JP6691429B2 - Method for manufacturing hybrid shaped article and hybrid shaped article - Google Patents

Method for manufacturing hybrid shaped article and hybrid shaped article Download PDF

Info

Publication number
JP6691429B2
JP6691429B2 JP2016095723A JP2016095723A JP6691429B2 JP 6691429 B2 JP6691429 B2 JP 6691429B2 JP 2016095723 A JP2016095723 A JP 2016095723A JP 2016095723 A JP2016095723 A JP 2016095723A JP 6691429 B2 JP6691429 B2 JP 6691429B2
Authority
JP
Japan
Prior art keywords
shaped article
hybrid
base plate
article
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016095723A
Other languages
Japanese (ja)
Other versions
JP2017203191A (en
Inventor
康之 宮原
康之 宮原
竜也 妙島
竜也 妙島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2016095723A priority Critical patent/JP6691429B2/en
Priority to PCT/JP2017/017536 priority patent/WO2017195773A1/en
Publication of JP2017203191A publication Critical patent/JP2017203191A/en
Application granted granted Critical
Publication of JP6691429B2 publication Critical patent/JP6691429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

この発明は、第1造形物の上に、粉末焼結積層法を使用して第2造形物を一体に形成するハイブリッド造形物の製造方法、及びハイブリッド造形物に関するものである。   The present invention relates to a method for manufacturing a hybrid shaped article, in which a second shaped article is integrally formed on a first shaped article by using a powder sintering lamination method, and a hybrid shaped article.

近年、粉末焼結積層法を使用して3次元造形物を形成する装置(粉末焼結積層装置)が広く普及している。この粉末焼結積層装置は、粉末材料タンクに収容してある金属粉末をブレードで金属製の造形プレート上に運び、ブレードで造形プレート上に所定の厚さの金属粉末層を形成した後、レーザー光照射手段から造形プレート上の金属粉末層の所定箇所にレーザー光を照射し、レーザー光が照射された部分の金属粉末層を焼き固める(固化させる)という工程を繰り返し行うことにより、複数の固化層が積層一体化した金属製の3次元造形物を造形プレート上に形成するようになっている(特許文献1参照)。   In recent years, an apparatus (powder sintering lamination apparatus) for forming a three-dimensional structure using the powder sintering lamination method has become widespread. This powder sintering and laminating apparatus conveys the metal powder stored in the powder material tank onto a metal shaping plate with a blade, forms a metal powder layer of a predetermined thickness on the shaping plate with the blade, and then laser A plurality of solidifications are obtained by repeating the process of irradiating a predetermined position of the metal powder layer on the shaping plate with laser light from the light irradiation means, and baking (solidifying) the metal powder layer in the part irradiated with the laser light. A three-dimensional object made of metal in which the layers are laminated and integrated is formed on a modeling plate (see Patent Document 1).

このような粉末焼結積層法を使用して形成された金属製の3次元造形物は、レーザー光照射手段の操作に3次元CADソフトが使用されて、従来の射出成形や切削加工では作ることができなかった複雑な形状部分が容易に成形される。   A three-dimensional model made of metal formed by using such a powder sintering lamination method can be manufactured by conventional injection molding or cutting using three-dimensional CAD software for operating the laser light irradiation means. The complicated shape part that could not be formed is easily molded.

特開平8−281807号公報JP-A-8-281807

従来の粉末焼結積層法によって金属製の3次元造形物を成形する場合、金属製の造形プレートと金属粉末層との境界部分がレーザー光で溶けて一体化する。そのため、図5に示すように、従来の粉末焼結積層法は、造形プレート100の上面100aに3次元造形物101を形成した後に(図5(a)〜(b)参照)、一体化した造形プレート100と3次元造形物101を粉末焼結積層装置から取り外し、3次元造形物101と造形プレート100とを放電ワイヤ102又は切断具(例えば、金鋸)で切り離していた(図5(c)参照)。そして、3次元造形物101が切り離された造形プレート100は、図5(d)に示すように、表面(上面100a)に3次元造形物101の切り離し痕103が残るため、その3次元造形物101の切り離し痕103を研削加工等で除去し、新たな3次元造形物101の成形に備えるようになっていた。その結果、従来の粉末焼結積層法は、3次元造形101の成形に着手した後に次の新たな3次元造形101の成形に着手できるようになるまでに多くの時間(サイクルタイム)を要していた。 When a metal three-dimensional structure is formed by the conventional powder sintering lamination method, the boundary portion between the metal structure plate and the metal powder layer is melted by laser light to be integrated. Therefore, as shown in FIG. 5, in the conventional powder sintering lamination method, the three-dimensional structure 101 is formed on the upper surface 100a of the molding plate 100 (see FIGS. 5A to 5B) and then integrated. The modeling plate 100 and the three-dimensional model 101 were removed from the powder sintering and laminating apparatus, and the three-dimensional model 101 and the modeling plate 100 were separated by a discharge wire 102 or a cutting tool (for example, a gold saw) (FIG. 5 (c). )reference). Then, as shown in FIG. 5D, the modeling plate 100 from which the three-dimensional structure 101 has been separated has a separation mark 103 of the three-dimensional structure 101 left on the surface (upper surface 100a). The separation trace 103 of 101 was removed by grinding or the like to prepare for molding of a new three-dimensional structure 101. As a result, conventional Sintering method, three-dimensional shaped object 101 more time after started the molded until they can be undertaken molding of the next new three-dimensional shaped object 101 in the (cycle time) I needed it.

そこで、本発明は、3次元造形物の成形のサイクルタイムを短縮でき、3次元造形物の生産性を向上させることができるハイブリッド造形物の製造方法及びハイブリッド造形物の提供を目的とする。   Therefore, it is an object of the present invention to provide a method for manufacturing a hybrid molded article and a hybrid molded article that can shorten the cycle time of molding the three-dimensional molded article and improve the productivity of the three-dimensional molded article.

本発明のハイブリッド造形物1の製造方法は、以下の第1工程乃至第5工程を有している。
(1)第1工程
第1造形物2をベースプレート6に着脱可能に取り付ける。
(2)第2工程
前記第1造形物2を着脱可能に取り付けた前記ベースプレート6を粉末焼結積層装置4の昇降テーブル5に取り付ける。
(3)第3工程
前記第1造形物2と接合させることが可能な粉末層12を前記第1造形物2上に形成する作業と、前記粉末層12にレーザー光を照射して固化層15を形成する作業と、を繰り返し行い、
複数の前記固化層15が積層一体化された3次元造形物としての第2造形物3を前記第1造形物2に一体に形成し、前記第1造形物2と前記第2造形物3とからなるハイブリッド造形物1を成形する。
(4)第4工程
前記ハイブリッド造形物1及び前記ベースプレート6を前記粉末焼結積層装置4の前記昇降テーブル5から取り外す。
(5)第5工程
前記ベースプレート6から前記ハイブリッド造形物1を取り外す。
そして、前記第1造形物2は、ベースプレート6に形成された第1造形物収容凹所7内に収容される。また、前記第1造形物収容凹所7内に収容された前記第1造形物2の上面には、前記固化層15を形成するのに適した厚さの前記粉末層12が形成される。
The manufacturing method of the hybrid molded article 1 of the present invention has the following first to fifth steps.
(1) First step The first shaped article 2 is detachably attached to the base plate 6.
(2) Second Step The base plate 6 to which the first shaped article 2 is detachably attached is attached to the lifting table 5 of the powder sintering and laminating apparatus 4.
(3) Third Step Work of forming a powder layer 12 that can be bonded to the first shaped article 2 on the first shaped article 2, and irradiating the powder layer 12 with a laser beam to solidify the layer 15. And the work of forming
A second model 3 as a three-dimensional model in which a plurality of the solidified layers 15 are laminated and integrated is integrally formed on the first model 2, and the first model 2 and the second model 3 are formed. The hybrid shaped article 1 is formed.
(4) Fourth Step The hybrid shaped article 1 and the base plate 6 are removed from the lifting table 5 of the powder sintering and laminating apparatus 4.
(5) Fifth Step The hybrid shaped article 1 is removed from the base plate 6.
Then, the first molded article 2 is housed in the first molded article housing recess 7 formed in the base plate 6. In addition, the powder layer 12 having a thickness suitable for forming the solidified layer 15 is formed on the upper surface of the first molded article 2 housed in the first molded article housing recess 7.

また、本発明は、第1造形物2の接合面2aに、3次元造形物である第2造形物3が粉末焼結積層法によって接合されたハイブリッド造形物1に関するものである。   The present invention also relates to a hybrid shaped article 1 in which a second shaped article 3 which is a three-dimensional shaped article is joined to the joining surface 2a of the first shaped article 2 by the powder sintering lamination method.

本発明に係るハイブリッド造形物の製造方法によれば、ハイブリッド造形物は、第1造形物上に第2造形物が粉末焼結積層法によって造形された後、第1造形物をベースプレートから取り外すだけで、ベースプレートから分離される。その結果、本実施形態に係るハイブリッド造形物1の製造方法によれば、ベースプレートを次の新たなハイブリッド造形物の製造にそのまま利用できるため、従来例と比較して、3次元造形物(第2造形物)の成形のサイクルタイムを短縮でき、3次元造形物(第2造形物)の生産性を向上させることができる。   According to the method for manufacturing a hybrid shaped article according to the present invention, the hybrid shaped article is obtained by simply removing the first shaped article from the base plate after the second shaped article is shaped by the powder sintering lamination method on the first shaped article. And separated from the base plate. As a result, according to the method for manufacturing the hybrid molded article 1 according to the present embodiment, the base plate can be directly used for manufacturing the next new hybrid molded article, so that the three-dimensional molded article (second It is possible to shorten the cycle time of molding of the three-dimensional object and improve the productivity of the three-dimensional object (second object).

本発明の実施形態に係るハイブリッド造形物の製造方法を説明するための図であり、図1(a)はハイブリッド造形物を示す外観斜視図、図1(b)〜(h)はハイブリッド造形物の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the hybrid molded article which concerns on embodiment of this invention, FIG.1 (a) is an external perspective view which shows a hybrid molded article, FIGS.1 (b)-(h) is a hybrid molded article. FIG. 6 is a diagram for explaining a manufacturing method of. 本発明の実施形態に係るハイブリッド造形物の製造方法を説明するための図であり、図2(a−1)は第1造形物を取り付けたベースプレートの外観斜視図、図2(a−2)は第1造形物を取り付けたベースプレートの縦断面図、図2(b−1)はハイブリッド造形物が取り付けられたベースプレートの外観斜視図、図2(b−2)はハイブリッド造形物が取り付けられたベースプレートの縦断面図、図2(c)はハイブリッド造形物をベースプレートから取り外す途中の状態の断面図、図2(d)はハイブリッド造形物をベースプレートから取り外した状態の断面図である。It is a figure for demonstrating the manufacturing method of the hybrid molded article which concerns on embodiment of this invention, FIG.2 (a-1) is an external perspective view of the base plate to which the 1st molded article was attached, FIG.2 (a-2). Is a vertical cross-sectional view of the base plate to which the first shaped article is attached, FIG. 2 (b-1) is an external perspective view of the base plate to which the hybrid shaped article is attached, and FIG. 2 (b-2) is the hybrid shaped article. FIG. 2C is a vertical cross-sectional view of the base plate, FIG. 2C is a cross-sectional view showing a state where the hybrid shaped article is being removed from the base plate, and FIG. 2D is a cross-sectional view showing a state where the hybrid shaped article is removed from the base plate. 第1造形物の変形例を示す図であり、図3(a)は第1造形物の平面図、図3(b)は図3(a)の矢印A1方向から見た第1造形物の正面図、図3(c)は図3(a)の矢印A2方向から見た第1造形部の右側面図、図3(d)はベースプレートに取り付けられた第1造形部の平面図である。It is a figure which shows the modification of a 1st molded object, FIG.3 (a) is a top view of a 1st molded object, FIG.3 (b) is a 1st molded object seen from the arrow A1 direction of FIG.3 (a). A front view, FIG. 3 (c) is a right side view of the first modeling section viewed from the arrow A2 direction of FIG. 3 (a), and FIG. 3 (d) is a plan view of the first modeling section attached to the base plate. . その他の変形例における第1造形物の接合面を示す断面図である。It is sectional drawing which shows the joint surface of the 1st molded article in other modifications. 従来の粉末焼結積層法による3次元造形物の製造過程を示す図であり、図5(a)は造形プレートの外観斜視図、図5(b)は造形プレート及び3次元造形物の外観斜視図、図5(c)は3次元造形物を造形プレートから切り離す作業を説明する斜視図、図5(d)は3次元造形物を造形プレートから切り離した状態を示す斜視図である。It is a figure which shows the manufacturing process of the three-dimensional molded item by the conventional powder sintering lamination method, FIG.5 (a) is an external perspective view of a modeling plate, FIG.5 (b) is an external perspective view of a modeling plate and a three-dimensional molded item. FIG. 5 (c) is a perspective view for explaining the operation of separating the three-dimensional structure from the molding plate, and FIG. 5 (d) is a perspective view showing a state in which the three-dimensional structure is separated from the molding plate.

以下、本発明の実施形態を図面に基づき詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1及び図2は、本発明の実施形態に係るハイブリッド造形物1の製造方法を説明するための図である。図1(a)に示すハイブリッド造形物1は、第1造形物2の接合面(上面)2aに第2造形物3が接合されている。第1造形物2は、予め切削加工等によって高精度に形成された円柱状の部材である。また、第2造形物3は、第1造形物2と同径で且つ円柱状の部材であり、図1(b)〜(h)の各工程を経て第1造形物2の接合面2aに接合・一体化される。なお、第1造形物2は、例えば、鉄系材料(炭素鋼等)が使用される。   1 and 2 are views for explaining a method for manufacturing the hybrid shaped article 1 according to the embodiment of the present invention. In the hybrid modeled object 1 shown in FIG. 1A, the second modeled object 3 is bonded to the bonding surface (upper surface) 2 a of the first modeled object 2. The first modeled article 2 is a columnar member that is previously formed with high precision by cutting or the like. In addition, the second shaped article 3 is a cylindrical member having the same diameter as the first shaped article 2, and is formed on the bonding surface 2a of the first shaped article 2 through the steps of FIGS. 1B to 1H. Joined and integrated. The first shaped article 2 is made of, for example, an iron-based material (carbon steel or the like).

(第1工程)
先ず、図1(b)、図1(c)、図2(a−1)、及び図2(a−2)に示すように、予め加工された第1造形物2は、粉末焼結積層装置4の昇降テーブル5に取り付けられるベースプレート6の第1造形物収容凹所7内に着脱可能に取り付けられる。ベースプレート6の第1造形物収容凹所7は、有底の丸穴であり、円柱状の第1造形物2の接合面(上面)2aがベースプレート6の上面6aよりも僅かに出っ張る穴深さに形成され、第1造形物2が底面7aにボルト8で固定されている。なお、ベースプレート6は、平面形状が四角形状の金属製の平板部材である。
(First step)
First, as shown in FIG. 1 (b), FIG. 1 (c), FIG. 2 (a-1), and FIG. It is removably attached in the first molded article accommodating recess 7 of the base plate 6 attached to the lifting table 5 of the device 4. The first molded object accommodating recess 7 of the base plate 6 is a round hole having a bottom, and the hole depth at which the joining surface (upper surface) 2a of the cylindrical first molded object 2 slightly protrudes from the upper surface 6a of the base plate 6. And the first shaped article 2 is fixed to the bottom surface 7a with bolts 8. The base plate 6 is a metal flat plate member having a square planar shape.

(第2工程)
次に、図1(c)に示すように、第1造形物2が取り付けられたベースプレート6は、粉末焼結積層装置4の昇降テーブル5上に固定される(第2工程)。
(Second step)
Next, as shown in FIG. 1C, the base plate 6 to which the first shaped article 2 is attached is fixed on the elevating table 5 of the powder sintering and laminating apparatus 4 (second step).

(第3工程)
次に、図1(c)に示すように、粉末焼結積層装置4は、ベースプレート6に取り付けられた第1造形物2の接合面2a上に第1造形物2と同種の金属粉末10を供給し、第1造形物2の接合面2a上の金属粉末10を水平方向(図1(c)のX軸に沿った方向)に移動するブレード11(又はローラ)によって均し、第1造形物2の接合面2a上に所望厚さの金属粉末層(粉末層)12を形成する(粉末層形成工程部分)。
(Third step)
Next, as shown in FIG. 1 (c), the powder sintering and laminating apparatus 4 applies the metal powder 10 of the same kind as that of the first model 2 onto the joint surface 2 a of the first model 2 attached to the base plate 6. The metal powder 10 on the bonding surface 2a of the first shaped article 2 that is supplied is leveled by a blade 11 (or roller) that moves in the horizontal direction (the direction along the X axis in FIG. 1C), and the first shaping is performed. A metal powder layer (powder layer) 12 having a desired thickness is formed on the bonding surface 2a of the object 2 (powder layer forming step portion).

次に、図1(c)に示すように、第1造形物2の接合面2a上の金属粉末層10には、レーザー光照射手段13からレーザー光14が照射される。そして、第1造形物2の接合面2aと金属粉末層12との境界部分は、レーザー光14で溶かされて一体化させられる。また、図1(d)に示すように、第1造形物2の接合面2a上の金属粉末層12は、レーザー光14で焼き固められて、固化層15になる(固化層形成工程部分)。なお、レーザー光照射手段13は、3次元CADデータ等の入力データに基づいて作動制御され、昇降テーブル5(ベースプレート6)に対して移動できるようになっている。また、昇降テーブル5は、図1(c)のZ軸方向に沿って昇降できるように構成されており、第1造形物2の接合面2a上に形成される金属粉末層12の厚さ分だけ順次降下するようになっている。   Next, as shown in FIG. 1C, the laser light irradiation means 13 irradiates the metal powder layer 10 on the bonding surface 2 a of the first shaped article 2 with the laser light 14. Then, the boundary portion between the bonding surface 2 a of the first shaped article 2 and the metal powder layer 12 is melted by the laser light 14 and integrated. Further, as shown in FIG. 1D, the metal powder layer 12 on the bonding surface 2a of the first shaped article 2 is baked and solidified by the laser beam 14 to become the solidified layer 15 (solidified layer forming step portion). . The operation of the laser beam irradiation means 13 is controlled based on input data such as three-dimensional CAD data and can be moved with respect to the lifting table 5 (base plate 6). In addition, the elevating table 5 is configured to be able to elevate and descend along the Z-axis direction of FIG. 1C, and corresponds to the thickness of the metal powder layer 12 formed on the joint surface 2 a of the first modeled object 2. It is designed to descend sequentially.

次に、図1(e)〜(h)に示すように、第1造形物2の接合面2a上に金属粉末層12を形成する粉末層形成工程部分と、金属粉末層12にレーザー光14を照射し、レーザー光14が照射された部分の金属粉末層12を焼き固めて固化層15を形成する固化層形成工程部分と、を繰り返し行う。これによって、複数の固化層15を積層一体化してなる3次元造形物としての第2造形物3が形成されると共に、この第2造形物3が第1造形物2の接合面2aに接合され、第1造形物2と第2造形物3が一体化されたハイブリッド造形物1が形成される。   Next, as shown in FIGS. 1E to 1H, a powder layer forming step for forming the metal powder layer 12 on the bonding surface 2 a of the first shaped article 2 and a laser beam 14 for the metal powder layer 12. And the solidified layer forming step of forming the solidified layer 15 by baking and hardening the metal powder layer 12 in the portion irradiated with the laser beam 14 is repeated. As a result, the second molded article 3 as a three-dimensional molded article formed by laminating and integrating a plurality of solidified layers 15 is formed, and the second molded article 3 is bonded to the bonding surface 2a of the first molded article 2. A hybrid shaped article 1 in which the first shaped article 2 and the second shaped article 3 are integrated is formed.

(第4工程)
次に、図2(b−1)及び図2(b−2)に示すように、ベースプレート6及びハイブリッド造形物1は、粉末焼結積層装置4の昇降テーブル5から取り外される(第4工程)。
(Fourth step)
Next, as shown in FIGS. 2 (b-1) and 2 (b-2), the base plate 6 and the hybrid shaped article 1 are removed from the elevating table 5 of the powder sintering and laminating apparatus 4 (fourth step). .

(第5工程)
次に、図2(c)及び図2(d)に示すように、ハイブリッド造形物1は、ベースプレート6に固定したボルト8が取り外され、ベースプレート6から分離された後、ベースプレート6の第1造形物収容凹所7内から取り出される(第5工程)。
(Fifth step)
Next, as shown in FIG. 2C and FIG. 2D, in the hybrid molded article 1, after the bolt 8 fixed to the base plate 6 is removed and separated from the base plate 6, the first modeling of the base plate 6 is performed. The object is taken out from the recess 7 (fifth step).

次に、ハイブリッド造形物1は、粉末焼結積層装置4のレーザー光14の熱によって生じた内部歪みを取り除くため、研磨、研削、熱処理(焼鈍し)等の必要な処理が施される。   Next, the hybrid molded article 1 is subjected to necessary processing such as polishing, grinding, and heat treatment (annealing) in order to remove the internal strain generated by the heat of the laser beam 14 of the powder sintering and laminating apparatus 4.

(本実施形態の効果)
以上のような本実施形態に係るハイブリッド造形物1の製造方法によれば、ハイブリッド造形物1は、第1造形物2の接合面2a上に第2造形物3が粉末焼結積層法によって造形された後、第1造形物2をベースプレート6に固定するボルト8を取り外すだけで、ベースプレート6から分離される。その結果、本実施形態に係るハイブリッド造形物1の製造方法によれば、ベースプレート6を次の新たなハイブリッド造形物1の製造にそのまま利用できるため、従来例(造形プレート100から3次元造形物101を切断して分離した後、3次元造形物101の切り残し痕103を造形プレート100上から研削加工等で取り除き、その後、造形プレート100を次の新たな3次元造形物101の製造に利用する)と比較し、3次元造形物(第2造形物3)の成形のサイクルタイムを短縮でき、3次元造形物(第2造形物3)の生産性を向上させることができる。
(Effect of this embodiment)
According to the method for manufacturing the hybrid shaped article 1 according to the present embodiment as described above, the hybrid shaped article 1 is formed by molding the second shaped article 3 on the bonding surface 2a of the first shaped article 2 by the powder sintering lamination method. After that, the bolts 8 for fixing the first modeled article 2 to the base plate 6 are simply removed to separate the first modeled article 2 from the base plate 6. As a result, according to the method for manufacturing the hybrid molded article 1 according to the present embodiment, the base plate 6 can be directly used for manufacturing the next new hybrid molded article 1, so that the conventional example (from the model plate 100 to the three-dimensional model 101). After cutting and separating, the uncut marks 103 of the three-dimensional model 101 are removed from the modeling plate 100 by grinding or the like, and then the modeling plate 100 is used for manufacturing the next new three-dimensional model 101. ), The cycle time of molding the three-dimensional model (second model 3) can be shortened, and the productivity of the three-dimensional model (second model 3) can be improved.

本実施形態に係るハイブリッド造形物1は、第1造形物2が被取付部材(図示せず)の嵌合穴等に高精度で係合させる必要がある場合、第1造形物2を予め切削加工や研削加工で高精度に加工しておくことにより、被取付部材の嵌合穴等に高精度に係合させることができる。このような本実施形態に係るハイブリッド造形物1に対し、従来の粉末焼結積層法によって製造された3次元造形物101は、造形作業が終了した後に、被取付部材の嵌合穴等に係合される部分を切削加工又は研削加工で高精度に加工する必要があるが、外観形状が複雑な場合に、加工のための治具へのチャッキングができず、後加工ができないために、高精度の係合を求められる被取付部材への取り付けが困難になるという問題を生じることがある。   The hybrid modeled article 1 according to the present embodiment pre-cuts the first modeled article 2 when the first modeled article 2 needs to be engaged with a fitting hole or the like of a mounted member (not shown) with high accuracy. By processing with high precision by processing or grinding, it is possible to engage with the fitting hole of the mounted member with high precision. In contrast to the hybrid molded article 1 according to the present embodiment as described above, the three-dimensional molded article 101 manufactured by the conventional powder sintering lamination method is installed in the fitting hole or the like of the mounted member after the modeling work is completed. It is necessary to process the combined parts with high precision by cutting or grinding, but when the external shape is complicated, it is not possible to chuck to the jig for processing and post processing cannot be done, This may cause a problem that it becomes difficult to attach to a member to be attached which requires highly accurate engagement.

本実施形態に係るハイブリッド造形物1の製造方法は、ベースプレート6に第1造形物収容凹所7を形成し、第1造形物2をベースプレート6の第1造形物収容凹所7内に収容し、第1造形物2の接合面2aをベースプレート6の上面6aよりも僅かに出っ張らせるようになっているため、ベースプレート6の上面6aに第1造形物2を固定する場合と比較し、ベースプレート6上に供給する金属粉末10の量を少なくすることができ、ハイブリッド造形物1の製造の1サイクルで使用する金属粉末10の量を節約することが可能になる。   In the method for manufacturing the hybrid shaped article 1 according to the present embodiment, the first shaped article accommodation recess 7 is formed in the base plate 6, and the first shaped article 2 is accommodated in the first shaped article accommodation recess 7 of the base plate 6. Since the joining surface 2a of the first shaped article 2 is slightly projected from the upper surface 6a of the base plate 6, the base plate 6 is larger than the case where the first shaped article 2 is fixed to the upper surface 6a of the base plate 6. The amount of the metal powder 10 supplied above can be reduced, and the amount of the metal powder 10 used in one cycle of manufacturing the hybrid shaped article 1 can be saved.

本実施形態に係るハイブリッド造形物1の製造方法は、機械(例えば、複合旋盤)の治具への取付穴を第1造形物2に予め形成しておくことにより、3次元造形後におけるハイブリッド造形物1の後加工を効率的に且つ正確に行うことが可能になる。   The method for manufacturing the hybrid modeling object 1 according to the present embodiment is a method of manufacturing a hybrid modeling object after three-dimensional modeling by forming a mounting hole for a jig of a machine (for example, a composite lathe) in the first modeling object 2 in advance. The post-processing of the article 1 can be efficiently and accurately performed.

(変形例1)
図3は、第1造形物2の変形例を示す図である。なお、図3(a)は第1造形物2の平面図であり、図3(b)は図3(a)の矢印A1方向から見た第1造形物2の正面図であり、図3(c)は図3(a)の矢印A2方向から見た第1造形部2の右側面図であり、図3(d)はベースプレート6に取り付けられた第1造形部2の平面図である。
(Modification 1)
FIG. 3 is a diagram showing a modified example of the first shaped article 2. Note that FIG. 3A is a plan view of the first modeled article 2, and FIG. 3B is a front view of the first modeled article 2 seen from the direction of the arrow A1 in FIG. 3C is a right side view of the first modeling unit 2 as viewed in the direction of arrow A2 in FIG. 3A, and FIG. 3D is a plan view of the first modeling unit 2 attached to the base plate 6. .

図3に示すように、第1造形物2は、円柱の周面の一部をY−Z座標面と平行な仮想平面で且つX−Y座標面に直交する仮想平面で削り取られたような平面16(3次元造形の基準となる平面)が形成されている。そして、この第1造形物2は、図3(d)及び図2(a−2)に示すように、ベースプレート6の第1造形物収容凹所7内に係合された後、ベースプレート6にボルト8で仮締めされ、平面16がベースプレート6の4側面のうちの1側面(取付基準面17)と平行になるように位置調整された後、ベースプレート6に本締めされる(強く締め付け固定される)。なお、第1造形物2の平面16とベースプレート6の取付基準面17とを平行にする作業は、例えば、フライス盤のベッド上において、ダイヤルゲージ、治具等を使用して行われる。   As shown in FIG. 3, the first modeled object 2 looks like a part of the peripheral surface of the cylinder is scraped off on an imaginary plane parallel to the YZ coordinate plane and orthogonal to the XY coordinate plane. A plane 16 (a plane that serves as a reference for three-dimensional modeling) is formed. Then, as shown in FIGS. 3D and 2A-2, the first molded article 2 is engaged with the first molded article accommodating recess 7 of the base plate 6 and then is attached to the base plate 6. After the bolts 8 are temporarily tightened and the position of the flat surface 16 is adjusted to be parallel to one of the four side surfaces of the base plate 6 (the mounting reference surface 17), the base plate 6 is finally tightened (tightly fixed. ). The work for making the flat surface 16 of the first shaped article 2 and the mounting reference surface 17 of the base plate 6 parallel to each other is performed, for example, on a bed of a milling machine using a dial gauge, a jig, or the like.

本変形例に係る第1造形物2は、上述のように、第1造形物2の平面16とベースプレート6の取付基準面17とを平行にすることができるため、第1造形物2が取り付けられたベースプレート6の取付基準面17を粉末焼結積層装置4のレーザー照射手段13の主走査方向又は副走査方向に合わせるだけで、第1造形物2の平面16(3次元造形の基準となる平面)をレーザー照射手段13の主走査方向又は副走査方向に位置決めすることが可能になる。そのため、本変形例に係る第1造形物2及びこの第1造形物2を取り付けたベースプレート6を使用する粉末焼結積層装置4は、第1造形物2に対する第2造形物3の造形を正確に行うことが可能になる(例えば、第1造形物2に予め形成された穴と第2造形物3(3次元造形物)に形成された穴とを正確に位置合わせすることが可能になる)。   In the first modeled article 2 according to this modification, as described above, the flat surface 16 of the first modeled article 2 and the mounting reference surface 17 of the base plate 6 can be made parallel to each other, so that the first modeled article 2 is mounted. The mounting reference surface 17 of the base plate 6 thus obtained is simply aligned with the main scanning direction or the sub-scanning direction of the laser irradiation means 13 of the powder sintering and laminating apparatus 4 to form the plane 16 of the first model 2 (which serves as a reference for three-dimensional modeling). The plane) can be positioned in the main scanning direction or the sub scanning direction of the laser irradiation means 13. Therefore, the powder sinter laminating apparatus 4 using the first modeled article 2 and the base plate 6 to which the first modeled article 2 is attached according to the present modification accurately models the second modeled article 3 with respect to the first modeled article 2. Can be performed (for example, it is possible to accurately align a hole formed in the first model 2 with a hole formed in the second model 3 (three-dimensional model)). ).

(その他の変形例)
上記実施形態に係るハイブリッド造形物1の製造方法は、第1造形物2の接合面2aを平坦な水平面で表しているが、これに限られず、粉末焼結積層法の実施を可能にする金属粉末層12を形成することができる限り、接合面2aをステップ状面(図4(a)参照)、凹凸面(図4(b)参照)等にしてもよい。
(Other modifications)
In the method for manufacturing the hybrid shaped article 1 according to the above embodiment, the joint surface 2a of the first shaped article 2 is represented by a flat horizontal surface, but the present invention is not limited to this, and a metal that enables the powder sintering lamination method to be performed. As long as the powder layer 12 can be formed, the bonding surface 2a may be a step surface (see FIG. 4A), an uneven surface (see FIG. 4B), or the like.

また、上記実施形態に係るハイブリッド造形物1の製造方法は、第1造形物2の接合面2aをベースプレート6の上面6aよりも僅かに出っ張らせるようになっているが、これに限られず、第1造形物2の接合面2aをベースプレート6の上面6aと同一の平面上に位置するようにしてもよい。   Further, in the method for manufacturing the hybrid shaped article 1 according to the above-described embodiment, the joint surface 2a of the first shaped article 2 is made to slightly protrude from the upper surface 6a of the base plate 6, but the present invention is not limited to this. The joint surface 2a of the one shaped article 2 may be located on the same plane as the upper surface 6a of the base plate 6.

また、上記実施形態に係るハイブリッド造形物1の製造方法は、第1造形物2の接合面2aをベースプレート6の上面6aよりも僅かに出っ張らせるようになっているが、これに限られず、3次元造形に適した金属粉末層12を第1造形物2の接合面2a上に形成できる限り、第1造形物2の接合面2aをベースプレート6の上面6aよりも僅かに引っ込んで位置するようにしてもよい。   In addition, in the method for manufacturing the hybrid shaped article 1 according to the above-described embodiment, the joining surface 2a of the first shaped article 2 is made to slightly project from the upper surface 6a of the base plate 6, but the present invention is not limited to this. As long as the metal powder layer 12 suitable for three-dimensional modeling can be formed on the bonding surface 2a of the first modeling object 2, the bonding surface 2a of the first modeling object 2 should be positioned slightly retracted from the upper surface 6a of the base plate 6. May be.

また、上記実施形態に係るハイブリッド造形物1の製造方法は、第1造形物2と金属粉末10とを同種の鉄系材料(例えば、炭素鋼)にするように例示したが、これに限られず、第1造形物2と金属粉末10とを鉄系材料以外の材料(例えば、チタン合金)やその他の金属材料にしてもよい。   Moreover, although the manufacturing method of the hybrid shaped article 1 according to the above-described embodiment exemplifies that the first shaped article 2 and the metal powder 10 are made of the same type of iron-based material (for example, carbon steel), the present invention is not limited to this. The first shaped article 2 and the metal powder 10 may be made of a material other than an iron-based material (for example, a titanium alloy) or another metal material.

また、上記実施形態に係るハイブリッド造形物1の製造方法は、第1造形物2と金属粉末10とを同種の鉄系材料(例えば、炭素鋼)にするように例示したが、これに限られず、第1造形物2と金属粉末10とを異種の金属材料(例えば、第1造形物2を炭素鋼とし、金属粉末10をチタン合金とするか、又は第1造形物2をチタン合金とし、金属粉末10を炭素鋼とする)にしてもよい。   Moreover, although the manufacturing method of the hybrid shaped article 1 according to the above-described embodiment exemplifies that the first shaped article 2 and the metal powder 10 are made of the same type of iron-based material (for example, carbon steel), the present invention is not limited to this. , The first shaped article 2 and the metal powder 10 are different metal materials (for example, the first shaped article 2 is carbon steel, the metal powder 10 is a titanium alloy, or the first shaped article 2 is a titanium alloy, The metal powder 10 may be carbon steel).

また、上記実施形態に係るハイブリッド造形物1の製造方法は、第1造形物2と第2造形物3とを同一種の金属(例えば、炭素鋼)にするように例示したが、これに限られず、第1造形物2と第2造形物3とをセラミックスで形成するようにしてもよい。すなわち、本発明に係るハイブリッド造形物1の製造方法は、金属材料で形成された第1造形物2をセラミックスで形成された第1造形物2に置き換え、金属粉末10をセラミックスの粉末10に置き換えてもよい。   In addition, although the manufacturing method of the hybrid shaped article 1 according to the above-described embodiment exemplifies that the first shaped article 2 and the second shaped article 3 are made of the same kind of metal (for example, carbon steel), the present invention is not limited to this. Alternatively, the first shaped article 2 and the second shaped article 3 may be made of ceramics. That is, in the method for manufacturing the hybrid shaped article 1 according to the present invention, the first shaped article 2 made of a metal material is replaced with the first shaped article 2 made of ceramics, and the metal powder 10 is replaced with the ceramic powder 10. May be.

また、本発明に係るハイブリッド造形物1は、上記実施形態に係るハイブリッド造形物1に限定されず、円柱状のもの以外の三角柱、四角柱、六角柱等の様々な形状のものにしてもよい。   Further, the hybrid shaped article 1 according to the present invention is not limited to the hybrid shaped article 1 according to the above-described embodiment, and may have various shapes such as a triangular prism, a quadrangular prism, and a hexagonal prism other than the cylindrical shape. .

また、本発明に係るハイブリッド造形物1は、上記実施形態に係るハイブリッド造形物1に限定されず、第2造形物3を第1造形物2と異なる形状に形成するようにしてもよい。   Further, the hybrid shaped article 1 according to the present invention is not limited to the hybrid shaped article 1 according to the above-described embodiment, and the second shaped article 3 may be formed in a shape different from that of the first shaped article 2.

1……ハイブリッド造形物、2……第1造形物、3……第2造形物、4……粉末焼結積層装置、5……昇降テーブル、6……ベースプレート、12……金属粉末層(粉末層)、15……固化層   1 ... Hybrid modeling object, 2 ... 1st modeling object, 3 ... 2nd modeling object, 4 ... Powder sintering lamination device, 5 ... Lifting table, 6 ... Base plate, 12 ... Metal powder layer ( Powder layer), 15 ... Solidified layer

Claims (3)

(1)第1工程
第1造形物をベースプレートに着脱可能に取り付ける第1工程と、
(2)第2工程
前記第1造形物を着脱可能に取り付けた前記ベースプレートを粉末焼結積層装置の昇降テーブルに取り付ける第2工程と、
(3)第3工程
前記第1造形物と接合させることが可能な粉末層を前記第1造形物上に形成する作業と、前記粉末層にレーザー光を照射して固化層を形成する作業と、を繰り返し行い、
複数の前記固化層が積層一体化された3次元造形物としての第2造形物を前記第1造形物に一体に形成し、前記第1造形物と前記第2造形物とからなるハイブリッド造形物を成形する第3工程と、
(4)第4工程
前記ハイブリッド造形物及び前記ベースプレートを前記粉末焼結積層装置の前記昇降テーブルから取り外す第4工程と、
(5)第5工程
前記ベースプレートから前記ハイブリッド造形物を取り外す第5工程と、を有し、
前記第1造形物は、ベースプレートに形成された第1造形物収容凹所内に収容され、
前記第1造形物収容凹所内に収容された前記第1造形物の上面には、前記固化層を形成するのに適した厚さの前記粉末層が形成される、
ことを特徴とするハイブリッド造形物の製造方法。
(1) First step A first step of detachably attaching the first shaped article to the base plate,
(2) Second step A second step in which the base plate to which the first shaped article is detachably attached is attached to an elevating table of a powder sintering and laminating apparatus,
(3) Third step: an operation of forming a powder layer that can be joined to the first shaped article on the first shaped article, and an operation of irradiating the powder layer with a laser beam to form a solidified layer. , Repeatedly,
A hybrid modeled product including a first modeled product and a second modeled product integrally formed with a second modeled product as a three-dimensional modeled product in which a plurality of solidified layers are laminated and integrated. A third step of molding
(4) Fourth step A fourth step of removing the hybrid molded article and the base plate from the lifting table of the powder sintering and laminating apparatus,
(5) Fifth step, and a fifth step of removing the hybrid shaped article from the base plate ,
The first shaped article is housed in a first shaped article housing recess formed in the base plate,
The powder layer having a thickness suitable for forming the solidified layer is formed on an upper surface of the first shaped object housed in the first shaped object housing recess.
A method for producing a hybrid shaped article, which is characterized by the following.
前記粉末層は、前記ベースプレートと同種金属の粉末で形成される、
ことを特徴とする請求項に記載のハイブリッド造形物の製造方法。
The powder layer is formed of a powder of the same metal as the base plate,
The method for producing a hybrid shaped article according to claim 1 , wherein:
前記粉末は、鋼の粉末であり、
前記ハイブリッド造形物は、前記ベースプレートから取り外された後、焼鈍しが行われる、
ことを特徴とする請求項に記載のハイブリッド造形物の製造方法。
The powder is steel powder,
The hybrid shaped article is annealed after being removed from the base plate,
The method for manufacturing a hybrid shaped article according to claim 2 , wherein.
JP2016095723A 2016-05-12 2016-05-12 Method for manufacturing hybrid shaped article and hybrid shaped article Expired - Fee Related JP6691429B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016095723A JP6691429B2 (en) 2016-05-12 2016-05-12 Method for manufacturing hybrid shaped article and hybrid shaped article
PCT/JP2017/017536 WO2017195773A1 (en) 2016-05-12 2017-05-09 Method for manufacturing hybrid shaped article, and hybrid shaped article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095723A JP6691429B2 (en) 2016-05-12 2016-05-12 Method for manufacturing hybrid shaped article and hybrid shaped article

Publications (2)

Publication Number Publication Date
JP2017203191A JP2017203191A (en) 2017-11-16
JP6691429B2 true JP6691429B2 (en) 2020-04-28

Family

ID=60266642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095723A Expired - Fee Related JP6691429B2 (en) 2016-05-12 2016-05-12 Method for manufacturing hybrid shaped article and hybrid shaped article

Country Status (2)

Country Link
JP (1) JP6691429B2 (en)
WO (1) WO2017195773A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213744B2 (en) * 2019-04-23 2023-01-27 オークマ株式会社 3D shape processing method
JP6774122B1 (en) * 2019-04-26 2020-10-21 伊福精密株式会社 Method of creating 3D model-related data and method of manufacturing 3D model
CN110281683B (en) * 2019-07-18 2021-12-21 广州番禺职业技术学院 Method for manufacturing ceramic inlaid metal craft ornaments
JP2022038683A (en) * 2020-08-27 2022-03-10 セイコーエプソン株式会社 Method of manufacturing mold and molding die

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511772C2 (en) * 1995-03-30 1997-09-04 Eos Electro Optical Syst Device and method for producing a three-dimensional object
JP4874133B2 (en) * 2007-02-02 2012-02-15 パナソニック株式会社 Mold and manufacturing method thereof
JP4947588B2 (en) * 2007-06-26 2012-06-06 パナソニック株式会社 Manufacturing equipment for 3D shaped objects
JP5337545B2 (en) * 2009-03-17 2013-11-06 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP6272723B2 (en) * 2014-04-21 2018-01-31 株式会社日立製作所 Stainless steel, fluid equipment, and method for producing stainless steel
JP2016203510A (en) * 2015-04-23 2016-12-08 ダイハツ工業株式会社 Production method of product including three-dimensional structure

Also Published As

Publication number Publication date
JP2017203191A (en) 2017-11-16
WO2017195773A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6691429B2 (en) Method for manufacturing hybrid shaped article and hybrid shaped article
US8739409B2 (en) Method for dual production of small-scale products
EP3023177B1 (en) Carrier arrangement for use in a method for simultaneously repairing a plurality of components by using additive manufacturing
EP3427870B1 (en) Three-dimensional molded object production method
TWI596001B (en) Method for producing three-dimensional shaped object
JP2016517470A (en) Platform construction for additive manufacturing
CN103561891A (en) Method for producing three-dimensional shape structure
JP2010100884A (en) Method for producing three-dimensionally shaped object
JP5456400B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
KR101722979B1 (en) An Manufacturing Method of 3 Dimensional Shape
KR101756089B1 (en) Supporting plate for a laser sintering device and enhanced sintering method
KR20180021186A (en) Method for manufacturing three dimensional shaped sculpture
JP2002066844A (en) Method of manufacturing discharge machining electrode using metal powder sintering type laminated molding
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
JP3491627B2 (en) Manufacturing method of three-dimensional shaped object
JP2003305778A (en) Method for manufacturing three-dimensionally shaped article
US20180243987A1 (en) System and method for additively manufacturing an article incorporating materials with a low tear strength
WO2017150289A1 (en) Resin-bonded product and manufacturing method therefor
EP3323530A1 (en) 3d printed watch dial
JP2004211162A (en) Method for producing die for press
JP4639133B2 (en) 3D modeling method
JP2007077443A (en) Method for manufacturing three-dimensional structure
JP6628519B2 (en) Three-dimensional printing system and method for manufacturing three-dimensional printing object
US20230294175A1 (en) Method of building additively on a billet substrate
KR102506916B1 (en) Method for manufacturing products by metal 3d printing hybrid scheme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200410

R150 Certificate of patent or registration of utility model

Ref document number: 6691429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees