JP6690189B2 - Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery - Google Patents

Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery Download PDF

Info

Publication number
JP6690189B2
JP6690189B2 JP2015213275A JP2015213275A JP6690189B2 JP 6690189 B2 JP6690189 B2 JP 6690189B2 JP 2015213275 A JP2015213275 A JP 2015213275A JP 2015213275 A JP2015213275 A JP 2015213275A JP 6690189 B2 JP6690189 B2 JP 6690189B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
stabilized
lithium powder
stabilized lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015213275A
Other languages
Japanese (ja)
Other versions
JP2017082303A (en
Inventor
山本 裕司
裕司 山本
一摩 秋元
一摩 秋元
匡広 土屋
匡広 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015213275A priority Critical patent/JP6690189B2/en
Publication of JP2017082303A publication Critical patent/JP2017082303A/en
Application granted granted Critical
Publication of JP6690189B2 publication Critical patent/JP6690189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、安定化リチウム粉、それを用いた負極、及びリチウムイオン二次電池に関する。   The present invention relates to stabilized lithium powder, a negative electrode using the same, and a lithium ion secondary battery.

リチウムイオン二次電池は、ニッケルカドミウム電池、ニッケル水素電池等と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。また、ハイブリッド自動車や、電気自動車用に搭載される電源として有力な候補ともなっている。そして、近年の携帯電子機器の小型化、高機能化に伴い、これらの電源となるリチウムイオン二次電池への更なる高容量化が期待されている。   Lithium ion secondary batteries are lighter and have higher capacity than nickel cadmium batteries, nickel hydride batteries, etc., and are therefore widely applied as power sources for portable electronic devices. It is also a strong candidate as a power source to be installed in hybrid vehicles and electric vehicles. With the recent miniaturization and higher functionality of portable electronic devices, it is expected that the lithium-ion secondary batteries used as the power sources for these devices will have even higher capacities.

現在、リチウムイオン二次電池等の電気化学デバイスの負極活物質として、黒鉛等の炭素材料より充放電容量の大きいシリコンや酸化シリコン等の合金系負極活物質が数多く研究されている。しかし、負極活物質としてこのような材料を用いた場合、不可逆容量が生成する。この解決手段として、リチウムイオン二次電池の主に負極に対して予めリチウムイオンをドープすることによりリチウムイオン電池内の不可逆容量を抑制するプレドープ技術が知られている。
その一つとして、金属リチウム粉末を利用し、その金属リチウム粉末とバインダー及び導電材からなる混合物を活物質層上に塗布してプレドープを行う方法が提案されている(特許文献1参照)
Currently, as negative electrode active materials for electrochemical devices such as lithium ion secondary batteries, many alloy-based negative electrode active materials such as silicon and silicon oxide, which have a larger charge / discharge capacity than carbon materials such as graphite, are being studied. However, when such a material is used as the negative electrode active material, irreversible capacity is generated. As a solution to this problem, there is known a pre-doping technique for suppressing the irreversible capacity in the lithium-ion battery by preliminarily doping lithium ions into the negative electrode of the lithium-ion secondary battery.
As one of them, there has been proposed a method in which metallic lithium powder is used, and a mixture of the metallic lithium powder, a binder, and a conductive material is applied on the active material layer to perform pre-doping (see Patent Document 1).

通常、リチウムイオン二次電池に用いる電極は負極活物質を含む層を集電体上に形成した後、プレスにより密着させる工程を有するが、ドープ工程はそのプレスにより安定化リチウム粉のLi金属が露出することでドープが進行する。
したがって、安定化リチウム粉に求められる特性は、リチウムの安定性向上のみならず、優れた電池特性を生み出すドープ特性も求められている。
Usually, an electrode used in a lithium-ion secondary battery has a step of forming a layer containing a negative electrode active material on a current collector and then bringing it into close contact with a press, but the doping step involves removing Li metal of stabilized lithium powder by the press. Dope progresses by exposing.
Therefore, the characteristics required for the stabilized lithium powder are not only the improvement in the stability of lithium but also the doping characteristics that produce excellent battery characteristics.

特開2008−98151号公報JP, 2008-98151, A

しかしながら、上記特許文献に記載されているような安定化リチウム粉は球状のものが多い、球状の安定化リチウム粉を用いると、電池にした際の初期充放電特性が劣化してしまうという問題があった。本発明者らは鋭意研究を重ねた結果、安定化リチウム粉をプレスして密着させる工程において負極にクラック等の欠陥が生じていることが原因であることを見出した。   However, the stabilized lithium powder as described in the above-mentioned patent documents often has a spherical shape, and when the spherical stabilized lithium powder is used, there is a problem that the initial charge / discharge characteristics of the battery deteriorate. there were. As a result of intensive studies, the present inventors have found that the cause is that defects such as cracks are generated in the negative electrode in the step of pressing and adhering the stabilized lithium powder.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、電池にした際の初期充放電効率を劣化させず、かつ効率的なドープを行うことが可能な安定化リチウム粉及びこれを用いたリチウム二次電池を提供することを目的とする。   The present invention has been made in view of the problems of the above-mentioned conventional technology, and does not deteriorate the initial charge / discharge efficiency when a battery is formed, and stabilized lithium powder capable of efficient doping and the same. An object of the present invention is to provide a lithium secondary battery using.

上記課題を解決するため、本発明の安定化リチウム粉は、リチウム粒子の表面に被膜を有し、更にその一部に欠損部を有することを特徴とする。   In order to solve the above-mentioned problems, the stabilized lithium powder of the present invention is characterized by having a coating film on the surface of lithium particles and further having a defective portion in a part thereof.

これによれば、プレス時の応力が欠損部に集中し、安定化リチウム粉の破砕が容易になり、小さなプレス圧でドープが可能となるので、負極のクラックを抑制できる。また、安定化リチウム粉が速やかに破砕されることで均一なドープも進行させることができる。これにより、この負極を用いてリチウム二次電池を作製した際に初期充放電効率を向上させることができる。   According to this, the stress at the time of pressing is concentrated on the defect portion, the stabilized lithium powder is easily crushed, and the doping can be performed with a small pressing pressure, so that the crack of the negative electrode can be suppressed. In addition, the stabilized lithium powder is rapidly crushed to allow uniform dope to proceed. Thereby, the initial charge / discharge efficiency can be improved when a lithium secondary battery is manufactured using this negative electrode.

本発明の安定化リチウム粉は更に、前記欠損部が走査型電子顕微鏡(SEM)による観察像において扇状の欠損を有していることが好ましい。   Further, in the stabilized lithium powder of the present invention, it is preferable that the defective portion has a fan-shaped defect in an image observed by a scanning electron microscope (SEM).

本発明の安定化リチウム粉は更に、前記欠損部の扇の中心角が5°以上150°以下であることが好ましい。   Further, in the stabilized lithium powder of the present invention, it is preferable that the central angle of the fan of the defective portion is 5 ° or more and 150 ° or less.

本発明の安定化リチウム粉の平均フェレ径をFDとすると、FDが0.1μm以上106μm以下であることが好ましい。なお、フェレ径とは図1に示すように粒子内で最も長い2点間の距離で定義される。   When the average Feret diameter of the stabilized lithium powder of the present invention is FD, the FD is preferably 0.1 μm or more and 106 μm or less. The Feret diameter is defined as the distance between the two longest points in the particle as shown in FIG.

本発明の安定化リチウム粉の欠損部の深さをRとすると、RがFDの0.05倍以上0.78倍以下であることを特徴とする。   When the depth of the defective portion of the stabilized lithium powder of the present invention is R, R is 0.05 times or more and 0.78 times or less of FD.

これらによれば、より初期充放電効率が向上する。   According to these, the initial charge / discharge efficiency is further improved.

本発明によれば、電池にした際の初期充放電効率を劣化させず、かつ効率的なドープを行うことが可能な安定化リチウム粉、及びこれを用いた負極及びリチウム二次電池を提供することができる。   According to the present invention, there is provided a stabilized lithium powder capable of performing efficient doping without deteriorating the initial charging / discharging efficiency of a battery, and a negative electrode and a lithium secondary battery using the same. be able to.

扇状の欠損部を有する安定化リチウム粉のSEM観察像の模式図である。It is a schematic diagram of the SEM observation image of the stabilized lithium powder which has a fan-shaped defect part. 本実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery of this embodiment.

以下、本発明について好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。   Preferred embodiments of the present invention will be described below. The present invention is not limited to the embodiments below.

<安定化リチウム粉>
本実施形態の安定化リチウム粉は、リチウム粒子の表面に被膜を有する安定化リチウム粉において、前記安定化リチウム粉はその一部に欠損部を有することを特徴としている。
<Stabilized lithium powder>
The stabilized lithium powder of the present embodiment is characterized in that, in the stabilized lithium powder having a coating on the surface of lithium particles, the stabilized lithium powder has a defective portion in a part thereof.

また、安定化リチウム粉の欠損部を無視した全体形状は通常、略球状である。   Further, the entire shape of the stabilized lithium powder ignoring the defective portion is usually substantially spherical.

(欠損部)
欠損部の形状は、扇状、四角形状、円状等、特に限定されないが、扇状であることがより好ましい。
(Defect part)
The shape of the defective portion is not particularly limited, and may be fan-shaped, square-shaped, circular, or the like, but fan-shaped is more preferable.

本実施形態での一部に欠損部を有する安定化リチウム粉とは図1に示すような、安定化リチウム粉の表面に凹部を有することを意味する。なお、欠損部の有無は、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用い、試料台を回転及び傾斜を変化させて観察することで判断した。欠損部の深さRは、SEM観察像における安定化リチウム粉の面積が最小となる場合が観察できる安定化リチウム粉において、欠損部の開口部の幅をLとすると、欠損部の最深部からLを2等分する点までの距離とし、最低200個以上の安定化リチウム粉に対して測定を行い、平均値を求めた。 In the present embodiment, the stabilized lithium powder partially having a defect means that the surface of the stabilized lithium powder has a recess as shown in FIG. In addition, the presence or absence of a defect part was judged by observing a sample stage by rotating and tilting it using a scanning electron microscope (SEM). The depth R of the defective portion is from the deepest portion of the defective portion when the width of the opening of the defective portion is L in the stabilized lithium powder that can be observed when the area of the stabilized lithium powder in the SEM observation image is minimum. L was defined as the distance to the point where it was divided into two equal parts, and measurement was performed on at least 200 stabilized lithium powders to obtain an average value.

前記安定化リチウム粉の欠損部の深さRは、FDの0.05倍以上0.78倍以下であることが好ましい。さらにFDの0.3倍以上0.78倍以下であることが好ましい。 The depth R of the defective portion of the stabilized lithium powder is preferably 0.05 times or more and 0.78 times or less than FD. Further, it is preferably 0.3 times or more and 0.78 times or less of FD.

上記安定化リチウム粉の扇の中心角は、5°以上150°以下であることが好ましい。さらに、10°以上90°以下であることがより好ましい。   The central angle of the fan of the stabilized lithium powder is preferably 5 ° or more and 150 ° or less. Further, it is more preferably 10 ° or more and 90 ° or less.

中心角の測定方法は、SEMで観察を行った安定化リチウム粉の観察像の面積が最小になる場合において、欠損部の辺を延長させ、分度器を使用して測定を行った。上記操作を最低200個以上の安定化リチウム粉に対して行い、平均値を求めた。   Regarding the method of measuring the central angle, when the area of the observed image of the stabilized lithium powder observed by SEM is the minimum, the side of the defective portion is extended and the protractor is used for the measurement. The above operation was performed on at least 200 stabilized lithium powders, and an average value was obtained.

欠損部の深さRおよび欠損部の形状や中心角が上記範囲内である場合、プレス時の応力が欠損部に集中し、安定化リチウム粉の破砕が容易になり、効率的なリチウムのドープが可能となる。 When the depth R of the defective portion and the shape and central angle of the defective portion are within the above ranges, the stress during pressing is concentrated on the defective portion, the stabilized lithium powder is easily crushed, and efficient doping of lithium is performed. Is possible.

上記安定化リチウム粉の平均フェレ径は、塗布後の電極表面での均一分散性の観点から、0.1μm以上106μm以下であることが好ましい。さらに、1μm以上53μm以下であることがより好ましい。   The average Feret diameter of the stabilized lithium powder is preferably 0.1 μm or more and 106 μm or less from the viewpoint of uniform dispersibility on the electrode surface after coating. Further, it is more preferably 1 μm or more and 53 μm or less.

フェレ径の測定方法は、SEMで観察を行った安定化リチウム粉の観察像を二値化し、画像解析によって求めた。この操作を最低200個以上の安定化リチウム粉に対して行い、平均値を求めた。なお、フェレ径とは粒子内で最も長い2点間の距離と定義する。   The method of measuring the Feret diameter was obtained by binarizing an observed image of the stabilized lithium powder observed by SEM and performing image analysis. This operation was performed on at least 200 stabilized lithium powders, and the average value was obtained. The Feret diameter is defined as the distance between the two longest points in the particle.

(安定化リチウム粉の製造方法)
本実施形態の安定化リチウム粉は、炭化水素オイルにリチウムインゴットを投入し、これをリチウムの融点以上に加熱し、この溶融リチウム−炭化水素オイル混合物を十分な時間撹拌して分散液を作ったのち、撹拌を続けた状態で徐々に冷却し、この分散液が十分に冷却された状態で二酸化炭素(CO)を接触させて表面に安定被膜を形成し、これを乾燥することによって製造される。
(Method for producing stabilized lithium powder)
The stabilized lithium powder of the present embodiment was prepared by adding a lithium ingot to hydrocarbon oil, heating it to a temperature equal to or higher than the melting point of lithium, and stirring the molten lithium-hydrocarbon oil mixture for a sufficient time. After that, the dispersion liquid is gradually cooled with continued stirring, and carbon dioxide (CO 2 ) is brought into contact with the dispersion liquid in a sufficiently cooled state to form a stable coating film on the surface, which is then dried. It

容器には内壁に邪魔板を取り付けた耐熱性の容器を用い、容器を斜め3°以上10°以下の範囲に傾けて撹拌を行う。回転数は1000rpm以上が好ましく、4000rpm以上6000rpm以下がさらに好ましい。また、前記邪魔板の大きさは特に問わないが、容器半径に対し、1〜5%程度のものが好ましい。 A heat-resistant container with a baffle plate attached to the inner wall is used as the container, and the container is inclined at an angle of 3 ° or more and 10 ° or less to perform stirring. The number of rotations is preferably 1000 rpm or more, more preferably 4000 rpm or more and 6000 rpm or less. The size of the baffle plate is not particularly limited, but is preferably about 1 to 5% of the container radius.

上記炭化水素オイルは、リチウムインゴットを1質量部としたとき、溶融後の均一分散性の観点から1〜30質量部であることが好ましく、2〜15質量部であることがより好ましい。   The hydrocarbon oil is preferably 1 to 30 parts by mass, and more preferably 2 to 15 parts by mass, from the viewpoint of uniform dispersibility after melting, when the lithium ingot is 1 part by mass.

上記溶融リチウム−炭化水素オイル混合物の撹拌時間は5分以上が好ましい。   The stirring time of the molten lithium-hydrocarbon oil mixture is preferably 5 minutes or more.

上記分散液の冷却後の温度は100℃以下が好ましく、50℃以下がより好ましい。また、上記分散液は1時間以上かけて徐々に冷却することが好ましい。   The temperature of the dispersion liquid after cooling is preferably 100 ° C or lower, more preferably 50 ° C or lower. Further, it is preferable that the dispersion liquid is gradually cooled over 1 hour or more.

上記二酸化炭素は、リチウムインゴットを1質量部としたとき、0.01〜0.18質量部がこの溶融リチウム−炭化水素オイル混合物に加えられることが好ましく、0.08〜0.1質量部であることがより好ましい。また、分散液製造時の攪拌条件は、導入される二酸化炭素と分散された金属との十分な接触をもたらすために1000rpm以上であることが好ましい。   The carbon dioxide is preferably added in an amount of 0.01 to 0.18 part by mass to the molten lithium-hydrocarbon oil mixture, based on 1 part by mass of the lithium ingot, and 0.08 to 0.1 part by mass. More preferably. The stirring condition during the production of the dispersion is preferably 1000 rpm or more in order to bring about sufficient contact between the introduced carbon dioxide and the dispersed metal.

<負極>
負極20は後述するように負極用集電体22上に負極活物質層24を形成することで作製することができる。
(負極用集電体)
負極用集電体22は、導電性の板材であればよく、例えば、銅、ニッケル又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
(負極活物質層)
負極活物質層24は、負極活物質、負極用バインダー、及び、必要に応じた量の負極用導電助剤から主に構成されるものである。
(負極活物質)
負極活物質としては、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SiO、またはそれらの混合物等の酸化シリコンや、TiO、SnO、Fe等の酸化物を主体とする結晶質・非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
(負極用バインダー)
負極用バインダーとしてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂に加え、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等、ポリアクリル酸系樹脂が挙げられる。
(負極用導電助剤)
負極用導電助剤としてはアセチレンブラック、ファーネスブラック、カーボンナノチューブ等が挙げられる。
<Negative electrode>
The negative electrode 20 can be produced by forming the negative electrode active material layer 24 on the negative electrode current collector 22 as described later.
(Current collector for negative electrode)
The negative electrode current collector 22 may be a conductive plate material, and for example, a thin metal plate (metal foil) such as copper, nickel or their alloys, and stainless steel can be used.
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a negative electrode binder, and a necessary amount of a negative electrode conductive additive.
(Negative electrode active material)
As the negative electrode active material, a carbon material such as graphite, non-graphitizable carbon, graphitizable carbon, and low temperature calcined carbon capable of inserting and extracting (intercalating / deintercalating or doping / dedoping) lithium ions. , Al, Si, Sn, and other metals that can be combined with lithium, silicon oxide such as SiO, SiO 2 , or mixtures thereof, and oxides such as TiO 2 , SnO 2 , Fe 2 O 3 Examples thereof include particles containing a crystalline / amorphous compound, lithium titanate (Li 4 Ti 5 O 12 ), and the like.
(Binder for negative electrode)
As the negative electrode binder, in addition to fluororesin such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamideimide resin, and polyacrylic acid Resins may be mentioned.
(Conductive assistant for negative electrode)
Examples of the conductive additive for the negative electrode include acetylene black, furnace black, carbon nanotubes and the like.

(安定化リチウム粉と負極活物質の混合物の作製方法)
上述のプロセスにて作製した安定化リチウム粉と負極活物質を溶媒中に分散させ、これを撹拌し、その後溶媒を乾燥することで安定化リチウム粉と負極活物質の混合物が得られる。
(Method for preparing mixture of stabilized lithium powder and negative electrode active material)
A mixture of the stabilized lithium powder and the negative electrode active material is obtained by dispersing the stabilized lithium powder and the negative electrode active material produced by the above process in a solvent, stirring this, and then drying the solvent.

この時、使用する溶媒はN−メチルピロリドン、トルエン、キシレン、メチルエチルケトン等の脱水した溶剤を用いる。 At this time, the solvent used is a dehydrated solvent such as N-methylpyrrolidone, toluene, xylene, or methyl ethyl ketone.

上記撹拌方法としては特に限定は無く、マグネチックスターラーやハイブリッドミキサー等、既知の方法を使うことが可能である。   The stirring method is not particularly limited, and a known method such as a magnetic stirrer or a hybrid mixer can be used.

(リチウムをドープした負極の作製方法)
上記のプロセスで作製した安定化リチウム粉と負極活物質の混合物に導電助剤、バインダー及び溶剤を所定の割合で混合し、活物質層形成用のスラリーを調製した後、このスラリーを銅箔に塗布し、乾燥することで安定化リチウム粉を含んだ負極活物質層を形成する。その後、ローラープレスにより安定化リチウム粉を含んだ負極活物質層を加圧成形し、真空中で熱処理することで、リチウムをドープした負極が得られる。
(Method of manufacturing negative electrode doped with lithium)
A conductive auxiliary agent, a binder and a solvent were mixed at a predetermined ratio with a mixture of the stabilized lithium powder and the negative electrode active material produced by the above process to prepare a slurry for forming an active material layer, and then the slurry was applied to a copper foil. By applying and drying, a negative electrode active material layer containing stabilized lithium powder is formed. Then, the negative electrode active material layer containing the stabilized lithium powder is pressure-molded by a roller press and heat-treated in vacuum to obtain a lithium-doped negative electrode.

上記プレス方法としては特に限定は無く、ハンドプレスやローラープレス等、既知の方法を使うことが可能である。   The pressing method is not particularly limited, and known methods such as hand pressing and roller pressing can be used.

<リチウムイオン二次電池>
図2に本実施形態のリチウムイオン二次電池の模式断面図を示す。
<Lithium-ion secondary battery>
FIG. 2 shows a schematic cross-sectional view of the lithium-ion secondary battery of this embodiment.

上記の通り作製されたリチウムをドープした負極20と、正極10と、電解質を含浸させたセパレータ18とを図2のように作製することでリチウムイオン二次電池100を作製することができる。ここで、正極10は、正極集電体12上に正極活物質層14を形成することで作製することができる。なお、図面中60と62は、それぞれ正極と負極の引出し電極を示す。   The lithium-ion secondary battery 100 can be manufactured by manufacturing the lithium-doped negative electrode 20 manufactured as described above, the positive electrode 10, and the separator 18 impregnated with the electrolyte as shown in FIG. 2. Here, the positive electrode 10 can be manufactured by forming the positive electrode active material layer 14 on the positive electrode current collector 12. In the drawing, reference numerals 60 and 62 denote positive electrode and negative electrode extraction electrodes, respectively.

<正極>
(正極用集電体)
正極用集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
<Positive electrode>
(Current collector for positive electrode)
The positive electrode current collector 12 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as aluminum or an alloy thereof or stainless can be used.

(正極活物質層)
正極活物質層14は、正極活物質、バインダー、及び、必要に応じた量の導電助剤から主に構成されるものである。
(Cathode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a binder, and a conductive additive in an amount as necessary.

(正極活物質)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンと該リチウムイオンのカウンターアニオン(例えば、PF )とのドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMnMaO(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物が挙げられる。
(Cathode active material)
Examples of the positive electrode active material include occlusion and release of lithium ions, desorption and insertion (intercalation) of lithium ions, or doping and dedoping of lithium ions and a counter anion (for example, PF 6 ) of the lithium ions. There is no particular limitation as long as it can reversibly proceed, and a known electrode active material can be used. For example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and the general formula: LiNi x Co y Mn z MaO 2 (x + y + z + a = 1, 0 ≦ x ≦ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, 0 ≤ a ≤ 1, M is one or more elements selected from Al, Mg, Nb, Ti, Cu, Zn, Cr) Oxide, lithium vanadium compound (LiV 2 O 5 ), olivine type LiMPO 4 (where M is one or more elements or VO selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al and Zr) shown), and composite metal oxides of lithium titanate (Li 4 Ti 5 O 12) , LiNi x Co y Al z O 2 (0.9 <x + y + z <1.1) , etc.

(正極用バインダー)
正極用バインダーは、正極活物質同士を結合すると共に、正極活物質と集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂が挙げられる。更に、上記の他に、バインダーとして、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、バインダーが導電助剤粒子の機能も発揮するので導電助剤を添加しなくてもよい。イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリフォスファゼン等)のモノマーと、LiClO、LiBF、LiPF等のリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。
(Binder for positive electrode)
The positive electrode binder binds the positive electrode active materials to each other and also binds the positive electrode active material to the current collector 12. Any binder can be used as long as it can bond as described above, and examples thereof include fluororesins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). Further, other than the above, as the binder, for example, cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamideimide resin, or the like may be used. Further, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron-conductive conductive polymer include polyacetylene and the like. In this case, since the binder also exhibits the function of the conductive auxiliary agent particles, it is not necessary to add the conductive auxiliary agent. As the ion-conductive conductive polymer, for example, those having ion conductivity such as lithium ion can be used. For example, polymer compounds (polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide) can be used. , Polyphosphazene, etc.) and a lithium salt such as LiClO 4 , LiBF 4 , LiPF 6 or an alkali metal salt mainly containing lithium, and the like. Examples of the polymerization initiator used for complexing include a photopolymerization initiator or a thermal polymerization initiator compatible with the above monomers.

正極活物質層14中のバインダーの含有量も特に限定されないが、添加する場合には正極活物質の質量に対して0.5〜5質量部であることが好ましい。 The content of the binder in the positive electrode active material layer 14 is not particularly limited, but when added, it is preferably 0.5 to 5 parts by mass with respect to the mass of the positive electrode active material.

(正極用導電助剤)
正極用導電助剤も、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
(Conductive assistant for positive electrode)
The conductive additive for the positive electrode is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and a known conductive additive can be used. Examples thereof include carbon-based materials such as graphite and carbon black, fine metal powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and fine metal powders, and conductive oxides such as ITO.

正極活物質層14中のバインダーの含有量は特に限定されないが、正極活物質、導電助剤及びバインダーの質量の和を基準にして、1〜10質量部であることが好ましい。正極活物質とバインダーの含有量を上記範囲とすることにより、得られた正極活物質層14において、バインダーの量が少なすぎて強固な正極活物質層を形成できなくなる傾向を抑制できる。また、電気容量に寄与しないバインダーの量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向も抑制できる。 The content of the binder in the positive electrode active material layer 14 is not particularly limited, but it is preferably 1 to 10 parts by mass based on the sum of the masses of the positive electrode active material, the conductive additive and the binder. By setting the contents of the positive electrode active material and the binder within the above ranges, it is possible to suppress the tendency of the obtained positive electrode active material layer 14 that the amount of the binder is too small to form a strong positive electrode active material layer. Further, the amount of the binder that does not contribute to the electric capacity is increased, and it is possible to suppress the tendency that it is difficult to obtain a sufficient volume energy density.

正極活物質層14中の導電助剤の含有量も特に限定されないが、添加する場合には正極活物質の質量に対して0.5〜5質量部であることが好ましい。 The content of the conductive additive in the positive electrode active material layer 14 is not particularly limited, but when added, it is preferably 0.5 to 5 parts by mass with respect to the mass of the positive electrode active material.

<電解質>
電解質は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解液(非水電解質溶液)であることが好ましい。電解液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては特に限定されず、リチウムイオン二次電池の電解質として用いられるリチウム塩を用いることができる。例えば、リチウム塩としては、LiPF、LiBF、LiClO、LiFSI、LiBOB等の無機酸陰イオン塩、LiCFSO、(CFSONLi等の有機酸陰イオン塩等を用いることができる。
<Electrolyte>
The electrolyte is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the inside of the separator 18. The electrolyte is not particularly limited, and for example, in the present embodiment, an electrolyte solution containing a lithium salt (aqueous electrolyte solution, electrolyte solution using an organic solvent) can be used. However, since the electrolytic aqueous solution has a low decomposition voltage electrochemically, the withstand voltage at the time of charging is limited to a low level. Therefore, an electrolytic solution (nonaqueous electrolytic solution) using an organic solvent is preferable. As the electrolytic solution, a solution in which a lithium salt is dissolved in a non-aqueous solvent (organic solvent) is preferably used. The lithium salt is not particularly limited, and a lithium salt used as an electrolyte of a lithium ion secondary battery can be used. For example, as the lithium salt, inorganic acid anion salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiFSI and LiBOB, organic acid anion salts such as LiCF 3 SO 3 and (CF 3 SO 2 ) 2 NLi are used. be able to.

また、有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、等の非プロトン性高誘電率溶媒や、ジメチルカーボネート、エチルメチルカーボネート、等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒が挙げられる。これらの非プロトン性高誘電率溶媒と非プロトン性低粘度溶媒を適当な混合比で併用することが望ましい。更には、イミダゾリウム、アンモニウム、及びピリジニウム型のカチオンを用いたイオン性液体を使用することができる。対アニオンは特に限定されるものではないが、BF 、PF 、(CFSO等が挙げられる。イオン性液体は前述の有機溶媒と混合して使用することが可能である。
電解液のリチウム塩の濃度は、電気伝導性の点から、0.5〜2.0Mが好ましい。なお、この電解質の温度25℃における導電率は0.01S/m以上であることが好ましく、電解質塩の種類あるいはその濃度により調整される。
Examples of the organic solvent include aprotic high-dielectric constant solvents such as ethylene carbonate and propylene carbonate, and acetic acid esters such as dimethyl carbonate and ethyl methyl carbonate, and aprotic low viscosity such as propionic acid esters. Solvents may be mentioned. It is desirable to use these aprotic high dielectric constant solvents and aprotic low viscosity solvents together in an appropriate mixing ratio. Furthermore, ionic liquids using imidazolium, ammonium, and pyridinium type cations can be used. The counter anion is not particularly limited, and examples thereof include BF 4 , PF 6 , (CF 3 SO 2 ) 2 N − and the like. The ionic liquid can be used as a mixture with the above-mentioned organic solvent.
The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 2.0 M from the viewpoint of electrical conductivity. The conductivity of this electrolyte at a temperature of 25 ° C. is preferably 0.01 S / m or more, and is adjusted depending on the type of electrolyte salt or its concentration.

電解質を固体電解質やゲル電解質とする場合には、ポリ(ビニリデンフルオライド)等を高分子材料として含有することが可能である。
更に、本実施形態の電解液中には、必要に応じて各種添加剤を添加してもよい。添加剤としては、例えば、サイクル寿命向上を目的としたビニレンカーボネート、メチルビニレンカーボネート等や、過充電防止を目的としたビフェニル、アルキルビフェニル等や、脱酸や脱水を目的とした各種カーボネート化合物、各種カルボン酸無水物、各種含窒素及び含硫黄化合物が挙げられる。
When the electrolyte is a solid electrolyte or a gel electrolyte, poly (vinylidene fluoride) or the like can be contained as a polymer material.
Further, various additives may be added to the electrolytic solution of the present embodiment, if necessary. As the additive, for example, vinylene carbonate for the purpose of improving the cycle life, methyl vinylene carbonate, etc., biphenyl for the purpose of preventing overcharge, alkylbiphenyl, etc., various carbonate compounds for the purpose of deoxidation and dehydration, various Examples thereof include carboxylic acid anhydrides, various nitrogen-containing and sulfur-containing compounds.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[実施例1]
(安定化リチウム粉の作製)
内壁に邪魔板を取り付けたステンレススチール樹脂フラスコ容器に関東化学社のリチウムインゴット100gおよびWitco社のCarnation炭化水素オイルを加え、容器内を乾燥アルゴンで置換した。次いでこの容器を200℃まで加熱し、リチウムインゴットを溶融させた。溶融状態でこの混合物を10分間、容器を5°傾けた状態で5000rpmの回転速度で撹拌した後、撹拌を維持したまま1時間かけて室温まで冷却した。冷却後、二酸化炭素5gを攪拌を続けたまま5分間掛けて表面に供給して充填した。二酸化炭素が全て添加された時にこの攪拌を中止し、得られた粉末をヘキサンで洗浄することで安定化リチウム粉を得た。
[Example 1]
(Preparation of stabilized lithium powder)
A stainless steel resin flask container having a baffle attached to its inner wall was added with 100 g of a lithium ingot manufactured by Kanto Kagaku Co., Ltd. and Carnation hydrocarbon oil manufactured by Witco Co., Ltd., and the inside of the container was replaced with dry argon. Next, this container was heated to 200 ° C. to melt the lithium ingot. The mixture was stirred in the molten state for 10 minutes at a rotation speed of 5000 rpm with the container tilted at 5 °, and then cooled to room temperature over 1 hour while maintaining the stirring. After cooling, 5 g of carbon dioxide was supplied to the surface for 5 minutes while continuing stirring to fill the surface. When all the carbon dioxide was added, this stirring was stopped, and the obtained powder was washed with hexane to obtain a stabilized lithium powder.

(安定化リチウム粉と負極活物質の混合物の作製方法)
上記安定化リチウム粉を用い、安定化リチウム粉と負極活物質の混合物の作製を、露点マイナス50℃〜マイナス40℃のドライルーム中において、以下の手順で行った。N−メチルピロリドン50質量部中に、負極活物質(SiO)100質量部と、上記安定化リチウム粉7質量部とを加え、混合物を得た。得られた混合物をマグネチックスターラーで室温にて24時間攪拌することで、上記安定化リチウム粉と負極活物質との混合物を得た。
(Method for preparing mixture of stabilized lithium powder and negative electrode active material)
Using the stabilized lithium powder, a mixture of the stabilized lithium powder and the negative electrode active material was prepared in a dry room with a dew point of -50 ° C to -40 ° C according to the following procedure. To 50 parts by mass of N-methylpyrrolidone, 100 parts by mass of the negative electrode active material (SiO) and 7 parts by mass of the stabilized lithium powder were added to obtain a mixture. The obtained mixture was stirred with a magnetic stirrer at room temperature for 24 hours to obtain a mixture of the stabilized lithium powder and the negative electrode active material.

(リチウムをドープした負極の作製)
上記の方法で作製した安定化リチウム粉と負極活物質の混合物83質量部、導電助剤としてアセチレンブラック2質量部、バインダーとしてポリアミドイミド15質量部、及び溶剤としてN−メチルピロリドン82質量部を混合し、活物質層形成用のスラリーを調製した。このスラリーを、集電体として厚さ14μmの銅箔の一面に、リチウムをドープした活物質の塗布量が2.0mg/cmとなるように塗布し、100℃で乾燥することで安定化リチウム粉を含んだ負極活物質層を形成した。その後、ローラープレスにより150kgf/cmの圧力で集電体上に形成した安定化リチウム粉を含んだ負極活物質層を加圧成形し、真空中、350℃で3時間熱処理することで、リチウムをドープした負極活物質を得た。
(Preparation of negative electrode doped with lithium)
83 parts by mass of a mixture of the stabilized lithium powder and the negative electrode active material prepared by the above method, 2 parts by mass of acetylene black as a conductive aid, 15 parts by mass of polyamideimide as a binder, and 82 parts by mass of N-methylpyrrolidone as a solvent were mixed. Then, a slurry for forming an active material layer was prepared. This slurry was applied on one surface of a copper foil having a thickness of 14 μm as a current collector so that the amount of the lithium-doped active material applied was 2.0 mg / cm 2, and dried at 100 ° C. for stabilization. A negative electrode active material layer containing lithium powder was formed. After that, the negative electrode active material layer containing the stabilized lithium powder formed on the current collector with a roller press at a pressure of 150 kgf / cm 2 was pressure-molded, and heat-treated in vacuum at 350 ° C. for 3 hours to obtain lithium. A negative electrode active material doped with was obtained.

(評価用リチウムイオン二次電池の作製)
上記で作製したリチウムをドープした負極と、正極として銅箔にリチウム金属箔を貼り付けた対極とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んでアルミラミネートパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液(溶媒:EC/DEC=3/7(体積比))を注入した後、真空シールし、評価用のリチウムイオン二次電池を作製した。
(Preparation of lithium-ion secondary battery for evaluation)
The lithium-doped negative electrode produced above and a counter electrode obtained by sticking a lithium metal foil to a copper foil as a positive electrode were placed in an aluminum laminate pack with a separator made of a polyethylene microporous film sandwiched therebetween, and this aluminum laminate A 1 M LiPF 6 solution (solvent: EC / DEC = 3/7 (volume ratio)) was injected into the pack as an electrolytic solution and then vacuum-sealed to produce a lithium ion secondary battery for evaluation.

[実施例2〜8]
安定化リチウム粉の作製条件のうち撹拌速度を表1に示す値に変更した以外は実施例1と同様とし、実施例2〜8の安定化リチウム粉を得た。また、得られた安定化リチウム粉を用いて、実施例1と同様にして実施例2〜8の評価用リチウムイオン二次電池を作製した。
[Examples 2 to 8]
The stabilized lithium powders of Examples 2 to 8 were obtained in the same manner as in Example 1 except that the stirring speed was changed to the value shown in Table 1 among the conditions for producing the stabilized lithium powder. In addition, using the obtained stabilized lithium powder, lithium ion secondary batteries for evaluation of Examples 2 to 8 were produced in the same manner as in Example 1.

[実施例9〜17]
安定化リチウム粉の作製条件のうち撹拌時間を表1に示す値に変更した以外は実施例1と同様とし、実施例9〜17の安定化リチウム粉を得た。また、得られた安定化リチウム粉を用いて、実施例1と同様にして実施例9〜17の評価用リチウムイオン二次電池を作製した。
[Examples 9 to 17]
The stabilized lithium powders of Examples 9 to 17 were obtained in the same manner as in Example 1 except that the stirring time was changed to the value shown in Table 1 among the conditions for producing the stabilized lithium powder. Further, using the obtained stabilized lithium powder, lithium ion secondary batteries for evaluation of Examples 9 to 17 were produced in the same manner as in Example 1.

[実施例18〜27]
安定化リチウム粉の作製条件のうち加熱温度を表1に示す値に変更した以外は実施例1と同様とし、実施例18〜27の安定化リチウム粉を得た。また、得られた安定化リチウム粉を用いて、実施例1と同様にして実施例18〜27の評価用リチウムイオン二次電池を作製した。
[Examples 18 to 27]
The stabilized lithium powders of Examples 18 to 27 were obtained in the same manner as in Example 1 except that the heating temperature was changed to the value shown in Table 1 among the conditions for producing the stabilized lithium powder. In addition, using the obtained stabilized lithium powder, lithium ion secondary batteries for evaluation of Examples 18 to 27 were produced in the same manner as in Example 1.

[比較例1]
内壁に邪魔板の無いステンレススチール樹脂フラスコ容器を用い、容器を傾けない状態にしたこと以外は実施例1と同様とし、比較例1の評価用リチウムイオン二次電池を作製した。
[Comparative Example 1]
A lithium ion secondary battery for evaluation of Comparative Example 1 was produced in the same manner as in Example 1 except that a stainless steel resin flask container having no baffle on the inner wall was used and the container was not tilted.

<初期充放電効率の測定>
実施例及び比較例で作製した評価用リチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、電圧範囲を0.005Vから2.5Vまでとし、1C=1600mAh/gとしたときの0.05Cでの電流値で充放電を行った。これにより、初期充電容量、初期放電容量及び初期充放電効率を求めた。なお、初期充放電効率(%)は、初期充電容量に対する初期放電容量の割合(100×初期放電容量/初期充電容量)である。この初期充放電効率が高いほど、不可逆容量が低減されており、優れたドープ効果が得られていることを意味する。
<Measurement of initial charge / discharge efficiency>
Regarding the evaluation lithium-ion secondary batteries produced in the examples and comparative examples, a secondary battery charge / discharge tester (manufactured by Hokuto Denko Co., Ltd.) was used, and the voltage range was set from 0.005 V to 2.5 V, 1 C = 1600 mAh Charging / discharging was performed at a current value of 0.05 C when the value was / g. Thus, the initial charge capacity, the initial discharge capacity and the initial charge / discharge efficiency were obtained. The initial charge / discharge efficiency (%) is the ratio of the initial discharge capacity to the initial charge capacity (100 x initial discharge capacity / initial charge capacity). The higher the initial charge / discharge efficiency, the smaller the irreversible capacity, which means that the excellent doping effect is obtained.

<安定化リチウム粉のFD、欠損部の有無、欠損部が扇状の場合の中心角及びFDに対する深さRの割合の測定>
実施例及び比較例で作製した安定化リチウム粉について、電界放射型走査電子顕微鏡(JSM−6700F)を用い、加速電圧1kVで安定化リチウム粉の観察を行い、FD、欠損部の有無、欠損部が扇状の場合の中心角及びFDに対する深さRの割合の測定を行った。測定結果を表1に示す。
<Measurement of FD of Stabilized Lithium Powder, Presence / Absence of Defects, Center Angle when Defects are Fan-shaped, and Ratio of Depth R to FD>
Regarding the stabilized lithium powder produced in the examples and comparative examples, the stabilized lithium powder was observed at an accelerating voltage of 1 kV using a field emission scanning electron microscope (JSM-6700F), and FD, the presence or absence of a defect, and a defect The center angle and the ratio of the depth R to the FD in the case of a fan shape were measured. The measurement results are shown in Table 1.

Figure 0006690189
Figure 0006690189

表1に示すように実施例1〜27で作製された安定化リチウム粉は欠損部を有していることが確認され、この欠損部を有した安定化リチウム粉を用いて作製したリチウムイオン二次電池の初期充放電特性は、欠損部を有さない比較例1の安定化リチウム粉を用いて作製したリチウムイオン二次電池の初期充放電特性に比較して高い初期充放電効率が得られることが確認された。   As shown in Table 1, it was confirmed that the stabilized lithium powders produced in Examples 1 to 27 had a defective portion, and the lithium ion ions prepared using the stabilized lithium powder having this defective portion Regarding the initial charge / discharge characteristics of the secondary battery, a higher initial charge / discharge efficiency can be obtained as compared with the initial charge / discharge characteristics of the lithium-ion secondary battery manufactured using the stabilized lithium powder of Comparative Example 1 having no defective portion. It was confirmed.

本発明の安定化リチウム粉をプレドープに用いることでクラック等の欠陥が少ない電極が作製できる。また、上記製造方法で得られた電極を用いることで、初期効率が改善されたリチウムイオン二次電池を提供することができる。 By using the stabilized lithium powder of the present invention for pre-doping, an electrode with few defects such as cracks can be produced. Further, by using the electrode obtained by the above manufacturing method, it is possible to provide a lithium ion secondary battery having improved initial efficiency.

10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池
10 ... Positive electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 20 ... Negative electrode, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer, 30 ... Laminated body, 50 ... Case, 60 , 62 ... Lead, 100 ... Lithium ion secondary battery

Claims (6)

リチウム粒子の表面に被膜を有する安定化リチウム粉において、
前記安定化リチウム粉はその一部に欠損部を有し、
前記欠損部の形状は扇状であることを特徴とする安定化リチウム粉。
In a stabilized lithium powder having a coating on the surface of lithium particles,
The stabilized lithium powder have a defect in a part thereof,
The stabilized lithium powder is characterized in that the shape of the defective portion is fan-shaped .
前記欠損部の扇の中心角が5°以上150°以下であることを特徴する請求項に記載の安定化リチウム粉。 The stabilized lithium powder according to claim 1 , wherein a central angle of the fan of the defective portion is 5 ° or more and 150 ° or less. 前記安定化リチウム粉の平均フェレ径をFDとすると、FDが0.1μm以上106μm以下であることを特徴とする請求項1または2のいずれか1項に記載の安定化リチウム粉。   The FD is 0.1 μm or more and 106 μm or less, where FD is the average Feret diameter of the stabilized lithium powder, and the stabilized lithium powder according to claim 1 or 2. 前記安定化リチウム粉の欠損部の深さをRとすると、RがFDの0.05倍以上0.78倍以下であることを特徴とする請求項1乃至3のうちいずれか1項に記載の安定化リチウム粉。   4. When the depth of the defective portion of the stabilized lithium powder is R, R is 0.05 times or more and 0.78 times or less of FD, The method according to claim 1. Stabilized lithium powder. 請求項1乃至4のうちいずれか1項に記載の前記安定化リチウム粉を用いて負極にリチウムをドープした負極。   A negative electrode in which the negative electrode is doped with lithium using the stabilized lithium powder according to any one of claims 1 to 4. 請求項5に記載の前記負極と、正極と、電解質と、を有するリチウムイオン二次電池。
A lithium ion secondary battery comprising the negative electrode according to claim 5, a positive electrode, and an electrolyte.
JP2015213275A 2015-10-29 2015-10-29 Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery Expired - Fee Related JP6690189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015213275A JP6690189B2 (en) 2015-10-29 2015-10-29 Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015213275A JP6690189B2 (en) 2015-10-29 2015-10-29 Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2017082303A JP2017082303A (en) 2017-05-18
JP6690189B2 true JP6690189B2 (en) 2020-04-28

Family

ID=58711847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213275A Expired - Fee Related JP6690189B2 (en) 2015-10-29 2015-10-29 Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6690189B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102327179B1 (en) 2017-08-10 2021-11-16 주식회사 엘지에너지솔루션 Pre-lithiation method of lithium secondary battery anode using lithium metal-ceramic thin layer
WO2019065287A1 (en) * 2017-09-26 2019-04-04 Tdk株式会社 Lithium ion secondary battery
CN110419134B (en) * 2017-09-26 2022-11-11 Tdk株式会社 Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using same
CN114388790B (en) * 2020-10-21 2023-11-14 比亚迪股份有限公司 Pre-lithiation slurry for battery, negative plate for battery and lithium ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463817B2 (en) * 2009-09-16 2014-04-09 日産自動車株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5912493B2 (en) * 2011-12-15 2016-04-27 出光興産株式会社 Composition comprising lithium particles, electrode and battery
US8920925B2 (en) * 2012-11-09 2014-12-30 Corning Incorporated Stabilized lithium composite particles

Also Published As

Publication number Publication date
JP2017082303A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
US10164245B2 (en) High performance silicon electrodes having improved interfacial adhesion between binder, silicon and conductive particles
US9034521B2 (en) Anode material of excellent conductivity and high power secondary battery employed with the same
KR20170075661A (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery comprising the same
JP4191456B2 (en) Non-aqueous secondary battery negative electrode, non-aqueous secondary battery, method for producing non-aqueous secondary battery negative electrode, and electronic device using non-aqueous secondary battery
WO2013021843A1 (en) Sulfide-based solid-state battery
JP2011165404A (en) Method of manufacturing electrode for battery, electrode obtained by this method, and battery with this electrode
WO2011086689A1 (en) Electrode for batteries, battery comprising the electrode for batteries, and method for producing the electrode for batteries
JP6690189B2 (en) Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery
JP6460400B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP4818498B2 (en) Nonaqueous electrolyte secondary battery
JP6265521B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
JP6375843B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP6375842B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
US9825289B2 (en) Stabilized lithium powder, and negative electrode and lithium ion secondary battery using the same
JP2018063755A (en) Stabilized lithium powder and lithium ion secondary battery using the same
CN113646921A (en) Nonaqueous electrolyte secondary battery
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2020158834A (en) Metal halide particle, and all-solid battery and nonaqueous lithium ion battery including the same
JP2020158835A (en) Metal halide foil, and all-solid battery and nonaqueous lithium ion battery including the same
CN115133015A (en) Lithium ion secondary battery
KR101122938B1 (en) Preparation method of electrode active material particle
JP6596877B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP2021150111A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US10290866B2 (en) Stabilized lithium powder
JP6607388B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6690189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees