JP4909191B2 - Fluid agitation method - Google Patents

Fluid agitation method Download PDF

Info

Publication number
JP4909191B2
JP4909191B2 JP2007169190A JP2007169190A JP4909191B2 JP 4909191 B2 JP4909191 B2 JP 4909191B2 JP 2007169190 A JP2007169190 A JP 2007169190A JP 2007169190 A JP2007169190 A JP 2007169190A JP 4909191 B2 JP4909191 B2 JP 4909191B2
Authority
JP
Japan
Prior art keywords
stirring
phase
rotation
fluid
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007169190A
Other languages
Japanese (ja)
Other versions
JP2009006246A (en
Inventor
新太郎 本城
和弘 帆足
沖野  進
直行 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007169190A priority Critical patent/JP4909191B2/en
Publication of JP2009006246A publication Critical patent/JP2009006246A/en
Application granted granted Critical
Publication of JP4909191B2 publication Critical patent/JP4909191B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、流体の攪拌方法およびアーム回転式スパージャに関する。   The present invention relates to a fluid stirring method and an arm rotary sparger.

石炭火力脱硫の排ガス等の脱硫装置として湿式脱硫装置が一般的に用いられている。湿式脱硫装置においては、排ガス中のSO2等を石灰等のアルカリを含むスラリー溶液に吸収させ、さらに生じた亜硫酸イオンに酸素含有ガス(一般的には空気)を吹き込み接触酸化させることにより硫酸塩に変える処理がなされている。   A wet desulfurization apparatus is generally used as a desulfurization apparatus for coal-fired desulfurization exhaust gas and the like. In wet desulfurization equipment, SO2 in exhaust gas is absorbed in a slurry solution containing alkali such as lime, and oxygen-containing gas (generally air) is blown into the resulting sulfite ions to effect contact oxidation to sulfate. Processing to change is made.

排ガスを吸収したスラリー溶液に空気を吹き込み効率的に気液接触を行う攪拌部材として、回転式エアスパージャ[ARS]が知られている(例えば、特許文献1を参照。)。   A rotary air sparger [ARS] is known as an agitating member that efficiently blows air into a slurry solution that has absorbed exhaust gas and makes gas-liquid contact efficiently (see, for example, Patent Document 1).

ARSは、図9に示すように、その中空回転軸91が天井部で減速機92を介してモーター93と連結し、矢印方向に回転可能になっている。減速機92と中空回転軸91とは図示しないギアを介して連動している。空気源94からの空気95は、配管96、中空回転軸91および分岐配管97を経由して空気ノズル98より噴出し、モーター93による中空回転軸91の回転によって溶液に生じる流れとの剪断作用により微細化した気泡99となって液中に分散混合されるようになっている。
特開平5−220363号公報
As shown in FIG. 9, the ARS has a hollow rotary shaft 91 connected to a motor 93 via a speed reducer 92 at the ceiling, and is rotatable in the direction of the arrow. The reduction gear 92 and the hollow rotary shaft 91 are interlocked via a gear (not shown). The air 95 from the air source 94 is ejected from the air nozzle 98 via the pipe 96, the hollow rotary shaft 91 and the branch pipe 97, and is sheared with the flow generated in the solution by the rotation of the hollow rotary shaft 91 by the motor 93. The fine bubbles 99 are dispersed and mixed in the liquid.
Japanese Patent Laid-Open No. 5-220363

ARSは、タンク内流体中で複数の攪拌部材(例えば、ARS)を配置し回転すると、攪拌部材自身の回転、隣接する攪拌部材あるいは壁との流体力の相互干渉等に起因して、攪拌翼に横荷重とよばれるアンバランス変動荷重を顕著に受けるようになり、これが所定の値を超えると、減速機92のギアが片当たりを起こし破損する可能性がある。   When a plurality of stirring members (for example, ARS) are arranged and rotated in the fluid in the tank, the ARS is caused by the rotation of the stirring members themselves, the mutual interference of the fluid force with the adjacent stirring members or walls, and the like. When an unbalance fluctuation load called a lateral load is significantly received and exceeds a predetermined value, the gear of the speed reducer 92 may cause one-sided contact and may be damaged.

また従来の設計においては、過去プラントで実測した横荷重の実績データから同じ裕度を持たせ、いずれのプラントでも一律の式で測定している。しかしながら、回転数はプラントごとで異なり、従来回転位相は起動時のタイミングで成り行きであるので、2基以上のARSが起動した際、他の攪拌機との干渉により、想定した以上の横荷重が生じる危険性がある。   Moreover, in the conventional design, the same tolerance is given from the actual data of the lateral load actually measured in the past plant, and the measurement is performed with a uniform formula in any plant. However, the number of revolutions differs from plant to plant, and the conventional rotational phase is the timing at the time of startup. Therefore, when two or more ARSs are started up, a lateral load more than expected is generated due to interference with other stirrers. There is a risk.

本発明は、上記現状に鑑み、攪拌部材の回転数を下げることなく、横荷重を低減するための攪拌方法および横荷重の低減に適した攪拌部材を提供することを目的とする。   An object of this invention is to provide the stirring method for reducing a lateral load, and the stirring member suitable for reduction of a lateral load, without lowering the rotation speed of a stirring member in view of the said present condition.

本発明は、上記課題を解決するためになされたものである。すなわち、本発明に係る流体の攪拌方法は、少なくとも2基の回転軸が平行な攪拌部材を備えた流体槽における流体の攪拌方法であって、隣接する攪拌部材の回転数を所定の値に維持しつつ、回転位相を最大アンバランス荷重が最も小さくなる所定の値に制御して攪拌することよりなる。
本発明に係るアーム回転式ガススパージャは、気体を導通可能な中空回転軸と、前記中空回転軸から水平方向に張り出した2本以上の攪拌アームと、前記中空回転軸から分岐して、前記攪拌アームに取り付けられた配管であって、前記中空回転軸を導通する気体の一部を取り込み回転と同時に排出可能な分岐配管とを備え、前記2本以上の攪拌アームのうち少なくとも1本の攪拌面が、前記他の攪拌アームの攪拌面と異なる高さにあるものである。
本発明に係るアーム回転式ガススパージャは、垂直方向に気体を導通可能な中空回転軸と、前記中空回転軸の下端から水平に延びる2本以上の攪拌アームと、前記中空回転軸から分岐して、前記攪拌アームに取り付けられた分岐配管であって、前記中空回転軸を導通する気体の一部を取り込み回転と同時に排出可能な分岐配管とを備え、前記中空回転軸の長さを伸縮調節可能なものである。
The present invention has been made to solve the above problems. That is, the fluid agitation method according to the present invention is a fluid agitation method in a fluid tank provided with at least two agitation members having parallel rotation axes, and maintains the rotation speed of adjacent agitation members at a predetermined value. However, the rotation phase is controlled to a predetermined value at which the maximum unbalance load is minimized, and stirring is performed.
The arm rotary gas sparger according to the present invention includes a hollow rotary shaft capable of conducting gas, two or more stirring arms projecting horizontally from the hollow rotary shaft, and a branch from the hollow rotary shaft, A pipe that is attached to the arm and includes a branch pipe that takes in a part of the gas that is conducted through the hollow rotary shaft and that can be discharged simultaneously with the rotation, and at least one stirring surface of the two or more stirring arms However, the height is different from the stirring surface of the other stirring arm.
An arm rotary gas sparger according to the present invention includes a hollow rotary shaft capable of conducting gas in a vertical direction, two or more stirring arms extending horizontally from a lower end of the hollow rotary shaft, and a branch from the hollow rotary shaft. A branch pipe attached to the stirring arm, and a branch pipe capable of taking in a part of the gas conducted through the hollow rotary shaft and discharging it at the same time as rotation, and adjusting the length of the hollow rotary shaft Is something.

本発明の攪拌方法により、隣接する攪拌部材の回転数を下げることなく、攪拌部材自身の回転、隣接する攪拌部材あるいは壁との流体力の相互干渉に起因する横荷重を低減することができ、回転ギアの破損等による安全率の低下を抑制することができ、結果として装置全体の信頼性を向上することができる。
本発明のアーム回転式スパージャを用いることにより、従来型のARSを用いた場合に比べ最大アンバランス荷重を低減することができる。
By the stirring method of the present invention, without reducing the rotation speed of the adjacent stirring member, it is possible to reduce the lateral load due to the rotation of the stirring member itself, the mutual interference of the fluid force with the adjacent stirring member or the wall, It is possible to suppress a decrease in the safety factor due to breakage of the rotating gear, and as a result, it is possible to improve the reliability of the entire apparatus.
By using the arm rotary sparger of the present invention, the maximum unbalance load can be reduced as compared with the case of using a conventional ARS.

以下に、本発明を、図面を参照して詳細に説明する。同じ部材には同じ符号を付して表した。なお、本発明は以下に説明する形態に制限されるものではない。
本発明に係る攪拌方法は、回転軸が平行な2基以上の攪拌部材の存在下で行われる液体、スラリー等の攪拌、特に曝気を伴う攪拌に好適に採用される。
上記2基以上の攪拌部材は、回転軸が平行になるように設置されるものであれば、流体槽の上から見て一直線上に配列するように設置してもよいし、3基用いる場合、三角形の各頂点を形成するように設置してもよい。
攪拌部材の数としては、同一流体槽に2基以上あれば特に限定されないが、上限を、10基とすることができる。
攪拌部材の回転数は、回転位相を所定の値に維持するためには、同一流体槽に存在する全ての攪拌部材において同一であることを要する。
攪拌部材の回転数は、スラリー粘度、スラリー密度、曝気を伴う場合気泡の分散度合い等の種々の要素を考慮したうえで、10rpm〜100rpmの間の所定の値に維持する。10rpm未満であると、気泡の剪断力、気泡の分散力、攪拌力が不充分となる場合があり、100rpmを超えると攪拌動力が過大となり、機械的強度を保つのが困難となる場合がある。
Hereinafter, the present invention will be described in detail with reference to the drawings. The same members are denoted by the same reference numerals. In addition, this invention is not restrict | limited to the form demonstrated below.
The stirring method according to the present invention is suitably employed for stirring liquids, slurries and the like, particularly stirring involving aeration, performed in the presence of two or more stirring members having parallel rotation axes.
The two or more stirring members may be installed so as to be arranged in a straight line when viewed from above the fluid tank as long as the rotating shafts are arranged in parallel. It may be installed so as to form each vertex of the triangle.
The number of stirring members is not particularly limited as long as there are two or more stirring members in the same fluid tank, but the upper limit can be set to ten.
In order to maintain the rotational phase at a predetermined value, the number of rotations of the stirring member needs to be the same in all the stirring members existing in the same fluid tank.
The rotational speed of the stirring member is maintained at a predetermined value between 10 rpm and 100 rpm in consideration of various factors such as slurry viscosity, slurry density, and the degree of bubble dispersion when aeration is involved. If it is less than 10 rpm, the shearing force of the bubbles, the dispersion force of the bubbles, and the stirring force may be insufficient, and if it exceeds 100 rpm, the stirring power may be excessive and it may be difficult to maintain the mechanical strength. .

本明細書において、「攪拌部材」なる語には、特許文献1で開示されているARS等の気液接触機能を有する攪拌機のみならず、タービン型、プロペラ型、パドル型、アンカーパドル型、門型パドル型、リボン型等の種々のインペラ形状を有し、かつ気体供給機能を有する攪拌機、または、種々のインペラ形状を有するが、気液接触機能を有しない攪拌機が含まれる。   In this specification, the term “stirring member” includes not only a stirrer having a gas-liquid contact function such as ARS disclosed in Patent Document 1, but also a turbine type, propeller type, paddle type, anchor paddle type, gate A stirrer having various impeller shapes such as a mold paddle type and a ribbon type and having a gas supply function, or a stirrer having various impeller shapes but no gas-liquid contact function is included.

本発明に係る流体の攪拌方法は、隣接する攪拌部材の回転数を所定の値に維持しつつ、回転位相を、個々の攪拌部材にかかる横荷重の最大値すなわち最大アンバランス荷重が最も小さくなる所定の値(最適回転位相)に制御して回転させることよりなる。
回転位相とは、同じ角度で同じ数回転軸から張り出したインペラ(攪拌アーム、攪拌翼を含む。)を有する2基の攪拌部材において、1つの攪拌部材の特定のインペラおよび回転軸を含む面と、もう1つの攪拌部材の特定のインペラおよび回転軸を含む面とがなす角度をいう。
最適回転位相は、隣接する攪拌部材の設置間隔、攪拌部材の台数、タンク壁面と攪拌部材との距離、攪拌部材の回転数、翼径等種々のパラメタにより異なるが、当業者は、例えば下記実測方法によって最適な回転位相を得ることができる。
図1に示すように、攪拌部材10の回転軸11に歪みゲージ12を2枚以上
(上限は、4枚程度)とりつける。歪みゲージ相互の横荷重検出方向x、yのなす角度θ1は、0°または180°にならないように、例えば、90°になるように定める。各歪みゲージにかかる荷重を合成することにより、回転に伴って実際に回転軸にかかる荷重の値および向きを測定することができる。回転に伴い荷重は変動するので、回転位相を種々変えて荷重の最大値、すなわち最大アンバランス荷重をそれぞれ測定し、最大アンバランス荷重が最も小さくなる回転位相を最適回転位相とすることができる。
The fluid agitation method according to the present invention maintains the rotational speed of adjacent agitation members at a predetermined value, and the rotational phase is set to the maximum lateral load applied to each agitation member, that is, the maximum unbalance load is minimized. The rotation is controlled to a predetermined value (optimal rotation phase).
The rotational phase refers to a surface including a specific impeller and a rotating shaft of one stirring member in two stirring members having impellers (including stirring arms and stirring blades) protruding from the same number of rotation shafts at the same angle. The angle formed by the surface including the specific impeller and the rotation axis of the other stirring member.
The optimum rotation phase varies depending on various parameters such as the interval between adjacent stirring members, the number of stirring members, the distance between the tank wall surface and the stirring member, the number of rotations of the stirring member, and the blade diameter. An optimum rotational phase can be obtained by the method.
As shown in FIG. 1, two or more strain gauges 12 are attached to the rotating shaft 11 of the stirring member 10 (the upper limit is about four). The angle θ1 formed by the lateral load detection directions x and y between the strain gauges is determined to be, for example, 90 ° so as not to be 0 ° or 180 °. By synthesizing the load applied to each strain gauge, the value and direction of the load actually applied to the rotating shaft with rotation can be measured. Since the load fluctuates with rotation, it is possible to measure the maximum value of the load, that is, the maximum unbalance load, by changing the rotation phase in various ways, and to set the rotation phase at which the maximum unbalance load is the smallest as the optimum rotation phase.

隣接する攪拌部材の回転位相は、攪拌部材として90°間隔で4つの攪拌翼をもつものを用い反時計周りに回転する場合、0°または90°以外の値に設定および/または保持することが好ましい。0°または90°であると、隣接する攪拌部材の回転によってもたらされる流体の力が同じタイミングで合成され、攪拌翼先端に大きな負荷がかかると考えられるからである。   The rotation phase of the adjacent stirring members may be set and / or held at a value other than 0 ° or 90 ° when the stirring member having four stirring blades at 90 ° intervals is rotated counterclockwise. preferable. This is because when the angle is 0 ° or 90 °, the force of the fluid caused by the rotation of the adjacent stirring members is synthesized at the same timing, and it is considered that a large load is applied to the tip of the stirring blade.

隣接する攪拌部材の回転方向としては、互いに逆方向にすることが好ましい。同方向に回転することを排除するものではないが、同方向であると、各攪拌部材の攪拌によって生じる流体の圧力が合成され、横荷重を上昇させる原因となりうるからである。   The rotation directions of adjacent stirring members are preferably opposite to each other. Although it does not exclude rotating in the same direction, if it is in the same direction, the pressure of the fluid generated by the stirring of each stirring member is combined, which may cause a lateral load to increase.

