JP6687002B2 - Structural low alloy thick steel for friction stir welding and structural friction stir welding joints - Google Patents

Structural low alloy thick steel for friction stir welding and structural friction stir welding joints Download PDF

Info

Publication number
JP6687002B2
JP6687002B2 JP2017215367A JP2017215367A JP6687002B2 JP 6687002 B2 JP6687002 B2 JP 6687002B2 JP 2017215367 A JP2017215367 A JP 2017215367A JP 2017215367 A JP2017215367 A JP 2017215367A JP 6687002 B2 JP6687002 B2 JP 6687002B2
Authority
JP
Japan
Prior art keywords
friction stir
stir welding
thick steel
structural
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017215367A
Other languages
Japanese (ja)
Other versions
JP2018095956A (en
Inventor
充志 ▲高▼田
充志 ▲高▼田
松下 宗生
宗生 松下
早川 直哉
直哉 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018095956A publication Critical patent/JP2018095956A/en
Application granted granted Critical
Publication of JP6687002B2 publication Critical patent/JP6687002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、構造用低合金厚鋼材に係り、とくに摩擦攪拌接合法による接合に好適な、構造用低合金厚鋼材に関する。   The present invention relates to a structural low alloy thick steel material, and more particularly to a structural low alloy thick steel material suitable for joining by a friction stir welding method.

従来から、成形部材等の鋼製部材を接合して、種々の鋼構造体とするには、主としてアーク溶接が用いられてきた。しかし、アーク溶接では接合部(溶接部)を形成するために、被接合材を溶融させることが必要であり、接合部(溶接部)は高温に晒される。そのため、接合部(溶接部)の組織が粗大化し、靭性が低下しやすいという問題がある。このような問題に対し、アーク溶接法に代えて、摩擦攪拌接合法の適用が検討されるようになってきた。   Conventionally, arc welding has been mainly used for joining steel members such as formed members to form various steel structures. However, in arc welding, it is necessary to melt the materials to be joined in order to form a joint (weld), and the joint (weld) is exposed to high temperature. Therefore, there is a problem that the structure of the joint portion (welded portion) becomes coarse and the toughness is likely to decrease. For such a problem, application of the friction stir welding method has been studied instead of the arc welding method.

摩擦攪拌接合法は、部材同士を突き合わせて接合する際に、接合する部材より硬い材質のツールを、接合部(突合せ部)に挿入し、該ツールを回転させながら移動させることにより、該ツールと接合する部材との間に生じる摩擦熱により、接合する部材を軟化させ、ツール回転による材料流動(塑性流動)により部材同士を接合する、接合方法である。   In the friction stir welding method, when the members are butt-joined to each other, a tool made of a material harder than the members to be joined is inserted into the welded portion (butted portion), and the tool is rotated to move the tool. This is a joining method in which the joining members are softened by frictional heat generated between the joining members and the members are joined by material flow (plastic flow) caused by tool rotation.

摩擦攪拌接合法は、アルミニウム合金やマグネシウム合金に代表される低融点金属材料の接合方法として、航空機、船舶、鉄道車両、自動車等の分野で適用が拡大している。これらの低融点金属材料では、従来のアーク溶接法を適用した場合に、接合部で満足できる特性を確保することが難しいことに対し、摩擦攪拌接合法を適用した場合には、満足できる特性を有する接合部を得ることができるとともに、生産性が向上する。   The friction stir welding method is expanding its application in the fields of aircraft, ships, railway vehicles, automobiles, etc. as a method for joining low melting point metal materials represented by aluminum alloys and magnesium alloys. With these low-melting-point metal materials, it is difficult to ensure satisfactory properties at the joint when the conventional arc welding method is applied, whereas when the friction stir welding method is applied, satisfactory characteristics are obtained. It is possible to obtain the joint portion having and also improve the productivity.

一方、摩擦攪拌接合法の鋼製部材接合への適用は、回転ツールの耐久性の観点から、低融点金属材料への適用ほど、進んでいないが、例えば、特許文献1には、「摩擦攪拌接合用の低合金構造用鋼」についての提案がある。特許文献1に記載された技術では、600℃以上の平衡状態においてフェライト単相となる温度域幅とオーステナイト相とフェライト相の2相となる温度域幅の合計が200℃以上である低合金構造用鋼であれば、摩擦攪拌接合用として好適であるとしている。このような低合金構造用鋼として、質量%で、C:0.01〜0.20%、Mn:0.1〜3.0%、P:0.050%以下およびS:0.0050%以下を含み、かつSi:0.4〜4.0%、Al:0.3〜3.0%、Ti:0.30〜3.0%のうちから選んだ1種または2種以上を含有し、残部はFeおよび不可避的不純物の組成になることが好ましいとしている。これにより、摩擦攪拌接合における鋼材の変形抵抗が大幅に低減し、回転ツールの耐久性が向上し、接合速度などの接合条件の制限が緩和されるとしている。   On the other hand, the application of the friction stir welding method to the joining of steel members is not as advanced as the application to the low melting point metal material from the viewpoint of the durability of the rotary tool. There is a proposal for "low alloy structural steel for joining". In the technique described in Patent Document 1, a low alloy structure having a total temperature range of 200 ° C. or more and a temperature range of a ferrite single phase and a temperature range of two phases of an austenite phase and a ferrite phase in an equilibrium state of 600 ° C. or higher. Steel for use is said to be suitable for friction stir welding. As such a low alloy structural steel, in mass%, C: 0.01 to 0.20%, Mn: 0.1 to 3.0%, P: 0.050% or less and S: 0.0050% or less, and Si: 0.4 to 4.0%, It is preferable that it contains one or more selected from Al: 0.3 to 3.0% and Ti: 0.30 to 3.0%, and the balance is Fe and inevitable impurities. As a result, the deformation resistance of the steel material in friction stir welding is significantly reduced, the durability of the rotary tool is improved, and restrictions on welding conditions such as welding speed are alleviated.

また、特許文献2には、「摩擦攪拌接合法の施工性に優れた高強度高加工性熱延鋼板」が記載されている。特許文献2に記載された技術では、質量%で、C:0.05〜0.40%、Si:4.0%以下、Mn:0.5〜3.0%、Al:4.0%以下を含有し、かつ(Si+Al)≧0.5%を満足し残部はFeおよび不可避的不純物の組成になり、初析フェライト主相中に第2相として5%以上の残留オーステナイトを有し、600℃以上の平衡状態においてフェライト単相となる温度域幅とオーステナイト相とフェライト相の2相となる温度域幅の合計が200℃以上である高強度高延性熱延鋼板としている。なお、特許文献2に記載された技術では、上記した組成に加えてさらに、Cr:0.2〜2.0%、Nb:0.003〜0.10%、V:0.003〜0.10%およびTi:0.003〜0.10%のうちから選んだ1種または2種以上を含有してもよいとしている。これにより、接合部の到達温度付近における、フェライト単相域およびオーステナイト−フェライト2相域を拡大することにより、摩擦攪拌接合における鋼材の変形抵抗が大幅に低減し、回転ツールの耐久性が向上し、接合速度などの接合条件の制限が緩和されるとしている。また、ツールの損耗、破損による交換作業の頻度が抑えられ、施工能率が向上するとしている。   Further, Patent Document 2 describes "a high-strength and high-workability hot-rolled steel sheet having excellent workability in the friction stir welding method". In the technique described in Patent Document 2, C: 0.05 to 0.40%, Si: 4.0% or less, Mn: 0.5 to 3.0%, Al: 4.0% or less, and (Si + Al) ≧ 0.5% in mass% And the balance is composed of Fe and unavoidable impurities, the primary phase of proeutectoid ferrite contains 5% or more of retained austenite as the second phase, and the temperature range becomes a ferrite single phase in the equilibrium state of 600 ° C or more. The high-strength, high-ductility hot-rolled steel sheet has a total width, width, and temperature range width of two phases of an austenite phase and a ferrite phase of 200 ° C or more. In addition, in the technique described in Patent Document 2, in addition to the composition described above, from among Cr: 0.2 to 2.0%, Nb: 0.003 to 0.10%, V: 0.003 to 0.10% and Ti: 0.003 to 0.10%, It is said that one or more selected types may be contained. As a result, by expanding the ferrite single-phase region and the austenite-ferrite two-phase region near the temperature reached by the joint, the deformation resistance of the steel material in friction stir welding is greatly reduced, and the durability of the rotary tool is improved. It said that restrictions on joining conditions such as joining speed will be relaxed. In addition, it is said that the frequency of replacement work due to wear and tear of tools will be reduced, and construction efficiency will be improved.

また、特許文献3には、「摩擦攪拌接合法の施工法およびめっき密着性に優れた高強度高延性亜鉛めっき鋼板」が記載されている。特許文献3に記載された技術は、質量%で、C:0.05〜0.40%、Si:1.5%以下、Mn:0.5〜3.0%、Al:4.0%以下を含有し、かつ(Si+Al)≧0.5%を満足し残部はFeおよび不可避的不純物の組成になり、初析フェライト主相中に第2相として5%以上の残留オーステナイトを有し、600℃以上の平衡状態においてフェライト単相となる温度域幅とオーステナイト相とフェライト相の2相となる温度域幅の合計が200℃以上である高強度高延性溶融亜鉛めっき鋼板としている。これにより、接合部の到達温度付近における、フェライト単相域およびオーステナイト−フェライト2相域を拡大することにより、摩擦攪拌接合における鋼材の変形抵抗が大幅に低減し、回転ツールの耐久性が向上し、接合速度などの接合条件の制限が緩和されるとしている。また、ツールの損耗、破損による交換作業の頻度が抑えられ、施工能率が向上するとしている。また、めっき密着性を損なわない合金成分とすることでめっき密着性を向上させることができるとしている。   Further, Patent Document 3 describes "a high-strength and high-ductility galvanized steel sheet excellent in friction stir welding method and plating adhesion". The technique described in Patent Document 3 contains, by mass%, C: 0.05 to 0.40%, Si: 1.5% or less, Mn: 0.5 to 3.0%, Al: 4.0% or less, and (Si + Al) ≧ 0.5%. The balance is Fe and the composition of unavoidable impurities, the primary phase of proeutectoid ferrite has a residual austenite content of 5% or more as the second phase, and it is a ferrite single phase in the equilibrium state of 600 ° C or higher. The high-strength, high-ductility hot-dip galvanized steel sheet has a total width and a temperature range width of two phases of an austenite phase and a ferrite phase of 200 ° C or more. As a result, by expanding the ferrite single-phase region and the austenite-ferrite two-phase region near the temperature reached by the joint, the deformation resistance of the steel material in friction stir welding is greatly reduced, and the durability of the rotary tool is improved. It said that restrictions on joining conditions such as joining speed will be relaxed. In addition, it is said that the frequency of replacement work due to wear and tear of tools will be reduced, and construction efficiency will be improved. Further, it is said that the plating adhesion can be improved by using an alloy component that does not impair the plating adhesion.

また、特許文献4には、「摩擦攪拌溶接による高強度および高靭性鋼構造体」が記載されている。特許文献4に記載された技術では、2つ以上の構造用部品と、前記部品の接合面同士を接合する摩擦攪拌溶接物を含む鋼構造体であって、出発構造用鋼の化学成分と粒径とを特定範囲に限定し、摩擦攪拌溶接物が、5〜60μmの事前のオーステナイト粒径と、50体積%未満のマルテンサイト-オーステナイト(MA)構成成分とを有する構成とする。これにより、亀裂先端開口変位試験で測定された靭性に優れ、また0℃以下においてシャルピーVノッチ衝撃試験により測定された靭性が40Jを超える摩擦攪拌溶接物となるとしている。   Further, Patent Document 4 describes "high-strength and high-toughness steel structure by friction stir welding". In the technique described in Patent Document 4, a steel structure including two or more structural parts and a friction stir welded product that joins the joining surfaces of the parts, and the chemical composition and grain of the starting structural steel The diameter is limited to a specific range and the friction stir weldment has a prior austenite grain size of 5 to 60 μm and a martensite-austenite (MA) constituent of less than 50% by volume. It is said that this results in a friction stir welded product having excellent toughness measured by a crack tip opening displacement test and having a toughness measured by a Charpy V-notch impact test of 0 ° C. or less over 40 J.

特開2008―31494号公報JP 2008-31494 A 特開2008-255369号公報JP 2008-255369 JP 特開2010−90418号公報JP 2010-90418 JP 特表2012−509178号公報Special Table 2012-509178 Publication

しかしながら、特許文献1および特許文献2に記載された技術では、摩擦攪拌接合時の変形抵抗を低下でき施工性という観点からは有効であると言えるが、900℃以上の高温度域からフェライト粒が生成しており、接合後の冷却過程でフェライト粒の粗大化を招き、接合部の強度および靭性の低下を招くという問題があった。   However, the techniques described in Patent Document 1 and Patent Document 2 can reduce the deformation resistance during friction stir welding and can be said to be effective from the viewpoint of workability. However, there is a problem in that the ferrite grains are coarsened during the cooling process after joining, and the strength and toughness of the joint are deteriorated.

また、特許文献3に記載された技術では、特許文献1,2に記載された技術と同様に、摩擦攪拌接合時の変形抵抗を大幅に低減することにより、施工能率が大幅に向上するとしているが、接合部の到達温度付近の高温でフェライトが生成しており、接合後の冷却過程でフェライト粒の粗大化を招き、接合部の強度および靭性の低下を招くという問題があった。   Further, in the technique described in Patent Document 3, as in the technique described in Patent Documents 1 and 2, it is said that by significantly reducing the deformation resistance during friction stir welding, the construction efficiency is significantly improved. However, there is a problem that ferrite is generated at a high temperature near the reached temperature of the joint, which causes coarsening of ferrite grains in the cooling process after joining, resulting in a decrease in strength and toughness of the joint.

また、特許文献4に記載された技術では、摩擦攪拌溶接物(摩擦攪拌接合部)の靭性が向上するとしているが、摩擦攪拌接合用のツールの損耗、破損について考慮しておらず、摩擦攪拌接合の施工性に問題を残していた。   Further, in the technique described in Patent Document 4, it is said that the toughness of the friction stir welded product (friction stir welding part) is improved, but wear and damage of the tool for friction stir welding are not taken into consideration, and friction stir welding is not considered. There was a problem in the workability of joining.

本発明は、かかる従来技術の問題を解決し、摩擦攪拌接合用として施工性に優れ、かつ摩擦攪拌接合部の強度・靭性に優れた構造用低合金厚鋼材を提供することを目的とする。   An object of the present invention is to solve the problems of the prior art, and to provide a structural low alloy thick steel material having excellent workability for friction stir welding and excellent strength and toughness of the friction stir welding portion.

ここで、本発明が目的とする構造用低合金厚鋼材は、降伏強さYS:480MPa以上、引張強さTS:580MPa以上で、シャルピー衝撃試験の試験温度:-30℃における吸収エネルギーvE-30:100J以上を満足する厚鋼材をいうものとする。また、ここでいう「摩擦攪拌接合部の強度・靭性に優れた」とは、摩擦攪拌接合部が、降伏強さYS:480MPa以上、引張強さTS:580MPa以上で、シャルピー衝撃試験の試験温度:-30℃における吸収エネルギーvE-30:100J以上を満足する場合をいうものとする。 Here, the structural low alloy thick steel material intended by the present invention has a yield strength YS: 480 MPa or more, a tensile strength TS: 580 MPa or more, and a Charpy impact test test temperature: -30 ° C. absorbed energy vE -30 : A thick steel material that satisfies 100J or more. In addition, "excellent in strength and toughness of friction stir welded joint" here means that the friction stir welded joint has a yield strength YS: 480 MPa or more, a tensile strength TS: 580 MPa or more, and a Charpy impact test temperature. : Absorbed energy at -30 ℃ vE -30 : The case where it satisfies 100J or more.

上記した目的を達成するために、まず、本発明者らは、施工性に及ぼす組織の影響について鋭意検討した。その結果、接合時の温度において、フェライト相の比率が高くなるほど、摩擦攪拌接合時の変形抵抗を低くすることができることに想到し、900℃の平衡状態でフェライト相が体積率で20%以上残留する組織となるように成分調整を行うと、摩擦攪拌接合時における変形抵抗が小さくなり、摩擦攪拌接合時に回転ツールの損傷、破損が少なくなり、摩擦攪拌接合時の施工性が向上することを見出した。なお、ここで、平衡状態におけるフェライト量はThermo-calc(商標名)(Thermo-calc Software AB社製ソフト)を用いて計算するものとする。   In order to achieve the above-mentioned object, first, the present inventors diligently studied the influence of the structure on the workability. As a result, it was thought that the higher the ferrite phase ratio at the joining temperature, the lower the deformation resistance during friction stir welding, and at the equilibrium state of 900 ° C, the ferrite phase remained at 20% or more by volume. It was found that when the components are adjusted so as to achieve a structure that makes it possible to reduce the deformation resistance during friction stir welding, reduce the damage and damage to the rotary tool during friction stir welding, and improve the workability during friction stir welding. It was Here, the amount of ferrite in the equilibrium state is calculated using Thermo-calc (trade name) (Software by Thermo-calc Software AB).

摩擦攪拌接合時に20%以上のフェライト相を残留させた組織とすることにより、たしかに摩擦攪拌時の変形抵抗が低減し、摩擦攪拌接合の施工性は向上する。しかし、摩擦攪拌接合部では、摩擦攪拌時に加工により結晶粒が微細化するが、900℃以上の高温に保持され、しかも冷却過程が緩冷であると、フェライト粒の粗大化が生じる。フェライト粒の粗大化は、接合部の強度及び靭性の低下を招く。そこで、フェライト中に微細な析出物を分散させて、ピン止め効果によるフェライトの粗大化を阻止することに思い至った。そして、析出物としては、Nbおよび/またはVの炭化物および/または窒化物とすることが、析出物の微細分散の観点から好ましいことを知見した。   By using a structure in which 20% or more of the ferrite phase remains during friction stir welding, the deformation resistance during friction stir is certainly reduced, and the workability of friction stir welding is improved. However, in the friction stir welding part, the crystal grains become finer due to processing during friction stir, but if the temperature is maintained at a high temperature of 900 ° C or higher and the cooling process is slow cooling, the ferrite grains become coarse. The coarsening of ferrite grains leads to a decrease in the strength and toughness of the joint. Therefore, it was thought that fine precipitates should be dispersed in ferrite to prevent the ferrite from becoming coarse due to the pinning effect. Then, it has been found that Nb and / or V carbide and / or nitride is preferable as the precipitate from the viewpoint of fine dispersion of the precipitate.

本発明は、かかる知見に基づき、さらに検討を加えて完成したものである。すなわち、本発明の要旨はつぎのとおりである。
(1)構造用低合金厚鋼材であって、900℃の平衡状態において体積率で20%以上のフェライト相が生成する組成と、100μm当たり、析出物が10個以上析出した組織と、を有し、摩擦攪拌接合部の強度、靭性に優れることを特徴とする摩擦攪拌接合向け構造用低合金厚鋼材。
(2)(1)において、前記組成が、質量%で、C:0.05〜0.20%、Si:0.1〜1.0%、Mn:0.1〜3.0%、N:0.001〜0.010%、Al:0.02〜1.0%を含み、かつSi、Alが次(1)式
(Si+2.5Al)≧1.5 ……(1)
(ここで、Si、Al:各元素の含有量(質量%))
を満足するように含み、さらにV:0.1〜1.0%、Nb:0.1〜1.0%のうちから選ばれた1種または2種を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする摩擦攪拌接合向け構造用低合金厚鋼材。
(3)(2)において、前記組成に加えてさらに、質量%で、Cu:3.0%以下、Ni:5.0%以下、Cr:5.0%以下、Mo:1.0%以下のうちから選ばれた1種または2種以上を含有することを特徴とする摩擦攪拌接合向け構造用低合金厚鋼材。
(4)厚鋼材部材同士を摩擦攪拌接合してなる構造用摩擦攪拌接合継手であって、前記厚鋼材部材が、(1)ないし(3)のいずれかに記載の構造用低合金厚鋼材で構成されてなることを特徴とする構造用摩擦攪拌接合継手。
(5)(4)において、前記摩擦攪拌接合してなる摩擦攪拌接合部が、平均粒径:10μm以下の微細なフェライト相からなる組織を有し、降伏強さ:480MPa以上で、シャルピー衝撃試験の試験温度:-30℃における吸収エネルギーvE-30:100J以上を有する高強度高靭性の摩擦攪拌接合部であることを特徴とする構造用摩擦攪拌接合継手。
The present invention has been completed by further studies based on such findings. That is, the gist of the present invention is as follows.
(1) A structural low alloy thick steel material having a composition in which a ferrite phase of 20% or more in volume ratio is formed in an equilibrium state at 900 ° C. and a structure in which 10 or more precipitates are deposited per 100 μm 2. A structural low alloy thick steel material for friction stir welding characterized by having excellent strength and toughness of the friction stir welding part.
(2) In (1), the composition is% by mass, C: 0.05 to 0.20%, Si: 0.1 to 1.0%, Mn: 0.1 to 3.0%, N: 0.001 to 0.010%, Al: 0.02 to 1.0%. And Si and Al are expressed by the following formula (1)
(Si + 2.5Al) ≧ 1.5 (1)
(Here, Si, Al: content of each element (mass%))
In order to satisfy the above requirement, V: 0.1 to 1.0% and Nb: 0.1 to 1.0% are contained, and the balance is Fe and inevitable impurities. Low alloy thick steel material for structure for friction stir welding.
(3) In (2), in addition to the above composition, further, in mass%, one selected from Cu: 3.0% or less, Ni: 5.0% or less, Cr: 5.0% or less, Mo: 1.0% or less. Alternatively, a structural low alloy thick steel material for friction stir welding characterized by containing two or more kinds.
(4) A friction stir welding joint for structure, which is formed by friction stir welding thick steel members, wherein the thick steel member is the structural low alloy thick steel member according to any one of (1) to (3). A structural friction stir welding joint characterized by being configured.
(5) In (4), the friction stir welding part formed by the friction stir welding has a structure composed of a fine ferrite phase with an average grain size of 10 μm or less, a yield strength of 480 MPa or more, and a Charpy impact test. Test temperature: -30 ° C absorbed energy vE -30 : High strength and high toughness friction stir welded joint having 100 J or more.

本発明によれば、摩擦攪拌接合時の施工性に優れ、かつ摩擦攪拌接合部の強度・靭性に優れた構造用低合金厚鋼材を安価に提供でき、産業上格段の効果を奏する。また、本発明によれば、摩擦攪拌接合部の強度、靭性に優れた構造用摩擦攪拌接合継手を容易に製造できるという効果もある。   ADVANTAGE OF THE INVENTION According to this invention, the structural low alloy thick steel material excellent in the workability at the time of friction stir welding, and also the strength and toughness of a friction stir welding part can be provided at low cost, and the industrially remarkable effect is exhibited. Further, according to the present invention, there is an effect that a structural friction stir welded joint having excellent strength and toughness of the friction stir welded portion can be easily manufactured.

摩擦攪拌接合の要領を模式的に示す説明図である。It is explanatory drawing which shows typically the point of friction stir welding. 摩擦攪拌接合時に回転ツールにかかる荷重の測定方向を模式的に示す説明図である。It is explanatory drawing which shows typically the measuring direction of the load applied to a rotary tool at the time of friction stir welding.

本発明構造用低合金厚鋼材は、900℃の平衡状態において体積率で20%以上のフェライト相が生成する組成と、100μm当たり、析出物が10個以上析出した組織と、を有する厚鋼材である。なお、ここでいう「厚鋼材」とは、板厚:6mm以上の厚鋼板、肉厚:6mm以上の形鋼、鋼管等を含むものとする。 The low alloy thick steel material for structural use of the present invention is a thick steel material having a composition in which 20% or more by volume of a ferrite phase is formed in an equilibrium state at 900 ° C. and a structure in which 10 or more precipitates are deposited per 100 μm 2. Is. The term "thick steel material" as used herein includes a steel plate having a plate thickness of 6 mm or more, a shaped steel having a wall thickness of 6 mm or more, a steel pipe, and the like.

本発明厚鋼材では、900℃の平衡状態において体積率で20%以上のフェライト相が生成する組成に調整する。なお、ここで、900℃の平衡状態におけるフェライト相の体積率を規定したのは、鉄鋼を摩擦攪拌接合した場合に接合部の温度は、900℃以上になるためである。   In the thick steel material of the present invention, the composition is adjusted so that 20% or more by volume of the ferrite phase is generated in the equilibrium state at 900 ° C. The volume ratio of the ferrite phase in the equilibrium state of 900 ° C. is defined here because the temperature of the joint portion becomes 900 ° C. or higher when the steel is friction stir welded.

これにより、摩擦攪拌接合時の変形抵抗が低減し、摩擦攪拌接合時の施工性が向上する。フェライト相は、オーステナイト相に比較し、すべり系が多いため、塑性変形時の転位同士の干渉が少なく、加工硬化が小さく、したがって、摩擦攪拌接合時の変形抵抗が低くなる。900℃の平衡状態において、体積率でフェライト相が20%未満では、変形抵抗の低減が少なく、所望の施工性向上が得られない。なお、本発明者らは、900℃の平衡状態において上記した量のフェライト相が生成していれば、通常の摩擦攪拌接合の施工であれば、変形抵抗が低減することを確認している。また、900℃の平衡状態におけるフェライト相の体積率の上限は、厚鋼材の母材強度の関係から、80%以下とすることが好ましい。ここで、平衡状態におけるフェライト量はThermo-calc(商標名)(Thermo-calc Software AB社製ソフト)を用いて計算するものとする。   This reduces the deformation resistance during friction stir welding and improves the workability during friction stir welding. Since the ferrite phase has more slip systems than the austenite phase, there is less interference between dislocations during plastic deformation and the work hardening is small, and therefore the deformation resistance during friction stir welding is low. In the equilibrium state at 900 ° C, when the ferrite phase is less than 20% by volume, the deformation resistance is less reduced and the desired workability cannot be improved. Note that the present inventors have confirmed that if the above-described amount of ferrite phase is generated in the equilibrium state at 900 ° C., the deformation resistance is reduced by the usual friction stir welding process. Further, the upper limit of the volume ratio of the ferrite phase in the equilibrium state at 900 ° C. is preferably 80% or less in view of the strength of the base metal of the thick steel material. Here, the amount of ferrite in the equilibrium state is calculated using Thermo-calc (trade name) (Software manufactured by Thermo-calc Software AB).

さらに、本発明厚鋼材は、上記した組成と、さらに100μm当たり、析出物が10個以上析出した組織とを有する。析出物が100μm当たり10個未満では、析出物の分散による摩擦攪拌接合部における所望の結晶粒粗大化防止効果が期待できなくなる。ここでいう「析出物」は、炭化物、窒化物、炭窒化物あるいはそれらの混合とする。所望の結晶粒粗大化防止効果を十分に確保するためには、析出物は、微細な析出物、すなわち、10nm以上100nm以下の大きさ(粒径)の析出物とすることが好ましい。このような析出物として、本発明では、厚鋼材にNbおよび/またはVを所定量以上含有させ、微細な析出物を所定量以上析出させることが好ましい。上記した析出物が100μm当たり10個以上析出した厚鋼材組織とすることにより、摩擦攪拌接合部のミクロ組織をフェライト粒径が10μm以下である組織とすることができ、結晶粒微細化効果による摩擦攪拌接合部の高強度・高靭性化が達成できる。 Further, the thick steel material of the present invention has the above composition and a structure in which 10 or more precipitates are deposited per 100 μm 2 . If the number of precipitates is less than 10 particles per 100 μm 2, the desired effect of preventing coarsening of crystal grains in the friction stir welding part due to dispersion of the precipitates cannot be expected. The "precipitate" referred to here is a carbide, a nitride, a carbonitride, or a mixture thereof. In order to sufficiently secure the desired effect of preventing crystal grain coarsening, the precipitate is preferably a fine precipitate, that is, a precipitate having a size (particle diameter) of 10 nm or more and 100 nm or less. As such a precipitate, in the present invention, it is preferable that a thick steel material contains Nb and / or V in a predetermined amount or more, and a fine precipitate is deposited in a predetermined amount or more. By using a thick steel material structure in which 10 or more of the above precipitates are deposited per 100 μm 2, the microstructure of the friction stir weld can be made to have a ferrite grain size of 10 μm or less, and the grain refinement effect High strength and high toughness of friction stir welding can be achieved.

上記した組織を確保できる厚鋼材の具体的な組成としては、質量%で、C:0.05〜0.20%、Si:0.1〜1.0%、Mn:0.1〜3.0%、N:0.001〜0.010%、Al:0.02〜1.0%を含み、かつSi、Alが次(1)式
(Si+2.5Al)≧1.5 ……(1)
(ここで、Si、Al:各元素の含有量(質量%))
を満足するように含み、さらにV:0.1〜1.0%、Nb:0.1〜1.0%のうちから選ばれた1種または2種を含有し、残部Feおよび不可避的不純物からなる組成が挙げられる。以下、組成における質量%は、単に%で記す。
As a concrete composition of the thick steel material capable of ensuring the above-mentioned structure, in mass%, C: 0.05 to 0.20%, Si: 0.1 to 1.0%, Mn: 0.1 to 3.0%, N: 0.001 to 0.010%, Al: Contains 0.02 to 1.0%, and Si and Al are the following formula (1)
(Si + 2.5Al) ≧ 1.5 (1)
(Here, Si, Al: content of each element (mass%))
In order to satisfy the above condition, the composition further contains one or two selected from V: 0.1 to 1.0% and Nb: 0.1 to 1.0%, with the balance being Fe and inevitable impurities. Hereinafter, the mass% in the composition will be simply expressed as%.

C:0.05〜0.20%
Cは、鋼材の強化に寄与する元素であり、本発明では所望の高強度を確保するために、0.05%以上の含有を必要とする。一方、Cはオーステナイトの安定化に寄与する元素であり、0.20%を超える過剰の含有は、オーステナイト相を安定化し、900℃での平衡状態において、所望量のフェライト相の生成を確保することが困難となる。すなわち、摩擦攪拌接合時の温度で、変形抵抗を低減させるまでのフェライト相を生成することが難しくなる。
C: 0.05 to 0.20%
C is an element that contributes to the strengthening of the steel material, and in the present invention, the content of 0.05% or more is required to secure the desired high strength. On the other hand, C is an element that contributes to the stabilization of austenite, and an excessive content of more than 0.20% stabilizes the austenite phase, and in the equilibrium state at 900 ° C, it is possible to secure the formation of a desired amount of ferrite phase. It will be difficult. That is, it becomes difficult to generate a ferrite phase at the temperature at the time of friction stir welding until the deformation resistance is reduced.

また、Cは、Nb、V等の炭化物形成元素と結合して、微細な炭化物、すなわち微細な析出物として結晶粒の粗大化防止にも寄与する。このため、Cは0.05〜0.20%の範囲に限定した。なお、好ましくは0.08〜0.15%である。   Further, C combines with carbide forming elements such as Nb and V, and contributes to preventing coarsening of crystal grains as fine carbide, that is, fine precipitate. Therefore, C is limited to the range of 0.05 to 0.20%. In addition, it is preferably 0.08 to 0.15%.

Si:0.1〜1.0%
Siは、鋼材の強度増加に寄与する元素であり、所望の高強度を確保するために、0.1%以上の含有を必要とする。また、Siはフェライトの安定化に寄与する元素であり、900℃での平衡状態において、所望量のフェライト相の生成を確保するために、有効に寄与する。しかし1.0%を超えて含有すると、厚鋼材の強度が増加しすぎて、厚鋼材の靭性が低下する。このため、Siは0.1〜1.0%の範囲に限定した。
Si: 0.1-1.0%
Si is an element that contributes to the increase in strength of steel, and it is necessary to contain Si in an amount of 0.1% or more in order to secure a desired high strength. In addition, Si is an element that contributes to the stabilization of ferrite, and effectively contributes to ensuring the formation of a desired amount of ferrite phase in the equilibrium state at 900 ° C. However, if the content exceeds 1.0%, the strength of the thick steel material increases too much, and the toughness of the thick steel material decreases. Therefore, Si is limited to the range of 0.1 to 1.0%.

Mn:0.1〜3.0%
Mnは、鋼材の強度増加と靭性向上に寄与する元素であり、本発明では0.1%以上の含有を必要とする。また、Mnは、オーステナイトの安定化に寄与する元素であり、3.0%を超えて過剰に含有すると、900℃での平衡状態において、所望量のフェライト相の生成を確保することが困難となる。このようなことから、Mnは0.1〜3.0%の範囲に限定した。なお、好ましくは0.8〜2.0%である。
Mn: 0.1-3.0%
Mn is an element that contributes to an increase in strength and toughness of the steel material, and it is necessary for the present invention to contain 0.1% or more. Further, Mn is an element that contributes to the stabilization of austenite, and if it is contained in excess of 3.0%, it becomes difficult to secure the formation of a desired amount of ferrite phase in the equilibrium state at 900 ° C. Therefore, Mn is limited to the range of 0.1 to 3.0%. In addition, it is preferably 0.8 to 2.0%.

N:0.001〜0.010%
Nは、窒化物形成元素と結合し、微細な窒化物の形成に不可欠で、結晶粒の粗大化防止に寄与する元素であり、0.001%以上含有する必要がある。一方、0.010%を超えて多量に含有すると、粗大な窒化物が生成し、厚鋼材の靭性を劣化させる。このため、Nは0.001〜0.010%の範囲に限定した。なお、好ましくは0.002〜0.006%である。
N: 0.001 to 0.010%
N is an element that is combined with a nitride-forming element, is essential for forming fine nitrides, and contributes to preventing the coarsening of crystal grains, and must be contained in an amount of 0.001% or more. On the other hand, if it is contained in a large amount exceeding 0.010%, coarse nitrides are generated, and the toughness of thick steel materials is deteriorated. Therefore, N is limited to the range of 0.001 to 0.010%. The content is preferably 0.002 to 0.006%.

Al:0.02〜1.0%
Alは、脱酸剤として作用する元素であり、0.02%以上の含有を必要とする。また、Alは、フェライトの安定化に寄与する元素であり、Siと同様に、900℃での平衡状態において、所望量のフェライト相の生成を確保するために、有効に寄与する。一方、1.0%を超えて過剰に含有すると、炭化物の析出を抑制し、所望の炭化物個数を確保できない。このため、Alは0.02〜1.0%の範囲に限定した。なお、好ましくは0.2〜0.6%である。
さらに、Si、Alは上記した含有の範囲内で、かつ次(1)式
(Si+2.5Al)≧1.5 ……(1)
(ここで、Si、Al:各元素の含有量(質量%))
を満足するように含有する。
Al: 0.02-1.0%
Al is an element that acts as a deoxidizer, and needs to be contained in 0.02% or more. Further, Al is an element that contributes to the stabilization of ferrite, and similarly to Si, effectively contributes to ensuring the formation of a desired amount of ferrite phase in the equilibrium state at 900 ° C. On the other hand, if the content exceeds 1.0% and is excessive, the precipitation of carbides is suppressed and the desired number of carbides cannot be secured. Therefore, Al is limited to the range of 0.02 to 1.0%. The content is preferably 0.2 to 0.6%.
Furthermore, Si and Al are within the range of the above content, and the following formula (1)
(Si + 2.5Al) ≧ 1.5 (1)
(Here, Si, Al: content of each element (mass%))
To be satisfied.

Si、Alは、フェライトを安定化する元素であり、上記(1)式を満足するようにSi、Alを含有すれば、900℃における所望のフェライト量を確保できる。一方、Si、Alの含有量が(1)式を満足しない場合には、生成するフェライト量が、変形抵抗を低減できる程度まで増加しないため、所望の摩擦攪拌接合の施工性向上を達成できなくなる。   Si and Al are elements that stabilize ferrite, and if Si and Al are contained so as to satisfy the above formula (1), a desired ferrite amount at 900 ° C. can be secured. On the other hand, if the contents of Si and Al do not satisfy the formula (1), the amount of ferrite generated does not increase to the extent that the deformation resistance can be reduced, and thus the desired workability improvement of friction stir welding cannot be achieved. .

V:0.1〜1.0%、Nb:0.1〜1.0%のうちから選ばれた1種または2種
V、Nbはいずれも、炭化物あるいは窒化物、あるいは炭窒化物として微細な析出物を形成し、結晶粒の粗大化防止に寄与する元素であり、本発明では1種または2種を含有する。このような効果を得るためには、V、Nbともに0.1%以上の含有を必要とする。一方、1.0%を超えて過剰に含有すると、厚鋼材の靭性が低下する。このため、V:0.1〜1.0%、Nb:0.1〜1.0%の範囲に限定した。
V: 0.1 to 1.0%, Nb: 0.1 to 1.0% selected from one or two types V and Nb each form a fine precipitate as a carbide or a nitride or a carbonitride to form crystals. It is an element that contributes to the prevention of grain coarsening, and in the present invention, it contains one or two. In order to obtain such effects, it is necessary to contain V and Nb in an amount of 0.1% or more. On the other hand, if the content exceeds 1.0% and is excessive, the toughness of the thick steel material decreases. Therefore, V: 0.1 to 1.0% and Nb: 0.1 to 1.0% are limited.

上記した成分が基本の成分であるが、基本の成分に加えて、必要に応じてさらに、選択元素として、Cu:3.0%以下、Ni:5.0%以下、Cr:5.0%以下、Mo:1.0%以下のうちから選ばれた1種または2種以上を含有してもよい。   Although the above-mentioned components are basic components, in addition to the basic components, if necessary, further, as selective elements, Cu: 3.0% or less, Ni: 5.0% or less, Cr: 5.0% or less, Mo: 1.0% You may contain 1 type (s) or 2 or more types selected from the following.

Cu:3.0%以下、Ni:5.0%以下、Cr:5.0%以下、Mo:1.0%以下のうちから選ばれた1種または2種以上
Cu、Ni、Cr、Moはいずれも、厚鋼材の強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上、含有できる。
One or more selected from Cu: 3.0% or less, Ni: 5.0% or less, Cr: 5.0% or less, Mo: 1.0% or less
Cu, Ni, Cr, and Mo are all elements that contribute to increasing the strength of thick steel materials, and can be selected according to need and can be contained alone or in combination of two or more.

Cuは、厚鋼材の強度を増加させる元素であり、このような効果を得るためには0.1%以上含有することが好ましい。一方、3.0%を超えて含有すると、厚鋼材が著しく硬化する。このため、含有する場合にはCuは3%以下に限定することが好ましい。なお、より好ましくは0.2〜1.0%である。   Cu is an element that increases the strength of thick steel materials, and is preferably contained in an amount of 0.1% or more in order to obtain such effects. On the other hand, if the content exceeds 3.0%, the thick steel material is significantly hardened. Therefore, when containing Cu, it is preferable to limit Cu to 3% or less. It is more preferably 0.2 to 1.0%.

Niは、厚鋼材の強度を増加させるとともに、靭性をも向上させる元素であり、このような効果を得るためには0.2%以上含有することが好ましい。また、Niはオーステナイトを安定化する元素であり、5.0%を超えて過剰に含有すると、900℃の平衡状態におけるフェライト量が低下し、変形抵抗の低下度合いが少なくなり、所望の摩擦攪拌接合における施工性の向上が期待できなくなる。このため、含有する場合には、Niは5.0%以下に限定することが好ましい。なお、より好ましくは0.2〜1.0%である。   Ni is an element that increases the strength of the thick steel material and also improves the toughness, and it is preferable to contain Ni in an amount of 0.2% or more in order to obtain such an effect. Ni is an element that stabilizes austenite, and when it is contained in excess of 5.0%, the amount of ferrite in the equilibrium state at 900 ° C decreases, the degree of decrease in deformation resistance decreases, and in the desired friction stir welding. Improvement of workability cannot be expected. Therefore, when it is contained, Ni is preferably limited to 5.0% or less. It is more preferably 0.2 to 1.0%.

また、Crは、厚鋼材の強度を増加させる元素であり、このような効果を得るためには、0.2%以上の含有を必要とする。一方、5.0%を超えて含有すると、厚鋼材が著しく硬化する。このため、含有する場合には、Crは5%以下に限定することが好ましい。なお、より好ましくは0.2〜1.0%である。   Further, Cr is an element that increases the strength of thick steel material, and in order to obtain such an effect, the content of Cr needs to be 0.2% or more. On the other hand, if the content exceeds 5.0%, the thick steel material is significantly hardened. Therefore, when containing Cr, it is preferable to limit Cr to 5% or less. It is more preferably 0.2 to 1.0%.

また、Moは、厚鋼材の強度を増加させる元素であり、このような効果を得るためには0.05%以上含有することが好ましい。一方、1.0%を超えて含有すると、靭性に悪影響を及ぼす。このため、含有する場合には、Moは1.0%以下に限定することが好ましい。なお、より好ましくは0.1〜0.4%である。   Further, Mo is an element that increases the strength of the thick steel material, and it is preferable to contain Mo in an amount of 0.05% or more in order to obtain such an effect. On the other hand, if the content exceeds 1.0%, the toughness is adversely affected. Therefore, when containing Mo, it is preferable to limit Mo to 1.0% or less. In addition, it is more preferably 0.1 to 0.4%.

残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物として、P、Sは厚鋼材の加工性、靭性を低下させるため、極力低減することが好ましいが、P:0.03%以下、S:0.03%以下であれば許容できる。   The balance consists of Fe and inevitable impurities. In addition, as unavoidable impurities, P and S reduce the workability and toughness of the thick steel material and are preferably reduced as much as possible, but P: 0.03% or less and S: 0.03% or less are acceptable.

本発明厚鋼材は、上記した組成を有し、好ましくは、体積率で20〜90%のフェライト相と、残部(第二相)は、ベイナイト、マルテンサイト、パーライトのうちのいずれか、あるいはそれらの混合、からなる組織を有することが好ましい。本発明厚鋼材は、900℃の平衡状態において、体積率で20%以上のフェライト相を残存させることができる組成を有することから、摩擦攪拌接合部の到達温度において変形抵抗を低くすることができ、それにより、摩擦攪拌接合時の施工性を向上できる。そして、さらに、本発明厚鋼材は、厚鋼材同士を、摩擦攪拌接合により接合した場合に、降伏強さYS:480MPa以上、引張強さTS:580MPa以上の高強度を有し、さらにシャルピー衝撃試験の試験温度:-30℃での吸収エネルギーvE-30が100J以上という高靭性を有する摩擦攪拌接合部を形成することができる厚鋼材である。これは、本発明厚鋼材がNbおよび/またはVを含有していることにより、多量の微細析出物が分散しており、摩擦攪拌接合時に900℃以上の高温に晒されても、析出物の結晶粒粗大化防止効果により、接合部での結晶粒粗大化を防止できることによる。 The thick steel material of the present invention has the composition described above, preferably a ferrite phase of 20 to 90% by volume and the balance (second phase) is any of bainite, martensite, pearlite, or those. It is preferable to have a structure consisting of The thick steel material of the present invention has a composition capable of leaving 20% or more by volume of the ferrite phase in the equilibrium state at 900 ° C., and therefore can reduce the deformation resistance at the reached temperature of the friction stir welding part. Therefore, the workability during friction stir welding can be improved. Further, the thick steel material of the present invention has a high strength of yield strength YS: 480 MPa or more and tensile strength TS: 580 MPa or more when the thick steel materials are joined by friction stir welding, and further, a Charpy impact test. Test temperature: A thick steel material capable of forming a friction stir welded joint having a high toughness with an absorbed energy vE -30 at -30 ° C of 100 J or more. This is because the thick steel material of the present invention contains Nb and / or V, so that a large amount of fine precipitates are dispersed, and even if exposed to a high temperature of 900 ° C. or higher during friction stir welding, the precipitates This is because the crystal grain coarsening prevention effect can prevent the crystal grain coarsening at the joint portion.

なお、上記した特性を有する接合部を得るための摩擦攪拌接合条件は、例えば、次のとおりとする。上記した組成、組織を有する本発明厚鋼材同士を突き合わせて、I型開先を形成し、多結晶硼素窒化物(PCBN)を素材とする回転ツールを用い、該回転ツールをI型開先内に挿入し、ツール先進角度:0〜5°、ツール回転数:100〜500rpm、接合速度:50〜400mm/minの条件で摩擦攪拌接合する。上記した摩擦攪拌接合条件を外れる場合には、摩擦攪拌接合時の温度が低く、あるいは高くなり、所望のフェライト量を確保できず、所望の施工性の向上が得られない。   The friction stir welding conditions for obtaining the joint having the above-mentioned characteristics are, for example, as follows. The thick steel materials of the present invention having the above-described composition and structure are butted against each other to form an I-shaped groove, and a rotary tool made of polycrystalline boron nitride (PCBN) is used. Inserted into, and friction stir welding under the conditions of tool advanced angle: 0-5 °, tool rotation speed: 100-500 rpm, welding speed: 50-400 mm / min. If the above-mentioned friction stir welding conditions are not satisfied, the temperature during friction stir welding will be low or high, the desired amount of ferrite cannot be secured, and the desired workability cannot be improved.

つぎに、本発明厚鋼材の好ましい製造方法について説明する。上記した組成の溶鋼を、転炉、電気炉、真空溶解炉等の常用の溶製方法で溶製し、常用の鋳造方法で、鋳片とするか、あるいはさらに鋳片に熱間圧延を施し鋼片とし、鋼素材とすることが好ましい。ついで、鋼素材を、加熱温度:1150〜1300℃に加熱したのち、熱間圧延を施し、所定寸法形状の厚鋼材とする。熱間圧延条件については、所望の強度(母材強度)、靭性(母材靭性)を確保できれば、特に限定する必要はない。より高靭性を確保するためには、制御圧延、制御冷却、直接焼入れ等のTMCP処理を施すことが好ましい。   Next, a preferred method for producing the thick steel material of the present invention will be described. Molten steel having the above-mentioned composition is melted by a conventional melting method such as a converter, an electric furnace, and a vacuum melting furnace, and is cast by a conventional casting method, or is further subjected to hot rolling on the cast piece. It is preferable to use a steel piece and a steel material. Then, the steel material is heated to a heating temperature of 1150 to 1300 ° C., and then hot rolled to obtain a thick steel material having a predetermined size and shape. The hot rolling conditions are not particularly limited as long as desired strength (base material strength) and toughness (base material toughness) can be secured. In order to secure higher toughness, it is preferable to perform TMCP treatment such as controlled rolling, controlled cooling and direct quenching.

なお、本発明構造用摩擦攪拌接合継手は、上記した好ましい製造方法で製造され、上記した組成、組織を有する厚鋼材部材同士を突き合わせて、I型開先を形成し、好ましくは上記した摩擦攪拌接合条件で、摩擦攪拌接合して、製造する。   The structural friction stir welded joint of the present invention is manufactured by the above-described preferable manufacturing method, and the thick steel members having the above-described composition and structure are butted against each other to form an I-shaped groove, and preferably the above friction stir welding is performed. Friction stir welding is performed under the welding conditions to manufacture.

以下、実施例に基づき、さらに本発明について説明する。   Hereinafter, the present invention will be further described based on Examples.

表1に示す組成の溶鋼を、真空溶解炉で溶製し、連続鋳造して鋳片とした。さらに、得られた鋳片を、加熱したのち、表2に示す条件で、熱間圧延し、板厚:10mmの厚鋼板とした。なお、熱間圧延終了後、表2に示す条件で、加速冷却を行った。   Molten steel having the composition shown in Table 1 was melted in a vacuum melting furnace and continuously cast into a slab. Further, the obtained slab was heated and then hot-rolled under the conditions shown in Table 2 to obtain a thick steel plate having a plate thickness of 10 mm. After the hot rolling was completed, accelerated cooling was performed under the conditions shown in Table 2.

得られた厚鋼板から、圧延方向に直交する方向(C方向)が引張方向となるように、JIS 14A号引張試験片(平行部径:6mm)を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。   A JIS 14A tensile test piece (parallel part diameter: 6 mm) was sampled from the obtained thick steel plate so that the direction orthogonal to the rolling direction (C direction) was the tensile direction, and in accordance with JIS Z 2241. A tensile test was performed to determine the tensile properties (yield strength YS, tensile strength TS).

また、得られた厚鋼板から、圧延方向に直交する方向(C方向)にVノッチ試験片を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を試験温度:-30℃で実施し、吸収エネルギーを求め靭性を評価した。   In addition, a V-notch test piece was taken from the obtained thick steel plate in a direction (C direction) orthogonal to the rolling direction, and a Charpy impact test was conducted at a test temperature of -30 ° C in accordance with JIS Z 2242. The toughness was evaluated by calculating the absorbed energy.

また、得られた厚鋼板から、組織観察用試験片を採取し、研磨したのち、腐食液(ナイタール)で腐食し、圧延方向断面を観察面とした。組織観察は、光学顕微鏡(倍率:500倍)を用いて、組織を撮像し、画像解析装置を用いて、その種類を特定し、その体積率を算出した。さらに、走査型電子顕微鏡(倍率:10000倍)を用いて、組織を撮像し、組織中に分散した炭化物、窒化物および炭窒化物(析出物)の大きさ、個数を測定した。なお、析出物の種類を、電子顕微鏡内に組み込まれたエネルギー分散型X線分析装置を用いて、確認しながら、測定した。そして、大きさ(粒径):10nm以上100nm以下の炭化物、窒化物および炭窒化物(これらを包括して析出物という)の合計個数を算出した。   Further, a test piece for microstructure observation was sampled from the obtained thick steel plate, and after polishing, it was corroded with a corrosive liquid (nital), and a cross section in the rolling direction was used as an observation surface. For the tissue observation, an image of the tissue was taken using an optical microscope (magnification: 500 times), the type was specified using an image analyzer, and the volume ratio was calculated. Furthermore, the structure was imaged using a scanning electron microscope (magnification: 10,000 times), and the size and number of carbides, nitrides, and carbonitrides (precipitates) dispersed in the structure were measured. The type of precipitate was measured while confirming it using an energy dispersive X-ray analyzer incorporated in an electron microscope. Then, the total number of carbides, nitrides, and carbonitrides having a size (particle diameter) of 10 nm or more and 100 nm or less (these are collectively referred to as precipitates) was calculated.

得られた結果を表3に示す。   The results obtained are shown in Table 3.

Figure 0006687002
Figure 0006687002

Figure 0006687002
Figure 0006687002

Figure 0006687002
Figure 0006687002

表3から、本発明例はいずれも、軟質なフェライト相を摩擦攪拌接合時の高温(900℃)においても残存させるとともに、降伏強さYS:480MPa以上、引張強さTS:580MPa以上で、かつシャルピー衝撃試験の試験温度:-30℃における吸収エネルギーvE-30:100J以上を満足する、高強度高靭性構造用低合金鋼板(構造用厚鋼板)であることがわかる。なお、本発明の範囲を外れると、所望の強度、所望の靭性、所望の組織を確保できなくなる。 From Table 3, in all of the examples of the present invention, the soft ferrite phase is retained even at high temperature (900 ° C) during friction stir welding, the yield strength is YS: 480 MPa or more, the tensile strength is TS: 580 MPa or more, and It can be seen that it is a high strength and high toughness structural low alloy steel sheet (structural thick steel sheet) satisfying the absorbed energy vE -30 : 100 J or more at the Charpy impact test test temperature: -30 ° C. If the range of the present invention is exceeded, desired strength, desired toughness, and desired structure cannot be secured.

ついで、上記した組成、組織を有する厚鋼板について、同一厚鋼板2、2’同士を突き合わせ、I型開先を形成し、片面1パスの摩擦攪拌接合により継手(摩擦攪拌接合継手)を作製した。なお開先面は、フライス加工のまま程度の表面状態とした。摩擦攪拌接合は、図1に示す接合要領で行った。すなわち、多結晶硼素窒化物(PCBN)を素材とする回転ツール1を用い、該回転ツール1をI型開先内に挿入し、ツール先進角度:0°、ツール回転数:250rpm、接合速度:150mm/minの条件で摩擦攪拌し、接合した。   Then, with regard to the thick steel plates having the above composition and structure, the same thick steel plates 2 and 2 ′ were butted to each other to form an I-shaped groove, and a joint (friction stir welding joint) was produced by friction stir welding with one pass on one side. . In addition, the groove surface was in a surface state that was about the same as in milling. Friction stir welding was performed according to the welding procedure shown in FIG. That is, the rotary tool 1 made of polycrystalline boron nitride (PCBN) is used, and the rotary tool 1 is inserted into the I-shaped groove, and the tool advance angle is 0 °, the tool rotation speed is 250 rpm, and the welding speed is: Friction stirring was performed under the condition of 150 mm / min, and joining was performed.

なお、摩擦攪拌接合するに当たり、回転ツールにかかる荷重を、図2に示す3方向について、荷重計を用いて測定した。ここでいう「3方向」とは、接合方向に平行方向(X方向)、接合方向に直角方向(Y方向)、ツールの軸方向と同一方向(Z方向)とした。なお、荷重は、摩擦攪拌接合中に示された平均荷重を求めた。   Note that the load applied to the rotary tool in the friction stir welding was measured in three directions shown in FIG. 2 using a load meter. The "three directions" referred to here are a direction parallel to the joining direction (X direction), a direction perpendicular to the joining direction (Y direction), and the same direction as the axial direction of the tool (Z direction). The load was the average load shown during friction stir welding.

得られた結果を表4に示す。   The results obtained are shown in Table 4.

Figure 0006687002
Figure 0006687002

表4から、(1)式を満足せず本発明の範囲を外れ、900℃の平衡状態におけるフェライト量が0%と低い組成の比較例(継手No.G1、H1)では、回転ツールにかかる荷重はX方向で7.35〜7.54kN、Y方向で2.76〜2.84kN、Z方向で36.8〜38.4kNと、大きな負荷が回転ツールにかかっている。一方、本発明例はいずれも、各回転ツールにかかる荷重は比較例に比べて低く、摩擦攪拌接合における施工性に優れていると言える。   From Table 4, the comparative example (joint No. G1, H1), which does not satisfy the formula (1) and is out of the range of the present invention and has a low ferrite content of 0% in the equilibrium state at 900 ° C., is applied to the rotary tool. The load is 7.35 to 7.54kN in the X direction, 2.76 to 2.84kN in the Y direction, and 36.8 to 38.4kN in the Z direction. On the other hand, in each of the examples of the present invention, the load applied to each rotary tool is lower than that of the comparative example, and it can be said that the workability in friction stir welding is excellent.

つぎに、得られた摩擦攪拌接合継手の接合部から、試験片を採取し、摩擦攪拌接合部の、組織、強度、靭性を調査した。試験方法は次のとおりとした。   Next, a test piece was taken from the joint of the obtained friction stir welded joint, and the structure, strength and toughness of the friction stir welded joint were investigated. The test method was as follows.

得られた継手から、接合部を含む試験片を採取し、接合部が観察面となるように研磨し、腐食液(ナイタール)で腐食して、接合部の組織を観察し、撮像して、その種類を同定し、画像解析して当該組織の体積率を算出した。また、フェライト粒について画像解析装置を用いて、各結晶粒の面積を求め算術平均してフェライトの平均粒面積から、円相当直径を算出し、接合部におけるフェライトの平均結晶粒径とした。   From the joint obtained, collect a test piece containing a joint, polish it so that the joint becomes an observation surface, corrode with a corrosive liquid (nital), observe the structure of the joint, image it, The type was identified and image analysis was performed to calculate the volume ratio of the tissue. Further, the area of each crystal grain was calculated for the ferrite grains using an image analysis device, the arithmetic mean was calculated, and the circle equivalent diameter was calculated from the average grain area of the ferrite, and the average crystal grain size of the ferrite in the joint was determined.

また、得られた継手から、引張方向が接合方向となるように、引張試験片(平行部径:6mmφ)を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。   Further, from the obtained joint, a tensile test piece (parallel part diameter: 6 mmφ) was sampled so that the tensile direction was the joining direction, and a tensile test was carried out in accordance with the provisions of JIS Z 2241 to obtain tensile properties ( Yield strength YS and tensile strength TS) were obtained.

また、得られた継手から、試験片の長手方向が接合部に直交する方向で、接合部を含みVノッチ試験片を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を試験温度:-30℃で実施し、靭性を評価した。   In addition, a V-notch test piece including the joint portion was taken from the obtained joint in a direction in which the longitudinal direction of the test piece was orthogonal to the joint portion, and a Charpy impact test was conducted at a test temperature in accordance with JIS Z 2242: The toughness was evaluated by carrying out at -30 ° C.

得られた結果を表5に示す。   The results obtained are shown in Table 5.

Figure 0006687002
Figure 0006687002

表5から、本発明例では、接合部において微細なフェライト粒を有し、所望の高強度、高靭性の摩擦攪拌接合部となっている。一方、Nb、Vを含まない比較例は、いずれも接合部において粗大なフェライト粒となり、所望の高強度および/または高靭性を確保できず、強度および/または靭性が低い摩擦攪拌接合部となっている。   From Table 5, in the example of the present invention, the friction stir welded joint has fine ferrite grains in the welded joint and has desired high strength and high toughness. On the other hand, in the comparative examples containing neither Nb nor V, coarse ferrite grains were formed in the joints, and the desired high strength and / or toughness could not be secured, resulting in friction stir welds with low strength and / or toughness. ing.

1 回転ツール
2、2’ 鋼板
3 摩擦攪拌接合部
1 Rotating tool 2, 2'Steel plate 3 Friction stir welding part

Claims (4)

構造用低合金厚鋼材であって、
質量%で、
C:0.05〜0.20%、 Si:0.1〜1.0%、
Mn:0.1〜3.0%、 N:0.001〜0.010%、
Al:0.02〜1.0%
を含み、かつSi、Alが下記(1)式を満足するように含み、さらにV:0.1〜1.0%、Nb:0.1〜1.0%のうちから選ばれた1種または2種を含有し、残部Feおよび不可避的不純物からなり、かつ900℃の平衡状態において体積率で20%以上のフェライト相が生成する組成と、
粒径10nm以上100nm以下の析出物が100μm2当たり10個以上析出した組織と、
を有し、摩擦攪拌接合部が、降伏強さ:480MPa以上、引張強さ:580MPa以上で、シャルピー衝撃試験の試験温度:-30℃における吸収エネルギーvE -30 :100J以上を満足し、強度、靭性に優れることを特徴とする摩擦攪拌接合向け構造用低合金厚鋼材。

(Si+2.5Al)≧1.5 ……(1)
ここで、Si、Al:各元素の含有量(質量%)
Structural low alloy thick steel material,
In mass%,
C: 0.05 to 0.20%, Si: 0.1 to 1.0%,
Mn: 0.1-3.0%, N: 0.001-0.010%,
Al: 0.02-1.0%
And Si and Al are contained so as to satisfy the following formula (1), and further, one or two kinds selected from V: 0.1 to 1.0% and Nb: 0.1 to 1.0% are contained, and the balance A composition that consists of Fe and unavoidable impurities, and produces a ferrite phase of 20% or more by volume at equilibrium at 900 ° C.
A structure in which precipitates having a particle size of 10 nm or more and 100 nm or less are deposited in an amount of 10 or more per 100 μm 2 ,
The friction stir welded joint has a yield strength of 480 MPa or more, a tensile strength of 580 MPa or more, a Charpy impact test test temperature of -30 ° C, and an energy absorption vE -30 of 100 J or more . Structural low alloy thick steel material for friction stir welding characterized by excellent toughness.
Record
(Si + 2.5Al) ≧ 1.5 (1)
Here, Si, Al: content of each element (mass%)
前記組成に加えてさらに、質量%で、Cu:3.0%以下、Ni:5.0%以下、Cr:5.0%以下、Mo:1.0%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の摩擦攪拌接合向け構造用低合金厚鋼材。   In addition to the above composition, it further contains, in mass%, one or more selected from Cu: 3.0% or less, Ni: 5.0% or less, Cr: 5.0% or less, Mo: 1.0% or less. A low alloy thick steel material for a structure for friction stir welding according to claim 1. 厚鋼材部材同士を摩擦攪拌接合してなる構造用摩擦攪拌接合継手であって、
前記厚鋼材部材が、請求項1または2に記載の構造用低合金厚鋼材で構成されてなることを特徴とする構造用摩擦攪拌接合継手。
A friction stir welding joint for structures, which is formed by friction stir welding thick steel members together,
A structural friction stir welding joint characterized in that the thick steel member is made of the structural low alloy thick steel material according to claim 1 or 2.
前記摩擦攪拌接合してなる摩擦攪拌接合部が、平均粒径:10μm以下の微細なフェライト相からなる組織を有し、降伏強さ:480MPa以上、引張強さ:580MPa以上で、シャルピー衝撃試験の試験温度:-30℃における吸収エネルギーvE-30:100J以上を有する高強度高靭性の摩擦攪拌接合部であることを特徴とする請求項3に記載の構造用摩擦攪拌接合継手。 The friction stir welded part formed by the friction stir welding has an average grain size: 10 μm or less of a structure composed of a fine ferrite phase, yield strength: 480 MPa or more, tensile strength: 580 MPa or more, Charpy impact test The structural friction stir welded joint according to claim 3, wherein the friction stir welded joint has a high strength and a high toughness and has an absorbed energy vE -30 at a test temperature of -30 ° C: 100 J or more.
JP2017215367A 2016-12-09 2017-11-08 Structural low alloy thick steel for friction stir welding and structural friction stir welding joints Active JP6687002B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016239323 2016-12-09
JP2016239323 2016-12-09

Publications (2)

Publication Number Publication Date
JP2018095956A JP2018095956A (en) 2018-06-21
JP6687002B2 true JP6687002B2 (en) 2020-04-22

Family

ID=62632582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215367A Active JP6687002B2 (en) 2016-12-09 2017-11-08 Structural low alloy thick steel for friction stir welding and structural friction stir welding joints

Country Status (1)

Country Link
JP (1) JP6687002B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195569A1 (en) * 2019-03-27 2020-10-01 国立大学法人大阪大学 Surface-modifying method for steel material, and steel structure
CN113061962B (en) * 2021-04-25 2022-10-25 陕西科技大学 AZ31 magnesium alloy friction stir welding plate and method for improving performance of welding joint thereof
JP7230975B1 (en) * 2021-09-13 2023-03-01 Jfeスチール株式会社 Welding joint for electromagnetic steel strip, friction stir welding method, and method for manufacturing electromagnetic steel strip
EP4378617A1 (en) * 2021-09-13 2024-06-05 JFE Steel Corporation Friction stir welding method for electromagnetic steel strip, and method for manufacturing electromagnetic steel strip
KR20240035618A (en) * 2021-09-13 2024-03-15 제이에프이 스틸 가부시키가이샤 Bonding joint and friction stir welding method of electrical steel strip, and manufacturing method of electrical steel strip
JP7230978B1 (en) * 2021-09-13 2023-03-01 Jfeスチール株式会社 Welding joint for electromagnetic steel strip, friction stir welding method, and method for manufacturing electromagnetic steel strip
KR20240058192A (en) * 2021-11-30 2024-05-03 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip and manufacturing method of electronic steel strip
WO2023100419A1 (en) * 2021-11-30 2023-06-08 Jfeスチール株式会社 Method for friction-stir-welding electromagnetic steel strip, method for manufacturing electromagnetic steel strip, friction stir welding device, and device for manufacturing electromagnetic steel strip
WO2023100420A1 (en) * 2021-11-30 2023-06-08 Jfeスチール株式会社 Friction stir welding method for electromagnetic steel strip and method for manufacturing electromagnetic steel strip
EP4400245A1 (en) * 2021-11-30 2024-07-17 JFE Steel Corporation Method for friction-stir-welding electromagnetic steel strip, method for manufacturing electromagnetic steel strip, friction stir welding device, and device for manufacturing electromagnetic steel strip

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040206B2 (en) * 2006-07-26 2012-10-03 Jfeスチール株式会社 Low alloy structural steel for friction stir welding
JP5194522B2 (en) * 2007-03-30 2013-05-08 Jfeスチール株式会社 High-strength, high-workability hot-rolled steel sheet excellent in workability of the friction stir welding method and its production
US20150041521A1 (en) * 2012-04-06 2015-02-12 Jfe Steel Corporation Method of friction-stir welding of steel sheet
WO2015068386A1 (en) * 2013-11-07 2015-05-14 Jfeスチール株式会社 Friction stir welding method for high-strength steel sheet

Also Published As

Publication number Publication date
JP2018095956A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6687002B2 (en) Structural low alloy thick steel for friction stir welding and structural friction stir welding joints
KR102206319B1 (en) Austenitic abrasion-resistant steel sheet
JP5522316B2 (en) Friction stir welding method for steel sheet
JP5939356B2 (en) Friction stir welding method for high strength steel sheet
JP5110989B2 (en) Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics
EP2832889A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
EP2832890A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
EP1662014A1 (en) Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for production thereof
WO2019186911A1 (en) Austenitic wear-resistant steel sheet
JPWO2020170333A1 (en) Electric resistance sewn steel pipe for line pipe
JP2008255458A (en) Thick steel plate having haz toughness and base metal toughness
JP5194522B2 (en) High-strength, high-workability hot-rolled steel sheet excellent in workability of the friction stir welding method and its production
JP4914783B2 (en) Large steel plate for high heat input welding with excellent shearability
WO2020184123A1 (en) Steel for solid-state welding, steel material for solid-state welding, solid-state welded joint, and solid-state welded structure
JP2010090418A (en) High-strength and high-ductility hot-dip galvanized steel sheet excellent in workability and plating adhesion in friction-stir welding process
JP2022510216A (en) Steel material with excellent toughness of weld heat affected zone and its manufacturing method
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP5040206B2 (en) Low alloy structural steel for friction stir welding
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP2019173053A (en) High strength high ductility steel sheet
JP6634616B2 (en) Steel for friction stir welding and friction stir welding method
WO2018043067A1 (en) Thick steel sheet and production method therefor
JP2004011008A (en) Steel member and structure excellent in weld zone toughness
WO2021187473A1 (en) Steel for solid-state welding, steel material for solid-state welding, solid-state welded joint, and solid-state welded structure
JP6771429B2 (en) Thick steel plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6687002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250