high-temperature alloy precisely-forged structural component
JP2017202519A (en) Hot stamping processing of age hardening type aluminum alloy plate
JP2020168661A (en) Method for manufacturing raw material for turbine blade
JP2018051586A (en) Manufacturing method of raw material of turbine blade
CN117733043A (en) Harvard die forging forming method of GH4698 alloy drum shaft forging
CN116251924A (en) Isothermal forging method of nickel-based superalloy dual-performance disc forging 3D printing blank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190430

R150 Certificate of patent or registration of utility model

Ref document number: 6528940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350