本発明に係る流体の攪拌方法において、「最適回転位相に制御する」とは、(1)各攪拌部材の起動時に隣接する攪拌部材の回転位相を最適回転位相に設定すること、(2)回転時に隣接する攪拌部材の回転位相を最適回転位相に設定もしくは保持すること、のいずれか一方、もしくは、両方を意図する。したがって、起動時に上記制御方法(1)を用い、回転している最中で位相のずれが生じてきた場合に断続的または連続的に上記制御方法(2)を用い制御する方法を採用してもよい。   In the fluid stirring method according to the present invention, “controlling to the optimum rotation phase” means (1) setting the rotation phase of the adjacent stirring member to the optimum rotation phase when each stirring member is activated, and (2) rotating. Sometimes, one or both of setting or maintaining the rotational phase of the adjacent stirring members at the optimal rotational phase is intended. Therefore, the above-described control method (1) is used at the time of start-up, and a method of controlling intermittently or continuously using the above-described control method (2) when a phase shift occurs during rotation is adopted. Also good.

隣接する攪拌部材の回転位相を上述した最適回転位相に制御する方法としては、カム、ストッパー、ばね、ベアリング、インバーター等を用いて隣接する攪拌部材の最適回転位相となるように設定もしくは保持する機械的位相制御方法;
センサー、レーザー等を用いて、回転位相差に関する情報を電気的信号として得たのち、最適回転位相を計算し、モーターの回転数あるいは起動タイミング等を調節することで最適回転位相となるように設定する電気的位相制御方法等が挙げられ、これらの制御方法を組み合わせて用いることもできる。
As a method for controlling the rotation phase of the adjacent stirring member to the above-described optimum rotation phase, a machine that sets or holds the adjacent stirring member so as to be the optimal rotation phase by using a cam, a stopper, a spring, a bearing, an inverter, or the like. Phase control method;
Use sensors, lasers, etc. to obtain information about the rotational phase difference as an electrical signal, then calculate the optimal rotational phase and set the optimal rotational phase by adjusting the motor speed or start timing, etc. The electrical phase control method etc. which do are mentioned, These control methods can also be used in combination.

起動時における機械的位相制御方法の一態様を図2に示す。
図2では、攪拌部材の回転軸21の上端部に回転翼と同方向のカム22を設け、カム22と同じ高さのスライド23上、任意の角度θ2に設定できるストッパー24を設けた構成を開示している。ストッパー24は回転翼の位相を起動前に合わせる際、回転軸の方に押し出され、カムと接触することによって回転軸を所定の位相で静止させることができる。
One mode of the mechanical phase control method at the time of startup is shown in FIG.
In FIG. 2, a cam 22 in the same direction as the rotary blade is provided at the upper end of the rotating shaft 21 of the stirring member, and a stopper 24 that can be set to an arbitrary angle θ2 is provided on a slide 23 having the same height as the cam 22. Disclosure. When the phase of the rotor blade is adjusted before starting, the stopper 24 is pushed toward the rotating shaft, and can come to a stationary phase with a predetermined phase by contacting the cam.

起動時における電気的位相制御方法の一態様を図3に示す。
図3では、攪拌部材の回転軸31の上部に備えつけられ隣接する攪拌部材との位相の違いを検出する回転位相検出器32と、検出器からの回転位相に関する情報が電気信号として入力される演算器33と、該演算器で算出された最適起動位相に関する情報が電気信号として入力される起動制御装置34と、電動機35とを備えており、演算器33で得られた最適回転位相を用いて起動制御装置34が各攪拌部材の起動タイミングを制御する方法を開示している。
One mode of the electrical phase control method at the time of startup is shown in FIG.
In FIG. 3, a rotation phase detector 32 provided on the upper part of the rotating shaft 31 of the stirring member for detecting a phase difference between adjacent stirring members, and an operation in which information on the rotation phase from the detector is input as an electric signal. , A start control device 34 to which information related to the optimal start phase calculated by the calculator is input as an electrical signal, and an electric motor 35, and using the optimal rotation phase obtained by the calculator 33 A method in which the activation control device 34 controls the activation timing of each stirring member is disclosed.

図2および図3で説明したような位相の制御方法は、簡易な制御装置で実現でき、装置破損を防止することができる。   The phase control method as described with reference to FIGS. 2 and 3 can be realized with a simple control device, and damage to the device can be prevented.

回転時における位相制御方法の一実施態様としては、例えば、回転軸に歪ゲージを設けてアンバランス荷重を測定し、該測定値に基づいて最大アンバランス荷重が最小になるような回転位相を計算し、いずれか1つの攪拌部材の回転数を一時的に下げることにより位相を合わせ、位相が所定の値になったら回転数を元に戻して運転する方法がある。
回転時における位相制御方法の他の実施態様としては、例えば、回転軸に歪ゲージを設けてアンバランス荷重を測定しながら、定期的、例えば、1日に数回程度、最大アンバランス荷重が最小になるよう回転タイミングを制御して運転する方法もある。
これにより、攪拌部材先端部等が流体の干渉等の強い力を受けることにより、起動時設定した回転位相タイミングが次第にずれていき過度の横荷重が生じた場合であっても、常に横荷重を検出し、位相を所望の値に修正する迅速な対処が可能となる。
As an embodiment of the phase control method at the time of rotation, for example, a strain gauge is provided on the rotation shaft to measure the unbalance load, and the rotation phase is calculated based on the measured value so that the maximum unbalance load is minimized. Then, there is a method in which the phase is adjusted by temporarily lowering the rotational speed of any one of the stirring members, and when the phase reaches a predetermined value, the rotational speed is returned to the original value for operation.
As another embodiment of the phase control method at the time of rotation, for example, while providing a strain gauge on the rotating shaft and measuring the unbalanced load, for example, several times a day, the maximum unbalanced load is minimized. There is also a method of driving by controlling the rotation timing so that
As a result, the tip of the stirring member receives a strong force such as fluid interference, so that the rotational phase timing set at startup gradually shifts, and even if an excessive lateral load occurs, the lateral load is always applied. It is possible to quickly detect and correct the phase to a desired value.

本発明に係る攪拌方法は、攪拌部材の直径が1m未満のものを用いた場合でも横荷重の低減に有効であるが、直径が3m以上という大型の攪拌部材を用いた場合、隣接する攪拌部材もしくは流体槽壁面との相互干渉が顕著になるので、より一層有利となる。直径の上限は攪拌動力の他、インペラや回転軸の機械的強度の観点から、10mとすることができる。   The stirring method according to the present invention is effective in reducing the lateral load even when a stirring member having a diameter of less than 1 m is used, but when a large stirring member having a diameter of 3 m or more is used, the adjacent stirring member is used. Or since mutual interference with a fluid tank wall surface becomes remarkable, it becomes still more advantageous. The upper limit of the diameter can be set to 10 m from the viewpoint of the mechanical strength of the impeller and the rotating shaft in addition to the stirring power.

本発明の攪拌方法を採用することにより、隣接する攪拌部材の回転数を従来通りの所定の値に維持しつつ、過度の負荷をかけることなく攪拌部材を回転することができるようになり、隣接する攪拌部材同士の接近距離の設計自由度が増すという利点がある。   By adopting the stirring method of the present invention, the stirring member can be rotated without applying an excessive load while maintaining the rotation speed of the adjacent stirring member at a predetermined value as in the past. There is an advantage that the degree of freedom in designing the approach distance between the stirring members to be increased.

本発明者らは、横荷重の低減を検討する中で、アーム回転式ガススパージャ自体の形状についても検討を加え、独特の形状を有するアーム回転式ガススパージャを同時に発明した。
本発明のアーム回転式ガススパージャの一態様を図4に示す。
図4に示すアーム回転式ガススパージャ40は、鉛直方向に気体を導通可能な中空回転軸11と、前記中空回転軸の下端から水平に延びる4本の攪拌アーム42と、前記中空回転軸から分岐して、前記攪拌アーム42に取り付けられた配管であって、前記中空回転軸を導通する気体の一部を取り込み回転と同時に排出可能な分岐配管43とを備えたものであるが、さらに前記中空回転軸41の筒径d2を途中で変えてd3とし、継ぎ手構41を備えたものとすることによって長さが伸縮調節可能となっている。
かかる態様を採用することにより、攪拌部材の攪拌面を自在に調整することができ、隣接する攪拌部材の攪拌面を異なる高さとすることによって、隣接する攪拌部材との干渉を回避することができる。本明細書において、「攪拌面」は、攪拌アームの先端の高さにおける前記中空回転軸に対して垂直な面である。
While examining the reduction of the lateral load, the present inventors also studied the shape of the arm rotary gas sparger itself, and simultaneously invented the arm rotary gas sparger having a unique shape.
One embodiment of the arm rotary gas sparger of the present invention is shown in FIG.
The arm rotary gas sparger 40 shown in FIG. 4 has a hollow rotary shaft 11 capable of conducting gas in the vertical direction, four stirring arms 42 extending horizontally from the lower end of the hollow rotary shaft, and a branch from the hollow rotary shaft. The pipe is attached to the stirring arm 42 and includes a branch pipe 43 that can take in a part of the gas conducted through the hollow rotary shaft and discharge it at the same time as the rotation. By changing the cylinder diameter d2 of the rotating shaft 41 to d3 in the middle and providing the joint structure 41, the length can be adjusted.
By adopting such an aspect, the stirring surface of the stirring member can be freely adjusted, and interference between adjacent stirring members can be avoided by setting the stirring surfaces of adjacent stirring members to different heights. . In this specification, the “stirring surface” is a surface perpendicular to the hollow rotation axis at the height of the tip of the stirring arm.

本発明のアーム回転式ガススパージャの他の態様としては、鉛直方向に気体を導通可能な中空回転軸と、前記中空回転軸から水平方向に張り出した2本以上の攪拌アームを備え、前記攪拌アームのうち少なくとも1本の攪拌面が、前記他の攪拌アームの攪拌面と異なる高さにある構成を採用することができる。上記「水平方向に張り出す」とは、中空回転軸に対して垂直な面上に攪拌アームが延びている場合のみならず、斜め上方または下方に向けて延びている場合も含まれる。
攪拌アームの先端がうける荷重は、横荷重に最も影響を与えうるので、先端部の高さを攪拌アームによって変えることにより、攪拌アームの先端が掃引する流体の高さがずれ、干渉タイミングを減らすことができる。
As another aspect of the arm rotary gas sparger according to the present invention, the arm rotary gas sparger includes a hollow rotary shaft capable of conducting gas in a vertical direction, and two or more stirring arms projecting horizontally from the hollow rotary shaft, Among them, a configuration in which at least one stirring surface is at a different height from the stirring surfaces of the other stirring arms can be employed. The above-mentioned “projecting in the horizontal direction” includes not only the case where the stirring arm extends on a plane perpendicular to the hollow rotating shaft but also the case where the stirring arm extends obliquely upward or downward.
The load applied to the tip of the stirring arm can most affect the lateral load, so changing the height of the tip with the stirring arm shifts the height of the fluid swept by the tip of the stirring arm, reducing the interference timing. be able to.

先端部の高さを変えた構成として最も好ましい態様を、図5に示す。
図5では、中空回転軸11から張り出している攪拌アームのうち2本(52a,52b)が、他の2本の攪拌アーム(52c,52d)とは異なる高さから張り出している、いわゆる段違い構成となっている。
攪拌アームの本数は、回転軸に垂直な同一平面上に4本以上あってもよいが、図5に示すように4本未満であってもよい。
同一平面上に攪拌アームを2本有する場合、同一平面上の攪拌アームのなす角度は、180°とすることができる。
本構成を採用することにより、中空回転軸の同じ高さからすべての攪拌アームを設けたときに比べて、隣接するアーム回転式ガススパージャや近接する壁との干渉タイミングを減らすことができ、それにより攪拌機の大型化が可能となる。また、接近距離の設計自由度が増すという利点もある。
FIG. 5 shows the most preferable aspect as a configuration in which the height of the tip is changed.
In FIG. 5, two of the stirring arms projecting from the hollow rotating shaft 11 (52a, 52b) project from a height different from that of the other two stirring arms (52c, 52d). It has become.
The number of stirring arms may be four or more on the same plane perpendicular to the rotation axis, but may be less than four as shown in FIG.
When two stirring arms are provided on the same plane, the angle formed by the stirring arms on the same plane can be 180 °.
By adopting this configuration, it is possible to reduce the timing of interference with adjacent arm rotary gas spargers and adjacent walls compared to when all stirring arms are installed from the same height of the hollow rotary shaft. This makes it possible to increase the size of the agitator. In addition, there is an advantage that the degree of freedom in designing the approach distance is increased.

アーム回転式ガススパージャの他の態様としては、図6のように従来公知の攪拌アーム42の後縁にカルマン渦低減用のダミー翼61を取り付けた構成、図7のように攪拌アーム42の先端部上面にカルマン渦低減用板71を取り付けた構成等を採用することもできる。   As another mode of the arm rotary type gas sparger, as shown in FIG. 6, a structure in which a dummy blade 61 for reducing Karman vortex is attached to the rear edge of a conventionally known stirring arm 42, and the tip of the stirring arm 42 as shown in FIG. A configuration in which a Karman vortex reduction plate 71 is attached to the upper surface of the part may be employed.

本発明のアーム回転式ガススパージャを採用することにより、過度の負荷をかけることなく攪拌部材を回転することができるようになり、隣接する攪拌機同士の接近距離の設計自由度が増すという利点がある。   By adopting the arm rotary gas sparger of the present invention, the stirring member can be rotated without applying an excessive load, and there is an advantage that the degree of freedom in designing the approach distance between adjacent stirrers is increased. .

本発明の攪拌方法およびアーム回転式ガススパージャが適用されうる装置としては、曝気を要する設備であれば特に限定されず、ごみ処理、石炭燃焼等の際に発生する排ガスの脱硫装置、スラリーの攪拌および/または曝気を行う回分反応器等の化学合成プラント用装置もしくはバイオマスプラント用装置のほか、2基以上の攪拌部材を用いて液中の特定物質の濃度を均一化する装置に広く適用しうる。   The apparatus to which the stirring method and the arm rotary gas sparger of the present invention can be applied is not particularly limited as long as it requires aeration, and a desulfurization apparatus for exhaust gas generated during waste treatment, coal combustion, etc., and slurry stirring. It can be widely applied to devices for chemical synthesis plants such as batch reactors for performing aeration or devices for biomass plants, as well as devices for equalizing the concentration of a specific substance in a liquid using two or more stirring members. .

実施例1〜4
24.1m×19.2mの水槽中に高さ5mまで水を貯留し、2基の従来型のARS(三菱重工業社製)の回転軸同士を12.1m離間させて配置した。2基のARSはともに直径4mであり、90°間隔で4つの攪拌アームを設けたものを用いた。詳細な位置関係を図8および表1に示す。
なお2基のうち、1基については、中空回転軸の側面の水深3.5mの位置に2枚、検出方向のなす角度θ1が90°となるように歪みゲージ(品番:F型ゲージ、東京測器研究所社製)をとりつけた。
次いで2基の起動時の位相差θ(初期位相)をそれぞれ0°(実施例1)、30°(実施例2)、45°(実施例3)、60°(実施例4)と変えて、回転数30rpmで回転し、最大アンバランス荷重を測定した。結果を表2に示す。
Examples 1-4
Water was stored up to a height of 5 m in a 24.1 m × 19.2 m water tank, and two conventional ARS (Mitsubishi Heavy Industries, Ltd.) rotating shafts were spaced apart by 12.1 m. Two ARSs each having a diameter of 4 m and having four stirring arms at 90 ° intervals were used. The detailed positional relationship is shown in FIG.
Of the two, one of the two is a strain gauge (part number: F-type gauge, Tokyo, so that the angle θ1 formed by the detection direction is 90 °, two at the side of the hollow rotating shaft at a water depth of 3.5 m. Sokki Kenkyusha Co., Ltd.).
Next, the phase difference θ (initial phase) at the start of the two units was changed to 0 ° (Example 1), 30 ° (Example 2), 45 ° (Example 3), and 60 ° (Example 4), respectively. The sample was rotated at a rotation speed of 30 rpm, and the maximum unbalance load was measured. The results are shown in Table 2.

Figure 0004909191
Figure 0004909191

Figure 0004909191
表2から、回転位相により最大アンバランス荷重が大きく異なることがわかり、今回の条件下では、初期位相が0°のとき、すなわち2基の攪拌機の位相が整合しているときに最も大きく、初期位相が45°のときに最も小さくなることがわかった。
Figure 0004909191
From Table 2, it can be seen that the maximum unbalance load varies greatly depending on the rotational phase. Under the present conditions, the initial phase is 0 °, that is, the largest when the two stirrers are in phase, It was found that the phase became the smallest when the phase was 45 °.

実施例5
実施例1で用いた従来型のARSに代えて、中空回転軸の下端部から水平方向に2本、中空回転軸の下端部より2m高い位置から2本、攪拌アームのなす角度は上から見て90°になるようにそれぞれ段違いに張り出した4本の攪拌アームを備えたARSを用いた。中空回転軸の下端部は、水深4mに設置した。流体槽におけるARSの位置関係を図8および表3に示す。他の条件は実施例1と同様にして最大アンバランス荷重を測定した。結果を表4に示す。
実施例6
実施例1で用いたARSに代えて、前記中空回転軸の長さを伸縮調節可能なARSを2基用いた。2基のARSの攪拌面の高さの差は、1mとし、水深は、それぞれ3.5m、2.5mの位置にした。他の条件は実施例1と同様にした。結果を表4に示す。
実施例7
2基のARSの攪拌アームの回転方向に対して後縁に、図6のようにカルマン渦低減用のダミー翼61を取り付けた他は実施例1と同様にした。結果を表4に示す。
実施例8
2基のARSの攪拌アームの翼の外側に図7のようにカルマン渦低減用板71を取り付けた他は実施例1と同様にした。結果を表4に示す。
Example 5
Instead of the conventional ARS used in the first embodiment, two from the lower end of the hollow rotating shaft in the horizontal direction, two from a position 2 m higher than the lower end of the hollow rotating shaft, and the angle formed by the stirring arm is viewed from above. An ARS equipped with four stirring arms each protruding in a step so as to be 90 ° was used. The lower end of the hollow rotating shaft was installed at a water depth of 4 m. FIG. 8 and Table 3 show the positional relationship of ARS in the fluid tank. Other conditions were the same as in Example 1, and the maximum unbalance load was measured. The results are shown in Table 4.
Example 6
Instead of the ARS used in Example 1, two ARSs capable of adjusting the length of the hollow rotating shaft were used. The difference in the height of the stirring surfaces of the two ARSs was 1 m, and the water depths were 3.5 m and 2.5 m, respectively. Other conditions were the same as in Example 1. The results are shown in Table 4.
Example 7
The same procedure as in Example 1 was performed except that a dummy blade 61 for reducing Karman vortex was attached to the trailing edge with respect to the rotation direction of the two ARS stirring arms as shown in FIG. The results are shown in Table 4.
Example 8
The same procedure as in Example 1 was performed except that a Karman vortex reduction plate 71 was attached to the outside of the blades of the two ARS stirring arms as shown in FIG. The results are shown in Table 4.

Figure 0004909191
Figure 0004909191

Figure 0004909191
表4から、従来型のARSを用いた実施例1に比べて、独特の構造を有するARSを用いた実施例5は最大アンバランス荷重が劇的に低減していることがわかった。また実施例6のような高さを違えた構造、実施例7〜8の独特の構造を有するARSを用いることにより、従来型のARSを用い同じ初期位相45°で回転した実施例3に比べて、より一層最大アンバランス荷重を低減することができた。
Figure 0004909191
Table 4 shows that the maximum unbalance load is dramatically reduced in Example 5 using ARS having a unique structure as compared to Example 1 using conventional ARS. Further, by using an ARS having a different height as in Example 6 and a unique structure in Examples 7 to 8, compared to Example 3 using the conventional ARS and rotating at the same initial phase of 45 °. Thus, the maximum unbalanced load could be further reduced.

図1は、歪みゲージの設置態様の一例を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of an installation mode of a strain gauge. 図2は、起動時における機械的位相制御方法の一態様を示す模式図である。FIG. 2 is a schematic diagram showing one aspect of the mechanical phase control method at the time of startup. 図3は、起動時における電気的位相制御方法の一態様を示す模式図である。FIG. 3 is a schematic diagram showing an aspect of the electrical phase control method at the time of startup. 図4は、本発明のアーム回転式ガススパージャの一態様を示す模式図である。FIG. 4 is a schematic view showing an embodiment of the arm rotary gas sparger of the present invention. 図5は、本発明のアーム回転式ガススパージャの一態様を示す模式図である。FIG. 5 is a schematic view showing an embodiment of the arm rotary gas sparger of the present invention. 図6は、アーム回転式ガススパージャの他の態様を示す模式図である。FIG. 6 is a schematic view showing another aspect of the arm rotary gas sparger. 図7は、アーム回転式ガススパージャの他の態様を示す模式図である。FIG. 7 is a schematic view showing another aspect of the arm rotary gas sparger. 図8は、実施例におけるARSの設置位置を示す平面図である。FIG. 8 is a plan view showing an ARS installation position in the embodiment. 図9は、従来公知のARSの駆動機構の全容を示す模式図である。FIG. 9 is a schematic diagram showing the entire structure of a conventionally known ARS drive mechanism.

符号の説明Explanation of symbols

10 攪拌部材
11、21、31 回転軸
12 歪みゲージ
22 カム
23 スライド
24 ストッパー
32 回転位相検出器
33 演算器
34 起動制御装置
35 電動機
40,50,60,70 アーム回転式ガススパージャ
41 継ぎ手
42 攪拌アーム
43 分岐配管
51、91 中空回転軸
61 カルマン渦低減用のダミー翼
71 カルマン渦低減用板
92 減速機
93 モーター
94 空気源
95 空気
96 配管
97 分岐配管
98 空気ノズル
DESCRIPTION OF SYMBOLS 10 Stirring member 11, 21, 31 Rotating shaft 12 Strain gauge 22 Cam 23 Slide 24 Stopper 32 Rotation phase detector 33 Calculator 34 Start-up control apparatus 35 Electric motor 40, 50, 60, 70 Arm rotary gas sparger 41 Joint 42 Stirring arm 43 Branch pipes 51, 91 Hollow rotary shaft 61 Dummy blade 71 for Karman vortex reduction 92 Karman vortex reduction plate 92 Reducer 93 Motor 94 Air source 95 Air 96 Pipe 97 Branch pipe 98 Air nozzle

Claims (2)

回転軸が平行な少なくとも2基の攪拌部材を備えた流体槽における流体の攪拌方法であって、
隣接する攪拌部材の回転数を所定の値に維持しつつ、回転位相を最大アンバランス荷重が最も小さくなる所定の値に制御して攪拌する流体の攪拌方法であって、回転位相が前記所定の値からずれた場合に、前記少なくとも2基の攪拌部材のうち、少なくとも1基の回転数を一時的に下げることにより、回転位相を前記所定の値に合わせる流体の攪拌方法。
A method for stirring fluid in a fluid tank comprising at least two stirring members having parallel rotation axes,
A fluid agitation method in which the rotation phase is controlled to a predetermined value at which the maximum unbalance load is minimized while maintaining the rotation speed of an adjacent stirring member at a predetermined value, wherein the rotation phase is the predetermined value. A fluid stirring method for adjusting the rotational phase to the predetermined value by temporarily lowering the rotational speed of at least one of the at least two stirring members when the value deviates from the value.
攪拌部材の直径が1m以上10m以下である請求項1に記載の流体の攪拌方法。   The fluid stirring method according to claim 1, wherein the diameter of the stirring member is 1 m or more and 10 m or less.
JP2007169190A 2007-06-27 2007-06-27 Fluid agitation method Expired - Fee Related JP4909191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169190A JP4909191B2 (en) 2007-06-27 2007-06-27 Fluid agitation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169190A JP4909191B2 (en) 2007-06-27 2007-06-27 Fluid agitation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011210706A Division JP2012040556A (en) 2011-09-27 2011-09-27 Stirring method of fluid and arm rotation type sparger

Publications (2)

Publication Number Publication Date
JP2009006246A JP2009006246A (en) 2009-01-15
JP4909191B2 true JP4909191B2 (en) 2012-04-04

Family

ID=40321901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169190A Expired - Fee Related JP4909191B2 (en) 2007-06-27 2007-06-27 Fluid agitation method

Country Status (1)

Country Link
JP (1) JP4909191B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902770B2 (en) * 2010-06-08 2012-03-21 株式会社エディプラス Rotating body for stirring and stirring device
CN104941481B (en) * 2015-06-29 2017-01-18 北京科技大学 Paste thickener aggregate well stirring device
CN116116269B (en) * 2023-04-04 2023-06-27 喜跃发国际环保新材料股份有限公司 Processing technology and processing system of joint tape

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316627A (en) * 1988-12-01 1991-01-24 Mitsubishi Heavy Ind Ltd Gas-liquid contact device
JPH0461624A (en) * 1990-06-28 1992-02-27 Hitachi Electron Eng Co Ltd Magnetic card stripe width inspecting system
JP3062374B2 (en) * 1993-07-06 2000-07-10 株式会社神戸製鋼所 Batch mixer
JP2003033778A (en) * 2001-07-25 2003-02-04 Shinyo Sangyo Kk Agitating grease-trapping wastewater treatment device
JP2004097947A (en) * 2002-09-10 2004-04-02 Ebikku Kk Fecal matter disposal apparatus
JP2006305491A (en) * 2005-04-28 2006-11-09 Orion Mach Co Ltd Fermentation system and biogas generating system

Also Published As

Publication number Publication date
JP2009006246A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP2012040556A (en) Stirring method of fluid and arm rotation type sparger
EP2950915B1 (en) Stirred tank reactor
DK174985B1 (en) Flue gas desulphurisation apparatus for wet treatment
US7168849B2 (en) Agitation apparatus and method for dry solids addition to fluid
US9138699B2 (en) Fractal impeller for stirring
JP4909191B2 (en) Fluid agitation method
CN106457175A (en) Stirring propeller
JP4602241B2 (en) Submerged stirring device
CN103028360B (en) Shearing device for stirring reactor and stirring reactor
JP2016087590A (en) Agitating device
Myers et al. Performance of a gas dispersion impeller with vertically asymmetric blades
JPH07124456A (en) Agitating device
JP6069659B2 (en) Stirrer
CN211435862U (en) Stirring device for dispersing and dissolving polymer
JP2021098151A (en) Gas-liquid mixing device and gas-liquid mixing method
EP1948354B1 (en) Aeration system and method
JP7341389B2 (en) Reactor and chemical treatment method using the reactor
JP2006263728A (en) Vertical agitating device for high-viscosity, non-newtonian fluid
CN201357060Y (en) Defoaming type stirrer of paper-making industrial brightener
CN204841551U (en) Speed governing dispenser
Bong Solid-liquid mass transfer in agitated vessels with high solids concentration
KR101195892B1 (en) Mixing containers with baffles parallel to the primary rotational flow and an agitator using the same
US20200230559A1 (en) Mixing apparatus and method of operation
JP7090287B2 (en) Reactor
JP2021098152A (en) Gas-liquid mixing device and gas-liquid mixing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4909191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees