JP6691811B2 - Plugged honeycomb structure and method for forming plugged honeycomb structure - Google Patents

Plugged honeycomb structure and method for forming plugged honeycomb structure Download PDF

Info

Publication number
JP6691811B2
JP6691811B2 JP2016092445A JP2016092445A JP6691811B2 JP 6691811 B2 JP6691811 B2 JP 6691811B2 JP 2016092445 A JP2016092445 A JP 2016092445A JP 2016092445 A JP2016092445 A JP 2016092445A JP 6691811 B2 JP6691811 B2 JP 6691811B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
plugged honeycomb
cells
end surface
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016092445A
Other languages
Japanese (ja)
Other versions
JP2017200673A (en
Inventor
智克 青山
智克 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2016092445A priority Critical patent/JP6691811B2/en
Priority to US15/492,366 priority patent/US10753244B2/en
Priority to DE102017003970.4A priority patent/DE102017003970B4/en
Priority to CN201710302073.XA priority patent/CN107335474B/en
Publication of JP2017200673A publication Critical patent/JP2017200673A/en
Application granted granted Critical
Publication of JP6691811B2 publication Critical patent/JP6691811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2459Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2496Circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/006Making hollow articles or partly closed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/92Methods or apparatus for treating or reshaping
    • B28B21/98Methods or apparatus for treating or reshaping for reshaping, e.g. by means of reshape moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/40Porous blocks
    • B01D2275/406Rigid blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/34Honeycomb supports characterised by their structural details with flow channels of polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、目封止ハニカム構造体、及び目封止ハニカム構造体の形成方法に関する。更に詳しくは、ディーゼルエンジン等から排出される排気ガス等の流体に含まれる粒子状物質を捕集し、除去するための排気ガス浄化装置や捕集フィルタ等に使用される、目封止部を備えた目封止ハニカム構造体、及び目封止ハニカム構造体の形成方法に関する。   The present invention relates to a plugged honeycomb structure and a method for forming the plugged honeycomb structure. More specifically, a plugging portion used for an exhaust gas purifying device or a collecting filter for collecting and removing particulate matter contained in a fluid such as exhaust gas discharged from a diesel engine, etc. The present invention relates to a plugged honeycomb structure and a method for forming the plugged honeycomb structure.

自動車用のディーゼルエンジン等から排出される排気ガス(流体)の中には、塵、スス、及びカーボン微粒子等の種々の粒子状物質が多く含まれている。これらの粒子状物質を、大気中に放出することは自然環境に対する影響が大きいことがある。そのため、種々の法規制等によって、排気ガス等を直接大気中に放出することは制限されている。そこで、排気ガス浄化装置や捕集フィルタ等を用いた浄化処理が放出前に行われている。   Exhaust gas (fluid) discharged from an automobile diesel engine or the like contains a large amount of various particulate substances such as dust, soot, and carbon fine particles. Release of these particulates into the atmosphere can have a large impact on the natural environment. Therefore, direct release of exhaust gas and the like into the atmosphere is restricted by various laws and regulations. Therefore, a purification process using an exhaust gas purification device, a collection filter, etc. is performed before the emission.

上記浄化処理に使用される排気ガス浄化装置等には、一方の端面から他方の端面まで延びる、流体の流路を形成する複数のセルが区画形成された隔壁を有するセラミックス製のハニカム基材と、当該ハニカム基材の各端面のセルを、所定の配設基準に従って目封止した目封止部とを備えた目封止ハニカム構造体が一般的に用いられている(例えば、特許文献1参照。)。   The exhaust gas purifying apparatus or the like used in the purification treatment includes a honeycomb base material made of ceramics, which has partition walls extending from one end surface to the other end surface and in which a plurality of cells forming a fluid passage are partitioned and formed. Generally, a plugged honeycomb structure including a plugged portion in which cells on each end surface of the honeycomb substrate are plugged according to a predetermined arrangement standard is used (for example, Patent Document 1). reference.).

粒子状物質を含む排気ガス等は、目封止ハニカム構造体の一方の端面からその内部に流入し、多孔質性のセラミックス材料で形成された隔壁を通過することで、隔壁表面及び隔壁内部に上記粒子状物質が捕集される。その結果、目封止ハニカム構造体の他方の端面から排出される清浄化した浄化ガスは、当初の排気ガスには含まれていた粒子状物質が除去された状態となる。   Exhaust gas containing particulate matter flows from one end face of the plugged honeycomb structure into the inside thereof, and passes through the partition walls formed of a porous ceramic material, so that The particulate matter is collected. As a result, the purified purified gas discharged from the other end surface of the plugged honeycomb structure is in a state in which the particulate matter contained in the original exhaust gas is removed.

排気ガス等の流体は、ディーゼルエンジン等の排気系と直に接続された排気ガス浄化処理装置等まで速やかに導かれる。そのため、ディーゼルエンジン等から排出直後の流体は、高温のままの状態にあることが多い。そのため、目封止ハニカム構造体は、長時間に亘って高温の流体に晒された場合であっても、熱衝撃に耐え得るような、耐熱性及び耐熱衝撃性等の優れた熱的性質を有する必要があり、主にセラミックス材料が使用されている。   A fluid such as exhaust gas is promptly guided to an exhaust gas purification processing device or the like directly connected to an exhaust system of a diesel engine or the like. Therefore, the fluid immediately after being discharged from a diesel engine or the like is often in a high temperature state. Therefore, the plugged honeycomb structure has excellent thermal properties such as heat resistance and thermal shock resistance so as to withstand thermal shock even when exposed to a high temperature fluid for a long time. It is necessary to have, and mainly ceramic materials are used.

例えば、目封止ハニカム構造体(主に、隔壁)を構成する原材料として、粒子状の基材(または骨材とも呼ばれる)と、当該基材の間に細孔を形成した状態で、粒子状の基材間を結合する結合材とを含んだセラミックス材料が使用されている。更に具体的に例示すると、基材(骨材)として炭化珪素や窒化珪素等を用い、一方、結合材として結晶性かつ多孔性のコージェライトを用い、更に、当該結合材の一部構成に、希土類元素やジルコニウム元素を含んだものが提案されている(例えば、特許文献2参照。)。   For example, as a raw material forming a plugged honeycomb structure (mainly partition walls), a particulate base material (also called an aggregate) and a particulate base material in which pores are formed A ceramic material including a bonding material for bonding the base materials is used. More specifically, silicon carbide, silicon nitride, or the like is used as the base material (aggregate), while crystalline and porous cordierite is used as the binder, and further, in a partial configuration of the binder, A material containing a rare earth element or a zirconium element has been proposed (see, for example, Patent Document 2).

特開2003−254034号公報JP, 2003-254034, A 特開2015−67473号公報JP, 2005-67473, A

上記のような目封止ハニカム構造体を採用した排気ガス浄化処理装置等を使用し、流体に対する浄化処理を行うと、目封止ハニカム構造体のセル内部には、捕集されたスス等の粒子状物質が多く堆積した状態となる。ここで、既に説明したように、目封止ハニカム構造体は、一方の端面及び他方の端面のそれぞれのセルに対して予め規定された配設基準に従って複数の目封止部が設けられている。   Using an exhaust gas purification treatment device or the like that employs a plugged honeycomb structure as described above, when performing a purification treatment on a fluid, inside the cells of the plugged honeycomb structure, the collected soot and the like A large amount of particulate matter is deposited. Here, as described above, the plugged honeycomb structure is provided with a plurality of plugging portions according to the arrangement standard previously defined for each cell on one end face and the other end face. ..

そのため、目封止ハニカム構造体における流体の流入側(入口側)となる一方の端面(流入側端面)と比較し、流体の排出側(出口側)となる他方の端面(排出側端面)の目封止部によって、流体の流れが特に規制される。その結果、係る目封止部が設けられたセルの上流側のセル内部に、特に多くの粒子状物質が堆積する傾向が強かった。   Therefore, in comparison with one end surface (inflow side end surface) of the plugged honeycomb structure on the fluid inflow side (inlet side), the other end surface (discharge side end surface) of the fluid discharge side (outlet side) is The plugging portion particularly restricts the flow of fluid. As a result, there was a strong tendency that a large amount of particulate matter was deposited inside the cell on the upstream side of the cell provided with the plugged portion.

そのため、粒子状物質の堆積した目封止ハニカム構造体の内部に高温のガス流体を強制的に導入し、セル内部に堆積した粒子状物質を除去する再生処理が一般に行われている。ここで、粒子状物質は、前述の通り、塵、スス、或いはカーボン微粒子等であることが多い。その結果、酸素を含んだ大気中で高温のガス流体と粒子状物質とを接触させることにより、大気中の酸素と粒子状物質とが結合し、二酸化炭素が生成される。すなわち、上記再生処理によって、固体状の粒子状物質を二酸化炭素にガス化し、他方の端面から排出することで、比較的容易に目封止ハニカム構造体のセル内部から粒子状物質を除去することができ、粒子状物質を捕集前の状態に容易に復活させることができる。   Therefore, a regeneration treatment is generally performed in which a high-temperature gas fluid is forcibly introduced into the plugged honeycomb structure in which the particulate matter is deposited to remove the particulate matter deposited in the cells. Here, as described above, the particulate matter is often dust, soot, carbon fine particles, or the like. As a result, when the high temperature gas fluid containing oxygen and the particulate matter are brought into contact with each other, the oxygen in the atmosphere and the particulate matter are bonded to generate carbon dioxide. That is, by the above regeneration treatment, the solid particulate matter is gasified into carbon dioxide and discharged from the other end surface, so that the particulate matter can be relatively easily removed from the inside of the cells of the plugged honeycomb structure. Therefore, the particulate matter can be easily restored to the state before the collection.

上記再生処理は、予め規定された頻度または周期で定期的に実施したり、或いは、セル内部に堆積した粒子状物質の堆積量に応じて適宜実施したりすることができる。これにより、再生処理時に、目封止ハニカム構造体に亀裂等が発生し、粒子状物質の捕集性能に悪影響を及ぼす不具合を防ぎ、目封止ハニカム構造体の長寿命化を図ることができる。   The regeneration treatment can be performed regularly at a frequency or cycle defined in advance, or can be appropriately performed depending on the amount of particulate matter deposited inside the cell. This prevents cracks and the like from occurring in the plugged honeycomb structure during the regeneration process, which adversely affects the performance of collecting particulate matter, and can prolong the life of the plugged honeycomb structure. ..

しかしながら、再生処理は、高温のガス流体を目封止ハニカム構造体の内部に強制的に流入するものであり、下記に掲げるような問題を生じることがあった。すなわち、粒子状物質をガス化するために流入される高温のガス流体を発生させるために、多くのエネルギーコストが必要となることがあった。この場合、ディーゼルエンジン等の回転数を制御したり、再生処理用に燃料を直接配管等に噴射することで、ディーゼルエンジンから高温のガス流体を発生させることができる。これにより、通常のディーゼルエンジンの稼働と比較して多くの燃料が消費されることとなった。   However, in the regenerating treatment, the high temperature gas fluid is forced to flow into the inside of the plugged honeycomb structure, which may cause the following problems. That is, a large amount of energy cost may be required in order to generate a high temperature gas fluid that is introduced to gasify the particulate matter. In this case, it is possible to generate a high temperature gas fluid from the diesel engine by controlling the rotation speed of the diesel engine or by injecting fuel directly into the pipe for regeneration processing. This resulted in the consumption of more fuel compared to normal diesel engine operation.

ここで、目封止ハニカム構造体に亀裂等を生じさせないために、上記再生処理の頻度を増やし、頻繁に行うことは、燃料消費量が多くなり、ディーゼルエンジン等の稼働全体の燃費性能が著しく低下する可能性があった。また、スス等の粒子状物質を二酸化炭素に変換し、大気中に排出する処理であっても、地球温暖化の一要因とされる二酸化炭素を排出するため、自然環境に対する影響からあまり好ましいものではなかった。   Here, in order not to cause cracks or the like in the plugged honeycomb structure, increasing the frequency of the above-mentioned regeneration treatment and performing it frequently results in a large fuel consumption, and the fuel consumption performance of the entire operation of the diesel engine or the like is remarkably high. It could be reduced. In addition, even in the process of converting particulate matter such as soot into carbon dioxide and discharging it into the atmosphere, it emits carbon dioxide, which is one of the factors contributing to global warming, so it is less preferable from the effect on the natural environment. Was not.

そこで、燃料消費量を抑えて高い燃費性能を維持しつつ、かつ二酸化炭素排出量の低減化を図るために、目封止ハニカム構造体に対して実施される再生処理の回数を可能な限り減らすことが望まれていた。   Therefore, in order to reduce the amount of carbon dioxide emission while suppressing fuel consumption and maintaining high fuel efficiency, the number of times of regeneration treatment performed on the plugged honeycomb structure is reduced as much as possible. Was desired.

しかしながら、再生処理回数の減少は、目封止ハニカム構造体のセル内部に堆積する粒子状物質の堆積量が必然的に多くなる。この状態で、高温のガス流体を目封止ハニカム構造体に流入させると、粒子状物質が多く堆積した箇所、例えば、排出側端面に設けられた目封止部の上流位置付近の熱量が局所的に大きくなり、著しく高温になることがあった。その結果、目封止ハニカム構造体に加わる熱応力が大きくなり、当該熱応力に耐え得ることができずに、亀裂(クラック)等がセルの隔壁交点部に発生する可能性が高くなった。これにより、目封止ハニカム構造体の破損が生じる等の問題があった。   However, the decrease in the number of times of the regeneration treatment inevitably increases the amount of particulate matter deposited inside the cells of the plugged honeycomb structure. In this state, when a high temperature gas fluid is caused to flow into the plugged honeycomb structure, a large amount of particulate matter is deposited, for example, the amount of heat near the upstream position of the plugging portion provided on the discharge side end face is locally generated. It sometimes becomes extremely large and becomes extremely hot. As a result, the thermal stress applied to the plugged honeycomb structure was increased, the thermal stress could not be withheld, and cracks and the like were more likely to occur at the partition wall intersections of the cells. This causes a problem such as damage to the plugged honeycomb structure.

また、目封止ハニカム構造体に対する局所的な熱量の増大とともに、過剰量の粒子状物質が堆積することで、目封止ハニカム構造体の全体の温度が上昇することがあった。これにより、目封止ハニカム構造体の隔壁を構成する原材料が融点以上の温度に達し、目封止ハニカム構造体の一部の隔壁が溶損する等の問題を生じる可能性があった。   Further, as the amount of heat locally applied to the plugged honeycomb structure increases, an excessive amount of particulate matter may be deposited, which may increase the temperature of the entire plugged honeycomb structure. This may cause a problem that the raw material forming the partition walls of the plugged honeycomb structure reaches a temperature equal to or higher than the melting point, and some partition walls of the plugged honeycomb structure are melted and damaged.

そこで、本発明は上記実情に鑑み、局所的に加わる熱応力の集中を抑制及び緩和するとともに、セル内部における亀裂の発生量を抑制可能な目封止ハニカム構造体、及び当該目封止ハニカム構造体の形成方法の提供を課題とするものである。   Therefore, in view of the above situation, the present invention suppresses and relaxes the concentration of locally applied thermal stress, and can suppress the amount of cracks generated inside the cells, and the plugged honeycomb structure. It is an object to provide a method for forming a body.

本発明によれば、上記課題を解決した目封止ハニカム構造体、及び目封止ハニカム構造体の形成方法が提供される。   According to the present invention, there is provided a plugged honeycomb structure that solves the above problems, and a method for forming a plugged honeycomb structure.

[1] 一方の端面から他方の端面まで延びる、流体の流路となる複数のセルを区画形成する多孔質の隔壁を有するハニカム基材と、前記ハニカム基材の前記一方の端面における前記セルを所定の配設基準に従って目封止するとともに、前記他方の端面における残余の前記セルをそれぞれ目封止した目封止部とを備え、前記ハニカム基材の前記一方の端面である流入側端面から前記他方の端面である排出側端面に向かって流入する前記流体に含まれる粒子状物質を捕集する目封止ハニカム構造体であって、前記隔壁は、粒子状の基材、及び、前記基材同士を結合し、前記基材より低融点の結合材を原材料として含み、前記基材の粒子径は、5μm〜60μmの範囲であり、前記基材及び前記結合材を含む前記原材料の合計質量に対する前記結合材の占める質量比は、22質量%〜45質量%の範囲であり、前記セルは、前記隔壁の少なくとも一部が円弧状を呈する円弧隔壁によって、円形状、楕円形状、または半円形状に区画形成された円形セルを一部に有し、前記円形セルを区画形成する前記円弧隔壁の隔壁交点部における曲率半径は、250μm以上である目封止ハニカム構造体。 [1] A honeycomb substrate having porous partition walls extending from one end face to the other end face and partitioning and forming a plurality of cells serving as fluid channels, and the cells on the one end face of the honeycomb substrate. While plugging according to a predetermined disposition standard, a plugging portion that plugs each of the remaining cells in the other end surface is provided, and from the inflow side end surface that is the one end surface of the honeycomb substrate. A plugged honeycomb structure for collecting particulate matter contained in the fluid flowing toward the discharge side end surface which is the other end surface, wherein the partition wall is a particulate base material, and the base. The materials are bound to each other and contain a binder having a lower melting point than the base material as a raw material, and the particle diameter of the base material is in the range of 5 μm to 60 μm, and the total mass of the base material and the raw material containing the binder is Said binding to The mass ratio of the cells is in the range of 22% by mass to 45% by mass, and the cells are partitioned and formed into a circular shape, an elliptical shape, or a semicircular shape by an arc partition wall in which at least a part of the partition wall has an arc shape. been possess a part circular cell, the radius of curvature at partition wall intersection points of the circular arc partition walls forming, by surrounding the circular cell, plugged honeycomb structure is 250μm or more.

[2] 前記目封止ハニカム構造体のハニカム軸方向に直交する直交面における前記セルの総セル数に対する前記円形セルの円形セル数の占める比率は、10%以上である前記[1]に記載の目封止ハニカム構造体。 [2] The ratio of the number of circular cells of the circular cells to the total number of cells of the orthogonal cells orthogonal to the honeycomb axis direction of the plugged honeycomb structure is 10% or more. Plugged honeycomb structure.

[3] 前記円形セルは、前記排出側端面に設けられた前記目封止部に近接して位置する前記[1]または[2]に記載の目封止ハニカム構造体。 [3] The plugged honeycomb structure according to the above [1] or [2], wherein the circular cells are positioned in proximity to the plugged portions provided on the discharge-side end surface.

[4] 前記隔壁によって区画形成された複数の多角形状の多角形セルを有する、前記粒子状物質を捕集する前の多角形目封止ハニカム構造体の流入側端面から前記流体を流入させ、前記粒子状物質を捕集後に、前記結合材が融点以上の温度に晒されることで前記多角形セルが変形して形成された前記円形セルを有する前記[1]〜[3]のいずれかに記載の目封止ハニカム構造体。 [4] Injecting the fluid from the inflow side end surface of the polygonal plugged honeycomb structure before capturing the particulate matter, which has a plurality of polygonal polygonal cells partitioned by the partition walls, Any one of the above [1] to [3] having the circular cells formed by deforming the polygonal cells by exposing the binder to a temperature equal to or higher than a melting point after collecting the particulate matter. The plugged honeycomb structure described.

] 前記結合材の融点は、1100℃以上である前記[1]〜[]のいずれかに記載の目封止ハニカム構造体。 [ 5 ] The plugged honeycomb structure according to any one of [1] to [ 4 ], wherein the binder has a melting point of 1100 ° C. or higher.

] 前記基材及び前記結合材は、コージェライト、アルミナ、ムライト、窒化珪素、炭化珪素、及びアルミニウムチタネートを含む群から選択された一または複数のセラミックス材料である前記[1]〜[]のいずれかに記載の目封止ハニカム構造体。 [ 6 ] The base material and the binder are one or more ceramic materials selected from the group including cordierite, alumina, mullite, silicon nitride, silicon carbide, and aluminum titanate. [1] to [ 5 ] ] The plugged honeycomb structure according to any one of [1] to [4].

] 前記基材は、前記炭化珪素であり、前記結合材は、前記コージェライトである前記[]に記載の目封止ハニカム構造体。 [ 7 ] The plugged honeycomb structure according to the above [ 6 ], wherein the base material is the silicon carbide, and the binder is the cordierite.

] 前記[1]〜[]のいずれかに記載の目封止ハニカム構造体の形成方法であって、一方の端面から他方の端面まで延びる、流体の流路となる複数の多角形セルを区画形成する多孔質の隔壁を有するハニカム基材、及び、前記ハニカム基材の前記一方の端面における前記多角形セルを所定の配設基準に従って目封止するとともに、前記他方の端面における残余の前記多角形セルをそれぞれ目封止した目封止部を備える多角形目封止ハニカム構造体に対し、前記一方の端面である流入側端面から前記他方の端面である排出側端面に向かって前記流体を流入させる流体流入工程と、前記流体に含まれる粒子状物質を、前記排出側端面に前記目封止部が形成された前記多角形セルのセル内部に堆積させて捕集する粒子状物質捕集工程と、前記粒子状物質捕集工程によって前記セル内部に前記粒子状物質が堆積した後、前記多角形目封止ハニカム構造体が前記結合材の融点以上の温度に晒されることにより、前記多角形セルの少なくとも一部は、前記隔壁が円弧状を呈する円弧隔壁に変形し、円形状、楕円形状、または半円形状に区画形成された円形セルに変形する円形セル変形工程とを有する目封止ハニカム構造体の形成方法。 [ 8 ] The method for forming a plugged honeycomb structure according to any one of [1] to [ 7 ], wherein a plurality of polygons extending from one end face to the other end face and serving as fluid passages are formed. A honeycomb base material having a porous partition wall that defines cells, and plugging the polygonal cells on the one end surface of the honeycomb base material according to a predetermined disposition standard, and a residue on the other end surface. For a polygonal plugged honeycomb structure having plugged portions respectively plugging the polygonal cells, from the inflow side end face that is the one end face to the discharge side end face that is the other end face. A fluid inflow step of inflowing the fluid, and a particulate matter for depositing and collecting particulate matter contained in the fluid inside the cells of the polygonal cell having the plugging portion formed on the discharge side end face. A material collection process, After the particulate matter is deposited inside the cell by the particulate matter collecting step, the polygonal plugged honeycomb structure is exposed to a temperature equal to or higher than the melting point of the binder, whereby the polygonal cell A plugged honeycomb structure having at least a part of which is a circular cell deforming step in which the partition wall is deformed into an arc partition wall having an arc shape and is transformed into a circular cell having a circular shape, an elliptical shape, or a semicircular shape. How to form a body.

本発明の目封止ハニカム構造体、及び目封止ハニカム構造体の形成方法によれば、セルの一部に所定の比率で円形セルを含むことにより、目封止ハニカム構造体の内部に加わる、粒子状物質の捕集時の熱応力集中を分散し、隔壁交点部等に局所的に熱応力が加わることを抑制することができる。これにより、目封止ハニカム構造体の内部において、目封止ハニカム構造体の強度を維持しつつ、亀裂(クラック)等の発生数を抑制することができる。   According to the plugged honeycomb structure of the present invention and the method of forming the plugged honeycomb structure, the circular cells are included in a part of the cells at a predetermined ratio, so that the cells are added to the inside of the plugged honeycomb structure. It is possible to disperse the thermal stress concentration at the time of collecting the particulate matter and suppress the local application of the thermal stress to the partition wall intersections and the like. This makes it possible to suppress the number of occurrence of cracks and the like while maintaining the strength of the plugged honeycomb structure inside the plugged honeycomb structure.

特に、予めセルの一部円形セルで構成したものと比べ、多角形セルで構成された従来の多角形目封止ハニカム構造体を準備し、その後その多角形目封止ハニカム構造体に粒子状物質を含む流体を流して円形セルを形成することで、セル密度の低下を防ぎ、かつ捕集当初における圧力損失の増大を防ぐことが可能となる。更に、基材に対して低融点の結合材を用い、基材の粒子径及び結合材の質量比を適宜調することにより、粒子状物質の捕集後の再生処理時における円形セルの形成が容易となる。 In particular, compared with one in which a part of the cells is configured by circular cells in advance, a conventional polygonal plugged honeycomb structure configured by polygonal cells is prepared, and then particles are added to the polygonal plugged honeycomb structure. By flowing a fluid containing particulate matter to form a circular cell, it is possible to prevent a decrease in cell density and an increase in pressure loss at the beginning of collection. Furthermore, using a binding material having a low melting point relative to the substrate, by appropriately adjust the weight ratio of the particle size and binder substrate, formed of a circular cell during reproduction processing after collecting the particulate matter Will be easier.

本発明の一実施形態の目封止ハニカム構造体の概略構成を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a schematic configuration of a plugged honeycomb structure of one embodiment of the present invention. 隔壁中の基材及び当該基材同士を結合する結合材の状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state of the base material in a partition, and the binding material which couple | bonds the said base materials. 粒子状物質を捕集前の多角形目封止ハニカム構造体の概略構成を示す断面図である。FIG. 3 is a cross-sectional view showing a schematic configuration of a polygonal plugged honeycomb structure before collecting particulate matter. 粒子状物質の捕集後の円形セルの形成された本実施形態の目封止ハニカム構造体の概略構成を示す断面図である。FIG. 3 is a cross-sectional view showing a schematic configuration of a plugged honeycomb structure of the present embodiment in which circular cells are formed after collecting particulate matter. 目封止ハニカム構造体の他方の端面側に近接するセル内部の図4のCF−CF線切断面を模式的に示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view schematically showing a section taken along the line CF-CF in FIG. 4 inside a cell adjacent to the other end surface side of the plugged honeycomb structure.

以下、図面を参照しつつ本発明の目封止ハニカム構造体、及び目封止ハニカム構造体の形成方法について詳述する。なお、本発明の目封止ハニカム構造体、及び目封止ハニカム構造体の形成方法は、以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない限りにおいて、種々の設計の変更、修正、及び改良等を加え得るものである。   Hereinafter, the plugged honeycomb structure and the method for forming the plugged honeycomb structure of the present invention will be described in detail with reference to the drawings. The plugged honeycomb structure of the present invention and the method for forming the plugged honeycomb structure are not limited to the following embodiments, and various designs are possible without departing from the gist of the present invention. Changes, corrections, and improvements can be made.

1.目封止ハニカム構造体
本実施形態の目封止ハニカム構造体1は、図1〜図5に示されるように、略円柱状を呈し、一方の端面2a(目封止ハニカム構造体1の流入側端面3a)から他方の端面2b(目封止ハニカム構造体1の排出側端面3b)まで延びる、粒子状物質10を含む排気ガス等の流体F(図1及び図3,4の矢印参照)の流路となる複数のセル4を区画形成する多孔質性のセラミックス材料で形成された隔壁5を有するハニカム基材6と、当該ハニカム基材6の一方の端面2aにおけるセル4の開口部7aを所定の配設基準に従って目封止するとともに、他方の端面2bにおける残余のセル4の開口部7bをそれぞれ目封止した目封止部8とを主に具備している。
1. Plugged honeycomb structure
As shown in FIGS. 1 to 5, the plugged honeycomb structure 1 of the present embodiment has a substantially columnar shape, and one end face 2a (inflow side end face 3a of the plugged honeycomb structure 1) to the other end face 2a. A plurality of flow paths extending to the end surface 2b of the plug (exhaust-side end surface 3b of the plugged honeycomb structure 1) such as an exhaust gas containing particulate matter 10 (see arrows in FIGS. 1 and 3 and 4). The honeycomb base material 6 having partition walls 5 made of a porous ceramics material for partitioning and forming the cells 4 and the openings 7a of the cells 4 on one end face 2a of the honeycomb base material 6 are provided as predetermined arrangement standards. And the plugging portions 8 in which the openings 7b of the remaining cells 4 on the other end face 2b are plugged respectively.

本実施形態の目封止ハニカム構造体1は、少なくとも一部のセル4が、円弧状を呈する円弧隔壁5aによって、円形状、楕円形状、または半円形状に区画形成された円形セル9である。ここで、円形セル9は、目封止ハニカム構造体1の流入側端面3a及び排出側端面3bから当該形状を直接視認することができず、目封止ハニカム構造体1のハニカム軸方向A(図1の一点鎖線参照)に直交する直交面CF(図1の二点鎖線で囲まれた仮想切断面参照、または図4におけるCF−CF線断面参照)で切断することによって視認可能となるものである。すなわち、本実施形態の目封止ハニカム構造体1において、円形セル9は内部に存在している。一方、流入側端面3a(一方の端面2a)及び排出側端面3b(他方の端面2b)のそれぞれのセル4は、多角形状(本実施形態では四角形状)を呈している。   In the plugged honeycomb structure 1 of the present embodiment, at least some of the cells 4 are circular cells 9 which are partitioned and formed in a circular shape, an elliptical shape, or a semicircular shape by an arc partition wall 5a having an arc shape. .. Here, the circular cells 9 cannot directly visually recognize the shape from the inflow side end surface 3a and the discharge side end surface 3b of the plugged honeycomb structure 1, and the honeycomb axial direction A of the plugged honeycomb structure 1 ( It becomes visible by cutting at an orthogonal plane CF (see a virtual cut plane surrounded by a chain double-dashed line in FIG. 1 or a cross section taken along the line CF-CF in FIG. 4) orthogonal to the one-dot chain line in FIG. 1). Is. That is, in the plugged honeycomb structure 1 of the present embodiment, the circular cells 9 are present inside. On the other hand, each cell 4 of the inflow side end surface 3a (one end surface 2a) and the discharge side end surface 3b (the other end surface 2b) has a polygonal shape (square shape in the present embodiment).

更に、本実施形態の目封止ハニカム構造体1において、上記直交面CF(仮想切断面に相当)におけるセル4の総セル数に対する円形セル9の数(円形セル数)の占める比率が10%以上となるように設定されている。円形セル9による熱応力集中の緩和等の効果(詳細は後述する)を享受するために、直交面CFにおけるセル4の総セル数に対して一定数以上の円形セル9が存在している必要があるためである。   Furthermore, in the plugged honeycomb structure 1 of the present embodiment, the ratio of the number of circular cells 9 (the number of circular cells) to the total number of cells 4 in the orthogonal plane CF (corresponding to a virtual cut surface) is 10%. It is set as described above. In order to enjoy the effect of relaxing the thermal stress concentration by the circular cells 9 (details will be described later), a certain number or more of circular cells 9 must be present with respect to the total number of cells 4 in the orthogonal plane CF. Because there is.

なお、目封止ハニカム構造体1における円形セル9の位置は、上記実施形態のように限定されるものではなく、ハニカム軸方向Aに沿って任意の位置に形成することができる。そのため、目封止部8が設けられていないハニカム基材6の一方の端面2aまたは他方の端面2bのそれぞれのセル4の開口部7a,7bに円形セル9が形成され、目封止ハニカム構造体1の外部から直接視認可能なものであっても構わない。   The positions of the circular cells 9 in the plugged honeycomb structure 1 are not limited to those in the above embodiment, and can be formed at any position along the honeycomb axial direction A. Therefore, the circular cells 9 are formed in the openings 7a and 7b of the cells 4 on the one end surface 2a or the other end surface 2b of the honeycomb substrate 6 where the plugged portions 8 are not provided, and the plugged honeycomb structure is obtained. It may be directly visible from the outside of the body 1.

しかしながら、後述する円形セル9の形成方法、及び当該円形セル9に基づく効果の観点から、本実施形態の目封止ハニカム構造体1のように、目封止ハニカム構造体1の内部、特に排出側端面3bに近接する上流位置に分布して形成することが特に好適である。   However, from the viewpoint of the method for forming the circular cells 9 described later and the effect based on the circular cells 9, as in the plugged honeycomb structure 1 of the present embodiment, the inside of the plugged honeycomb structure 1, particularly the discharge. It is particularly suitable to form it by being distributed at an upstream position close to the side end surface 3b.

本実施形態の目封止ハニカム構造体1において、セル4を目封止する目封止部8は、従来の目封止ハニカム構造体に使用される目封止部と同一の周知のものを使用することができる。ここで、本実施形態の目封止ハニカム構造体1では、一方の端面2aにおけるセル4の開口部7aを互いに一つおきに交互に目封止することで一段を形成し、更に当該一段の上段及び下段における目封止部8の位置を一つずつ左右にずらして交互に目封止した、複数の目封止部8が格子状に配された市松模様(チェッカーボードパターン)となるように設けられている(図1等参照)。   In the plugged honeycomb structure 1 of the present embodiment, the plugging portion 8 that plugs the cells 4 is the same well-known plugging portion used in the conventional plugged honeycomb structure. Can be used. Here, in the plugged honeycomb structure 1 of the present embodiment, one opening is formed by alternately plugging the openings 7a of the cells 4 on one end surface 2a alternately with each other, and further the one step is formed. The positions of the plugging portions 8 in the upper and lower rows are shifted to the left and right one by one and alternately plugged, so that a plurality of plugging portions 8 are arranged in a checkerboard pattern (checkerboard pattern). (See FIG. 1, etc.).

同様に、ハニカム基材6の他方の端面2bにおける残余のセル4に対しても、同様に一つおきに交互に位置をずらしながら格子状の目封止部8が配設される。ここで、残余のセル4とは、一方の端面2a側で目封止部8が設けられなかったセル4が相当する。その結果、一方の端面2a(流入側端面3a)及び他方の端面2b(排出側端面3b)がそれぞれ所定の配設基準に従って目封止されたものとなる。ここで、目封止部8の配設基準は、上記市松模様に限定されるものではなく、任意に設定することができる。   Similarly, with respect to the remaining cells 4 on the other end surface 2b of the honeycomb base material 6, the grid-like plugging portions 8 are similarly arranged while alternately shifting the position of every other cell 4. Here, the remaining cells 4 correspond to the cells 4 in which the plugging portions 8 are not provided on the one end face 2a side. As a result, the one end surface 2a (inflow side end surface 3a) and the other end surface 2b (discharging side end surface 3b) are plugged according to a predetermined arrangement standard. Here, the arrangement standard of the plugging portions 8 is not limited to the checkerboard pattern, and can be set arbitrarily.

加えて、個々のセルの形状が同一である必要はなく、互いに隣接するセルの大きさが異なる二種類のサイズのセルを組み合わせて形成された目封止ハニカム構造体であっても構わない。また、セルの形状は、図1等に示す、正四角形状のものに限定される必要はなく、例えば、六角形状や八角形状等のその他多角形状のセルであっても構わない。   In addition, the individual cells do not have to have the same shape, and a plugged honeycomb structure formed by combining cells of two different sizes in which adjacent cells have different sizes may be used. Further, the shape of the cells is not limited to the regular quadrangular shape shown in FIG. 1 and the like, and may be cells having other polygonal shapes such as hexagonal shape and octagonal shape.

ここで、目封止部8を形成するための材料は、特に限定されるものではなく、周知のセラミックス材料、アルコール、及び有機バインダ等を組合わせた目封止材を使用することができる。更に、周知のセラミックス材料としては、例えば、炭化珪素、珪素−炭化珪素系複合材料、コージェライト、ムライト、アルミナ、スピネル、炭化珪素−コージェライト系複合材料、リチウムアルミニウムシリケート、及びアルミニウムチタネートからなる群から選択される少なくも一種を用いるものであっても構わない。これらは、目封止ハニカム構造体を構成する隔壁の原材料等に応じて選択してもよい。   Here, the material for forming the plugged portion 8 is not particularly limited, and a known plugging material combining a ceramic material, alcohol, an organic binder and the like can be used. Further, the known ceramic materials include, for example, a group consisting of silicon carbide, silicon-silicon carbide based composite material, cordierite, mullite, alumina, spinel, silicon carbide-cordierite based composite material, lithium aluminum silicate, and aluminum titanate. At least one selected from the above may be used. These may be selected according to the raw material of the partition walls forming the plugged honeycomb structure and the like.

目封止ハニカム構造体1のハニカム基材6に対し、上記のように目封止部8を設けることで、当該目封止ハニカム構造体1を排気ガス浄化装置や微粒子捕集フィルタ等の一構成として使用することができる。目封止ハニカム構造体1の内部に、流入側端面3aから排出側端面3bに向かって排気ガス等の流体Fの流入を行うと、流入側端面3aの開口部7aが開口したセル4から内部に流入(進入)した流体Fは、そのままハニカム軸方向Aに沿って排出側端面3bに向かって流れようとする。   By providing the plugging portion 8 on the honeycomb substrate 6 of the plugged honeycomb structure 1 as described above, the plugged honeycomb structure 1 can be used as an exhaust gas purifying device, a particulate collection filter, or the like. Can be used as a configuration. When a fluid F such as exhaust gas is flown into the plugged honeycomb structure 1 from the inflow side end face 3a toward the discharge side end face 3b, the inside of the cell 4 in which the opening 7a of the inflow side end face 3a is opened. The fluid F that has flown in (entered) into the exhaust gas tends to flow along the honeycomb axial direction A toward the discharge-side end surface 3b.

しかしながら、流入側端面3aに相対する排出側端面3bの開口部7bのセル4は目封止部8によって目封止されている。そのため、流体Fの流れの挙動が規制される。そのため、流入した流体Fは、多孔質性の隔壁5を通過し、排出側端面3bに開口したセル4の開口部7bから目封止ハニカム構造体1の外部に排出される(図3,4における二点鎖線の流体F’参照)。   However, the cells 4 in the opening 7b of the discharge side end surface 3b facing the inflow side end surface 3a are plugged by the plugging portion 8. Therefore, the behavior of the flow of the fluid F is regulated. Therefore, the inflowing fluid F passes through the porous partition wall 5 and is discharged to the outside of the plugged honeycomb structure 1 from the openings 7b of the cells 4 opened on the discharge side end surface 3b (FIGS. 3 and 4). (See fluid F ′ indicated by the chain double-dashed line in FIG.

すなわち、流入側端面3aの開口したセル4から流体Fが流入しても、排出側端面3bに設けられた目封止部8によって当該流体Fは、そのまま目封止ハニカム構造体1の外部に排出されることがない。そのため、流体Fの流れの挙動が規制され、目封止部8が設けられた排出側端面3bの近傍に流体Fに含まれる粒子状物質10が多く堆積する(図3参照)。なお、流体Fが多孔質性の隔壁5を通過する際にも、隔壁表面及び隔壁内部に粒子状物質10は捕集される。これにより、流体Fに含まれる粒子状物質10を除去する浄化処理が行われ、排出側端面3bから浄化流体Cを排出することができる。   That is, even if the fluid F flows in from the cells 4 having the opening on the inflow side end face 3a, the fluid F is directly transferred to the outside of the plugged honeycomb structure 1 by the plugging portion 8 provided on the discharge side end face 3b. It is never discharged. Therefore, the behavior of the flow of the fluid F is regulated, and a large amount of the particulate matter 10 contained in the fluid F is deposited in the vicinity of the discharge-side end surface 3b where the plugging portion 8 is provided (see FIG. 3). Even when the fluid F passes through the porous partition wall 5, the particulate matter 10 is collected on the partition wall surface and inside the partition wall. As a result, the purification process for removing the particulate matter 10 contained in the fluid F is performed, and the purification fluid C can be discharged from the discharge-side end surface 3b.

本実施形態の目封止ハニカム構造体1を構成する隔壁5は、前述した目封止部8を形成するセラミックス材料と略同一のものを使用することができる。更に詳しくは、隔壁5は、粒子状の基材11と、当該基材11同士を結合し、かつ基材11より低融点の結合材12とを原材料13として含んでいる(図2参照)。   The partition walls 5 forming the plugged honeycomb structure 1 of the present embodiment can be made of substantially the same ceramic material as that of the plugging portion 8 described above. More specifically, the partition wall 5 includes, as a raw material 13, a particulate base material 11 and a binding material 12 that binds the base materials 11 to each other and has a lower melting point than the base material 11 (see FIG. 2).

隔壁5を構成する基材11及び結合材12に使用されるセラミックス材料の一例を示すと、コージェライト、アルミナ、ムライト、窒化珪素、炭化珪素、アルミニウムチタネートを含む群から選択された一または複数種類のものを使用することができる。なお、本実施形態の目封止ハニカム構造体1では、特に、断りのない限り、基材11として炭化珪素(SiC)の粒子を使用し、結合材12としてコージェライトを使用したものについて説明を行うものとする。   An example of the ceramic material used for the base material 11 and the binding material 12 constituting the partition wall 5 is one or more kinds selected from the group including cordierite, alumina, mullite, silicon nitride, silicon carbide, and aluminum titanate. Can be used. In the plugged honeycomb structure 1 of the present embodiment, unless otherwise specified, silicon carbide (SiC) particles are used as the base material 11 and cordierite is used as the binder 12. Assumed to be performed.

ここで、隔壁5に使用される上記結合材12は、基材11より低融点のものが用いられる。これにより、目封止ハニカム構造体1が高温に晒された場合、基材11よりも結合材12が先に溶融する。これにより、多角形セル14から円弧隔壁5aで区画形成された円形セル9を容易に形成することが可能となる(詳細は後述する)。   Here, the binder 12 used for the partition wall 5 has a lower melting point than the base material 11. As a result, when the plugged honeycomb structure 1 is exposed to a high temperature, the binder 12 melts earlier than the base material 11. This makes it possible to easily form the circular cells 9 defined by the arcuate partition walls 5a from the polygonal cells 14 (details will be described later).

ここで、一般的なセラミックス材料の融点を鑑み、上記結合材12の融点は少なくとも1100℃以上であることが好適である。これにより、粒子状の基材11の融点も当然1100℃以上であり、基材11が溶融する可能性が低くなる。その結果、粒子状物質10を含む流体Fによって、原材料13に含まれる結合材12の一部が溶融することで、本実施形態の目封止ハニカム構造体1における円形セル9の形成が容易となる(詳細は後述する。)。   Here, in consideration of the melting point of a general ceramic material, the melting point of the binder 12 is preferably at least 1100 ° C. or higher. As a result, the melting point of the particulate base material 11 is naturally 1100 ° C. or higher, and the possibility of melting the base material 11 is reduced. As a result, a part of the binder 12 contained in the raw material 13 is melted by the fluid F containing the particulate matter 10, which facilitates the formation of the circular cells 9 in the plugged honeycomb structure 1 of the present embodiment. (Details will be described later.)

更に、隔壁5に使用される基材11の粒子径は、5μm〜60μmの範囲のものが使用される。ここで、基材11の粒子径が5μm未満の場合、基材11自体の強度が低い場合が多い。その結果、これらの基材11を用いた目封止ハニカム構造体1自体の耐熱性や耐熱衝撃性が低くなり、使用時における亀裂(クラック)等が生じ易くなる可能性が高い。そのため、基材11の粒子径は、少なくとも5μm以上である必要がある。   Further, the particle diameter of the base material 11 used for the partition walls 5 is in the range of 5 μm to 60 μm. Here, when the particle diameter of the base material 11 is less than 5 μm, the strength of the base material 11 itself is often low. As a result, the heat resistance and thermal shock resistance of the plugged honeycomb structure 1 itself using these base materials 11 become low, and cracks and the like during use are likely to occur. Therefore, the particle size of the base material 11 needs to be at least 5 μm or more.

これに対し、基材11の粒子径が60μmより大きい場合、仮に結合材12が当該基材11よりも低融点であり、結合材12の融点以上の高温に目封止ハニカム構造体1が晒された場合であっても、互いの粒子状の基材11同士が干渉し、隔壁5が円弧隔壁5aに変形し難くなる。そのため、円形セル9が容易に形成されない可能性がある(詳細は後述する)。従って、基材11の粒子径が上記範囲に規制される。   On the other hand, when the particle diameter of the base material 11 is larger than 60 μm, the binder 12 has a lower melting point than the base material 11, and the plugged honeycomb structure 1 is exposed to a high temperature equal to or higher than the melting point of the binder 12. Even in this case, the particulate base materials 11 interfere with each other and the partition wall 5 is less likely to be transformed into the arc partition wall 5a. Therefore, the circular cells 9 may not be easily formed (details will be described later). Therefore, the particle size of the base material 11 is regulated within the above range.

加えて、隔壁5を構成する基材11及び結合材12の原材料の合計質量に対する上記結合材12の占める質量比は、22質量%〜45質量%の範囲に規定される。ここで、結合材12の質量比が22質量%未満の場合、当該結合材12を含む隔壁5を有する目封止ハニカム構造体1が高温に晒され、結合材12の融点以上(例えば、1100℃以上)になった場合でも、結合材12の占める比率が小さいため隔壁5が円弧隔壁5aに変形し難くなる。そのため、円形セル9が容易に形成されない可能性がある(詳細は後述する)。従って、結合材12の質量比が上記範囲に規制される。   In addition, the mass ratio of the binder 12 with respect to the total mass of the raw materials of the base material 11 and the binder 12 that form the partition wall 5 is defined in the range of 22 mass% to 45 mass%. Here, when the mass ratio of the binder 12 is less than 22 mass%, the plugged honeycomb structure 1 having the partition walls 5 including the binder 12 is exposed to a high temperature and is equal to or higher than the melting point of the binder 12 (for example, 1100). Even if the temperature is higher than or equal to 0 ° C.), the partition wall 5 is less likely to be transformed into the arc-shaped partition wall 5a because the proportion of the binder 12 is small. Therefore, the circular cells 9 may not be easily formed (details will be described later). Therefore, the mass ratio of the binder 12 is regulated within the above range.

更に、本実施形態の目封止ハニカム構造体1は、円形セル9を区画形成する円弧隔壁5aの隔壁交点部15における曲率半径Rが250μm以上となるように設定される。ここで、隔壁交点部15の曲率半径Rが250μm未満の場合、複数の隔壁5,5aが交差する隔壁交点部15に加わる熱応力が集中し、円弧隔壁5aによる分散効果が弱くなる。そのため、格子状の隔壁と同様に熱応力集中が発生し、亀裂が生じ易くなる。そのため、円弧隔壁5aの隔壁交点部15における曲率半径Rが250μm以上に規定される。   Further, the plugged honeycomb structure 1 of the present embodiment is set so that the radius of curvature R at the partition wall intersection portion 15 of the arc partition wall 5a that defines and forms the circular cells 9 is 250 μm or more. Here, when the curvature radius R of the partition wall intersection portion 15 is less than 250 μm, the thermal stress applied to the partition wall intersection portion 15 where the plurality of partition walls 5 and 5a intersect is concentrated, and the dispersion effect of the circular arc partition wall 5a becomes weak. Therefore, thermal stress concentration occurs similarly to the lattice-shaped partition wall, and cracks are likely to occur. Therefore, the curvature radius R at the partition wall intersection portion 15 of the arc partition wall 5a is defined to be 250 μm or more.

2.目封止ハニカム構造体の形成方法(円形セルの変形)
本実施形態の目封止ハニカム構造体1は、下記の形成方法によって形成される。なお、本発明の目封止ハニカム構造体1の形成方法はこれに限定されるものではなく、予め円形セル9を内部に有して形成されるものであっても構わない。
2. Method for forming plugged honeycomb structure (deformation of circular cell)
The plugged honeycomb structure 1 of the present embodiment is formed by the following forming method. The method for forming the plugged honeycomb structure 1 of the present invention is not limited to this, and may be formed by previously having the circular cells 9 inside.

本実施形態の目封止ハニカム構造体1は、多角形目封止ハニカム構造体20を出発原料として形成される。ここで、多角形目封止ハニカム構造体20は、図3に示すように、複数の多角形セル14を区画形成する隔壁5を有するハニカム基材6と、ハニカム基材6の一方の端面2a及び他方の端面2bをそれぞれ所定の配設基準に従って目封止した目封止部8とを備えるものである。すなわち、多角形目封止ハニカム構造体20は、排気ガス浄化装置等に従来使用されている周知のものであり、その内部において円形セル9を有していない点で本実施形態の目封止ハニカム構造体1と相違する。   The plugged honeycomb structure 1 of this embodiment is formed by using the polygonal plugged honeycomb structure 20 as a starting material. Here, the polygonal plugged honeycomb structure 20 includes, as shown in FIG. 3, a honeycomb base material 6 having partition walls 5 partitioning and forming a plurality of polygonal cells 14, and one end surface 2 a of the honeycomb base material 6. And the other end surface 2b is plugged according to a predetermined arrangement standard. That is, the polygonal plugged honeycomb structure 20 is a well-known one that has been conventionally used in an exhaust gas purification apparatus and the like, and the plugged cell of the present embodiment is that it does not have the circular cells 9 therein. It is different from the honeycomb structure 1.

なお、多角形目封止ハニカム構造体20の隔壁5の構成(基材11及び結合材12)、基材11より結合材12が低融点である点、基材11の粒子径、原材料13の合計質量に対する結合材12の占める質量比、結合材の融点、基材11及び結合材12に使用されるセラミックス材料等は、既に述べた本実施形態の目封止ハニカム構造体1と同じものである。   The configuration of the partition walls 5 of the polygonal plugged honeycomb structure 20 (the base material 11 and the binder 12), the fact that the binder 12 has a lower melting point than the base material 11, the particle diameter of the base material 11, and the raw material 13 The mass ratio of the binder 12 to the total mass, the melting point of the binder, the ceramic material used for the base material 11 and the binder 12, and the like are the same as those of the plugged honeycomb structure 1 of the present embodiment already described. is there.

多角形目封止ハニカム構造体20において、本実施形態の目封止ハニカム構造体1と同一の構成については同一符号を付して説明を省略する。また、多角形目封止ハニカム構造体20(従来の目封止ハニカム構造体)の製造方法については、周知であるためここでは説明を省略する。   In the polygonal plugged honeycomb structure 20, the same components as those of the plugged honeycomb structure 1 of the present embodiment are designated by the same reference numerals and the description thereof will be omitted. A method for manufacturing the polygonal plugged honeycomb structure 20 (conventional plugged honeycomb structure) is well known and will not be described here.

係る多角形目封止ハニカム構造体20を、排気ガス浄化装置等に組み込んだ状態で、ハニカム基材6の一方の端面2a(流入側端面3a)から他方の端面2b(排出側端面3b)に向かって流体Fを流入させる(流体流入工程:図2及び図3参照)。これにより、流体Fに含まれる粒子状物質10が多角形目封止ハニカム構造体20のセル内部16に捕集される(粒子状物質捕集工程)。なお、粒子状物質10の捕集は、目封止ハニカム構造体1による粒子状物質の捕集と同一であり、既に説明したため、ここでは説明を省略する。   With the polygonal plugged honeycomb structure 20 incorporated in an exhaust gas purifying apparatus or the like, from one end surface 2a (inflow side end surface 3a) of the honeycomb substrate 6 to the other end surface 2b (exhaust side end surface 3b). The fluid F is caused to flow in (fluid inflow step: see FIGS. 2 and 3). As a result, the particulate matter 10 contained in the fluid F is collected inside the cells 16 of the polygonal plugged honeycomb structure 20 (particulate matter collecting step). Note that the collection of the particulate matter 10 is the same as the collection of the particulate matter by the plugged honeycomb structure 1 and has already been described, so description thereof will be omitted here.

粒子状物質捕集工程によって、セル内部16に粒子状物質10が堆積する。流体Fは、ディーゼルエンジンから排出された排気ガス等であり、高温のものである。隔壁5を構成する基材11に対して結合材12が低融点であり、基材11の粒子径が5μm〜60μmの範囲であり、原材料13の合計質量に対する結合材12の占める質量比が22質量%〜45質量%の範囲である。   The particulate matter 10 is deposited in the cell interior 16 by the particulate matter collection step. The fluid F is exhaust gas or the like discharged from the diesel engine and has a high temperature. The binder 12 has a low melting point with respect to the base material 11 forming the partition walls 5, the particle size of the base material 11 is in the range of 5 μm to 60 μm, and the mass ratio of the binder 12 to the total mass of the raw materials 13 is 22. It is in the range of mass% to 45 mass%.

これらの条件を満たし、再生処理時の高温の流体Fによって結合材12の融点以上の温度に多角形目封止ハニカム構造体20が晒されることで、多角形セル14を区画形成する少なくとも一部の隔壁5を構成する結合材12の一部が溶融する。その結果、格子状の隔壁5の一部が曲線状に湾曲した円弧隔壁5aに変形する。これにより、多角形セル14が円弧隔壁5aで少なくとも一部が区画形成された円形セル9に変形する(円形セル変形工程)。   By exposing the polygonal plugged honeycomb structure 20 to a temperature equal to or higher than the melting point of the bonding material 12 by the high temperature fluid F that satisfies these conditions and is in the regeneration process, at least a part of the polygonal cells 14 is partitioned and formed. Part of the binding material 12 that constitutes the partition wall 5 is melted. As a result, a part of the lattice-shaped partition wall 5 is transformed into a curved arc partition wall 5a. As a result, the polygonal cell 14 is transformed into the circular cell 9 in which at least a part of the polygonal cell 5a is partitioned and formed (the circular cell transformation step).

すなわち、基材11よりも融点の低い結合材12を使用し、所定の条件で粒子状物質10を含んだ高温の流体Fが流入することにより、多角形セル14の一部を円形セル9に変形させることができる。その結果、特に隔壁交点部15における熱応力集中を分散し、亀裂等の不具合の発生を抑制することができる。   That is, the binder 12 having a lower melting point than the base material 11 is used, and the high temperature fluid F containing the particulate matter 10 flows in under a predetermined condition, so that a part of the polygonal cell 14 is transferred to the circular cell 9. It can be transformed. As a result, it is possible to disperse the thermal stress concentration particularly at the partition wall intersection portion 15 and suppress the occurrence of defects such as cracks.

更に、予め円形セルが形成された目封止ハニカム構造体に比べて、セル密度が低くなったり、粒子状物質10の堆積後の圧力損失性能が低下したりすることがないため、上記形成方法は特に好適である。なお、使用用途等によっては円形セルが予め形成された目封止ハニカム構造体であっても十分な効果を奏することができる。   Further, as compared with a plugged honeycomb structure in which circular cells are formed in advance, the cell density does not become lower and the pressure loss performance after the deposition of the particulate matter 10 does not decrease, so the above-mentioned forming method Are particularly suitable. It should be noted that depending on the intended use and the like, a sufficient effect can be obtained even with a plugged honeycomb structure having circular cells formed in advance.

以下、本発明の目封止ハニカム構造体、及び目封止ハニカム構造体の形成方法の実施例について説明するが、本発明の目封止ハニカム構造体等はこれに限定されるものではない。   Examples of the plugged honeycomb structure and the method for forming the plugged honeycomb structure of the present invention will be described below, but the plugged honeycomb structure of the present invention is not limited thereto.

1.目封止ハニカム構造体(多角形セル目封止ハニカム構造体)
上記した目封止ハニカム構造体の形成方法に基づいて、予め作成した周知の多角形セル目封止ハニカム構造体から実施例1〜5及び比較例1〜5の目封止ハニカム構造体を作成した。ここで、円形セルを形成する前の多角形セル目封止ハニカム構造体のセル形状は、いずれも四角形状であり、ハニカム径が143.8mm、ハニカム長さが152.4mmのものを使用した。実施例1〜5及び比較例1〜5の目封止ハニカム構造体を形成する前の多角形セル目封止ハニカム構造体のセル形状、隔壁を構成する基材の粒子径、及び、隔壁に含まれる結合材の原材料の合計質量に対する質量比をまとめたものを下記表1に示す。なお、実施例1〜5及び比較例1〜5の目封止ハニカム構造体(多角形目封止ハニカム構造体)において、基材として炭化珪素(SiC)の粒子が用いられ、一方、結合材としてコージェライトを用いている。ここで、基材として用いられる炭化珪素(SiC)の融点は、2730℃であり、一方、結合材として用いられるコージェライトの融点は、1400℃である。また、比較例1は、基材としてコージェライトを使用し、結合材を含まないものである。なお、基材及び結合材のそれぞれの融点に関しては、X線解析装置(詳細は後述する。)を用いてX線回折測定を行うことにより、各構成の結晶相の特定が可能であるため、当該結晶相を特定後、周知の融点測定装置による測定を行う、或いは、特定された結晶相に基づいて、周知の文献値を参考にして特定するものであっても構わない。
1. Plugged honeycomb structure (Polygonal cell plugged honeycomb structure)
Based on the above-described method for forming a plugged honeycomb structure, the plugged honeycomb structures of Examples 1 to 5 and Comparative Examples 1 to 5 are created from well-known polygonal cell plugged honeycomb structures created in advance. did. Here, the cell shapes of the polygonal cell plugged honeycomb structure before forming the circular cells were all quadrangular, and the honeycomb diameter was 143.8 mm and the honeycomb length was 152.4 mm. .. In the cell shape of the polygonal cell plugged honeycomb structure before forming the plugged honeycomb structures of Examples 1 to 5 and Comparative Examples 1 to 5, the particle diameter of the base material forming the partition wall, and the partition wall Table 1 below summarizes the mass ratios of the binders contained to the total mass of the raw materials. In addition, in the plugged honeycomb structures (polygonal plugged honeycomb structures) of Examples 1 to 5 and Comparative Examples 1 to 5, particles of silicon carbide (SiC) were used as a base material, while the binder was used. Is used as a cordierite. Here, the melting point of silicon carbide (SiC) used as the base material is 2730 ° C., while the melting point of cordierite used as the binder is 1400 ° C. Further, Comparative Example 1 uses cordierite as the base material and does not contain a binder. Regarding the melting points of the base material and the binder, it is possible to specify the crystal phase of each component by performing X-ray diffraction measurement using an X-ray analyzer (details will be described later). After the crystal phase is specified, measurement may be performed by a known melting point measuring device, or the crystal phase may be specified based on the specified crystal phase with reference to known literature values.

2.基材の粒子径の測定
隔壁を構成する基材の粒子径は、下記の通り、電子顕微鏡観察により行った。具体的に説明すると、実施例1〜5及び比較例1〜5の目封止ハニカム構造体から、5mm角の立方体形状の電子顕微鏡観察用を切り出す。このとき、切り出した立方体形状の表面に、隔壁の断面が表れるように、上記切り出しを行う。次に、得られた試料を樹脂に埋めて固めた後、その表面を研磨する。その後、研磨後の試料表面の中で、隔壁の断面が現れている箇所につき、400倍の倍率でSEM写真(走査型電子顕微鏡写真)を撮像する。撮像されたSEM写真のSEM画像を画像処理し、当該SEM画像中の、基材及び結合材を識別する。なお、識別の具体的手法は、例えば、画像解析下に置かれたSEM画像の中で、基材が存在する箇所と、結合材が存在する箇所との色分けを行う。ここで、SEM写真を撮像する走査型電子顕微鏡として、SU9000(日立ハイテク社製)を使用した。また、撮像されたSEM画像は、画像処理システムXG(キーエンス社製)を用いて画像解析を行った。
2. Measurement of Particle Size of Substrate The particle size of the substrate constituting the partition wall was measured by electron microscope observation as follows. Specifically, from the plugged honeycomb structures of Examples 1 to 5 and Comparative Examples 1 to 5, a cube of 5 mm square for electron microscope observation is cut out. At this time, the above cutting is performed so that the cross section of the partition wall appears on the surface of the cut cubic shape. Next, the obtained sample is embedded in a resin and hardened, and then the surface is polished. After that, an SEM photograph (scanning electron microscope photograph) is taken at a magnification of 400 times for a portion where the partition wall cross section appears on the polished sample surface. The SEM image of the captured SEM photograph is image-processed to identify the base material and the binder in the SEM image. In addition, as a specific method of identification, for example, in the SEM image placed under the image analysis, the position where the base material is present and the position where the binder is present are color-coded. Here, SU9000 (manufactured by Hitachi High-Tech Co., Ltd.) was used as a scanning electron microscope for capturing an SEM photograph. Further, the imaged SEM image was subjected to image analysis using an image processing system XG (manufactured by Keyence Corporation).

上記画像解析によって、基材及び結合材が識別された後、基材の粒子径が算出される。なお、基材の粒子径とは、基材を球状粒子に換算して求めた粒子径(球相当径)をここでは意味する。始めに、撮像されたSEM画像上の基材の粒子面積(断面積)を画像処理により計測する。次に、計測した粒子面積と同一面積との粒状粒子に換算した粒子径を算出し、これを基材の粒子径とした。   After the base material and the binder are identified by the image analysis, the particle size of the base material is calculated. The particle size of the substrate means the particle size (sphere equivalent diameter) obtained by converting the substrate into spherical particles. First, the particle area (cross-sectional area) of the base material on the captured SEM image is measured by image processing. Next, a particle diameter converted into granular particles having the same area as the measured particle area was calculated and used as the particle diameter of the base material.

3.質量比の算出
隔壁に含まれる結合材の原材料の合計質量に対する質量比の算出は、下記の方法によって行った。始めに、X線回折装置(商品名:RINT、理学電機製)を用いて、隔壁を構成する材料のX線回折パターンを得た。このとき、X線回折測定の条件は、CuKα線源、50kV、300mA、2θ=10〜60°とした。そして、簡易定量分析を行うことで、各構成の結晶相の質量比をそれぞれ算出した。なお、簡易定量分析には、RIR(Reference Intensity Ratio)法を用い、得られたX線回折データを解析処理し、それぞれの各成分を定量した。X線回折データの解析には、X線データ解析ソフト(商品名:JADE7,MDI社製)を用いた。
3. Calculation of Mass Ratio The mass ratio of the binder contained in the partition wall to the total mass of the raw materials was calculated by the following method. First, an X-ray diffraction pattern (a product name: RINT, manufactured by Rigaku Denki Co., Ltd.) was used to obtain an X-ray diffraction pattern of the material forming the partition wall. At this time, the conditions of the X-ray diffraction measurement were a CuKα radiation source, 50 kV, 300 mA, 2θ = 10 to 60 °. Then, a simple quantitative analysis was performed to calculate the mass ratios of the crystal phases of the respective constituents. In addition, for the simple quantitative analysis, the RIR (Reference Intensity Ratio) method was used, and the obtained X-ray diffraction data was analyzed to quantify each component. X-ray data analysis software (trade name: JADE7, manufactured by MDI) was used to analyze the X-ray diffraction data.

Figure 0006691811
Figure 0006691811

4.円形セルの形成(ススの堆積)
表1に示した基材の粒子径及び結合材の質量比に調製された実施例1〜5及び比較例1〜5の多角形目封止ハニカム構造体を装着した排気ガス浄化装置を、排気量2.0リットルのエンジンを搭載した乗用車の排気系に取付け、流入側端面から排出側端面に向かって排気ガス(流体)を流入させ(流体流入工程)、多角形目封止ハニカム構造体のセル内部にスス(粒子状物質)を堆積させた(粒子状物質捕集工程)。このとき、ススの堆積量は、多角形目封止ハニカム構造体の単位体積当たりの重量が12g/Lとなるようにした。係る過程において、セル内部にススが積し、隔壁の温度が結合材の融点以上の温度に達することで、多角形セルの少なくとも一部が、隔壁の一部が円弧状を呈する円弧隔壁に変形し、円形状等の円形セルに変形する(円形セル変形工程)。これにより、実施例1〜5等の円形セルを有する目封止ハニカム構造体が形成される。
4. Formation of circular cells (accumulation of soot)
The exhaust gas purifying apparatus equipped with the polygonal plugged honeycomb structures of Examples 1 to 5 and Comparative Examples 1 to 5 adjusted to the particle diameter of the base material and the mass ratio of the binder shown in Table 1 was exhausted. The exhaust gas (fluid) is attached to the exhaust system of a passenger vehicle equipped with a 2.0-liter engine and the exhaust gas (fluid) is made to flow from the inflow side end face to the exhaust side end face (fluid inflow process) to form a polygonal plugged honeycomb structure. Soot (particulate matter) was deposited inside the cell (particulate matter collecting step). At this time, the amount of soot deposited was such that the weight per unit volume of the polygonal plugged honeycomb structure was 12 g / L. In the process according to the internal cell soot is sedimentary, that the temperature of the partition wall reaches a temperature above the melting point of the binder, at least a portion of the polygon cells, an arc partition wall portion of the partition wall exhibits an arcuate It is transformed and transformed into a circular cell such as a circular shape (circular cell transformation step). As a result, a plugged honeycomb structure having circular cells of Examples 1 to 5 is formed.

5.再生処理
目封止ハニカム構造体の単位体積当たり12gのススが堆積した実施例1〜5及び比較例1〜5に対し、堆積したススを除去する再生処理を行う。具体的には、ススの堆積(円形セルの形成)と同様に、排気量2.0リットルのエンジンを搭載した乗用車の排気系に排気ガス浄化装置を取付けた状態で、2000rpm/80Nmの条件でエンジンを回転させる。更に、目封止ハニカム構造体の流入側端面の20mm手前の位置における排気ガスの温度を、シース熱電対(K型、Φ0.5)を使用して計測し、燃料噴射量を調整して650℃となるまで昇温させる。その後、エンジンの稼働をアイドル状態(800rpm/12Nm)になるように切り替えることで、セル内部に堆積したススを再生させた。このとき、目封止ハニカム構造体の排出側端面から10mm上流位置における温度を、シース熱電対(上記と同様)を使用して測定した。シース熱電対で測定した温度の中で、最も高い温度を示した値を再生処理時の最高温度とした(表1参照)。
5. Regeneration Treatment A regeneration treatment for removing deposited soot is performed on Examples 1 to 5 and Comparative Examples 1 to 5 in which 12 g of soot per unit volume of the plugged honeycomb structure is deposited. Specifically, similar to the accumulation of soot (formation of circular cells), with an exhaust gas purifying device attached to the exhaust system of a passenger car equipped with an engine having a displacement of 2.0 liters, under conditions of 2000 rpm / 80 Nm. Rotate the engine. Furthermore, the temperature of the exhaust gas at a position 20 mm before the inflow side end surface of the plugged honeycomb structure was measured using a sheath thermocouple (K type, Φ0.5), and the fuel injection amount was adjusted to 650. Raise the temperature to ℃. After that, the operation of the engine was switched to an idle state (800 rpm / 12 Nm) to regenerate the soot accumulated inside the cell. At this time, the temperature at a position 10 mm upstream from the discharge-side end surface of the plugged honeycomb structure was measured using a sheath thermocouple (same as above). Among the temperatures measured by the sheath thermocouple, the value showing the highest temperature was defined as the maximum temperature during the regeneration treatment (see Table 1).

6.捕集前及び再生処理後の曲率半径の変化
実施例1〜5及び比較例1〜5のススを捕集する前の多角形目封止ハニカム構造体及び再生処理後の目封止ハニカム構造体のそれぞれに対し、排出側端面から目封止部を取り除くようにして、ハニカム軸方向に直交する切断面(図1等の直交面CF参照)として切断する。当該切断面における任意のセルの隔壁交点部の四つの測定箇所P1,P2,P3,P4(図5参照)について曲率半径Rを測定し、一つのセルにおける隔壁交点部の平均の曲率半径Rを算出した。上記と同様の算出処理を、任意の5つのセルに対して行い、5つのセルにおける曲率半径Rの平均値を隔壁交点部の曲率半径Rとした(表1参照)。ここで、曲率半径Rの測定は、上記切断面を光学顕微鏡観察下、或いは、電子顕微鏡観察下で倍率20倍の条件で撮像した切断面の拡大画像を利用することで行った。また、当該画像を必要に応じて画像解析することも可能である。
6. Change in radius of curvature before collection and after regeneration treatment Polygonal plugged honeycomb structure before collecting soot of Examples 1 to 5 and Comparative Examples 1 to 5 and plugged honeycomb structure after regeneration treatment With respect to each of the above, the plugging portion is removed from the discharge side end surface, and cut as a cutting surface orthogonal to the honeycomb axial direction (see the orthogonal surface CF in FIG. 1 and the like). The radius of curvature R is measured at four measurement points P1, P2, P3, P4 (see FIG. 5) of the partition wall intersection portion of an arbitrary cell on the cut surface, and the average radius of curvature R of the partition wall intersection portion in one cell is calculated. Calculated. The same calculation process as above was performed on any five cells, and the average value of the radii of curvature R in the five cells was taken as the radius of curvature R of the partition wall intersection point (see Table 1). Here, the radius of curvature R was measured by using an enlarged image of the cut surface taken under the condition of a magnification of 20 under the observation of the cut surface under an optical microscope or under an electron microscope. It is also possible to analyze the image as needed.

なお、円形セルの場合は、変形した箇所に対する任意の四つの測定箇所P1’,P2’,P3’,P4’(図5参照)について曲率半径Rを測定し、同様に一つのセルにおける隔壁交点部の変形の曲率半径Rを算出した後、任意の最大5つのセルに対して測定を行い、その平均値を算出した(表1参照)。ここで、図示を簡略化するため、ススの捕集前のセルの隔壁交点部の測定箇所P1等と、再生処理後の円形セルの隔壁交点部の測定箇所P1’等を図5にそれぞれ例示したが、ススの捕集前及び再生処理後の切断面に対してそれぞれ測定箇所P1,P1’等が設定される。   In the case of a circular cell, the radius of curvature R is measured at arbitrary four measurement points P1 ′, P2 ′, P3 ′, P4 ′ (see FIG. 5) with respect to the deformed point, and similarly, the partition wall intersection point in one cell is measured. After calculating the radius of curvature R of the deformation of the part, measurement was performed on any maximum of 5 cells, and the average value was calculated (see Table 1). Here, in order to simplify the illustration, FIG. 5 exemplifies measurement points P1 and the like at the partition wall intersections of the cell before collecting soot and measurement points P1 ′ and the like at the partition wall intersections of the circular cell after the regeneration treatment. However, the measurement points P1, P1 ′, etc. are set on the cut surfaces before the soot collection and after the regeneration processing, respectively.

7.円形セル数の比率
再生処理を行った目封止ハニカム構造体の切断面(上記6参照)における任意の範囲におけるセルの総セル数を目視にて計測し、更に当該総セル数に占める円形セルの数(円形セル数)を目視にて計測し、その比率を算出した(表1参照)。総セル数及び円形セル数の計測は、上記6の切断面の画像を用いた。
7. Ratio of the number of circular cells The total number of cells in an arbitrary range in the cut surface (see 6 above) of the plugged honeycomb structure subjected to the regeneration treatment is visually measured, and the circular cells occupy the total number of cells. Was visually measured and the ratio was calculated (see Table 1). The measurement of the total number of cells and the number of circular cells used the images of the above-mentioned 6 cut surfaces.

8.亀裂発生隔壁数の計測、及び亀裂発生の判定
再生処理を行った目封止ハニカム構造体の切断面(上記6,7参照)において、隔壁の亀裂発生隔壁数を目視にて計測した(表1参照)。亀裂発生隔壁数の計測は、上記6の切断面の画像を用いた。ここで、亀裂発生の判定は、結合材を使用しない比較例1の目封止ハニカム構造体を基準とし、当該比較例1における亀裂発生隔壁数である24箇所と対比し、比較例1から半数以上の減少が認められる場合を“A”、3箇所以上の減少が認められる場合を“B”、比較例1と同程度の亀裂発生隔壁数(±2箇所)の場合を“C”、比較例1よりも3箇所以上の増加が認められる場合を“D”としてそれぞれ評価し、判定を行った。
8. Measurement of the number of cracked partition walls and determination of crack generation The number of cracked partition walls of the partition walls was visually measured on the cut surface of the plugged honeycomb structure subjected to the regeneration treatment (see above 6 and 7) (Table 1 reference). For the measurement of the number of cracked partition walls, the image of the cut surface of 6 was used. Here, the determination of crack generation is based on the plugged honeycomb structure of Comparative Example 1 that does not use a binder, and is compared with 24 locations that are the number of cracked partition walls in Comparative Example 1, and half of Comparative Example 1 The case where the above reduction is recognized is "A", the case where the reduction is recognized at three or more locations is "B", the case where the number of cracking partition walls is the same as Comparative Example 1 (± 2 locations) is "C", the comparison is made. A case where an increase in three or more places was recognized as compared with Example 1 was evaluated as “D” and judged.

9.実施例のまとめ
9.1 基材の粒子径
表1に示されるように、基材の粒子径が5μm〜60μmの範囲にある実施例1〜5の目封止ハニカム構造体は、いずれもその内部に円形セルの形成が認められた。一方、基材の粒子径が5μm未満の比較例2の目封止ハニカム構造体(基材の粒子径=4μm)は、円形セルの形成は認められるものの、亀裂発生隔壁数が35箇所と多くなる。すなわち、目封止ハニカム構造体の強度が低くなることが確認された。
9. Summary of Examples 9.1 Particle Size of Base Material As shown in Table 1, all of the plugged honeycomb structures of Examples 1 to 5 in which the particle size of the base material is in the range of 5 μm to 60 μm are The formation of circular cells was observed inside. On the other hand, in the plugged honeycomb structure of Comparative Example 2 in which the particle diameter of the base material is less than 5 μm (particle diameter of the base material = 4 μm), although the formation of circular cells is recognized, the number of crack generation partition walls is large at 35 locations. Become. That is, it was confirmed that the strength of the plugged honeycomb structure was lowered.

一方、基材の粒子径が60μm以上の比較例3の目封止ハニカム構造体(基材の粒子径=62μm)は、円形セルの形成が認められなかった。基材の粒子同士が干渉することで、円形セルへの変形が抑制される。この傾向は、実施例2及び実施例4においても確認され、基材粒子径が60μmの場合、他の実施例1,3,5と比べて総セル数に占める円形セル数の比率が低くなる(実施例2=3%、実施例4=11%)。したがって、基材の粒子径は、本発明における5μm〜60μmの範囲が好適であることが示された。 On the other hand, in the plugged honeycomb structure of Comparative Example 3 in which the particle size of the base material was 60 μm or more (particle size of the base material = 62 μm), formation of circular cells was not observed. The particles of the base material interfere with each other to suppress deformation into circular cells. This tendency was also confirmed in Examples 2 and 4, and when the substrate particle diameter was 60 μm, the ratio of the number of circular cells to the total number of cells was lower than that in the other Examples 1, 3, and 5. (Example 2 = 3%, Example 4 = 11%). Therefore, it was shown that the particle size of the substrate is preferably in the range of 5 μm to 60 μm in the present invention.

9.2 結合材の質量比
結合材の質量比が22質量%〜45質量%の範囲にある実施例1〜5の目封止ハニカム構造体は、いずれもその内部に円形セルの形成が認められた。一方、結合材の質量比が22質量%未満の比較例4の目封止ハニカム構造体(=21質量%)は、円形セルの形成が認められなかった。また、結合材を含まない(=0質量%)比較例1も同様に円形セルの形成が認められなかった。すなわち、本発明の円形セルを有する目封止ハニカム構造体を形成するためには、原材料として基材に加え、結合材が不可欠であることが確認された。
9.2 Mass Ratio of Binders In all of the plugged honeycomb structures of Examples 1 to 5 in which the mass ratio of the binder is in the range of 22% by mass to 45% by mass, the formation of circular cells is recognized therein. Was given. On the other hand, in the plugged honeycomb structure of Comparative Example 4 (= 21% by mass) in which the mass ratio of the binder was less than 22% by mass, formation of circular cells was not observed. Similarly, in Comparative Example 1 containing no binder (= 0% by mass), formation of circular cells was not observed. That is, in order to form the plugged honeycomb structure having the circular cells of the present invention, it was confirmed that the binder was indispensable in addition to the base material as the raw material.

一方、結合材の質量比が45質量%以上の比較例5の目封止ハニカム構造体(質量比=46.5質量%)は、円形セルの形成は認められるものの、亀裂発生隔壁箇所が31箇所と多くなる。すなわち、目封止ハニカム構造体の強度が低くなることが確認された。したがって、結合材の質量比は、本発明における22質量%〜45質量%の範囲が好適であることが示された。   On the other hand, in the plugged honeycomb structure of Comparative Example 5 in which the mass ratio of the binder was 45 mass% or more (mass ratio = 46.5 mass%), although the formation of circular cells was recognized, the cracked partition wall locations were 31. There are many places. That is, it was confirmed that the strength of the plugged honeycomb structure was lowered. Therefore, it was shown that the mass ratio of the binder is preferably in the range of 22 mass% to 45 mass% in the present invention.

9.3 曲率半径の変化
捕集前の隔壁交点部の曲率半径は、実施例1〜5及び比較例1〜5において、59〜61μmの範囲であったのに対し、円形セルが形成された再生処理後の目封止ハニカム構造体はいずれも曲率半径がいずれも250μm以上となることが確認された。
9.3 Change in radius of curvature The radius of curvature of the partition wall intersection before collection was 59 to 61 μm in Examples 1 to 5 and Comparative Examples 1 to 5, whereas a circular cell was formed. It was confirmed that each of the plugged honeycomb structures after the regeneration treatment had a radius of curvature of 250 μm or more.

9.4 円形セル数の比率
表1に示されるように、円形セル数の比率が10%を超える実施例3〜5の目封止ハニカム構造体は、亀裂発生隔壁数が比較例1の判定基準数よりも半分以に減少することが認められた。すなわち、総セル数に占める円形セル数の比率が10%以上の場合に、隔壁交点部における熱応力集中を緩和する効果が特に大きくなることが示された。
9.4 Ratio of Number of Circular Cells As shown in Table 1, in the plugged honeycomb structures of Examples 3 to 5 in which the ratio of the number of circular cells exceeds 10%, the number of cracked partition walls is determined in Comparative Example 1. It was found to be reduced to more than the lower half than the reference number. That is, it was shown that when the ratio of the number of circular cells to the total number of cells is 10% or more, the effect of alleviating the thermal stress concentration at the partition wall intersections becomes particularly large.

以上、示したように、本発明の目封止ハニカム構造体によれば、内部に円形セルを有することにより、熱応力集中を緩和し、隔壁の亀裂発生を抑制することができる。特に、隔壁を構成する基材の粒子径、及び結合材の比率、更には基材よりも低い融点の結合材を使用することで、粒子状物質を捕集する流体の浄化処理の際に円形セルを比較的容易に形成することができる。その結果、従来の格子状の隔壁で区画形成された多角形セルと比較して目封止ハニカム構造体の強度を向上させることができる。   As described above, according to the plugged honeycomb structure of the present invention, by having the circular cells inside, it is possible to alleviate the thermal stress concentration and suppress the occurrence of cracks in the partition walls. In particular, the particle diameter of the base material that constitutes the partition wall, the ratio of the binder, and the use of a binder having a melting point lower than that of the base material make it possible to obtain a circular shape when purifying a fluid that traps particulate matter. The cells can be formed relatively easily. As a result, the strength of the plugged honeycomb structure can be improved as compared with the conventional polygonal cells that are partitioned and formed by the lattice-shaped partition walls.

特に、予めセルの一部を円形セルで構成するものではないため、捕集前の当初からのセル密度の低下や圧力損失が増大する等の不具合を防ぐことができる。   In particular, since a part of the cells is not configured in advance as circular cells, it is possible to prevent problems such as a decrease in cell density from the beginning before collection and an increase in pressure loss.

本発明の目封止ハニカム構造体は、ディーゼルエンジン等から排出される排気ガス等の流体に含まれる微粒子等の粒子状物質の浄化処理を行う排気ガス浄化処理装置等の用途に特に有益に用いることができ、目封止ハニカム構造体の形成方法は、当該排気ガス浄化処理装置等に使用される目封止ハニカム構造体を好適に形成することができる。   INDUSTRIAL APPLICABILITY The plugged honeycomb structure of the present invention is particularly beneficially used in applications such as an exhaust gas purification treatment device that purifies particulate matter such as fine particles contained in a fluid such as exhaust gas discharged from a diesel engine or the like. Therefore, the method for forming the plugged honeycomb structure can preferably form the plugged honeycomb structure used in the exhaust gas purifying apparatus and the like.

1:目封止ハニカム構造体、2a:一方の端面、2b:他方の端面、3a:流入側端面、3b:排出側端面、4:セル、5:隔壁、5a:円弧隔壁、6:ハニカム基材、7a,7b:開口部、8:目封止部、9:円形セル、10:粒子状物質、11:基材、12:結合材、13:原材料、14:多角形セル、15:隔壁交点部、16:セル内部、20:多角形目封止ハニカム構造体、A:ハニカム軸方向、C:浄化流体、CF:直交面、F,F’:流体、P1,P1’,P2,P2’,P3,P3’,P4,P4’:測定箇所、R:曲率半径。 1: Plugged honeycomb structure, 2a: One end face, 2b: The other end face, 3a: Inflow side end face, 3b: Discharge side end face, 4: Cell, 5: Partition wall, 5a: Arc partition wall, 6: Honeycomb substrate Material, 7a, 7b: Opening part, 8: Plugging part, 9: Circular cell, 10: Particulate material, 11: Base material, 12: Binder, 13: Raw material, 14: Polygonal cell, 15: Partition wall Intersection points, 16: inside of cell, 20: polygonal plugged honeycomb structure, A: honeycomb axial direction, C: purification fluid, CF: orthogonal plane, F, F ': fluid, P1, P1', P2, P2. ', P3, P3', P4, P4 ': measurement location, R: radius of curvature.

Claims (8)

一方の端面から他方の端面まで延びる、流体の流路となる複数のセルを区画形成する多孔質の隔壁を有するハニカム基材と、
前記ハニカム基材の前記一方の端面における前記セルを所定の配設基準に従って目封止するとともに、前記他方の端面における残余の前記セルをそれぞれ目封止した目封止部とを備え、
前記ハニカム基材の前記一方の端面である流入側端面から前記他方の端面である排出側端面に向かって流入する前記流体に含まれる粒子状物質を捕集する目封止ハニカム構造体であって、
前記隔壁は、
粒子状の基材、及び、前記基材同士を結合し、前記基材より低融点の結合材を原材料として含み、
前記基材の粒子径は、
5μm〜60μmの範囲であり、
前記基材及び前記結合材を含む前記原材料の合計質量に対する前記結合材の占める質量比は、
22質量%〜45質量%の範囲であり、
前記セルは、
前記隔壁の少なくとも一部が円弧状を呈する円弧隔壁によって、円形状、楕円形状、または半円形状に区画形成された円形セルを一部に有し、
前記円形セルを区画形成する前記円弧隔壁の隔壁交点部における曲率半径は、
250μm以上である目封止ハニカム構造体。
From one end face to the other end face, a honeycomb substrate having a porous partition wall partitioning and forming a plurality of cells to be a fluid flow path,
While plugging the cells on the one end surface of the honeycomb substrate according to a predetermined disposition standard, a plugging portion that plugs each of the remaining cells on the other end surface, respectively,
A plugged honeycomb structure for collecting particulate matter contained in the fluid flowing from an inflow side end surface which is the one end surface of the honeycomb substrate toward an exhaust side end surface which is the other end surface, ,
The partition wall is
A particulate base material, and binding the base materials to each other, and including a binder having a lower melting point than the base material as a raw material,
The particle size of the substrate is
5 μm to 60 μm,
The mass ratio of the binder to the total mass of the raw materials including the base material and the binder,
22 mass% to 45 mass%,
The cell is
By an arc barrier wall at least a part of the partition wall exhibits an arcuate, possess a part circular, elliptical or circular cells divided formed in a semicircular shape,
The radius of curvature at the partition wall intersection portion of the arc partition wall partitioning and forming the circular cell is
A plugged honeycomb structure having a size of 250 μm or more .
前記目封止ハニカム構造体のハニカム軸方向に直交する直交面における前記セルの総セル数に対する前記円形セルの円形セル数の占める比率は、
10%以上である請求項1に記載の目封止ハニカム構造体。
The ratio of the number of circular cells of the circular cells to the total number of cells of the cells on the orthogonal surface orthogonal to the honeycomb axis direction of the plugged honeycomb structure is:
The plugged honeycomb structure according to claim 1, which is 10% or more.
前記円形セルは、
前記排出側端面に設けられた前記目封止部に近接して位置する請求項1または2に記載の目封止ハニカム構造体。
The circular cell is
The plugged honeycomb structure according to claim 1 or 2, which is located near the plugging portion provided on the discharge-side end surface.
前記隔壁によって区画形成された複数の多角形状の多角形セルを有する、前記粒子状物質を捕集する前の多角形目封止ハニカム構造体の流入側端面から前記流体を流入させ、前記粒子状物質を捕集後に前記結合材が融点以上の温度に晒されることで前記多角形セルが変形して形成された前記円形セルを有する請求項1〜3のいずれか一項に記載の目封止ハニカム構造体。   Having a plurality of polygonal polygonal cells defined by the partition walls, the fluid is caused to flow from the inflow side end surface of the polygonal plugged honeycomb structure before capturing the particulate matter, and the particulate matter The plugging according to any one of claims 1 to 3, further comprising the circular cells formed by deforming the polygonal cells by exposing the binder to a temperature equal to or higher than a melting point after collecting the substance. Honeycomb structure. 前記結合材の融点は、
1100℃以上である請求項1〜4のいずれか一項に記載の目封止ハニカム構造体。
The melting point of the binder is
The plugged honeycomb structure according to any one of claims 1 to 4, which has a temperature of 1100 ° C or higher.
前記基材及び前記結合材は、
コージェライト、アルミナ、ムライト、窒化珪素、炭化珪素、及びアルミニウムチタネートを含む群から選択された一または複数のセラミックス材料である請求項1〜5のいずれか一項に記載の目封止ハニカム構造体。
The base material and the binder are
The plugged honeycomb structure according to any one of claims 1 to 5, which is one or more ceramic materials selected from the group including cordierite, alumina, mullite, silicon nitride, silicon carbide, and aluminum titanate. ..
前記基材は、
前記炭化珪素であり、
前記結合材は、
前記コージェライトである請求項に記載の目封止ハニカム構造体。
The base material is
Is the silicon carbide,
The binder is
The plugged honeycomb structure according to claim 6 , which is the cordierite .
請求項1〜7のいずれか一項に記載の目封止ハニカム構造体の形成方法であって、A method for forming a plugged honeycomb structure according to any one of claims 1 to 7,
一方の端面から他方の端面まで延びる、流体の流路となる複数の多角形セルを区画形成する多孔質の隔壁を有するハニカム基材、及び、前記ハニカム基材の前記一方の端面における前記多角形セルを所定の配設基準に従って目封止するとともに、前記他方の端面における残余の前記多角形セルをそれぞれ目封止した目封止部を備える多角形目封止ハニカム構造体に対し、前記一方の端面である流入側端面から前記他方の端面である排出側端面に向かって前記流体を流入させる流体流入工程と、A honeycomb substrate having porous partition walls that form a plurality of polygonal cells that serve as fluid channels and extend from one end face to the other end face, and the polygon on the one end face of the honeycomb substrate. While plugging the cells according to a predetermined arrangement standard, the polygonal plugged honeycomb structure having plugged portions that plugged the remaining polygonal cells on the other end face, respectively, the one A fluid inflow step of inflowing the fluid from the inflow side end surface which is the end surface of the fluid toward the discharge side end surface which is the other end surface,
前記流体に含まれる粒子状物質を、前記排出側端面に前記目封止部が形成された前記多角形セルのセル内部に堆積させて捕集する粒子状物質捕集工程と、Particulate matter contained in the fluid, a particulate matter collecting step of depositing and collecting inside the cells of the polygonal cell in which the plugging portion is formed on the discharge side end surface,
前記粒子状物質捕集工程によって前記セル内部に前記粒子状物質が堆積した後、前記多角形目封止ハニカム構造体が前記結合材の融点以上の温度に晒されることにより、前記多角形セルの少なくとも一部は、前記隔壁が円弧状を呈する円弧隔壁に変形し、円形状、楕円形状、または半円形状に区画形成された円形セルに変形する円形セル変形工程とを有する目封止ハニカム構造体の形成方法。After the particulate matter is deposited inside the cell by the particulate matter collecting step, the polygonal plugged honeycomb structure is exposed to a temperature equal to or higher than the melting point of the binder, whereby the polygonal cell A plugged honeycomb structure having at least a part of which is a circular cell deformation step in which the partition wall is deformed into an arcuate partition wall having an arc shape, and is transformed into a circular cell having a circular shape, an elliptical shape, or a semicircular shape. How to form a body.
JP2016092445A 2016-05-02 2016-05-02 Plugged honeycomb structure and method for forming plugged honeycomb structure Active JP6691811B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016092445A JP6691811B2 (en) 2016-05-02 2016-05-02 Plugged honeycomb structure and method for forming plugged honeycomb structure
US15/492,366 US10753244B2 (en) 2016-05-02 2017-04-20 Plugged honeycomb structure and method for forming plugged honeycomb structure
DE102017003970.4A DE102017003970B4 (en) 2016-05-02 2017-04-25 Sealed honeycomb structure and method for forming a sealed honeycomb structure
CN201710302073.XA CN107335474B (en) 2016-05-02 2017-05-02 Plugged honeycomb structure and method for forming plugged honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016092445A JP6691811B2 (en) 2016-05-02 2016-05-02 Plugged honeycomb structure and method for forming plugged honeycomb structure

Publications (2)

Publication Number Publication Date
JP2017200673A JP2017200673A (en) 2017-11-09
JP6691811B2 true JP6691811B2 (en) 2020-05-13

Family

ID=60081873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016092445A Active JP6691811B2 (en) 2016-05-02 2016-05-02 Plugged honeycomb structure and method for forming plugged honeycomb structure

Country Status (4)

Country Link
US (1) US10753244B2 (en)
JP (1) JP6691811B2 (en)
CN (1) CN107335474B (en)
DE (1) DE102017003970B4 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072205A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072207A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072209A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072204A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072208A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072211A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072212A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072210A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072203A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1145270A (en) * 1979-12-03 1983-04-26 Morris Berg Ceramic filters for diesel exhaust particulates and methods of making
JPS61424A (en) * 1984-06-12 1986-01-06 Nippon Denso Co Ltd Ceramic filter
JP2002173381A (en) * 2000-12-01 2002-06-21 Denso Corp Method of sealing honeycomb ceramic formed body
EP1364928B1 (en) * 2001-03-02 2018-10-17 NGK Insulators, Ltd. Honeycomb structure
US6736875B2 (en) * 2001-12-13 2004-05-18 Corning Incorporated Composite cordierite filters
JP4279497B2 (en) 2002-02-26 2009-06-17 日本碍子株式会社 Honeycomb filter
US7410929B2 (en) * 2002-03-28 2008-08-12 Ngk Insulators, Ltd. Cell structural body, method of manufacturing cell structural body, and catalyst structural body
CN100345611C (en) * 2002-09-13 2007-10-31 揖斐电株式会社 Honeycomb structure
KR20050075040A (en) * 2002-12-11 2005-07-19 니뽄 가이시 가부시키가이샤 Sealed honeycomb structure body and method of producing the same
DE602004006204T2 (en) * 2003-06-23 2008-01-10 Ibiden Co., Ltd., Ogaki HONEYCOMB STRUCTURE BODY
US7393377B2 (en) * 2004-02-26 2008-07-01 Ngk Insulators, Ltd. Honeycomb filter and exhaust gas treatment apparatus
JP4895154B2 (en) * 2004-12-22 2012-03-14 日立金属株式会社 Honeycomb filter manufacturing method and honeycomb filter
FR2906159B1 (en) * 2006-09-27 2008-10-31 Saint Gobain Ct Recherches MONOLITHIC ELEMENT WITH REINFORCED CORNERS FOR FILTRATION OF PARTICLES
WO2008044269A1 (en) * 2006-10-05 2008-04-17 Ibiden Co., Ltd. Honeycomb structure
WO2008129671A1 (en) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. Catalyst-carrying honeycomb and process for producing the same
FR2925354B1 (en) * 2007-12-20 2009-12-11 Saint Gobain Ct Recherches FILTRATION STRUCTURE OF AN ASYMMETRIC HEXAGONAL GAS GAS
JP5384148B2 (en) * 2008-03-21 2014-01-08 日本碍子株式会社 Honeycomb structure
WO2010113586A1 (en) * 2009-03-31 2010-10-07 日本碍子株式会社 Honeycomb filter and method of manufacturing same
US20110126973A1 (en) * 2009-11-30 2011-06-02 Andrewlavage Jr Edward Francis Apparatus And Method For Manufacturing A Honeycomb Article
JP5369029B2 (en) * 2010-03-12 2013-12-18 日本碍子株式会社 Honeycomb filter
WO2011125768A1 (en) 2010-03-31 2011-10-13 日本碍子株式会社 Honeycomb filter
JP5632318B2 (en) 2011-03-24 2014-11-26 日本碍子株式会社 Honeycomb filter and manufacturing method thereof
JP5894577B2 (en) * 2011-03-31 2016-03-30 日本碍子株式会社 Plugged honeycomb structure
WO2012132004A1 (en) * 2011-03-31 2012-10-04 イビデン株式会社 Honeycomb structure and exhaust gas cleaner
JP6239303B2 (en) * 2013-07-31 2017-11-29 イビデン株式会社 Honeycomb filter
JP6267452B2 (en) * 2013-07-31 2018-01-24 イビデン株式会社 Honeycomb filter
JP5922629B2 (en) * 2013-09-27 2016-05-24 日本碍子株式会社 Porous material, method for producing the same, and honeycomb structure
JP6137151B2 (en) * 2014-03-26 2017-05-31 株式会社デンソー Honeycomb structure
JP2016092445A (en) 2014-10-29 2016-05-23 株式会社リコー Serial communication system
JP6654085B2 (en) 2016-03-31 2020-02-26 日本碍子株式会社 Porous material, method for producing porous material, and honeycomb structure

Also Published As

Publication number Publication date
DE102017003970B4 (en) 2024-06-06
US10753244B2 (en) 2020-08-25
JP2017200673A (en) 2017-11-09
US20170314436A1 (en) 2017-11-02
CN107335474A (en) 2017-11-10
DE102017003970A1 (en) 2017-11-02
CN107335474B (en) 2020-12-15

Similar Documents

Publication Publication Date Title
JP6691811B2 (en) Plugged honeycomb structure and method for forming plugged honeycomb structure
JP4437084B2 (en) Honeycomb structure
EP2835169B1 (en) Honeycomb filter
EP2835167B1 (en) Honeycomb filter
US7316722B2 (en) Honeycomb structure
EP2837419B1 (en) Honeycomb filter
EP2905058B1 (en) Honeycomb filter
JP5805039B2 (en) Honeycomb structure
WO2016013513A1 (en) Honeycomb filter
WO2005026074A1 (en) Sintered ceramic compact and ceramic filter
WO2003067043A1 (en) Honeycomb structure
JP5469337B2 (en) Honeycomb structure
WO2016013516A1 (en) Honeycomb filter
US9975076B2 (en) Honeycomb filter
WO2016013511A1 (en) Honeycomb filter
CN108331642B (en) Honeycomb structure
JP2004261623A (en) Honeycomb structure
JP2018167200A (en) Honeycomb filter
JP2018167199A (en) Honeycomb filter
JP7094193B2 (en) Honeycomb filter
JP4402732B1 (en) Honeycomb structure
JP5190878B2 (en) Honeycomb structure
EP2832411B1 (en) Honeycomb filter
JP5208458B2 (en) Honeycomb structure
JP2008254947A (en) Honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6691811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150