JP6691713B2 - Disk type fine bubble generating method and device - Google Patents
Disk type fine bubble generating method and device Download PDFInfo
- Publication number
- JP6691713B2 JP6691713B2 JP2017158949A JP2017158949A JP6691713B2 JP 6691713 B2 JP6691713 B2 JP 6691713B2 JP 2017158949 A JP2017158949 A JP 2017158949A JP 2017158949 A JP2017158949 A JP 2017158949A JP 6691713 B2 JP6691713 B2 JP 6691713B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow
- disk
- substrate
- gas
- rotary shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Mixers Of The Rotary Stirring Type (AREA)
Description
本発明はディスク型微細気泡発生方法及び装置に関し,とくに液相中でディスクを回転させて微細気泡を発生させる方法及び装置に関する。 TECHNICAL FIELD The present invention relates to a method and apparatus for generating disk-shaped fine bubbles, and more particularly to a method and apparatus for rotating a disk in a liquid phase to generate fine bubbles.
魚介類の養殖池や湖沼・河川・湖水等の閉鎖水域,排水処理場,汚水処理場等において,水質の改善・改良等を目的として,水中(液体中)に微細気泡を供給することがある(特許文献1及び2参照)。微細気泡は,ファインバブル,マイクロバブル又はナノバブルとも呼ばれる粒径が100μm以下(例えば数10μm〜数μm)の微細な気泡であり,通常の気泡(例えば粒径1mm以上の気泡)には見られない特徴,例えば浮力が小さく水中に長時間浮遊して様々な部位に到達する,水中で浮遊しながら縮小して消滅(完全溶解)する等の特徴を有している。 For the purpose of improving / improving the water quality, fine bubbles may be supplied to water in aquaculture ponds of seafood, closed water areas of lakes / marshes / rivers / lakes, wastewater treatment plants, sewage treatment plants, etc. (See Patent Documents 1 and 2). The fine bubbles are fine bubbles having a particle size of 100 μm or less (for example, several tens of μm to several μm), which are also called fine bubbles, microbubbles, or nanobubbles, and are not found in ordinary bubbles (for example, bubbles having a particle size of 1 mm or more). For example, it has a small buoyancy and floats in water for a long time to reach various parts, and also has a feature that it floats in water and shrinks and disappears (completely dissolves).
微細気泡は,例えば水中に供給して完全溶解させることにより,水中の様々な部位の溶存酸素濃度を効率的に向上させて水質を改善・改良することが期待できる。また,微細気泡を含む水は微生物,植物,動物に対する活性効果があることも報告されており,例えばナスやトマト等の収穫量を高めるために利用できる(非特許文献1参照)。更に,医薬品や食品等の分野においても様々なガス(酸素,オゾン,窒素等)を閉じ込めた微細気泡が利用されており,例えばオゾンガスを閉じ込めた微細気泡は強力な殺菌効果を有することが認められている。 By supplying the fine bubbles to water and completely dissolving them, for example, it is expected that the dissolved oxygen concentration in various parts of the water can be efficiently increased and the water quality can be improved and improved. It has also been reported that water containing fine bubbles has an active effect on microorganisms, plants, and animals, and can be used, for example, to increase the yield of eggplants, tomatoes, and the like (see Non-Patent Document 1). Further, in the fields of pharmaceuticals and foods, fine gas bubbles containing various gases (oxygen, ozone, nitrogen, etc.) are used. For example, it is recognized that fine gas bubbles containing ozone gas have a strong bactericidal effect. ing.
水中(液体中)に微細気泡を供給する従来方法の一例は,小径管路に液体を高速で通過させ,その液流によって生じる負圧を利用して液中に気体(ガス)を吸引し,その下流の管路拡大で生じるキャビテーションによって吸引ガスを微細に破砕して微細気泡を発生させるエジェクタ式のものである(非特許文献2参照)。例えば図7(A)に示す微細気泡発生装置60のように,液体貯留槽61内にポンプ63及びエジェクタ62を配置し,ポンプ63で吸引した液体Qを液体流路64及び流量調整バルブ65を介してエジェクタ62に循環させる。また,エジェクタ62に気体供給路66の一端を接続し,気体供給路66の他端の開閉コック67を液体貯留槽61の上方に配置する(特許文献1参照)。 One example of a conventional method for supplying fine bubbles into water (in liquid) is to pass the liquid through a small-diameter conduit at high speed, and to suck the gas into the liquid by using the negative pressure generated by the liquid flow. It is an ejector type in which suction gas is finely crushed by cavitation generated by the expansion of a pipe line downstream thereof to generate fine bubbles (see Non-Patent Document 2). For example, like a fine bubble generator 60 shown in FIG. 7A, a pump 63 and an ejector 62 are arranged in a liquid storage tank 61, and the liquid Q sucked by the pump 63 is supplied to a liquid flow path 64 and a flow rate adjusting valve 65. It circulates to the ejector 62 via the. Further, one end of a gas supply passage 66 is connected to the ejector 62, and an opening / closing cock 67 at the other end of the gas supply passage 66 is arranged above the liquid storage tank 61 (see Patent Document 1).
図7(B)は,エジェクタ62の一例の断面図を示す。図示例のエジェクタ62は,液体流路64から液体Qを取り入れる中空部(中空管路)62aを有し,その上流側に拡径された入口(管路 入口)62bを設けることにより断面を略T字形状とし,入口に比して縮径された管路中間部分に微細吸気孔62eを設けて気体供給路66の一端を接続する。管路入口62bから流入した液体Qは中空部62aを通過する際に負圧を生じ,気体供給路66から微細吸気孔62eを介して気体Gが吸引されて液体に混合される。混合された気体Gは液体Qと共に管路出口62cへ送られるが,出口の管路拡大で生じるキャビテーションによって微細に破砕され,微細気泡Sとなって放出される。 FIG. 7B shows a sectional view of an example of the ejector 62. The ejector 62 of the illustrated example has a hollow portion (hollow pipe line) 62a for taking in the liquid Q from the liquid flow channel 64, and a cross-section is provided by providing a diameter-increased inlet (pipe line inlet) 62b on the upstream side thereof. A fine intake hole 62e is provided in the middle portion of the pipe line having a substantially T-shape and having a diameter smaller than that of the inlet to connect one end of the gas supply line 66. The liquid Q flowing in from the pipe inlet 62b produces a negative pressure when passing through the hollow portion 62a, and the gas G is sucked from the gas supply passage 66 through the fine suction holes 62e and mixed with the liquid. The mixed gas G is sent to the conduit outlet 62c together with the liquid Q, but is finely crushed by the cavitation caused by the expansion of the conduit at the outlet and is discharged as fine bubbles S.
図7(C)は,中空管路62aの中間部分に縮径部62dを設けたエジェクタ(ベンチュリー)62の他の一例の断面図を示す。図示例のエジェクタ62は,縮径部62dに気体供給路66の一端を接続する微細吸気孔62eを設けており,管路入口62bから流入した液体Qは縮径部62dを通過する際に負圧を生じ,気体供給路66から微細吸気孔62eを介して気体Gが吸引されて液体に混合される。液体Qに混合した気体Gは,その下流側の管路拡大で生じるキャビテーションによって破砕され,微細気泡Sとなって管路出口62cから放出される。 FIG. 7C shows a cross-sectional view of another example of the ejector (venturi) 62 in which the diameter-reduced portion 62d is provided in the middle portion of the hollow conduit 62a. The ejector 62 of the illustrated example is provided with a fine suction hole 62e that connects one end of the gas supply passage 66 to the reduced diameter portion 62d, and the liquid Q that has flowed in from the conduit inlet 62b is negative when passing through the reduced diameter portion 62d. A pressure is generated, and the gas G is sucked from the gas supply passage 66 through the fine suction holes 62e and mixed with the liquid. The gas G mixed with the liquid Q is crushed by the cavitation generated by the expansion of the pipeline on the downstream side, and becomes fine bubbles S and is discharged from the pipeline outlet 62c.
しかし,図7に示すような従来のエジェクタ式の微細気泡発生方法は,ポンプ(加圧装置)を用いて気体を加圧しなければならず,微細気泡の生成に要するエネルギーが比較的大きい問題点がある。養魚場や閉鎖水域等では微細気泡の供給を長期間継続しなければならないことも多く,消費エネルギーが大きくなると経費が嵩むだけでなく,継続的な動力源のない海洋上等では適用自体が難しくなる。また,養魚場等で水を循環させながら微細気泡を供給する場合は,加圧装置(ポンプ)の発熱が徐々に水に伝わって魚介類の生育に影響する水温上昇(例えば,加圧装置として水中ポンプを使用した場合は20℃以上、陸上ポンプを使用した場合は10℃以上の水温上昇)を招くおそれもある。消費エネルギー及び水温上昇を小さく抑えるためには,加圧装置を用いずに微細気泡を供給できる方式が有効である。 However, the conventional ejector-type micro-bubble generating method as shown in FIG. 7 requires pressurizing the gas by using a pump (pressurizing device), which requires a relatively large energy to generate the micro-bubbles. There is. In a fish farm or a closed water area, it is often necessary to continue supplying fine bubbles for a long period of time, which not only increases the cost when energy consumption increases, but also makes it difficult to apply it on the ocean where there is no continuous power source. Become. Also, when supplying fine air bubbles while circulating water in a fish farm, etc., the heat generation of the pressurizing device (pump) is gradually transmitted to the water and the water temperature rise that affects the growth of seafood (for example, as a pressurizing device). There is a possibility that the water temperature may rise by 20 ° C or more when a submersible pump is used and 10 ° C or more by a land pump. In order to suppress the energy consumption and the rise in water temperature to a small level, it is effective to supply fine bubbles without using a pressure device.
そこで本発明の目的は,小さな消費エネルギーで微細気泡を効率的に生成できるディスク型微細気泡発生方法及び装置を提供することにある。 Therefore, an object of the present invention is to provide a disk-type fine bubble generating method and device capable of efficiently generating fine bubbles with small energy consumption.
図1及び図2の実施例を参照するに,本発明によるディスク型微細気泡発生方法は,基板11の片面側(図示例では下面側,図1(D)及び図2(D)参照)にその基板11と同じ外径R0で所定口径R1の中央穴26付きドーナツ形基板25を芯合わせして対向させると共にその対向間隙に外径R0と口径R1との差(R0−R1)より短い長さの複数の中空管路20(図4(A)及び(B)参照)を中心Oの周囲のドーナツ形領域に放射状に配置して取り付け且つ基板11の反対面側(図示例では上面側,図1(C)及び図2(C)参照)に各中空管路20の中空部に至る微小貫通孔16を穿設すると共に反対面側を気密に覆う気密室15(図1(B)及び図2(B)参照)を設けたディスク10を液相Pbに浸漬し,ディスク10の中心Oに中空回転軸パイプ30の一端を挿入して気密室15に連通させると共に他端を気相Paに連通させ,中空回転軸パイプ30の周りにディスク10を回転させて液相Pbからドーナツ形基板25の中央穴26を介して各中空管路20に液体Qを流入させると共に気相Paから気密室15及び微小貫通孔16を介して各中空管路20に気体Gを吸引し,吸引した気体を各中空管路20の出口の流路拡大により微細に破砕しながらディスク10の外周より放出してなるものである。 Referring to the embodiments of FIGS . 1 and 2, the disk-type microbubble generating method according to the present invention is applied to one side of the substrate 11 (the lower side in the illustrated example, see FIGS. 1D and 2D ) . A doughnut-shaped substrate 25 with a central hole 26 having the same outer diameter R0 as that of the substrate 11 is centered to face each other, and a length shorter than the difference (R0-R1) between the outer diameter R0 and the bore R1 in the facing gap. A plurality of hollow conduits 20 (see FIGS. 4 (A) and 4 (B)) are radially arranged in a donut-shaped region around the center O and attached to the opposite surface side of the substrate 11 (upper surface side in the illustrated example). , FIG. 1 (C) and FIG. 2 (C) ), a small through hole 16 reaching the hollow portion of each hollow conduit 20 is bored and the opposite side is airtightly covered (FIG. 1 (B)). ) and 2 a disc 10 provided with (B) refer) was immersed in the liquid phase Pb, in the disk 10 O to insert one end of the hollow rotating shaft pipe 30 communicates at the other end to the gas phase Pa with communicating in an airtight chamber 15, around the hollow rotary shaft pipe 30 rotates the disk 10 toroidal from the liquid phase Pb The liquid Q is caused to flow into each hollow conduit 20 through the central hole 26 of the substrate 25, and the gas G is sucked from the gas phase Pa into each hollow conduit 20 through the airtight chamber 15 and the minute through holes 16, The sucked gas is released from the outer periphery of the disk 10 while being finely crushed by expanding the flow path at the outlet of each hollow pipe 20.
また図1及び図2の実施例を参照するに,本発明によるディスク型微細気泡発生装置は,基板11の片面側(図示例では下面側,図1(D)及び図2(D)参照)にその基板11と同じ外径R0で所定口径R1の中央穴26付きドーナツ形基板25を芯合わせして対向させると共にその対向間隙に外径R0と口径R1との差(R0−R1)より短い長さの複数の中空管路20(図4(A)及び(B)参照)を中心Oの周囲のドーナツ形領域に放射状に配置して取り付け且つ基板11の反対面側(図示例では上面側,図1(C)及び図2(C)参照)に各中空管路20の中空部に至る微小貫通孔16を穿設すると共に反対面側を気密に覆う気密室15(図1(B)及び図2(B)参照)を設けたディスク10,ディスク10の中心Oに挿入して気密室15に一端を連通させる中空回転軸パイプ30,及び中空回転軸パイプ30の周りにディスク10を回転させる駆動装置40を備えてなり,ディスク10を液相Pbに浸漬すると共に中空回転軸パイプ30の他端を気相Paに連通させ,駆動装置40によるディスク10の回転により液相Pbからドーナツ形基板25の中央穴26を介して各中空管路20に液体を流入させると共に気相Paから気密室15及び微小貫通孔16を介して各中空管路20に気体を吸引し且つ吸引した気体を各中空管路20の出口の流路拡大により微細に破砕しながらディスク10の外周より放出してなるものである。 In addition, referring to the embodiments of FIGS . 1 and 2, the disk type micro-bubble generator according to the present invention has one side of the substrate 11 (the lower side in the illustrated example, see FIGS. 1D and 2D ) . In addition, a doughnut-shaped substrate 25 with a central hole 26 having the same outer diameter R0 as that of the substrate 11 is centered and opposed to each other, and the facing gap is shorter than the difference (R0-R1) between the outer diameter R0 and the diameter R1. A plurality of hollow conduits 20 having a length (see FIGS. 4A and 4B) are radially arranged and attached to a donut-shaped region around the center O, and the opposite surface side of the substrate 11 (the upper surface in the illustrated example). Side, FIG. 1C and FIG. 2C) , the airtight chamber 15 (FIG. 1 ( B) and the disk 10 is provided to Fig 2 (B) refer), and inserted into the center O of the disk 10 A hollow rotary shaft pipe 30 having one end communicating with the closed chamber 15 and a drive device 40 for rotating the disk 10 around the hollow rotary shaft pipe 30 are provided. The disk 10 is immersed in the liquid phase Pb and the hollow rotary shaft pipe 30 is provided. Of the liquid phase Pb through the central hole 26 of the doughnut-shaped substrate 25 by the rotation of the disk 10 by the driving device 40, and the other end of the gas phase Pa is communicated with the gas phase Pa. From the outer periphery of the disk 10 while sucking gas into each hollow conduit 20 through the airtight chamber 15 and the minute through holes 16 and crushing the sucked gas finely by expanding the flow path at the outlet of each hollow conduit 20. It will be released more.
好ましい実施例では,図4(C)に示すように,ディスク10の各中空管路20の中空部には縮径部21を設けることができ,微小貫通孔16を各中空管路20の縮径部21に穿設することができる。また,図1及び図2に示すように,ディスク10の気密室15は,基板11の反対面側に同径基板12を芯合わせして対向させると共にその対向間隙の周縁部を密封することにより形成することができる。 In a preferred embodiment, as shown in FIG. 4 (C), a reduced diameter portion 21 can be provided in the hollow portion of each hollow conduit 20 of the disk 10 and the minute through holes 16 are provided in each hollow conduit 20. The reduced diameter portion 21 can be drilled. Further, as shown in FIGS. 1 and 2, the airtight chamber 15 of the disk 10 is formed by aligning the substrate 12 having the same diameter with the opposite surface side of the substrate 11 so as to face each other and sealing the peripheral portion of the facing gap. Can be formed.
更に好ましくい実施例では,図3に示すように,基板11,12を対向させてディスク10の気密室15を形成した場合に,各基板11,12の非対向面側(図3(B)及び(D)参照)にそれぞれ複数の中空管路20を中心Oの周囲のドーナツ形領域に放射状に配置して取り付け且つ各基板11,12の対向面側(図3(C)参照)にそれぞれ各中空管路20の中空部に至る微小貫通孔16を穿設し,ディスク10の回転時に各基板11,12の中空管路20にそれぞれ液相Pbから液体を流入させると共に気相Paから気体を吸引し,各基板11,12の中空管路20からそれぞれ微細に粉砕された気泡を放出する。 In a more preferred embodiment, as shown in FIG. 3, when the substrates 11 and 12 are opposed to each other to form the airtight chamber 15 of the disk 10, the non-opposed surfaces of the substrates 11 and 12 (see FIG. 3B). And (D)), a plurality of hollow conduits 20 are radially arranged and attached to the donut-shaped region around the center O, and are attached to the opposing surfaces of the substrates 11 and 12 (see FIG. 3C). Each minute through hole 16 reaching the hollow portion of each hollow conduit 20 is bored, and when the disk 10 rotates, the liquid is introduced from the liquid phase Pb into the hollow conduits 20 of the respective substrates 11 and 12, and the gas phase is formed. The gas is sucked from Pa, and the finely pulverized bubbles are discharged from the hollow conduit 20 of each of the substrates 11 and 12.
望ましい実施例では,図1(A)に示すように,中空回転軸パイプ30の他端側に駆動装置40を接続すると共にその駆動装置40に回転速度調整手段43を含め,微細気泡Sの粒径を中空回転軸パイプ30周りのディスク10の回転速度ωにより調節する。また,図1(A)に示すように,中空回転軸パイプ30の他端に吸気量調整弁32を設け,微細気泡Sの粒径を中空回転軸パイプ30の吸気量調整弁32により調節することも可能である。他の望ましい実施例では,図1(F)に示すように,中空回転軸パイプ30に長さ調整機構35を含め,微細気泡Sの放出深さを中空回転軸パイプ30の調整機構35により調節する。更に他の望ましい実施例では,図5(B)に示すように,ディスク10に,その外周より放出された微細気泡Sを所定方向に案内するガイド板50を設ける。 In the preferred embodiment, as shown in FIG. 1 (A), a driving device 40 is connected to the other end of the hollow rotary shaft pipe 30, and a rotational speed adjusting means 43 is included in the driving device 40 so that the particles of the fine bubbles S are dispersed. The diameter is adjusted by the rotation speed ω of the disk 10 around the hollow rotary shaft pipe 30. Further, as shown in FIG. 1 (A), an intake air amount adjusting valve 32 is provided at the other end of the hollow rotary shaft pipe 30, and the particle size of the fine bubbles S is adjusted by the intake air amount adjusting valve 32 of the hollow rotary shaft pipe 30. It is also possible. In another preferred embodiment, as shown in FIG. 1F, the hollow rotating shaft pipe 30 includes a length adjusting mechanism 35, and the discharge depth of the fine bubbles S is adjusted by the adjusting mechanism 35 of the hollow rotating shaft pipe 30. To do. In yet another preferred embodiment, as shown in FIG. 5B, the disc 10 is provided with a guide plate 50 for guiding the fine bubbles S discharged from the outer periphery of the disc 10 in a predetermined direction.
本発明によるディスク型微細気泡発生方法及び装置は,基板11の片面側にその基板11と同じ外径R0で所定口径R1の中央穴26付きドーナツ形基板25を芯合わせして対向させると共にその対向間隙に外径R0と口径R1との差(R0−R1)より短い長さの複数の中空管路20を放射状に配置して取り付け且つ反対面側に各中空管路20の中空部に至る微小貫通孔16を穿設すると共に反対面側を気密に覆う気密室15を設けたディスク10を液相Pbに浸漬し,ディスク10の中心Oに中空回転軸パイプ30の一端を挿入して気密室15に連通させると共に他端を気相Paに連通させ,中空回転軸パイプ30の周りにディスク10を回転させて液相Pbからドーナツ形基板25の中央穴26を介して各中空管路20に液体を流入させると共に気相Paから気密室15及び微小貫通孔16を介して各中空管路20に気体を吸引し,吸引した気体を各中空管路20の出口の流路拡大により微細に破砕しながらディスク10の外周より放出するので,次の有利な効果を奏する。 The disk-type micro-bubble generating method and device according to the present invention is such that a donut-shaped substrate 25 with a central hole 26 having a predetermined outer diameter R1 and the same outer diameter R0 as that of the substrate 11 is aligned on one side of the substrate 11 and is opposed thereto. A plurality of hollow conduits 20 having a length shorter than the difference (R0-R1) between the outer diameter R0 and the bore R1 are radially arranged and attached to the gaps, and the hollow parts of the respective hollow conduits 20 are provided on the opposite surface side. A disk 10 provided with a micro through hole 16 reaching to it and having an airtight chamber 15 airtightly covering the opposite surface side is immersed in the liquid phase Pb, and one end of the hollow rotary shaft pipe 30 is inserted into the center O of the disk 10. The hollow tube is communicated with the airtight chamber 15 and the other end is communicated with the gas phase Pa, and the disk 10 is rotated around the hollow rotary shaft pipe 30 so that each hollow tube extends from the liquid phase Pb through the central hole 26 of the doughnut-shaped substrate 25. Liquid flow into channel 20 At the same time, gas is sucked from the gas phase Pa into each hollow conduit 20 through the airtight chamber 15 and the minute through holes 16, and the sucked gas is finely crushed by expanding the flow path at the outlet of each hollow conduit 20. However, since it is discharged from the outer periphery of the disk 10, the following advantageous effects are obtained.
(イ)ディスク10の中心に挿入した中空回転軸パイプ30の周りの遠心力により各中空管路20に液体Qを流入させ,その液体Qの通過時の負圧によって中空回転軸パイプ30から中空管路20に気体Gを取り入れて微細気泡Sを発生させるので,ポンプ等の液体を加圧する装置を用いる必要がなく,微細気泡Sの生成のための消費エネルギーを小さく抑えることができる。
(ロ)また,ディスク10に取り付けた複数の中空管路20に同時に液体Q及び気体Gを取り入れて微細気泡Sを作り出すことが可能であり,ディスク10に取り付ける中空管路20の数により微細気泡Sの生成量を適宜調整することができる。
(ハ)中空回転軸パイプ30の周りにディスク10を回転させる駆動エネルギーのみで多量の微細気泡Sを効率的に発生させることができるので,例えば動力源が得にくい海洋等においても,太陽光発電等の自然エネルギー等と組み合わせることにより,必要な量の微細気泡Sを長期間継続して供給することができる。
(A) The liquid Q is caused to flow into each hollow conduit 20 by the centrifugal force around the hollow rotary shaft pipe 30 inserted in the center of the disk 10, and the negative pressure when the liquid Q passes through the hollow rotary shaft pipe 30 causes the liquid Q to flow from the hollow rotary shaft pipe 30. Since the gas G is introduced into the hollow conduit 20 to generate the fine bubbles S, it is not necessary to use a device for pressurizing the liquid such as a pump, and the energy consumption for generating the fine bubbles S can be suppressed to be small.
(B) Further, it is possible to simultaneously introduce the liquid Q and the gas G into the plurality of hollow pipelines 20 attached to the disc 10 to create the fine bubbles S, and depending on the number of the hollow pipelines 20 attached to the disc 10. The generation amount of the fine bubbles S can be appropriately adjusted.
(C) Since a large amount of fine bubbles S can be efficiently generated only by the driving energy for rotating the disk 10 around the hollow rotary shaft pipe 30, for example, even in the ocean where it is difficult to obtain a power source, solar power generation is possible. By combining with natural energy or the like, the required amount of fine bubbles S can be continuously supplied for a long period of time.
(ニ)ディスク10の径R0や回転速度ω,中空回転軸パイプ30からの気体の取り入れ量等の調整によって生成する微細気泡の粒径や濃度(生成量)を調節することも可能であり,対象水域の水質や微細気泡の用途等を考慮して最適な粒径の微細気泡Sを供給することができる。
(ホ)ポンプを使用しておらず,ディスク10の回転駆動装置40も水面上に配置することができるので,養魚場等で長期間継続し続けても水温上昇を招くおそれがなく,魚介類の生育等に影響を与えることなく長期間継続して微細気泡Sを供給することができる。
(ヘ)ポンプを使用する従来方法では,微細気泡が一方向に吐出されるので広い範囲に微細気泡を行きわたらせるために複数台の装置を必要とすることも多かったが,回転するディスク外周から360度放射状に微細気泡を放出できる本発明では,単独の装置によって広い範囲に浸透するように微細気泡を放出することができる。
(D) It is also possible to adjust the diameter R0 of the disk 10, the rotation speed ω, the amount of gas taken in from the hollow rotary shaft pipe 30, and the like to adjust the particle size and concentration (generation amount) of the fine bubbles generated. It is possible to supply the fine bubbles S having an optimum particle size in consideration of the water quality of the target water area, the use of the fine bubbles, and the like.
(E) Since the pump 10 is not used and the rotary drive device 40 of the disk 10 can be arranged on the surface of the water, there is no fear that the water temperature will rise even if it continues for a long period of time at a fish farm or the like. The fine bubbles S can be continuously supplied for a long period of time without affecting the growth or the like.
(F) In the conventional method using a pump, since the fine bubbles are discharged in one direction, it was often necessary to use a plurality of devices to spread the fine bubbles over a wide range, but the outer circumference of the rotating disk In the present invention, which is capable of radiating fine bubbles in a radial direction from 360 degrees, fine bubbles can be emitted so as to permeate a wide range by a single device.
以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
図1は,養殖池や閉鎖水域等の対象水域に適用した本発明の微細気泡発生装置1の実施例を示す。図示例の発生装置1は,片面側に複数の中空管路(中空パイプ)20を取り付けると共に反対側面に気密室15を設けたディスク10と,ディスク10の中心Oに挿入して気密室15に一端を連通させる中空回転軸パイプ30と,中空回転軸パイプ30の周りにディスク10を回転させる駆動装置40とを有している。 FIG. 1 shows an embodiment of the fine bubble generator 1 of the present invention applied to a target water area such as a culture pond or a closed water area. The generator 1 of the illustrated example has a disk 10 having a plurality of hollow pipes (hollow pipes) 20 mounted on one side and an airtight chamber 15 on the opposite side, and an airtight chamber 15 inserted into the center O of the disk 10. The hollow rotary shaft pipe 30 has one end communicating with the drive shaft 40, and the drive device 40 that rotates the disk 10 around the hollow rotary shaft pipe 30.
図1(A)に示すように,ディスク10を対象水域の液相に水平に浸漬し,中空回転軸パイプ30の他端を液面上に鉛直に突出させて気相と連通させ,駆動装置40でディスク10を中空回転軸パイプ30の周りに所要回転速度ωで回転させることにより,中空管路20の各々で微細気泡Sを生成する。以下,図示例を参照して本発明を説明するが,本発明の適用対象は養殖池や閉鎖水域に限定されるわけではなく,微細気泡が必要とされる様々な用途に適用することができる。 As shown in FIG. 1 (A), the disk 10 is horizontally immersed in the liquid phase of the target water area, and the other end of the hollow rotary shaft pipe 30 is vertically projected above the liquid level to communicate with the gas phase. By rotating the disk 10 around the hollow rotary shaft pipe 30 at a required rotation speed ω at 40, the fine bubbles S are generated in each of the hollow conduits 20. Hereinafter, the present invention will be described with reference to the illustrated examples, but the application target of the present invention is not limited to aquaculture ponds and closed water areas, and can be applied to various applications in which fine bubbles are required. ..
図示例のディスク10は,所定径R0の円形基板11と,基板11の片面側(図示例では下面側)に放射状に取り付けた複数の中空管路20と,基板11の反対面側(図示例では上面側)を気密に覆う気密室15とにより構成されている。図示例の基板11は円形であるが,基板11を多角形(例えば正多角形板)とすることも可能である。また複数の中空管路20は,例えば断面形状が円筒,角型,又は多角形型であって,基板11の径R0より短い長さL1の中空パイプであるが,全て同じ形状・長さとすることが望ましい。 The disk 10 of the illustrated example has a circular substrate 11 having a predetermined diameter R0, a plurality of hollow conduits 20 radially attached to one surface side (the lower surface side in the illustrated example) of the substrate 11, and the opposite surface side of the substrate 11 (see FIG. In the example shown, it is configured with an airtight chamber 15 that hermetically covers the upper surface side). Although the substrate 11 in the illustrated example has a circular shape, the substrate 11 may have a polygonal shape (for example, a regular polygonal plate). The plurality of hollow conduits 20 are, for example, hollow pipes having a cylindrical, rectangular, or polygonal cross section and a length L1 shorter than the diameter R0 of the substrate 11, but all have the same shape and length. It is desirable to do.
図1(D)に示すように,基板11の片面側の中心Oから径方向に距離R1(=R0−L1)だけ隔てたドーナツ形領域に,複数の中空管路20を所要角度間隔θaで放射状に配置して取り付ける。複数の中空管路20で囲まれた中心部分(基板11の片面側の中心)には,各中空管路20の中空部に連通する所定径R1の中央空隙23が形成される(図4参照)。基板11の外縁部では各中空管路20の相互間に間隙22が生じ,基板11の表面に凹凸が形成されるが,必要に応じて適当な充填剤で相互間隙22を埋めることにより基板11の表面を平滑化することができる。 As shown in FIG. 1D, a plurality of hollow conduits 20 are formed in a donut-shaped region radially separated from a center O on one surface side of the substrate 11 by a distance R1 (= R0-L1). And arrange them in a radial pattern. A central void 23 having a predetermined diameter R1 communicating with the hollow portion of each hollow conduit 20 is formed in a central portion surrounded by the plurality of hollow conduits 20 (center on one side of the substrate 11) (see FIG. 4). At the outer edge of the substrate 11, gaps 22 are formed between the hollow conduits 20 and irregularities are formed on the surface of the substrate 11. However, if necessary, by filling the gaps 22 with a suitable filler, The surface of 11 can be smoothed.
ディスク10の基板11の反対側面には,図1(C)に示すように各中空管路20の中空部に至る複数の微小貫通孔16を所要角度間隔θaで穿設すると共に,図1(B)に示すように反対面側を気密に覆う気密室15を設ける。図1(A)の断面図である図1(E)に示すように,気密室15は,例えば基板11の反対面側に同径の基板12を芯合わせして対向させ,その基盤11,12の対向間隙の周縁部をシール材14で密封することにより形成することができる。ただし,気密室15の形状は図示例に限定されるものではなく,例えば基板11の反対側面に同じ径R0の半球状の気密蓋を被せることにより,基板11の反対面側を気密に覆う気密室15を形成してもよい。 On the opposite side of the substrate 11 of the disk 10, as shown in FIG. 1 (C), a plurality of minute through holes 16 reaching the hollow portion of each hollow conduit 20 are formed at a required angular interval θa, and As shown in (B), an airtight chamber 15 that airtightly covers the opposite surface side is provided. As shown in FIG. 1 (E) which is a cross-sectional view of FIG. 1 (A), the airtight chamber 15 has, for example, a substrate 12 of the same diameter on the opposite surface side of the substrate 11 so as to face each other. It can be formed by sealing the peripheral portions of the facing gaps of 12 with the sealing material 14. However, the shape of the airtight chamber 15 is not limited to the illustrated example, and for example, by covering the opposite side surface of the substrate 11 with a hemispherical airtight lid having the same diameter R0, the airtight cover of the opposite surface side of the substrate 11 can be achieved. The closed chamber 15 may be formed.
図1(A)のようにディスク10は対象水域の液相Pbに浸漬するので,ディスク10を構成する基板11,12及び中空管路20は,液相Pb中に長期間浸漬しても腐食しにくい材質(例えば金属製又は合成樹脂製)とすることが望ましい。液相Pbに浸漬すると,ディスク10の各中空管路20の中空部及び各中空管路20で囲まれた中央空隙23にそれぞれ液体Qが充満するが,図1(E)に示すようにディスク10を中空回転軸パイプ30周りに回転させることにより,中空管路20の中空部に所要速度の液流を形成することができる。 As shown in FIG. 1A, since the disk 10 is immersed in the liquid phase Pb of the target water area, the substrates 11, 12 and the hollow pipe line 20 constituting the disk 10 are immersed in the liquid phase Pb for a long time. It is desirable to use a material that does not easily corrode (for example, metal or synthetic resin). When immersed in the liquid phase Pb, the liquid Q fills the hollow portion of each hollow conduit 20 of the disk 10 and the central void 23 surrounded by each hollow conduit 20, respectively, as shown in FIG. 1 (E). By rotating the disk 10 around the hollow rotary shaft pipe 30, a liquid flow at a required speed can be formed in the hollow portion of the hollow conduit 20.
すなわち,図1(E)のようにディスク10を回転させると,中空管路20に充満した液体Qを遠心力Fにより管路出口20aへ排出し,中央空隙23から新たな液体Qを各中空管路20に流入させ,各中空管路20の中空部にディスク10の中心から外周へ向けて流れる所要速度の液流を形成することができる(図4も参照)。また,その液流で生じる負圧によってディスク10の気密室15から微小貫通孔16を介して中空管路20に気体Gを吸引し,液体Qに混合することができる。気密室15には気体が充満しているので,液体Qが微小貫通孔16を逆流して気密室15に流入することはない。 That is, when the disk 10 is rotated as shown in FIG. 1E, the liquid Q filled in the hollow conduit 20 is discharged to the conduit outlet 20a by the centrifugal force F, and a new liquid Q is discharged from the central void 23. It is possible to form a liquid flow of a required velocity that flows from the center of the disk 10 toward the outer periphery in the hollow portion of each hollow conduit 20 (see also FIG. 4). Further, the negative pressure generated by the liquid flow allows the gas G to be sucked from the airtight chamber 15 of the disk 10 into the hollow conduit 20 through the minute through holes 16 and mixed with the liquid Q. Since the airtight chamber 15 is filled with the gas, the liquid Q does not flow back into the airtight chamber 15 through the minute through holes 16.
ディスク10の中心Oに挿入する中空回転軸パイプ30は,一端及び他端にそれぞれ吸気孔31及び排気孔33を設け,その吸気孔31及び排気孔33を中空部で連通させたものである。図1(E)に示すように,中空回転軸パイプ30の一端をディスク10の中心に挿入し,排気孔33を気密室15と連通するように固定する。例えば図1(F)に示すように,中空回転軸パイプ30の一端に嵌め込んだ一対の環状押え材(押え用ボス等)36,37を用いて,パイプ30とディスク10とを固定することができる。 The hollow rotary shaft pipe 30 to be inserted into the center O of the disk 10 is provided with an intake hole 31 and an exhaust hole 33 at one end and the other end, respectively, and the intake hole 31 and the exhaust hole 33 are communicated with each other in the hollow portion. As shown in FIG. 1 (E), one end of the hollow rotary shaft pipe 30 is inserted into the center of the disk 10, and the exhaust hole 33 is fixed so as to communicate with the airtight chamber 15. For example, as shown in FIG. 1 (F), the pipe 30 and the disk 10 are fixed to each other by using a pair of annular pressing members (pressing bosses or the like) 36 and 37 fitted in one end of the hollow rotary shaft pipe 30. You can
また図1(A)に示すように,中空回転軸パイプ30の他端は液面上に露出させ,吸気孔31を気相Paと連通させる。吸気孔31には吸気量調整弁32を設け,気密室15に取り込む気体Gの流量を調整可能とすることが望ましい。図1(E)に示すように,中空回転軸パイプ30は,ディスク10の回転軸として機能すると共に,気密室15に気体を取り込む流路として機能する。 Further, as shown in FIG. 1 (A), the other end of the hollow rotary shaft pipe 30 is exposed on the liquid surface so that the intake hole 31 communicates with the gas phase Pa. It is desirable that an intake amount adjustment valve 32 be provided in the intake hole 31 so that the flow rate of the gas G taken into the airtight chamber 15 can be adjusted. As shown in FIG. 1E, the hollow rotary shaft pipe 30 functions as a rotary shaft of the disk 10 and also as a flow path for taking gas into the airtight chamber 15.
すなわち,図1(E)のようにディスク10を回転させると,気密室15の気体Gが各中央管路20に吸引されて圧力が低下するが,中空回転軸パイプ30の中空部を介して気密室15が気相Paと連通しているので,気相Paから気密室15に気体Gが補充される。また,吸気量調整弁32により気密室15に補充される気体Gの流量を調整することにより,気密室15の圧力を調整し,ひいては気密室15から各中空管路20に吸引される気体Gの流量を調整することができる。 That is, when the disk 10 is rotated as shown in FIG. 1 (E), the gas G in the airtight chamber 15 is sucked into each central pipeline 20 and the pressure is reduced, but the hollow G of the hollow rotary shaft pipe 30 Since the airtight chamber 15 communicates with the gas phase Pa, the gas G is replenished from the gas phase Pa to the airtight chamber 15. Further, the pressure of the airtight chamber 15 is adjusted by adjusting the flow rate of the gas G replenished in the airtight chamber 15 by the intake air amount adjusting valve 32, and thus the gas sucked from the airtight chamber 15 to each hollow conduit 20. The flow rate of G can be adjusted.
中空回転軸パイプ30も,液相Pb中に長期間浸漬させるので腐食しにくい材質(例えば金属製又は合成樹脂製)とすることが望ましく,例えば両端を密閉材39(例えばゴム栓)で封じた金属製又は合成樹脂製のパイプを用い,その一端付近の周面に排気孔33を穿ち,他端付近の周面に吸気孔31を穿って中空回転軸パイプ30とすることができる。 Since the hollow rotary shaft pipe 30 is also immersed in the liquid phase Pb for a long period of time, it is desirable that the hollow rotary shaft pipe 30 is made of a material that is not easily corroded (for example, made of metal or synthetic resin). A hollow rotary shaft pipe 30 can be obtained by using a pipe made of metal or synthetic resin, and forming an exhaust hole 33 in the peripheral surface near one end and an intake hole 31 in the peripheral surface near the other end.
中空回転軸パイプ30の長さは液相に浸漬するディスク10の深さに応じて適宜設計できるが,図1(F)に示すように長さ調整機構35を含めることが望ましい。例えば中空回転軸パイプ30を入れ子状の内管35aと外管35bとにより構成し,長さ調整機構35を外管35bに対する内管35aの挿入長さの調整機構とする。長さ調整機構35を含めることにより,液相に浸漬するディスク10の深さを適宜調節することが可能となる。 The length of the hollow rotary shaft pipe 30 can be appropriately designed according to the depth of the disk 10 immersed in the liquid phase, but it is desirable to include a length adjusting mechanism 35 as shown in FIG. 1 (F). For example, the hollow rotary shaft pipe 30 is composed of a nested inner pipe 35a and an outer pipe 35b, and the length adjusting mechanism 35 is a mechanism for adjusting the insertion length of the inner pipe 35a with respect to the outer pipe 35b. By including the length adjusting mechanism 35, the depth of the disk 10 immersed in the liquid phase can be adjusted appropriately.
微細気泡発生装置1の駆動装置40は,液相に浸漬したディスク10を中空回転軸パイプ30の周りに回転させるものである。駆動装置40は,ディスク10を回転駆動させるだけの出力を有するものであれば足り,小型・軽量化を図ることができる。例えば図1(A)に示すように,液面上に露出させる中空回転軸パイプ30の他端に載置して連結できる小型・軽量の電動モータを駆動装置40とすることができる。図示例の駆動装置40はカップリング42を含み,カップリング42により電動モータの駆動軸41と中空回転軸パイプ30とを連結している。また,電力系統との接続が難しい海上等で使用する場合は,駆動装置40に蓄電池,太陽光発電機等を含めることができる。 The drive device 40 of the fine bubble generator 1 rotates the disk 10 immersed in the liquid phase around the hollow rotary shaft pipe 30. The drive device 40 is sufficient as long as it has an output enough to drive the disk 10 to rotate, and can be made small and lightweight. For example, as shown in FIG. 1 (A), a small and lightweight electric motor that can be mounted and connected to the other end of the hollow rotary shaft pipe 30 exposed on the liquid surface can be used as the drive device 40. The drive device 40 of the illustrated example includes a coupling 42, and the drive shaft 41 of the electric motor and the hollow rotary shaft pipe 30 are connected by the coupling 42. Further, when used in the sea or the like where connection to the power system is difficult, the drive device 40 can include a storage battery, a solar power generator, and the like.
図5(A)は,微細気泡発生装置1を用いた微細気泡の発生方法を示している。中空回転軸パイプ30の一端をディスク10の中心に挿入して固定し,他端に駆動装置40を接続する。次いで,ディスク10を液相に浸漬し,液面上の突出させた駆動装置40によりディスク10を中空回転軸パイプ30の周りに所要回転速度ωで回転させる。この回転時の遠心力Fにより,図4(A)及び(B)に示すようにディスク10の中央空隙23から各中空管路20に液体Qが流入し,各中空管路20の中空部にディスク10の中心から外周へ向けて流れる所要速度の液流が形成される。 FIG. 5 (A) shows a method of generating fine bubbles using the fine bubble generator 1. One end of the hollow rotary shaft pipe 30 is inserted and fixed in the center of the disk 10, and the drive device 40 is connected to the other end. Next, the disk 10 is immersed in the liquid phase, and the disk 10 is rotated around the hollow rotary shaft pipe 30 at the required rotation speed ω by the driving device 40 that is projected on the liquid surface. Due to the centrifugal force F during this rotation, as shown in FIGS. 4A and 4B, the liquid Q flows into the hollow conduits 20 from the central void 23 of the disc 10, and the hollow conduits 20 are hollow. A liquid flow having a required speed is formed in the portion from the center of the disk 10 toward the outer circumference.
図4(A)及び(B)に示すように,ディスク10の各中空管路20は,図7(B)を参照して上述したエジェクタ62と同様に機能する。すなわち,比較的広い中央空隙23から比較的狭い中空管路20を液流が通過することによって負圧が生じ,その負圧により気密室15から気体Gが各中空管路20に吸引されて液体Qに混合される。混合された気体Gは液体Qと共に管路出口20aに送られるが,出口の管路拡大で生じるキャビテーションによって微細に破砕され,微細気泡Sとなってディスク外周から液相Pbに放出される。 As shown in FIGS. 4A and 4B, each hollow conduit 20 of the disc 10 functions similarly to the ejector 62 described above with reference to FIG. 7B. That is, a negative pressure is generated by the liquid flow passing through the relatively narrow hollow space 20 from the relatively large central void 23, and the negative pressure causes the gas G to be sucked from the airtight chamber 15 into each hollow space 20. Mixed with the liquid Q. The mixed gas G is sent to the conduit outlet 20a together with the liquid Q, but it is finely crushed by the cavitation caused by the expansion of the conduit at the outlet, and becomes fine bubbles S to be discharged from the outer circumference of the disk to the liquid phase Pb.
必要に応じて,図4(C)に示すように各中空管路20の中空部に突起材21aを設けて縮径部21を形成し,基板11の微小貫通孔16を各中空管路20の縮径部21と対応する位置に穿設することができる。各中空管路20の中空部に縮径部21を設けることにより,ディスク10の各中空管路20を,図7(C)を参照して上述したエジェクタ(ベンチュリー)62と同様に機能させることができる。 If necessary, as shown in FIG. 4C, a projecting member 21a is provided in the hollow portion of each hollow conduit 20 to form a reduced diameter portion 21, and the minute through hole 16 of the substrate 11 is formed in each hollow pipe. It can be drilled at a position corresponding to the reduced diameter portion 21 of the passage 20. By providing the reduced diameter portion 21 in the hollow portion of each hollow conduit 20, each hollow conduit 20 of the disk 10 functions similarly to the ejector (venturi) 62 described above with reference to FIG. 7C. Can be made
図5(A)において,ディスク外周から放出される微細気泡Sの粒径及び発生量は,ディスク10の径R0又は駆動装置40によるディスク10の回転速度ωにより調節することができる。すなわち,ディスク10の径R0及び回転速度ωは何れもディスク10の回転時の遠心力Fに影響し,遠心力Fに応じて各中空管路20の流速及びキャビテーションによる破砕作用が増大するので,径R0及び回転速度ωを大きくすることでディスク外周から放出される微細気泡Sの粒径を小さくすることが期待できる。また,遠心力Fが大きくなると液流によって生じる負圧が大きくなり,各中空管路20に取り込まれる気体量(吸気量)が増加するので,ディスク外周から放出される微細気泡Sの発生量を増やすことが期待できる。 In FIG. 5A, the particle size and the amount of the fine bubbles S discharged from the outer circumference of the disk can be adjusted by the diameter R0 of the disk 10 or the rotation speed ω of the disk 10 by the driving device 40. That is, the diameter R0 and the rotation speed ω of the disk 10 both affect the centrifugal force F during rotation of the disk 10, and the flow velocity of each hollow conduit 20 and the crushing action due to cavitation increase according to the centrifugal force F. By increasing the diameter R0 and the rotation speed ω, it can be expected that the particle diameter of the fine bubbles S discharged from the outer circumference of the disk can be reduced. Further, as the centrifugal force F increases, the negative pressure generated by the liquid flow also increases, and the amount of gas (intake amount) taken into each hollow conduit 20 increases, so the amount of fine bubbles S emitted from the outer circumference of the disk increases. Can be expected to increase.
ただし,径R0及び回転速度ωを大きくし過ぎると,液体Qに混合した気体Gが十分に破砕される前に放出され,逆に微細気泡Sの粒径が大きくなってしまうおそれもある。従って,所望の粒径及び発生量の微細気泡Sを放出するためには,中空管路20に取り込まれる吸気量と破砕作用とのバランスが得られる最適値となるように,ディスク10の径R0又は回転速度ωを設定することが有効である。 However, if the diameter R0 and the rotation speed ω are made too large, the gas G mixed with the liquid Q may be released before being sufficiently crushed, and conversely the particle size of the fine bubbles S may become large. Therefore, in order to release the fine bubbles S having a desired particle size and generation amount, the diameter of the disk 10 is adjusted so that the amount of intake air taken into the hollow conduit 20 and the crushing action are optimal values. It is effective to set R0 or the rotation speed ω.
望ましくは,図1(A)に示すように,駆動装置40に回転速度調整手段43を含め,ディスク外周から放出される微細気泡Sの粒径及び発生量をディスク10の回転速度ωにより調節可能とする。或いは,複数の異なる径R0のディスク10を用意すると共にディスク10を中空回転軸パイプ30から取り外し可能とし,中空回転軸パイプ30と組み合わせるディスク10の径R0の切り替えることによって微細気泡Sの粒径及び発生量を調節可能とする。ディスク10の径R0又は回転速度ωを調節可能とすることにより,対象水域の水質や微細気泡の用途等を考慮して,ディスク10の径R0又は回転速度ωを最適値に設定することが容易となる。 Preferably, as shown in FIG. 1A, the driving device 40 includes a rotation speed adjusting means 43, and the particle size and the amount of the fine bubbles S discharged from the outer circumference of the disk can be adjusted by the rotation speed ω of the disk 10. And Alternatively, a plurality of discs 10 having different diameters R0 are prepared, the discs 10 are made removable from the hollow rotary shaft pipe 30, and the diameter R0 of the disc 10 combined with the hollow rotary shaft pipe 30 is changed to change the particle size of the fine bubbles S and The amount generated can be adjusted. By making the diameter R0 or the rotation speed ω of the disk 10 adjustable, it is easy to set the diameter R0 or the rotation speed ω of the disk 10 to an optimum value in consideration of the water quality of the target water area, the use of fine bubbles, and the like. Becomes
また,図5(A)において,ディスク外周から放出される微細気泡Sの粒径及び発生量を,中空回転軸パイプ30の吸気孔31からの吸気量により調節することもできる。すなわち,吸気量に応じてディスク10の気密室15の圧力が変動し,各中空管路20との差圧が大きくなると気密室15から吸引される気体Gの流量が大きくなって微細気泡Sの粒径及び発生量が大きくなり,差圧が小さくなると気密室15から吸引される気体Gの流量が小さくなって微細気泡の粒径及び発生量も小さくなりうる。従って,所望の粒径及び発生量の微細気泡Sを放出するためには,中空回転軸パイプ30の吸気孔31に設けた吸気量調整弁32で吸気量を調整することが有効である。 Further, in FIG. 5A, the particle size and the generation amount of the fine bubbles S discharged from the outer circumference of the disk can be adjusted by the intake amount from the intake hole 31 of the hollow rotary shaft pipe 30. That is, when the pressure of the airtight chamber 15 of the disk 10 changes according to the intake air amount and the pressure difference between the hollow pipe lines 20 increases, the flow rate of the gas G sucked from the airtight chamber 15 increases and the fine bubbles S When the particle size and the generation amount of the air bubbles become large and the differential pressure becomes small, the flow rate of the gas G sucked from the airtight chamber 15 becomes small and the particle size and the generation amount of the fine bubbles can also become small. Therefore, in order to discharge the fine bubbles S having a desired particle size and generation amount, it is effective to adjust the intake amount by the intake amount adjustment valve 32 provided in the intake hole 31 of the hollow rotary shaft pipe 30.
好ましくは,図2に示すように,ディスク10の基板11の片面側に同径の中央穴26 付きドーナツ形基板25を芯合わせして対向させ,複数の中空管路20を基板11とドーナツ形基板25との対向間隙に所要角度間隔θbで放射状に配置して取り付ける。ドーナツ形基板25を設けることにより,図2(D)及び図2(E)に示すように,ディスク10の回転時にドーナツ形基板25の中央穴26(口径R1)を介して液相Pbから複数の中空管路20で囲まれた中央空隙23に液体Qを取り入れ,中央空隙23において液体Qを遠心力Fにより加速しながら各中空管路20に液体を流入させることができる。 Preferably, as shown in FIG. 2, a doughnut-shaped substrate 25 having a central hole 26 of the same diameter is aligned on one side of the substrate 11 of the disk 10 so as to face each other, and a plurality of hollow conduits 20 are connected to the substrate 11 and the donut. It is radially arranged in a gap facing the shaped substrate 25 at a required angular interval θb and attached. By providing the doughnut-shaped substrate 25, as shown in FIGS. 2 (D) and 2 (E), a plurality of liquid phases Pb are released from the liquid phase Pb through the central hole 26 (caliber R1) of the donut-shaped substrate 25 when the disk 10 rotates. The liquid Q can be introduced into the central space 23 surrounded by the hollow conduits 20 and the liquid Q can be caused to flow into each hollow conduit 20 while the liquid Q is accelerated by the centrifugal force F in the central space 23.
すなわち,上述した図1の実施例では,複数の中空管路20で囲まれた中央空隙23において液体Qを加速することができず,中空管路20において液体Qを所要流速に加速しなければならないので,比較的長い中空管路20(長さL1=R0−R1)とする必要があった。図2のように中央空隙23において液体Qを加速しながら各中空管路20に流入させることにより,比較的短い中空管路20(長さL2<R0−R1)でも所要流速とすることが可能となり,中空管路20の角度間隔θbを小さくして配置本数を多くすることができ,ディスク外周から放出される微細気泡Sの発生量を増やすことができる。本発明者は,中空管路20の長さLは微細気泡Sの粒径及び発生量に直接関係しておらず,微細気泡Sの発生量を増やすためには中空管路20の配置本数を多くすることが有効であることを実験的に見出した。 That is, in the above-described embodiment of FIG. 1, the liquid Q cannot be accelerated in the central void 23 surrounded by the plurality of hollow pipes 20, and the liquid Q is accelerated to the required flow velocity in the hollow pipe 20. Therefore, it is necessary to use a relatively long hollow conduit 20 (length L1 = R0-R1). As shown in FIG. 2, by causing the liquid Q to flow into each hollow conduit 20 while accelerating in the central void 23, the required flow velocity can be achieved even in a relatively short hollow conduit 20 (length L2 <R0-R1). It is possible to decrease the angular interval θb of the hollow conduit 20 to increase the number of arranged tubes, and to increase the generation amount of the fine bubbles S discharged from the outer circumference of the disk. The inventor has found that the length L of the hollow pipeline 20 is not directly related to the particle size and the generation amount of the fine bubbles S, and the hollow pipeline 20 is arranged to increase the generation amount of the fine bubbles S. It was experimentally found that increasing the number is effective.
また,図2のようにドーナツ形基板25を設けた場合は,ドーナツ形基板25の中央穴26の大きさR1によってディスク外周から放出される微細気泡Sの粒径を調節することもできる。すなわち,図2(D)のようにディスク10の外縁部に長さL2の複数の中空管路20を放射状に配置した場合は,ドーナツ形基板25の中央穴26の大きさR1により液体Qを加速する中央空隙23の口径(=R0−R1)が変動し,中央穴26が大きくなると中央空隙23から各中空管路20に流入する流速が小さくなって微細気泡Sの粒径及び発生量が大きくなり,中央穴26を小さくすると中央空隙23から各中空管路20に流入する流速が大きくなって微細気泡Sの粒径及び発生量が小さくなりうる。 Further, when the doughnut-shaped substrate 25 is provided as shown in FIG. 2, the size R1 of the central hole 26 of the donut-shaped substrate 25 can be used to adjust the particle size of the fine bubbles S emitted from the outer periphery of the disk. That is, when a plurality of hollow conduits 20 having a length L2 are radially arranged at the outer edge of the disk 10 as shown in FIG. 2D, the size of the central hole 26 of the donut-shaped substrate 25 causes the liquid Q When the diameter (= R0-R1) of the central void 23 for accelerating the flow rate fluctuates and the central hole 26 becomes large, the flow velocity flowing into each hollow conduit 20 from the central void 23 decreases, and the particle size and generation of the fine bubbles S occur. If the amount becomes large and the central hole 26 becomes small, the flow velocity flowing into each hollow conduit 20 from the central void 23 becomes large, and the particle size and the generation amount of the fine bubbles S can become small.
ただし,ドーナツ形基板25の中央穴26を小さくし過ぎると,ディスク10を中空回転軸パイプ30の周りに回転させるために大きなエネルギーが必要となり,所定出力の駆動装置40を用いた場合にディスク10の回転速度ωが低下してしまうおそれがある。従って,所望の粒径及び発生量の微細気泡Sを放出するためには,駆動装置40による回転速度ωとのバランスが得られる最適値となるように,ドーナツ形基板25の中央穴26の大きさR1を設定することが有効である。 However, if the central hole 26 of the doughnut-shaped substrate 25 is made too small, a large amount of energy is required to rotate the disk 10 around the hollow rotary shaft pipe 30, and when the drive device 40 having a predetermined output is used, the disk 10 is required. There is a risk that the rotation speed ω of will decrease. Therefore, in order to release the fine bubbles S having a desired particle size and generation amount, the size of the central hole 26 of the donut-shaped substrate 25 is adjusted so that the balance with the rotation speed ω by the driving device 40 is an optimum value. Setting R1 is effective.
本発明は,ディスク10の中心に挿入した中空回転軸パイプ30の周りの遠心力により各中空管路20に液体Qを流入させ,その液体Qの通過時の負圧によって気密室15から中空管路20に気体Gを取り入れて微細気泡Sを発生させるので,ポンプ等の液体を加圧する装置を用いる必要がなく,微細気泡Sの生成のための消費エネルギーを小さく抑えることができる。また,ディスク10に取り付けた複数の中空管路20に同時に液体Q及び気体Gを取り入れて微細気泡Sを作り出すことが可能であり,ディスク10に取り付ける中空管路20の数により微細気泡Sの生成量を適宜調整することができる。 According to the present invention, the liquid Q is caused to flow into each hollow conduit 20 by the centrifugal force around the hollow rotary shaft pipe 30 inserted in the center of the disk 10, and the negative pressure when the liquid Q passes through causes the middle of the airtight chamber 15 to exit. Since the gas G is taken into the empty pipe line 20 to generate the fine bubbles S, it is not necessary to use a device for pressurizing the liquid such as a pump, and the energy consumption for generating the fine bubbles S can be suppressed small. Further, it is possible to simultaneously introduce the liquid Q and the gas G into the plurality of hollow pipes 20 attached to the disk 10 to create the fine bubbles S, and the fine bubbles S may be changed depending on the number of the hollow pipes 20 attached to the disc 10. The production amount of can be adjusted appropriately.
こうして本発明の目的である「小さな消費エネルギーで微細気泡を効率的に生成できるディスク型微細気泡発生方法及び装置」の提供を達成することができる。 In this way, it is possible to achieve the object of the present invention to provide a "disc-type fine bubble generating method and device capable of efficiently generating fine bubbles with small energy consumption".
図3は,図1及び図2のように基板11,12を対向させてディスク10の気密室15を形成した場合に,各基板11,12の非対向面側にそれぞれ複数の中空管路20を放射状に配置して取り付けた本発明の微細気泡発生装置1の他の実施例を示す。気密室15の両面側の各基板11,12にそれぞれ複数の中空管路20を配置することにより,図1及び図2の場合に比して中空管路20の配置本数を多くすることができ,ディスク外周から放出される微細気泡Sの発生量を増やすことができる。 FIG. 3 shows a plurality of hollow conduits on the non-opposing surfaces of the substrates 11 and 12 when the substrates 11 and 12 are opposed to each other to form the airtight chamber 15 of the disk 10 as shown in FIGS. Another embodiment of the micro-bubble generating device 1 of the present invention in which 20 are radially arranged and attached will be shown. By arranging a plurality of hollow conduits 20 on each of the substrates 11 and 12 on both sides of the airtight chamber 15, the number of hollow conduits 20 to be arranged is increased as compared with the case of FIGS. 1 and 2. Therefore, it is possible to increase the amount of fine bubbles S emitted from the outer circumference of the disc.
図3の気密室15は,図1及び図2の実施例と同様に,同径の基板11,12を芯合わせして対向させ,その基盤11,12の対向間隙の周縁部をシール材14で密封することにより形成したものである(図3(E)参照)。図3(B)に示すように,その気密室15の片面側の基板11に同径の中央穴26 付きドーナツ形基板25を芯合わせして対向させ,そのドーナツ形基板25との対向間隙に複数の中空管路20を所要角度間隔θbで放射状に配置して取り付ける。また図3(D)に示すように,気密室15の反対面側の基板11にも同径の中央穴26 付きドーナツ形基板25を芯合わせして対向させ,そのドーナツ形基板25との対向間隙に複数の中空管路20を所要角度間隔θbで放射状に配置して取り付ける。 The airtight chamber 15 of FIG. 3 is similar to the embodiment of FIGS. 1 and 2, and substrates 11 and 12 of the same diameter are aligned and opposed to each other, and the peripheral edges of the opposing gaps of the substrates 11 and 12 are sealed with a sealing material 14. It is formed by sealing with (see FIG. 3E). As shown in FIG. 3 (B), a doughnut-shaped substrate 25 with a central hole 26 having the same diameter is aligned and opposed to the substrate 11 on one side of the airtight chamber 15, and the donut-shaped substrate 25 is provided with a facing gap. A plurality of hollow conduits 20 are radially arranged and attached at a required angular interval θb. Further, as shown in FIG. 3D, a doughnut-shaped substrate 25 having a central hole 26 of the same diameter is aligned with the substrate 11 on the opposite surface side of the airtight chamber 15 so as to face the donut-shaped substrate 25. A plurality of hollow conduits 20 are radially arranged and attached in the gap at required angular intervals θb.
更に,図3(C)に示すように,気密室15の両側の各基板11,12には,それぞれ対向面側から各中空管路20の中空部に至る微小貫通孔16を穿設する。図3(A)に示すようにディスク10を液相に浸漬し,ディスク10の中心に挿入した中空回転軸パイプ30の周りにディスク10を回転させると,図3(E)に示すように,回転の遠心力Fによって各基板11,12に取り付けた複数の中空管路20にそれぞれ液体Qが流入し,各中空管路20の中空部にディスク10の中心から外周へ向けて流れる所要速度の液流が形成されて負圧が生じる。その負圧により各基板11,12の微小貫通孔16を介して気密室15から気体Gが各中空管路20に吸引されて液体Qに混合される。混合された気体Gは液体Qと共に管路出口20aに送られるが,出口の管路拡大で生じるキャビテーションによって微細に破砕され,微細気泡Sとなってディスク外周から液相Pbに放出される。 Further, as shown in FIG. 3 (C), minute through holes 16 are formed in each of the substrates 11 and 12 on both sides of the airtight chamber 15 from the facing surface side to the hollow portion of each hollow conduit 20. .. When the disc 10 is immersed in a liquid phase as shown in FIG. 3 (A) and the disc 10 is rotated around a hollow rotary shaft pipe 30 inserted in the center of the disc 10, as shown in FIG. 3 (E), Due to the centrifugal force F of rotation, the liquid Q flows into each of the plurality of hollow conduits 20 attached to each of the substrates 11 and 12, and flows into the hollow portion of each hollow conduit 20 from the center of the disk 10 toward the outer periphery. A liquid flow of velocity is formed and a negative pressure is generated. Due to the negative pressure, the gas G is sucked from the airtight chamber 15 into the hollow conduits 20 through the minute through holes 16 of the substrates 11 and 12 and mixed with the liquid Q. The mixed gas G is sent to the conduit outlet 20a together with the liquid Q, but it is finely crushed by the cavitation caused by the expansion of the conduit at the outlet, and becomes fine bubbles S to be discharged from the outer circumference of the disk to the liquid phase Pb.
図3の実施例によれば,中空回転軸パイプ30の周りにディスク10を回転させる駆動エネルギーのみで多量の微細気泡Sを効率的に発生させることができるので,例えば動力源が得にくい海洋等においても,太陽光発電等の自然エネルギー等と組み合わせることにより,必要な量の微細気泡Sを長期間継続して供給することができる。また,ポンプを使用しておらず,ディスク10の回転駆動装置40も水面上に配置することができるので,養魚場等で長期間継続し続けても水温上昇を招くおそれがなく,魚介類の生育等に影響を与えることなく長期間継続して微細気泡Sを供給することができる。 According to the embodiment of FIG. 3, a large amount of fine bubbles S can be efficiently generated only by the driving energy for rotating the disk 10 around the hollow rotary shaft pipe 30, so that it is difficult to obtain a power source such as the ocean. Also in the above, the necessary amount of fine bubbles S can be continuously supplied for a long period of time by combining with natural energy such as solar power generation. Further, since the rotary drive device 40 of the disk 10 can be arranged on the water surface without using a pump, there is no fear that the water temperature will rise even if it is continued for a long time in a fish farm or the like. The fine bubbles S can be continuously supplied for a long period of time without affecting growth or the like.
図5(B)は,ディスク10の外周より放出された微細気泡Sを所定方向に案内するガイド板50を設けた本発明の微細気泡発生装置1の更に他の実施例を示す。図7(A)を参照して上述した従来の加圧装置(ポンプ等)を用いる微細気泡発生方式では,通常は発生した微細気泡が一方向に吐出されるので,対象水域の広い範囲に微細気泡を行きわたらせるために複数台の装置を必要とすることも多く,それだけ消費エネルギーが大きくなる問題点があった。それに対して本発明の微細気泡発生装置1は,図5(A)に示すように,中空回転軸パイプ30の周りに回転するディスク10の外周から360度放射状に微細気泡Sを放出できるので,単独の装置によって広い範囲に浸透するように微細気泡を放出することができ,小さな消費エネルギーで広い範囲の水質を改善・改良できる利点を有する。 FIG. 5B shows still another embodiment of the micro-bubble generator 1 of the present invention, which is provided with a guide plate 50 for guiding the micro-bubbles S discharged from the outer periphery of the disk 10 in a predetermined direction. In the fine bubble generation method using the conventional pressurizing device (pump, etc.) described above with reference to FIG. 7 (A), since the fine bubbles generated are normally discharged in one direction, the fine bubbles are spread over a wide range of the target water area. In many cases, multiple devices are required to spread the air bubbles, which causes the problem of increased energy consumption. On the other hand, as shown in FIG. 5 (A), the fine bubble generator 1 of the present invention can emit fine bubbles S radially from the outer periphery of the disk 10 rotating around the hollow rotary shaft pipe 30 by 360 degrees, With a single device, it is possible to discharge fine bubbles so that they permeate a wide range, and it has the advantage of improving and improving the water quality in a wide range with a small amount of energy consumption.
ただし,微細気泡発生装置1を水槽の壁面やコーナー部に設置する場合は,水槽の壁面のない方向に集中して微細気泡Sを放出することが求められる。図5(B)の実施例は,ディスク10の外周面の所要角度範囲(図示例では約180度の角度範囲)の外側に所要間隔で対向するようにガイド板50を配置し,ディスク10の外周より放出されてガイド板50に噴き付けられた気泡流を,ガイド板50の対向面に沿って所定方向に案内している。例えば,水槽の壁面に臨むディスク10の外周面と対向するガイド板50を配置し,ディスク10の外周から水層の壁面に向けて放出される微細気泡Sを,ガイド板50により壁面のない方向に案内することができる。図示例のようなガイド板50を組み合わせることにより,必要とする方向に重点的に微細気泡Sを放出する微細気泡発生装置1とすることができる。 However, when the fine bubble generator 1 is installed on the wall surface or the corner portion of the water tank, it is required to discharge the fine bubbles S in a direction where the wall surface of the water tank does not exist. In the embodiment shown in FIG. 5B, the guide plates 50 are arranged so as to face each other outside the required angular range of the outer peripheral surface of the disk 10 (angle range of about 180 degrees in the illustrated example) at a required interval. The bubble flow discharged from the outer periphery and sprayed on the guide plate 50 is guided in a predetermined direction along the facing surface of the guide plate 50. For example, the guide plate 50 facing the outer peripheral surface of the disk 10 facing the wall surface of the water tank is arranged, and the fine bubbles S emitted from the outer periphery of the disk 10 toward the wall surface of the water layer are directed by the guide plate 50 in the direction without the wall surface. Can be guided to. By combining the guide plates 50 as in the illustrated example, it is possible to obtain the fine bubble generation device 1 that discharges the fine bubbles S in a required direction.
図6は,様々なガス(酸素,オゾン,窒素等)を供給する装置45と組み合わせた本発明の微細気泡発生装置1の実施例を示す。上述したように本発明の微細気泡発生装置1は,中空回転軸パイプ30の他端の吸気孔31を気相と連通させ,その気相の気体をディスク10に取り込んで微細気泡Sとすることができる。ただし,医薬品や食品等の分野では様々なガス(酸素,オゾン,窒素等)を閉じ込めた微細気泡Sの作成が求められることがある。図6の実施例では,中空回転軸パイプ30の他端の吸気孔31にメカニカルシールその他の適当なシール部材46を介してガス供給装置45を接続し,ガス供給装置45の供給する様々なガスを微細気泡Sとして供給することができる。 FIG. 6 shows an embodiment of the fine bubble generator 1 of the present invention in combination with a device 45 for supplying various gases (oxygen, ozone, nitrogen, etc.). As described above, in the fine bubble generator 1 of the present invention, the intake hole 31 at the other end of the hollow rotary shaft pipe 30 is communicated with the gas phase, and the gas in the vapor phase is taken into the disk 10 to form the fine bubbles S. You can However, in the fields of pharmaceuticals, foods, etc., it may be required to create the fine bubbles S that contain various gases (oxygen, ozone, nitrogen, etc.). In the embodiment of FIG. 6, the gas supply device 45 is connected to the intake hole 31 at the other end of the hollow rotary shaft pipe 30 via a mechanical seal or other suitable sealing member 46, and various gases supplied by the gas supply device 45 are connected. Can be supplied as fine bubbles S.
1…回転ディスク型微細気泡発生装置
10…ディスク 11…基板
12…基板 14…周囲シール材
15…気密室 16…貫通孔
20…中空管路(中空パイプ) 20a…管路出口
21…縮径部 21a…突起材
22…管路の間隙 23…中央空隙
25…ドーナツ形基板 26…中央穴
30…中空回転軸パイプ 31…吸気孔
32…吸気量調整弁 33…排気孔
35…長さ調整機構 36,37…環状押え材(押え用ボス)
39…密閉材
40…駆動装置 41…駆動軸
42…カップリング 43…回転速度調整手段
45…ガス供給装置 46…シール部材
47…供給量調整弁 48…ガス流路
50…ガイド板
60…エジェクタ式微細気泡発生装置
61…液体貯留槽 62…エジェクタ
62a…中空部 62b…管路入口
62c…管路出口 62d…縮径部
62e…微細吸気孔
63…ポンプ 64…液体流路
65…流量調整バルブ 66…気体供給路
67…開閉コック
Pa…気相 Pb…液相
S…微細気泡 L…中空管路の長さ
G…気体 Q…液体
R0…基板径
R1…中央空隙径(ドーナツ形領域の中心からの離隔距離)
θ…中空管路の相互角度間隔
ω…回転速度
1. Rotating disk type micro bubble generator
10 ... Disk 11 ... Substrate 12 ... Substrate 14 ... Peripheral sealing material 15 ... Airtight chamber 16 ... Through hole 20 ... Hollow pipeline (hollow pipe) 20a ... Pipe outlet 21 ... Reduced diameter portion 21a ... Projection material 22 ... Pipe Gap 23 ... Central void 25 ... Donut-shaped substrate 26 ... Central hole 30 ... Hollow rotating shaft pipe 31 ... Intake hole 32 ... Intake amount adjusting valve 33 ... Exhaust hole 35 ... Length adjusting mechanism 36, 37 ... Annular presser material (presser foot) Boss)
39 ... Sealant 40 ... Drive device 41 ... Drive shaft 42 ... Coupling 43 ... Rotation speed adjusting means 45 ... Gas supply device 46 ... Seal member 47 ... Supply amount adjusting valve 48 ... Gas flow path 50 ... Guide plate 60 ... Ejector type Micro bubble generator
61 ... Liquid storage tank 62 ... Ejector 62a ... Hollow part 62b ... Pipe line inlet 62c ... Pipe line outlet 62d ... Reduced diameter part 62e ... Fine suction hole 63 ... Pump 64 ... Liquid flow passage 65 ... Flow rate adjusting valve 66 ... Gas supply passage 67 ... Opening / closing cock Pa ... Gas phase Pb ... Liquid phase S ... Fine bubbles L ... Hollow conduit length G ... Gas Q ... Liquid R0 ... Substrate diameter R1 ... Central void diameter (distance from center of donut-shaped region) )
θ: Mutual angular spacing of hollow conduits ω ... Rotational speed
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017158949A JP6691713B2 (en) | 2017-08-21 | 2017-08-21 | Disk type fine bubble generating method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017158949A JP6691713B2 (en) | 2017-08-21 | 2017-08-21 | Disk type fine bubble generating method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019034292A JP2019034292A (en) | 2019-03-07 |
JP6691713B2 true JP6691713B2 (en) | 2020-05-13 |
Family
ID=65636417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017158949A Active JP6691713B2 (en) | 2017-08-21 | 2017-08-21 | Disk type fine bubble generating method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6691713B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114623099A (en) * | 2020-12-10 | 2022-06-14 | 欧群科技股份有限公司 | Micro-fluid structure generating mechanism and micro-fluid structure generating device thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2928665A (en) * | 1950-09-27 | 1960-03-15 | American Instr Co Inc | Gas-liquid mixing apparatus |
JPS5021696B1 (en) * | 1964-12-29 | 1975-07-24 | ||
JPS526954Y1 (en) * | 1968-02-10 | 1977-02-14 | ||
JPS59135128U (en) * | 1983-02-25 | 1984-09-10 | 日立機電工業株式会社 | liquid stirring device |
JPH0237732U (en) * | 1988-09-07 | 1990-03-13 | ||
JPH02133422U (en) * | 1989-04-05 | 1990-11-06 | ||
JP4909191B2 (en) * | 2007-06-27 | 2012-04-04 | 三菱重工業株式会社 | Fluid agitation method |
JP4902770B2 (en) * | 2010-06-08 | 2012-03-21 | 株式会社エディプラス | Rotating body for stirring and stirring device |
JP2018069159A (en) * | 2016-10-28 | 2018-05-10 | ウォーターナビ株式会社 | Disc rotation type fine bubble generation method and device |
-
2017
- 2017-08-21 JP JP2017158949A patent/JP6691713B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019034292A (en) | 2019-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11918963B2 (en) | Nano-bubble generator and method of generating nano-bubbles using interfering magnetic flux fields | |
ES2711981B2 (en) | APPARATUS AND PROCEDURE FOR THE REMOVAL OF THE SUPPORT | |
JP5219096B2 (en) | Method and apparatus for processing liquids | |
JP2010240562A (en) | Apparatus for producing microbubble dispersed water | |
JP2022525596A (en) | Immersible nanobubble generation devices and methods | |
JP6691713B2 (en) | Disk type fine bubble generating method and device | |
US10315172B2 (en) | Rotor and stator device having bore holes for cavitational mixing | |
CN115589777A (en) | Nanobubble generating system using friction | |
JPWO2015156514A1 (en) | Oxygen dissolver | |
US20220258111A1 (en) | Device for the gasification, pumping and mixing of fluids | |
JP6691716B2 (en) | Method and device for generating fine bubbles | |
JP3631999B2 (en) | Fine bubble feeder | |
KR20140139898A (en) | Oxygen dissolving apparatus for preventing sea contamination | |
KR20130113831A (en) | Apparatus for the removal of plankton and pollutants in a stagnant stream channel | |
JP7396624B2 (en) | Micro bubble generator | |
JP2018069159A (en) | Disc rotation type fine bubble generation method and device | |
WO2017056323A1 (en) | Device for dissolving oxygen in water and method for dissolving oxygen in water using same | |
JPWO2006033221A1 (en) | Fine bubble liquid generator and bubble refiner used therefor | |
KR101200846B1 (en) | Microbubble generator using vortex | |
JP2023069953A (en) | Fine bubble generation device | |
US11912600B2 (en) | Mixer for ponds and other shallow bodies of water | |
JP2006122813A (en) | Mixer and mixing apparatus using this | |
CA2919280A1 (en) | Rotary gas bubble ejector | |
KR101969774B1 (en) | High-concentration sterilization water producing device that enables cultivation of crops without using pesticides | |
WO2020203413A1 (en) | Device for producing bubble-containing liquid and system for producing bubble-containing liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190816 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200406 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6691713 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |