JP2017082303A - Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery - Google Patents

Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery Download PDF

Info

Publication number
JP2017082303A
JP2017082303A JP2015213275A JP2015213275A JP2017082303A JP 2017082303 A JP2017082303 A JP 2017082303A JP 2015213275 A JP2015213275 A JP 2015213275A JP 2015213275 A JP2015213275 A JP 2015213275A JP 2017082303 A JP2017082303 A JP 2017082303A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium powder
stabilized
lithium
stabilized lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015213275A
Other languages
Japanese (ja)
Other versions
JP6690189B2 (en
Inventor
山本 裕司
Yuji Yamamoto
裕司 山本
一摩 秋元
Kazuma Akimoto
一摩 秋元
匡広 土屋
Masahiro Tsuchiya
匡広 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015213275A priority Critical patent/JP6690189B2/en
Publication of JP2017082303A publication Critical patent/JP2017082303A/en
Application granted granted Critical
Publication of JP6690189B2 publication Critical patent/JP6690189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a stabilized lithium powder that can suppress damage to a negative electrode during pre-doping and improve the initial charge/discharge efficiency.SOLUTION: Provided is a stabilized lithium powder having a coating on the surface of lithium particles and having a fan-shaped lacking part having a central angle of 5 to 150° in a portion thereof, and in which the average Feret diameter (FD) preferably is 0.1 to 106 μm.EFFECT: In said stabilized lithium powder, the stress during pressing is concentrated at the lacking part and the stabilized lithium powder can be easily crushed, and the doping can be performed with a small pressing pressure, thereby the cracking of negative electrode can be suppressed and the stabilized lithium powder is swiftly crushed to also promote uniform doping, and when making a lithium secondary battery using said negative electrode, the initial charge/discharge efficiency can be improved.SELECTED DRAWING: Figure 1

Description

本発明は、安定化リチウム粉、それを用いた負極、及びリチウムイオン二次電池に関する。   The present invention relates to stabilized lithium powder, a negative electrode using the same, and a lithium ion secondary battery.

リチウムイオン二次電池は、ニッケルカドミウム電池、ニッケル水素電池等と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。また、ハイブリッド自動車や、電気自動車用に搭載される電源として有力な候補ともなっている。そして、近年の携帯電子機器の小型化、高機能化に伴い、これらの電源となるリチウムイオン二次電池への更なる高容量化が期待されている。   Lithium ion secondary batteries are widely applied as power sources for portable electronic devices because they are lighter and have a higher capacity than nickel cadmium batteries, nickel metal hydride batteries, and the like. It is also a promising candidate as a power source for use in hybrid vehicles and electric vehicles. With the recent miniaturization and higher functionality of portable electronic devices, further increase in capacity is expected for lithium ion secondary batteries that serve as these power sources.

現在、リチウムイオン二次電池等の電気化学デバイスの負極活物質として、黒鉛等の炭素材料より充放電容量の大きいシリコンや酸化シリコン等の合金系負極活物質が数多く研究されている。しかし、負極活物質としてこのような材料を用いた場合、不可逆容量が生成する。この解決手段として、リチウムイオン二次電池の主に負極に対して予めリチウムイオンをドープすることによりリチウムイオン電池内の不可逆容量を抑制するプレドープ技術が知られている。
その一つとして、金属リチウム粉末を利用し、その金属リチウム粉末とバインダー及び導電材からなる混合物を活物質層上に塗布してプレドープを行う方法が提案されている(特許文献1参照)
Currently, many researches have been conducted on negative electrode active materials for electrochemical devices such as lithium ion secondary batteries, such as silicon and silicon oxide, which have a larger charge / discharge capacity than carbon materials such as graphite. However, when such a material is used as the negative electrode active material, an irreversible capacity is generated. As a solution to this problem, a pre-doping technique is known that suppresses the irreversible capacity in a lithium ion battery by doping lithium ions in advance mainly on the negative electrode of the lithium ion secondary battery.
As one of them, a method has been proposed in which metallic lithium powder is used, and a mixture comprising the metallic lithium powder, a binder, and a conductive material is applied onto the active material layer to perform pre-doping (see Patent Document 1).

通常、リチウムイオン二次電池に用いる電極は負極活物質を含む層を集電体上に形成した後、プレスにより密着させる工程を有するが、ドープ工程はそのプレスにより安定化リチウム粉のLi金属が露出することでドープが進行する。
したがって、安定化リチウム粉に求められる特性は、リチウムの安定性向上のみならず、優れた電池特性を生み出すドープ特性も求められている。
Usually, an electrode used in a lithium ion secondary battery has a step of forming a layer containing a negative electrode active material on a current collector and then bringing it into close contact with a press. Dope advances by exposing.
Therefore, the characteristics required for the stabilized lithium powder are not only for improving the stability of lithium, but also for doping characteristics that produce excellent battery characteristics.

特開2008−98151号公報JP 2008-98151 A

しかしながら、上記特許文献に記載されているような安定化リチウム粉は球状のものが多い、球状の安定化リチウム粉を用いると、電池にした際の初期充放電特性が劣化してしまうという問題があった。本発明者らは鋭意研究を重ねた結果、安定化リチウム粉をプレスして密着させる工程において負極にクラック等の欠陥が生じていることが原因であることを見出した。   However, many of the stabilized lithium powders described in the above-mentioned patent documents are spherical. If spherical stabilized lithium powder is used, there is a problem that the initial charge / discharge characteristics of the battery deteriorate. there were. As a result of intensive studies, the present inventors have found that a defect such as a crack is generated in the negative electrode in the step of pressing and adhering the stabilized lithium powder.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、電池にした際の初期充放電効率を劣化させず、かつ効率的なドープを行うことが可能な安定化リチウム粉及びこれを用いたリチウム二次電池を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and a stabilized lithium powder capable of performing efficient dope without deteriorating initial charge / discharge efficiency when the battery is formed, and the same An object of the present invention is to provide a lithium secondary battery using.

上記課題を解決するため、本発明の安定化リチウム粉は、リチウム粒子の表面に被膜を有し、更にその一部に欠損部を有することを特徴とする。   In order to solve the above-mentioned problems, the stabilized lithium powder of the present invention is characterized in that it has a coating on the surface of the lithium particles, and further has a deficient portion in a part thereof.

これによれば、プレス時の応力が欠損部に集中し、安定化リチウム粉の破砕が容易になり、小さなプレス圧でドープが可能となるので、負極のクラックを抑制できる。また、安定化リチウム粉が速やかに破砕されることで均一なドープも進行させることができる。これにより、この負極を用いてリチウム二次電池を作製した際に初期充放電効率を向上させることができる。   According to this, stress at the time of pressing is concentrated on the defect portion, the stabilized lithium powder is easily crushed, and doping can be performed with a small pressing pressure, so that cracking of the negative electrode can be suppressed. Moreover, uniform dope can also be advanced because a stabilized lithium powder is crushed rapidly. Thereby, when a lithium secondary battery is produced using this negative electrode, the initial charge / discharge efficiency can be improved.

本発明の安定化リチウム粉は更に、前記欠損部が走査型電子顕微鏡(SEM)による観察像において扇状の欠損を有していることが好ましい。   In the stabilized lithium powder of the present invention, it is further preferable that the defect portion has a fan-shaped defect in an image observed with a scanning electron microscope (SEM).

本発明の安定化リチウム粉は更に、前記欠損部の扇の中心角が5°以上150°以下であることが好ましい。   In the stabilized lithium powder of the present invention, the center angle of the fan of the defect portion is preferably 5 ° or more and 150 ° or less.

本発明の安定化リチウム粉の平均フェレ径をFDとすると、FDが0.1μm以上106μm以下であることが好ましい。なお、フェレ径とは図1に示すように粒子内で最も長い2点間の距離で定義される。   When the average ferret diameter of the stabilized lithium powder of the present invention is FD, the FD is preferably 0.1 μm or more and 106 μm or less. The ferret diameter is defined by the longest distance between two points in the particle as shown in FIG.

本発明の安定化リチウム粉の欠損部の深さをRとすると、RがFDの0.05倍以上0.78倍以下であることを特徴とする。   When the depth of the defect portion of the stabilized lithium powder of the present invention is R, R is 0.05 times or more and 0.78 times or less of FD.

これらによれば、より初期充放電効率が向上する。   According to these, the initial charge / discharge efficiency is further improved.

本発明によれば、電池にした際の初期充放電効率を劣化させず、かつ効率的なドープを行うことが可能な安定化リチウム粉、及びこれを用いた負極及びリチウム二次電池を提供することができる。   According to the present invention, a stabilized lithium powder capable of performing efficient dope without deteriorating initial charge / discharge efficiency when formed into a battery, and a negative electrode and a lithium secondary battery using the same are provided. be able to.

扇状の欠損部を有する安定化リチウム粉のSEM観察像の模式図である。It is a schematic diagram of the SEM observation image of the stabilized lithium powder which has a fan-shaped defect | deletion part. 本実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery of this embodiment.

以下、本発明について好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

<安定化リチウム粉>
本実施形態の安定化リチウム粉は、リチウム粒子の表面に被膜を有する安定化リチウム粉において、前記安定化リチウム粉はその一部に欠損部を有することを特徴としている。
<Stabilized lithium powder>
The stabilized lithium powder of the present embodiment is characterized in that in the stabilized lithium powder having a film on the surface of the lithium particles, the stabilized lithium powder has a deficient portion in a part thereof.

また、安定化リチウム粉の欠損部を無視した全体形状は通常、略球状である。   Moreover, the whole shape ignoring the defect | deletion part of stabilized lithium powder is a substantially spherical shape normally.

(欠損部)
欠損部の形状は、扇状、四角形状、円状等、特に限定されないが、扇状であることがより好ましい。
(Defect)
The shape of the defect portion is not particularly limited, such as a fan shape, a square shape, or a circular shape, but is preferably a fan shape.

本実施形態での一部に欠損部を有する安定化リチウム粉とは図1に示すような、安定化リチウム粉の表面に凹部を有することを意味する。なお、欠損部の有無は、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用い、試料台を回転及び傾斜を変化させて観察することで判断した。欠損部の深さRは、SEM観察像における安定化リチウム粉の面積が最小となる場合が観察できる安定化リチウム粉において、欠損部の開口部の幅をLとすると、欠損部の最深部からLを2等分する点までの距離とし、最低200個以上の安定化リチウム粉に対して測定を行い、平均値を求めた。 The stabilized lithium powder having a deficient part in the present embodiment means that the surface of the stabilized lithium powder has a recess as shown in FIG. In addition, the presence or absence of the defect | deletion part was judged by using a scanning electron microscope (SEM: Scanning Electron Microscope) and observing a sample stand changing rotation and inclination. The depth R of the defect portion is the stabilized lithium powder that can be observed when the area of the stabilized lithium powder in the SEM observation image is minimum. L was defined as the distance to the point that bisects, and measurements were made on at least 200 stabilized lithium powders, and the average value was obtained.

前記安定化リチウム粉の欠損部の深さRは、FDの0.05倍以上0.78倍以下であることが好ましい。さらにFDの0.3倍以上0.78倍以下であることが好ましい。 The depth R of the defect portion of the stabilized lithium powder is preferably 0.05 times or more and 0.78 times or less of FD. Further, it is preferably 0.3 times or more and 0.78 times or less of FD.

上記安定化リチウム粉の扇の中心角は、5°以上150°以下であることが好ましい。さらに、10°以上90°以下であることがより好ましい。   The central angle of the stabilized lithium powder fan is preferably 5 ° or more and 150 ° or less. Further, it is more preferably 10 ° or more and 90 ° or less.

中心角の測定方法は、SEMで観察を行った安定化リチウム粉の観察像の面積が最小になる場合において、欠損部の辺を延長させ、分度器を使用して測定を行った。上記操作を最低200個以上の安定化リチウム粉に対して行い、平均値を求めた。   The central angle was measured using a protractor by extending the side of the defect when the area of the observed image of the stabilized lithium powder observed with the SEM was minimized. The above operation was performed on at least 200 stabilized lithium powders, and an average value was obtained.

欠損部の深さRおよび欠損部の形状や中心角が上記範囲内である場合、プレス時の応力が欠損部に集中し、安定化リチウム粉の破砕が容易になり、効率的なリチウムのドープが可能となる。 When the depth R of the defect part and the shape and center angle of the defect part are within the above ranges, the stress during pressing is concentrated on the defect part, and the stabilized lithium powder can be easily crushed. Is possible.

上記安定化リチウム粉の平均フェレ径は、塗布後の電極表面での均一分散性の観点から、0.1μm以上106μm以下であることが好ましい。さらに、1μm以上53μm以下であることがより好ましい。   The average ferret diameter of the stabilized lithium powder is preferably from 0.1 μm to 106 μm from the viewpoint of uniform dispersibility on the electrode surface after application. Further, it is more preferably 1 μm or more and 53 μm or less.

フェレ径の測定方法は、SEMで観察を行った安定化リチウム粉の観察像を二値化し、画像解析によって求めた。この操作を最低200個以上の安定化リチウム粉に対して行い、平均値を求めた。なお、フェレ径とは粒子内で最も長い2点間の距離と定義する。   The ferret diameter was measured by binarizing the observed image of the stabilized lithium powder observed by SEM and obtaining the image by image analysis. This operation was performed on at least 200 stabilized lithium powders, and an average value was obtained. The ferret diameter is defined as the longest distance between two points in the particle.

(安定化リチウム粉の製造方法)
本実施形態の安定化リチウム粉は、炭化水素オイルにリチウムインゴットを投入し、これをリチウムの融点以上に加熱し、この溶融リチウム−炭化水素オイル混合物を十分な時間撹拌して分散液を作ったのち、撹拌を続けた状態で徐々に冷却し、この分散液が十分に冷却された状態で二酸化炭素(CO)を接触させて表面に安定被膜を形成し、これを乾燥することによって製造される。
(Method for producing stabilized lithium powder)
In the stabilized lithium powder of this embodiment, a lithium ingot was added to hydrocarbon oil, this was heated to a melting point or higher of lithium, and this molten lithium-hydrocarbon oil mixture was stirred for a sufficient time to form a dispersion. After that, the mixture is gradually cooled in a state where stirring is continued, and in a state where the dispersion is sufficiently cooled, carbon dioxide (CO 2 ) is contacted to form a stable film on the surface and dried. The

容器には内壁に邪魔板を取り付けた耐熱性の容器を用い、容器を斜め3°以上10°以下の範囲に傾けて撹拌を行う。回転数は1000rpm以上が好ましく、4000rpm以上6000rpm以下がさらに好ましい。また、前記邪魔板の大きさは特に問わないが、容器半径に対し、1〜5%程度のものが好ましい。 As the container, a heat-resistant container having a baffle plate attached to the inner wall is used, and stirring is performed while the container is inclined at an angle of 3 ° to 10 °. The rotation speed is preferably 1000 rpm or more, more preferably 4000 rpm or more and 6000 rpm or less. The size of the baffle plate is not particularly limited, but is preferably about 1 to 5% of the container radius.

上記炭化水素オイルは、リチウムインゴットを1質量部としたとき、溶融後の均一分散性の観点から1〜30質量部であることが好ましく、2〜15質量部であることがより好ましい。   From the viewpoint of uniform dispersibility after melting, the hydrocarbon oil is preferably 1 to 30 parts by mass, more preferably 2 to 15 parts by mass when the lithium ingot is 1 part by mass.

上記溶融リチウム−炭化水素オイル混合物の撹拌時間は5分以上が好ましい。   The stirring time of the molten lithium-hydrocarbon oil mixture is preferably 5 minutes or more.

上記分散液の冷却後の温度は100℃以下が好ましく、50℃以下がより好ましい。また、上記分散液は1時間以上かけて徐々に冷却することが好ましい。   The temperature after cooling the dispersion is preferably 100 ° C. or lower, and more preferably 50 ° C. or lower. Moreover, it is preferable that the said dispersion liquid is gradually cooled over 1 hour or more.

上記二酸化炭素は、リチウムインゴットを1質量部としたとき、0.01〜0.18質量部がこの溶融リチウム−炭化水素オイル混合物に加えられることが好ましく、0.08〜0.1質量部であることがより好ましい。また、分散液製造時の攪拌条件は、導入される二酸化炭素と分散された金属との十分な接触をもたらすために1000rpm以上であることが好ましい。   The carbon dioxide, when the lithium ingot is 1 part by mass, is preferably added in an amount of 0.01 to 0.18 parts by mass to the molten lithium-hydrocarbon oil mixture, and 0.08 to 0.1 parts by mass. More preferably. Moreover, it is preferable that the stirring conditions at the time of manufacturing the dispersion be 1000 rpm or more in order to bring sufficient contact between the introduced carbon dioxide and the dispersed metal.

<負極>
負極20は後述するように負極用集電体22上に負極活物質層24を形成することで作製することができる。
(負極用集電体)
負極用集電体22は、導電性の板材であればよく、例えば、銅、ニッケル又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
(負極活物質層)
負極活物質層24は、負極活物質、負極用バインダー、及び、必要に応じた量の負極用導電助剤から主に構成されるものである。
(負極活物質)
負極活物質としては、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SiO、またはそれらの混合物等の酸化シリコンや、TiO、SnO、Fe等の酸化物を主体とする結晶質・非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
(負極用バインダー)
負極用バインダーとしてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂に加え、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等、ポリアクリル酸系樹脂が挙げられる。
(負極用導電助剤)
負極用導電助剤としてはアセチレンブラック、ファーネスブラック、カーボンナノチューブ等が挙げられる。
<Negative electrode>
The negative electrode 20 can be produced by forming a negative electrode active material layer 24 on a negative electrode current collector 22 as described later.
(Current collector for negative electrode)
The negative electrode current collector 22 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as copper, nickel, an alloy thereof, or stainless steel can be used.
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a negative electrode binder, and an amount of a negative electrode conductive additive as required.
(Negative electrode active material)
As the negative electrode active material, carbon materials such as graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon capable of occluding and releasing lithium ions (intercalation / deintercalation or doping / dedoping) Mainly composed of metal that can be combined with lithium such as Al, Si, and Sn, silicon oxide such as SiO, SiO 2 , or a mixture thereof, and oxide such as TiO 2 , SnO 2 , and Fe 2 O 3 Examples thereof include particles containing a crystalline / amorphous compound, lithium titanate (Li 4 Ti 5 O 12 ), or the like.
(Binder for negative electrode)
Negative electrode binders such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), as well as cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamideimide resin, and other polyacrylic acid-based binders Resin.
(Conductive aid for negative electrode)
Examples of the conductive aid for the negative electrode include acetylene black, furnace black, and carbon nanotube.

(安定化リチウム粉と負極活物質の混合物の作製方法)
上述のプロセスにて作製した安定化リチウム粉と負極活物質を溶媒中に分散させ、これを撹拌し、その後溶媒を乾燥することで安定化リチウム粉と負極活物質の混合物が得られる。
(Method for preparing a mixture of stabilized lithium powder and negative electrode active material)
The mixture of the stabilized lithium powder and the negative electrode active material is obtained by dispersing the stabilized lithium powder and the negative electrode active material prepared in the above-described process in a solvent, stirring the resultant, and then drying the solvent.

この時、使用する溶媒はN−メチルピロリドン、トルエン、キシレン、メチルエチルケトン等の脱水した溶剤を用いる。 At this time, the solvent to be used is a dehydrated solvent such as N-methylpyrrolidone, toluene, xylene, or methyl ethyl ketone.

上記撹拌方法としては特に限定は無く、マグネチックスターラーやハイブリッドミキサー等、既知の方法を使うことが可能である。   The stirring method is not particularly limited, and a known method such as a magnetic stirrer or a hybrid mixer can be used.

(リチウムをドープした負極の作製方法)
上記のプロセスで作製した安定化リチウム粉と負極活物質の混合物に導電助剤、バインダー及び溶剤を所定の割合で混合し、活物質層形成用のスラリーを調製した後、このスラリーを銅箔に塗布し、乾燥することで安定化リチウム粉を含んだ負極活物質層を形成する。その後、ローラープレスにより安定化リチウム粉を含んだ負極活物質層を加圧成形し、真空中で熱処理することで、リチウムをドープした負極が得られる。
(Production method of negative electrode doped with lithium)
A mixture of the stabilized lithium powder and negative electrode active material prepared in the above process is mixed with a conductive additive, a binder, and a solvent at a predetermined ratio to prepare a slurry for forming an active material layer. The negative electrode active material layer containing the stabilized lithium powder is formed by applying and drying. Thereafter, the negative electrode active material layer containing the stabilized lithium powder is pressure-molded by a roller press and heat-treated in a vacuum to obtain a lithium-doped negative electrode.

上記プレス方法としては特に限定は無く、ハンドプレスやローラープレス等、既知の方法を使うことが可能である。   The pressing method is not particularly limited, and a known method such as a hand press or a roller press can be used.

<リチウムイオン二次電池>
図2に本実施形態のリチウムイオン二次電池の模式断面図を示す。
<Lithium ion secondary battery>
FIG. 2 shows a schematic cross-sectional view of the lithium ion secondary battery of the present embodiment.

上記の通り作製されたリチウムをドープした負極20と、正極10と、電解質を含浸させたセパレータ18とを図2のように作製することでリチウムイオン二次電池100を作製することができる。ここで、正極10は、正極集電体12上に正極活物質層14を形成することで作製することができる。なお、図面中60と62は、それぞれ正極と負極の引出し電極を示す。   The lithium ion secondary battery 100 can be manufactured by manufacturing the lithium-doped negative electrode 20, the positive electrode 10, and the separator 18 impregnated with the electrolyte as shown in FIG. 2 as described above. Here, the positive electrode 10 can be produced by forming the positive electrode active material layer 14 on the positive electrode current collector 12. In the drawings, reference numerals 60 and 62 denote a positive electrode and a negative electrode, respectively.

<正極>
(正極用集電体)
正極用集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
<Positive electrode>
(Current collector for positive electrode)
The positive electrode current collector 12 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as aluminum, an alloy thereof, or stainless steel can be used.

(正極活物質層)
正極活物質層14は、正極活物質、バインダー、及び、必要に応じた量の導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a binder, and a conductive auxiliary agent in an amount as necessary.

(正極活物質)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンと該リチウムイオンのカウンターアニオン(例えば、PF )とのドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMnMaO(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物が挙げられる。
(Positive electrode active material)
Examples of the positive electrode active material include occlusion and release of lithium ions, desorption and insertion (intercalation) of lithium ions, or doping and dedoping of lithium ions and counter anions (for example, PF 6 ) of the lithium ions. The electrode is not particularly limited as long as it can be reversibly advanced, and a known electrode active material can be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and the general formula: LiNi x Co y Mn z MaO 2 (x + y + z + a = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0 ≦ a ≦ 1, and M is one or more elements selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr) Oxide, lithium vanadium compound (LiV 2 O 5 ), olivine type LiMPO 4 (where M is one or more elements selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr, or VO) shown), and composite metal oxides of lithium titanate (Li 4 Ti 5 O 12) , LiNi x Co y Al z O 2 (0.9 <x + y + z <1.1) , etc.

(正極用バインダー)
正極用バインダーは、正極活物質同士を結合すると共に、正極活物質と集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂が挙げられる。更に、上記の他に、バインダーとして、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、バインダーが導電助剤粒子の機能も発揮するので導電助剤を添加しなくてもよい。イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリフォスファゼン等)のモノマーと、LiClO、LiBF、LiPF等のリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。
(Binder for positive electrode)
The positive electrode binder binds the positive electrode active materials and the current collector 12 together with the positive electrode active materials. The binder is not particularly limited as long as the above-described bonding is possible, and examples thereof include fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). In addition to the above, for example, cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamideimide resin, or the like may be used as the binder. Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene. In this case, since the binder also exhibits the function of the conductive assistant particles, it is not necessary to add the conductive assistant. As the ion-conductive conductive polymer, for example, those having ion conductivity such as lithium ion can be used. For example, polymer compounds (polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide) , Polyphosphazene, etc.) and a lithium salt such as LiClO 4 , LiBF 4 , LiPF 6 , or an alkali metal salt mainly composed of lithium, and the like. Examples of the polymerization initiator used for the combination include a photopolymerization initiator or a thermal polymerization initiator that is compatible with the above-described monomer.

正極活物質層14中のバインダーの含有量も特に限定されないが、添加する場合には正極活物質の質量に対して0.5〜5質量部であることが好ましい。 The content of the binder in the positive electrode active material layer 14 is not particularly limited, but when added, it is preferably 0.5 to 5 parts by mass with respect to the mass of the positive electrode active material.

(正極用導電助剤)
正極用導電助剤も、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
(Conductive aid for positive electrode)
The conductive auxiliary agent for the positive electrode is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and a known conductive auxiliary agent can be used. Examples thereof include carbon-based materials such as graphite and carbon black, metal fine powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO.

正極活物質層14中のバインダーの含有量は特に限定されないが、正極活物質、導電助剤及びバインダーの質量の和を基準にして、1〜10質量部であることが好ましい。正極活物質とバインダーの含有量を上記範囲とすることにより、得られた正極活物質層14において、バインダーの量が少なすぎて強固な正極活物質層を形成できなくなる傾向を抑制できる。また、電気容量に寄与しないバインダーの量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向も抑制できる。 Although content of the binder in the positive electrode active material layer 14 is not specifically limited, It is preferable that it is 1-10 mass parts on the basis of the sum of the mass of a positive electrode active material, a conductive support agent, and a binder. By making content of a positive electrode active material and a binder into the said range, in the obtained positive electrode active material layer 14, the amount of binders is too small and the tendency which cannot form a strong positive electrode active material layer can be suppressed. In addition, the amount of the binder that does not contribute to the electric capacity increases, and the tendency that it is difficult to obtain a sufficient volume energy density can be suppressed.

正極活物質層14中の導電助剤の含有量も特に限定されないが、添加する場合には正極活物質の質量に対して0.5〜5質量部であることが好ましい。 The content of the conductive additive in the positive electrode active material layer 14 is not particularly limited, but when added, it is preferably 0.5 to 5 parts by mass with respect to the mass of the positive electrode active material.

<電解質>
電解質は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解液(非水電解質溶液)であることが好ましい。電解液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては特に限定されず、リチウムイオン二次電池の電解質として用いられるリチウム塩を用いることができる。例えば、リチウム塩としては、LiPF、LiBF、LiClO、LiFSI、LiBOB等の無機酸陰イオン塩、LiCFSO、(CFSONLi等の有機酸陰イオン塩等を用いることができる。
<Electrolyte>
The electrolyte is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. The electrolyte is not particularly limited, and for example, in the present embodiment, an electrolytic solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, so that the withstand voltage during charging is limited to a low level. As the electrolytic solution, a lithium salt dissolved in a non-aqueous solvent (organic solvent) is preferably used. It does not specifically limit as lithium salt, The lithium salt used as an electrolyte of a lithium ion secondary battery can be used. For example, as the lithium salt, inorganic acid anion salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiFSI, and LiBOB, organic acid anion salts such as LiCF 3 SO 3 , (CF 3 SO 2 ) 2 NLi, and the like are used. be able to.

また、有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、等の非プロトン性高誘電率溶媒や、ジメチルカーボネート、エチルメチルカーボネート、等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒が挙げられる。これらの非プロトン性高誘電率溶媒と非プロトン性低粘度溶媒を適当な混合比で併用することが望ましい。更には、イミダゾリウム、アンモニウム、及びピリジニウム型のカチオンを用いたイオン性液体を使用することができる。対アニオンは特に限定されるものではないが、BF 、PF 、(CFSO等が挙げられる。イオン性液体は前述の有機溶媒と混合して使用することが可能である。
電解液のリチウム塩の濃度は、電気伝導性の点から、0.5〜2.0Mが好ましい。なお、この電解質の温度25℃における導電率は0.01S/m以上であることが好ましく、電解質塩の種類あるいはその濃度により調整される。
Moreover, as the organic solvent, for example, aprotic high dielectric constant solvents such as ethylene carbonate and propylene carbonate, aprotic low viscosity such as acetic acid esters and propionic acid esters such as dimethyl carbonate and ethyl methyl carbonate, etc. A solvent is mentioned. It is desirable to use these aprotic high dielectric constant solvents and aprotic low viscosity solvents in combination at an appropriate mixing ratio. Furthermore, ionic liquids using imidazolium, ammonium, and pyridinium type cations can be used. The counter anion is not particularly limited, and examples thereof include BF 4 , PF 6 , (CF 3 SO 2 ) 2 N − and the like. The ionic liquid can be used by mixing with the organic solvent described above.
The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 2.0 M from the viewpoint of electrical conductivity. The conductivity of the electrolyte at 25 ° C. is preferably 0.01 S / m or more, and is adjusted by the type of electrolyte salt or its concentration.

電解質を固体電解質やゲル電解質とする場合には、ポリ(ビニリデンフルオライド)等を高分子材料として含有することが可能である。
更に、本実施形態の電解液中には、必要に応じて各種添加剤を添加してもよい。添加剤としては、例えば、サイクル寿命向上を目的としたビニレンカーボネート、メチルビニレンカーボネート等や、過充電防止を目的としたビフェニル、アルキルビフェニル等や、脱酸や脱水を目的とした各種カーボネート化合物、各種カルボン酸無水物、各種含窒素及び含硫黄化合物が挙げられる。
When the electrolyte is a solid electrolyte or gel electrolyte, poly (vinylidene fluoride) or the like can be contained as a polymer material.
Furthermore, you may add various additives in the electrolyte solution of this embodiment as needed. Examples of additives include vinylene carbonate and methyl vinylene carbonate for the purpose of improving cycle life, biphenyl and alkyl biphenyl for the purpose of preventing overcharge, various carbonate compounds for the purpose of deoxidation and dehydration, Carboxylic anhydride, various nitrogen-containing and sulfur-containing compounds can be mentioned.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

[実施例1]
(安定化リチウム粉の作製)
内壁に邪魔板を取り付けたステンレススチール樹脂フラスコ容器に関東化学社のリチウムインゴット100gおよびWitco社のCarnation炭化水素オイルを加え、容器内を乾燥アルゴンで置換した。次いでこの容器を200℃まで加熱し、リチウムインゴットを溶融させた。溶融状態でこの混合物を10分間、容器を5°傾けた状態で5000rpmの回転速度で撹拌した後、撹拌を維持したまま1時間かけて室温まで冷却した。冷却後、二酸化炭素5gを攪拌を続けたまま5分間掛けて表面に供給して充填した。二酸化炭素が全て添加された時にこの攪拌を中止し、得られた粉末をヘキサンで洗浄することで安定化リチウム粉を得た。
[Example 1]
(Production of stabilized lithium powder)
A stainless steel resin flask container with a baffle plate attached to the inner wall was added with 100 g of Kanto Chemical lithium ingot and Witco Carnation hydrocarbon oil, and the inside of the container was replaced with dry argon. Next, this container was heated to 200 ° C. to melt the lithium ingot. The mixture was stirred in a molten state for 10 minutes at a rotational speed of 5000 rpm with the container tilted at 5 °, and then cooled to room temperature over 1 hour while maintaining stirring. After cooling, 5 g of carbon dioxide was supplied to the surface for 5 minutes with continued stirring and filled. The stirring was stopped when all of the carbon dioxide was added, and the resulting powder was washed with hexane to obtain stabilized lithium powder.

(安定化リチウム粉と負極活物質の混合物の作製方法)
上記安定化リチウム粉を用い、安定化リチウム粉と負極活物質の混合物の作製を、露点マイナス50℃〜マイナス40℃のドライルーム中において、以下の手順で行った。N−メチルピロリドン50質量部中に、負極活物質(SiO)100質量部と、上記安定化リチウム粉7質量部とを加え、混合物を得た。得られた混合物をマグネチックスターラーで室温にて24時間攪拌することで、上記安定化リチウム粉と負極活物質との混合物を得た。
(Method for preparing a mixture of stabilized lithium powder and negative electrode active material)
Using the stabilized lithium powder, a mixture of the stabilized lithium powder and the negative electrode active material was produced in the following procedure in a dry room having a dew point of minus 50 ° C. to minus 40 ° C. In 50 parts by mass of N-methylpyrrolidone, 100 parts by mass of the negative electrode active material (SiO) and 7 parts by mass of the stabilized lithium powder were added to obtain a mixture. The obtained mixture was stirred with a magnetic stirrer at room temperature for 24 hours to obtain a mixture of the stabilized lithium powder and the negative electrode active material.

(リチウムをドープした負極の作製)
上記の方法で作製した安定化リチウム粉と負極活物質の混合物83質量部、導電助剤としてアセチレンブラック2質量部、バインダーとしてポリアミドイミド15質量部、及び溶剤としてN−メチルピロリドン82質量部を混合し、活物質層形成用のスラリーを調製した。このスラリーを、集電体として厚さ14μmの銅箔の一面に、リチウムをドープした活物質の塗布量が2.0mg/cmとなるように塗布し、100℃で乾燥することで安定化リチウム粉を含んだ負極活物質層を形成した。その後、ローラープレスにより150kgf/cmの圧力で集電体上に形成した安定化リチウム粉を含んだ負極活物質層を加圧成形し、真空中、350℃で3時間熱処理することで、リチウムをドープした負極活物質を得た。
(Preparation of negative electrode doped with lithium)
83 parts by mass of a mixture of stabilized lithium powder and negative electrode active material prepared by the above method, 2 parts by mass of acetylene black as a conductive additive, 15 parts by mass of polyamideimide as a binder, and 82 parts by mass of N-methylpyrrolidone as a solvent are mixed Thus, a slurry for forming an active material layer was prepared. The slurry is applied to one surface of a copper foil having a thickness of 14 μm as a current collector so that the application amount of the active material doped with lithium is 2.0 mg / cm 2, and is stabilized by drying at 100 ° C. A negative electrode active material layer containing lithium powder was formed. Then, the negative electrode active material layer containing the stabilized lithium powder formed on the current collector at a pressure of 150 kgf / cm 2 by a roller press is pressure-molded and heat-treated at 350 ° C. for 3 hours in a vacuum. A negative electrode active material doped with was obtained.

(評価用リチウムイオン二次電池の作製)
上記で作製したリチウムをドープした負極と、正極として銅箔にリチウム金属箔を貼り付けた対極とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んでアルミラミネートパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液(溶媒:EC/DEC=3/7(体積比))を注入した後、真空シールし、評価用のリチウムイオン二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
The lithium-doped negative electrode prepared above and the counter electrode obtained by bonding a lithium metal foil to a copper foil as the positive electrode are put in an aluminum laminate pack with a separator made of a polyethylene microporous film interposed therebetween, and this aluminum laminate A 1M LiPF 6 solution (solvent: EC / DEC = 3/7 (volume ratio)) as an electrolytic solution was injected into the pack, and then vacuum-sealed to produce a lithium ion secondary battery for evaluation.

[実施例2〜8]
安定化リチウム粉の作製条件のうち撹拌速度を表1に示す値に変更した以外は実施例1と同様とし、実施例2〜8の安定化リチウム粉を得た。また、得られた安定化リチウム粉を用いて、実施例1と同様にして実施例2〜8の評価用リチウムイオン二次電池を作製した。
[Examples 2 to 8]
Except having changed the stirring speed into the value shown in Table 1 among the preparation conditions of stabilized lithium powder, it carried out similarly to Example 1, and obtained the stabilized lithium powder of Examples 2-8. Moreover, the evaluation lithium ion secondary battery of Examples 2-8 was produced like Example 1 using the obtained stabilized lithium powder.

[実施例9〜17]
安定化リチウム粉の作製条件のうち撹拌時間を表1に示す値に変更した以外は実施例1と同様とし、実施例9〜17の安定化リチウム粉を得た。また、得られた安定化リチウム粉を用いて、実施例1と同様にして実施例9〜17の評価用リチウムイオン二次電池を作製した。
[Examples 9 to 17]
Stabilized lithium powder of Examples 9 to 17 was obtained in the same manner as in Example 1 except that the stirring time was changed to the value shown in Table 1 among the preparation conditions of the stabilized lithium powder. Moreover, the lithium ion secondary battery for evaluation of Examples 9-17 was produced like Example 1 using the obtained stabilized lithium powder.

[実施例18〜27]
安定化リチウム粉の作製条件のうち加熱温度を表1に示す値に変更した以外は実施例1と同様とし、実施例18〜27の安定化リチウム粉を得た。また、得られた安定化リチウム粉を用いて、実施例1と同様にして実施例18〜27の評価用リチウムイオン二次電池を作製した。
[Examples 18 to 27]
Except having changed the heating temperature into the value shown in Table 1 among the preparation conditions of stabilized lithium powder, it carried out similarly to Example 1, and obtained the stabilized lithium powder of Examples 18-27. Moreover, the lithium ion secondary battery for evaluation of Examples 18-27 was produced like Example 1 using the obtained stabilized lithium powder.

[比較例1]
内壁に邪魔板の無いステンレススチール樹脂フラスコ容器を用い、容器を傾けない状態にしたこと以外は実施例1と同様とし、比較例1の評価用リチウムイオン二次電池を作製した。
[Comparative Example 1]
A lithium ion secondary battery for evaluation of Comparative Example 1 was produced in the same manner as in Example 1 except that a stainless steel resin flask container without a baffle on the inner wall was used and the container was not tilted.

<初期充放電効率の測定>
実施例及び比較例で作製した評価用リチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、電圧範囲を0.005Vから2.5Vまでとし、1C=1600mAh/gとしたときの0.05Cでの電流値で充放電を行った。これにより、初期充電容量、初期放電容量及び初期充放電効率を求めた。なお、初期充放電効率(%)は、初期充電容量に対する初期放電容量の割合(100×初期放電容量/初期充電容量)である。この初期充放電効率が高いほど、不可逆容量が低減されており、優れたドープ効果が得られていることを意味する。
<Measurement of initial charge / discharge efficiency>
About the lithium ion secondary battery for evaluation produced in the Example and the comparative example, using a secondary battery charge / discharge test apparatus (made by Hokuto Denko Co., Ltd.), the voltage range is 0.005 V to 2.5 V, and 1C = 1600 mAh. Charge / discharge was performed at a current value of 0.05 C when / g. Thereby, initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were determined. The initial charge / discharge efficiency (%) is the ratio of the initial discharge capacity to the initial charge capacity (100 × initial discharge capacity / initial charge capacity). The higher the initial charge / discharge efficiency, the lower the irreversible capacity, which means that an excellent doping effect is obtained.

<安定化リチウム粉のFD、欠損部の有無、欠損部が扇状の場合の中心角及びFDに対する深さRの割合の測定>
実施例及び比較例で作製した安定化リチウム粉について、電界放射型走査電子顕微鏡(JSM−6700F)を用い、加速電圧1kVで安定化リチウム粉の観察を行い、FD、欠損部の有無、欠損部が扇状の場合の中心角及びFDに対する深さRの割合の測定を行った。測定結果を表1に示す。
<Measurement of Stabilized Lithium Powder FD, Presence of Defects, Center Angle when Defects are Fan-shaped and Ratio of Depth R to FD>
With respect to the stabilized lithium powder produced in the examples and comparative examples, the stabilized lithium powder was observed with a field emission scanning electron microscope (JSM-6700F) at an acceleration voltage of 1 kV, and FD, presence / absence of a defect portion, defect portion The ratio of the depth R with respect to the center angle and FD in the case where is a fan shape was measured. The measurement results are shown in Table 1.

Figure 2017082303
Figure 2017082303

表1に示すように実施例1〜27で作製された安定化リチウム粉は欠損部を有していることが確認され、この欠損部を有した安定化リチウム粉を用いて作製したリチウムイオン二次電池の初期充放電特性は、欠損部を有さない比較例1の安定化リチウム粉を用いて作製したリチウムイオン二次電池の初期充放電特性に比較して高い初期充放電効率が得られることが確認された。   As shown in Table 1, it was confirmed that the stabilized lithium powders produced in Examples 1 to 27 had a defect part, and the lithium ion powder produced using the stabilized lithium powder having this defect part. The initial charge / discharge characteristics of the secondary battery are higher than the initial charge / discharge characteristics of the lithium ion secondary battery manufactured using the stabilized lithium powder of Comparative Example 1 having no defect. It was confirmed.

本発明の安定化リチウム粉をプレドープに用いることでクラック等の欠陥が少ない電極が作製できる。また、上記製造方法で得られた電極を用いることで、初期効率が改善されたリチウムイオン二次電池を提供することができる。 An electrode with few defects such as cracks can be produced by using the stabilized lithium powder of the present invention for pre-doping. In addition, a lithium ion secondary battery with improved initial efficiency can be provided by using the electrode obtained by the above manufacturing method.

10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 20 ... Negative electrode, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer, 30 ... Laminate, 50 ... Case, 60 62 ... Lead 100 ... Lithium ion secondary battery

Claims (7)

リチウム粒子の表面に被膜を有する安定化リチウム粉において、前記安定化リチウム粉はその一部に欠損部を有することを特徴とする安定化リチウム粉。   A stabilized lithium powder having a coating on the surface of lithium particles, wherein the stabilized lithium powder has a deficient portion in a part thereof. 前記欠損部は走査型電子顕微鏡(SEM)による観察像において扇状の欠損を有していることを特徴する請求項1に記載の安定化リチウム粉。   2. The stabilized lithium powder according to claim 1, wherein the defect portion has a fan-shaped defect in an image observed with a scanning electron microscope (SEM). 前記欠損部の扇の中心角が5°以上150°以下であることを特徴する請求項2に記載の安定化リチウム粉。   The stabilized lithium powder according to claim 2, wherein a central angle of the fan of the defect portion is 5 ° or more and 150 ° or less. 前記安定化リチウム粉の平均フェレ径をFDとすると、FDが0.1μm以上106μm以下であることを特徴とする請求項1乃至3のうちいずれか1項に記載の安定化リチウム粉。   4. The stabilized lithium powder according to claim 1, wherein FD is 0.1 μm or more and 106 μm or less, where an average ferret diameter of the stabilized lithium powder is FD. 5. 前記安定化リチウム粉の欠損部の深さをRとすると、RがFDの0.05倍以上0.78倍以下であることを特徴とする請求項1乃至4のうちいずれか1項に記載の安定化リチウム粉。   5. The method according to claim 1, wherein R is 0.05 times or more and 0.78 times or less of FD, where R is a depth of the defect portion of the stabilized lithium powder. Stabilized lithium powder. 請求項1乃至5のうちいずれか1項に記載の前記安定化リチウム粉を用いて負極にリチウムをドープした負極。   The negative electrode which doped lithium to the negative electrode using the said stabilized lithium powder of any one of Claims 1 thru | or 5. 請求項6に記載の前記負極と、正極と、電解質と、を有するリチウムイオン二次電池。











A lithium ion secondary battery comprising the negative electrode according to claim 6, a positive electrode, and an electrolyte.











JP2015213275A 2015-10-29 2015-10-29 Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery Expired - Fee Related JP6690189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015213275A JP6690189B2 (en) 2015-10-29 2015-10-29 Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015213275A JP6690189B2 (en) 2015-10-29 2015-10-29 Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2017082303A true JP2017082303A (en) 2017-05-18
JP6690189B2 JP6690189B2 (en) 2020-04-28

Family

ID=58711847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213275A Expired - Fee Related JP6690189B2 (en) 2015-10-29 2015-10-29 Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6690189B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065287A1 (en) * 2017-09-26 2019-04-04 Tdk株式会社 Lithium ion secondary battery
WO2019065288A1 (en) * 2017-09-26 2019-04-04 Tdk株式会社 Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same
JP2020518105A (en) * 2017-08-10 2020-06-18 エルジー・ケム・リミテッド Method for producing lithium metal/inorganic composite thin film and method for prelithiation of negative electrode of lithium secondary battery using the same
CN113812019A (en) * 2019-05-08 2021-12-17 株式会社Lg新能源 Pre-lithiation method for negative electrode of all-solid secondary battery and secondary battery using same
CN114388790A (en) * 2020-10-21 2022-04-22 比亚迪股份有限公司 Battery prelithiation slurry, battery negative plate and lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065841A (en) * 2009-09-16 2011-03-31 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2013125697A (en) * 2011-12-15 2013-06-24 Idemitsu Kosan Co Ltd Lithium particle-containing composition, electrode and battery
WO2014074405A1 (en) * 2012-11-09 2014-05-15 Corning Incorporated Stabilized lithium composite particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065841A (en) * 2009-09-16 2011-03-31 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2013125697A (en) * 2011-12-15 2013-06-24 Idemitsu Kosan Co Ltd Lithium particle-containing composition, electrode and battery
WO2014074405A1 (en) * 2012-11-09 2014-05-15 Corning Incorporated Stabilized lithium composite particles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518105A (en) * 2017-08-10 2020-06-18 エルジー・ケム・リミテッド Method for producing lithium metal/inorganic composite thin film and method for prelithiation of negative electrode of lithium secondary battery using the same
JP7045575B2 (en) 2017-08-10 2022-04-01 エルジー エナジー ソリューション リミテッド A method for producing a lithium metal-inorganic composite thin film and a method for prelithiumizing a negative electrode of a lithium secondary battery using the same.
US11316145B2 (en) 2017-08-10 2022-04-26 Lg Energy Solution, Ltd. Method for forming lithium metal and inorganic material composite thin film and method for pre-lithiation of negative electrode for lithium secondary battery by using same
WO2019065287A1 (en) * 2017-09-26 2019-04-04 Tdk株式会社 Lithium ion secondary battery
WO2019065288A1 (en) * 2017-09-26 2019-04-04 Tdk株式会社 Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same
JPWO2019065288A1 (en) * 2017-09-26 2019-12-19 Tdk株式会社 Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
US11335955B2 (en) 2017-09-26 2022-05-17 Tdk Corporation Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using same
CN113812019A (en) * 2019-05-08 2021-12-17 株式会社Lg新能源 Pre-lithiation method for negative electrode of all-solid secondary battery and secondary battery using same
CN114388790A (en) * 2020-10-21 2022-04-22 比亚迪股份有限公司 Battery prelithiation slurry, battery negative plate and lithium ion battery
CN114388790B (en) * 2020-10-21 2023-11-14 比亚迪股份有限公司 Pre-lithiation slurry for battery, negative plate for battery and lithium ion battery

Also Published As

Publication number Publication date
JP6690189B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP5149920B2 (en) Method for producing electrode for lithium secondary battery
US9034521B2 (en) Anode material of excellent conductivity and high power secondary battery employed with the same
CN110718682B (en) Battery cell
JP5375975B2 (en) Battery electrode, battery including the battery electrode, and method for manufacturing the battery electrode
JP4191456B2 (en) Non-aqueous secondary battery negative electrode, non-aqueous secondary battery, method for producing non-aqueous secondary battery negative electrode, and electronic device using non-aqueous secondary battery
JP6690189B2 (en) Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery
JP2013055036A (en) Sulfide-based solid-state battery
KR102240708B1 (en) Binder composition for use in secondary battery electrode, slurry composition for use in secondary battery electrode, secondary battery electrode, and secondary battery
JP2019212619A (en) Manufacturing method of electrode active material layer, manufacturing method of electrode for lithium ion battery, and manufacturing method for lithium ion battery
JP6460400B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP2018174136A (en) Electrode for nonaqueous electrolyte secondary battery
JP6265521B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
JP6375843B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP6375842B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
US9825289B2 (en) Stabilized lithium powder, and negative electrode and lithium ion secondary battery using the same
JP2018063755A (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2020158834A (en) Metal halide particle, and all-solid battery and nonaqueous lithium ion battery including the same
JP2020158835A (en) Metal halide foil, and all-solid battery and nonaqueous lithium ion battery including the same
KR101122938B1 (en) Preparation method of electrode active material particle
JP6596877B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
CN105489870B (en) stabilized lithium powder
JP2016081707A (en) Negative electrode and lithium ion secondary battery using the same
JP6610089B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP2019106375A (en) Negative electrode for lithium ion battery, and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6690189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees