JP6686890B2 - 情報処理装置、情報処理方法、及び、プログラム - Google Patents

情報処理装置、情報処理方法、及び、プログラム Download PDF

Info

Publication number
JP6686890B2
JP6686890B2 JP2016551508A JP2016551508A JP6686890B2 JP 6686890 B2 JP6686890 B2 JP 6686890B2 JP 2016551508 A JP2016551508 A JP 2016551508A JP 2016551508 A JP2016551508 A JP 2016551508A JP 6686890 B2 JP6686890 B2 JP 6686890B2
Authority
JP
Japan
Prior art keywords
image
feature point
information processing
reliability
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016551508A
Other languages
English (en)
Other versions
JPWO2016051707A1 (ja
Inventor
剛志 柴田
剛志 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2016051707A1 publication Critical patent/JPWO2016051707A1/ja
Application granted granted Critical
Publication of JP6686890B2 publication Critical patent/JP6686890B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Description

本発明は、画像処理に関し、特に、画像の位置合わせを処理する情報処理装置、情報処理方法、及び、プログラムに関する。
画像処理として、画像中の対象を認識する画像認識処理がある。ただし、画像の撮影処理には、撮影時におけるノイズなど劣化過程が含まれる。そのため、画像認識には、画像の復元処理が必要となる場合がある(例えば、特許文献1を参照)。復元処理の一つに、例えば、学習型超解像技術がある。
画像中の対象に対する画像認識又は学習型超解像を行う場合、画像を処理する情報処理装置は、まず、入力画像における対象の姿勢と、参照画像に撮像されている対象の姿勢との幾何学的な変形を算出する。この処理は、一般的に、「画像位置合わせ(以下、単に「位置合わせ」とも呼ぶ)」と呼ばれている。画像位置合わせの方法として、Lucas−Kanade法がある(例えば、非特許文献1を参照)。Lucas−Kanade法は、入力画像における対象の画素値と、位置合わせ後の参照画像における対応する画素値との差分の二乗和が最小となるように、画像の位置を合わせる方法である。Lucas−Kanade法は、勾配法を用いて、最小となる位置を算出する。しかしながら、Lucas−Kanade法は、例えば、ビデオ映像における前後フレームのように、入力画像と参照画像とがほぼ同じ画像であることを前提としている。そのため、Lucas−Kanade法は、入力画像と参照画像とにおいて、解像度又はパターン(例えば、ナンバープレートにおける番号のバリエーション)が著しく異なる場合には、適用できない。
このように、特許文献1及び非特許文献1に記載の技術は、監視カメラの画像のように、入力画像と参照画像とにおいてパターンのバリエーションが多様である場合には、適用できないという問題点があった。
そこで、画像のパターンにバリエーションが存在する場合でも位置合わせが可能な方法として、AAM(Active Appearance model)が、提案されている(例えば、特許文献2及び非特許文献2参照)。AAMは、主成分分析を用いて、複数の参照画像から、パターンのバリエーションの分布を学習する。そして、AAMは、バリエーションの分布を、例えば、非等方ガウス分布で近似する。このように、AAMは、参照画像と入力画像との位置合わせ、及び、パターンの推定を、同時に行う方法である。
特開2009−110349号公報 特開2009−053916号公報
B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision" Proceedings of DARPA Imaging Understanding Workshop, pp. 121-130, April 1981. T. F. Cootes, C. J. Taylor, D.H. Cooper, and J. Graham, "Active Shape Models-Their Training and Application", Computer Vision and Image Understanding, Vol. 61, Issue 1, pp. 38-59, January 1995
しかしながら、特許文献2及び非特許文献2に記載の技術は、例えば、監視カメラの画像のように、低解像画像、圧縮画像、ノイズが多い画像、又は、撮像対象のバリエーションが多様である場合には、高精度な位置合わせを実現できないという問題点があった。
その理由は、AAMが、次の2つの条件を前提としているためである。
(1)パターンが、非等方ガウス分布で近似可能である。
(2)参照画像のパターン分布と入力画像のパターン分布とが、同一である。
例えば、監視カメラで撮影された低解像画像は、上記の2つの条件を満たさない場合が多い。あるいは、ナンバープレート画像は、顔画像とは異なり、パターンのバリエーションを、非等方ガウス分布で近似できない。また、参照画像は、一般的に、高精細な画像である。そして、参照画像に対し、監視カメラが撮影した入力画像は、ぼけ又は圧縮ノイズなどを含む。そのため、参照画像と入力画像とでは、パターンの分布が、大きく異なる。したがって、特許文献2及び非特許文献2に記載のAAMは、例えば、監視カメラの画像のように、低解像、圧縮、又はノイズが多く、撮影対象のパターンのバリエーションが多様である場合には、高精度な位置合わせを実現できないという問題点があった。
本発明の目的は、上記問題点を解決し、低解像、圧縮、又はノイズが多く、撮像対象のパターンのバリエーションが多様である場合でも、高精度な位置合わせが可能な情報処理装置、情報処理方法、及びプログラムを提供することにある。
本発明の一形態における情報処理装置は、処理対象である対象画像に含まれる対象の位置合わせに用いる特徴点の初期値を基に、対象画像において複数の特徴点の組である特徴点仮説を生成する特徴点サンプリング手段と、特徴点仮説と、画像を劣化させるためのパラメータである劣化パラメータとを基に、対象画像の処理に用いる参照画像を劣化させた画像である劣化画像を生成する画像劣化手段と、対象画像と、劣化画像と、特徴点仮説とを基に、特徴点仮説の信頼度を算出する信頼度算出手段とを含む。
本発明の一形態におけるデータ処理方法は、処理対象である対象画像に含まれる対象の位置合わせに用いる特徴点の初期値を基に、対象画像において複数の特徴点の組である特徴点仮説を生成し、特徴点仮説と、画像を劣化させるためのパラメータである劣化パラメータとを基に、対象画像の処理に用いる参照画像を劣化させた画像である劣化画像を生成し、対象画像と、劣化画像と、特徴点仮説とを基に、特徴点仮説の信頼度を算出する。
本発明の一形態におけるプログラムは、処理対象である対象画像に含まれる対象の位置合わせに用いる特徴点の初期値を基に、対象画像において複数の特徴点の組である特徴点仮説を生成する処理と、特徴点仮説と、画像を劣化させるためのパラメータである劣化パラメータとを基に、対象画像の処理に用いる参照画像を劣化させた画像である劣化画像を生成する処理と、対象画像と、劣化画像と、特徴点仮説とを基に、特徴点仮説の信頼度を算出する処理とをコンピュータに実行させる
本発明に基づけば、低解像、圧縮、又はノイズが多く、撮像対象のパターンのバリエーションが多様である場合でも、高精度な位置合わせを実現するという効果を奏することができる。
図1は、本発明における第1の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図2は、第1の実施形態に係る信頼度算出部の構成の一例を示すブロック図である。 図3は、第1の実施形態に係る情報処理装置の動作の一例を示す流れ図である。 図4は、第2の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図5は、第2の実施形態に係る信頼度算出部の構成の一例を示すブロック図である。 図6は、第2の実施形態に係る情報処理装置の動作の一例を示す流れ図である。 図7は、第3の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図8は、第3の実施形態に係る情報処理装置の動作の一例を示す流れ図である。 図9は、第4の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図10は、サンプリング点の一例を示す図である。 図11は、特徴点仮説の一例を示す図である。 図12は、輪郭信頼度が低い場合の特徴点仮説の一例を示す図である。 図13は、輪郭信頼度が高い場合の特徴点仮説の一例を示す図である。 図14は、第5の実施形態に係る情報処理装置の構成の一例を示すブロック図である。
次に、本発明の実施形態について図面を参照して説明する。
なお、各図面は、本発明の実施形態を説明するものである。ただし、本発明は、各図面の記載に限られるわけではない。また、各図面の同様の構成には、同じ番号を付し、その繰り返しの説明を、省略する場合がある。
また、以下の説明に用いる図面において、本発明の説明に関係しない部分の構成については、記載を省略し、図示しない場合もある。
まず、実施形態の説明における用語について整理する。
「対象画像」とは、各実施形態の説明において、処理対象となる画像である。対象画像は、例えば、監視カメラが撮影した低解像画像、圧縮画像、又はノイズが激しい画像である。
「参照画像」とは、各実施形態の処理において、参照として用いられる画像である。以下の説明において、本発明における実施形態は、複数の参照画像を用いる。ただし、これは、本発明における実施形態が、1つの参照画像を用いる場合を排除するものではない。
「劣化画像」とは、参照画像を劣化させた画像である。劣化の詳細については、後ほど説明する。
「特徴点」とは、位置合わせ処理において、対象画像と劣化画像(又は参照画像)とを用いた位置合わせの対象となる候補点のことである。位置合わせは、対象の外形(輪郭)又は対象に含まれる特徴的な形状を用いて実行される。そのため、特徴点は、例えば、多角形の頂点である。そこで、以下の説明では、一例として、各実施形態は、対象物の輪郭形状を多角形と仮定して、多角形の頂点を、特徴点として用いるとする。ただし、本発明における各実施形態は、特徴点として、多角形の頂点に限らず、他の点を用いてもよい。例えば、対象が人の顔又は人物の目の場合、本発明における実施形態は、対象の輪郭形状を円又は楕円を仮定して、特徴点として、円又は楕円の形状を決定する点を用いてもよい。例えば、楕円形状の場合、本発明における実施形態は、特徴点として、長軸と外周との2つの交点と、短軸と外周との2つの交点とを合わせた4点を用いてもよい。あるいは、対象が、回路基板の場合、本発明における実施形態は、特徴点として、対象(基板)に含まれる特徴的な素子の外形(輪郭)を用いてもよい。
「特徴点仮説」とは、仮説となる特徴点の組合せである。対象が、多角形の場合、特徴点の組合せは、多角形における位置合わせの対象となる候補点の組合せ(例えば、頂点の組合せ)となる。ここで、多角形の頂点の組合せは、対象の輪郭を示すものとなる。上記のとおり、本実施形態の説明は、多角形を用いて説明する。そのため、以下の説明において、特徴点仮説は、対象である多角形の輪郭における頂点となる。ただし、本実施形態のおける特徴点仮説は、多角形の輪郭における頂点に限る必要はない。
「クラス」とは、本実施形態の説明では、画像の分類である。つまり、対象画像などは、所定のクラスに分類されている。
「L距離」とは、ルベーグ空間のp乗平均ノルムである。例えば、n次元の場合、L距離は、座標を(x,x,・・・,x)とすると、(|x+|x+…+|x1/pとなる。
<第1の実施形態>
次に、本発明における第1の実施形態について図面を参照して説明する。
[構成の説明]
図1は、本発明における第1の実施形態に係る情報処理装置100の構成の一例を示すブロック図である。
情報処理装置100は、対象画像受信部110と、特徴点サンプリング部120と、参照画像受信部140と、劣化パラメータ受信部150と、画像劣化部160と、信頼度算出部170と、特徴点推定部180とを含む。
なお、情報処理装置100は、図示しない記憶部を含んでもよい。この場合、情報処理装置100に含まれる上記の各部は、図示しない記憶部に、以下で説明する情報(画像データ、バラメータなど)を保存し、又は、情報を記憶部から取り出してもよい。なお、以下の説明では、各部における記憶部への動作の説明を省略するが、記憶部への保存動作又は記憶部からの取り出し動作を排除するものではない。
対象画像受信部110は、特徴点を推定する動作の対象となる画像(対象画像)を受信する。なお、予め図示しない記憶部に記憶されている対象画像を処理する場合、情報処理装置100は、対象画像受信部110を含まなくてもよい。
特徴点サンプリング部120は、対象画像に対応する特徴点(輪郭の頂点)の位置の初期値(以下、単に「初期値」とも呼ぶ)を、予め保持、又は、推定(決定)する。特徴点サンプリング部120は、初期値として、例えば、予め情報処理装置100の利用者が設定した特徴点を保持してもよい。あるいは、特徴点サンプリング部120は、暫定的に、対象画像にAAMのような一般的な技術を適用して、特徴点の初期値を推定(決定)してもよい。あるいは、特徴点サンプリング部120は、初期値として、予め、輪郭を形成するために必要な数より少ない数の特徴点を保持し、初期値として必要な残りの特徴点を推定してもよい。
以下の本実施形態の説明では、一例として、特徴点サンプリング部120は、予め、利用者が設定した特徴点の初期値を保持しているとする。
次に、特徴点サンプリング部120は、各頂点の特徴点として、特徴点の初期値を基に、各初期値の周辺の所定の位置及び数の複数の画素を、ピクセル(画素)の精度又はサブピクセルの精度(ピクセルより細かい精度)で、サンプリング(選択)する。以下、サンプリングされた特徴点を、「サンプリング点」と呼ぶ。そして、特徴点サンプリング部120は、仮説となる特徴点の組(特徴点仮説)として、所定の形状の輪郭となるように、その形状の頂点の特徴点を組み合わせた特徴点の組(特徴点仮説)を生成する。なお、以下の説明では、添え字「l」を用いて、特徴点仮説を区別する。また、特徴点仮説の生成を、「特徴点仮説のサンプリング」とも呼ぶ。
図10は、サンプリング点の一例を示す図である。
図11は、特徴点仮説の一例を示す図である。
参照画像受信部140は、特徴点を推定するために使用する複数枚の参照画像を受信する。なお、予め図示しない記憶部に記憶されている参照画像を用いる場合、情報処理装置100は、参照画像受信部140を含まなくてもよい。
劣化パラメータ受信部150は、後述する画像劣化部160が使用する劣化パラメータを受信する。劣化パラメータ受信部150は、受信する劣化パラメータの範囲に制限はない。例えば、画像劣化部160が、予め、使用する劣化パラメータの一部を保持する場合、劣化パラメータ受信部150は、残りの劣化パラメータを受信してもよい。あるいは、劣化パラメータ受信部150は、全ての劣化パラメータを受信し、画像劣化部160に送信してよい。なお、画像劣化部160が、予め、全ての劣化パラメータを保持する場合、情報処理装置100は、劣化パラメータ受信部150を含まなくてもよい。
また、受信する劣化パラメータの種類は、特に制限はない。例えば、受信する劣化パラメータとしては、画像の解像度、画像の焦点ボケ若しくは動きブレの大きさを表す点拡がり関数、画像の圧縮量、又は画像のノイズ量が想定される。あるいは、劣化パラメータ受信部150は、上記の劣化パラメータに加え、インターレース処理などの画像圧縮の方式、又は、白飛び若しくは黒潰れなどの明度変化についての劣化パラメータを受信してもよい。
画像劣化部160は、特徴点サンプリング部120がサンプリングした特徴点仮説と、参照画像受信部140が受信した参照画像と、劣化パラメータ受信部150が受信した劣化パラメータとを基に、参照画像を劣化させた画像を生成する。以下、参照画像を劣化させた画像を、単に、「劣化画像」と呼ぶ。画像劣化部160は、劣化パラメータの組を用いて劣化画像を生成することが望ましい。ただし、画像劣化部160は、各劣化パラメータを個別に用いて、劣化画像を生成してもよい。
また、画像劣化部160は、全ての参照画像に対して劣化画像を生成することが望ましい。ただし、画像劣化部160は、一部の参照画像の劣化画像を生成しなくてもよい。例えば、対象画像と明らかに異なる参照画像が含まれる場合、画像劣化部160は、その参照画像に関する劣化画像を生成しなくてもよい。
また、画像劣化部160は、参照画像に対して、全ての劣化パラメータの組を用いた劣化画像を生成することが望ましい。ただし、画像劣化部160は、参照画像と、劣化パラメータの組との組合せの一部について、劣化画像を生成しなくてもよい。
また、画像劣化部160における劣化パラメータを用いた劣化画像を生成する方法は、特に制限はない。例えば、画像劣化部160は、劣化パラメータを基に、圧縮ノイズ、インターレース、及び明度変化を模擬(シミュレート:simulate)できるように、次に数式1で示す劣化過程モデルYを用いてもよい。
[数式1]
Figure 0006686890
数式1において、ベクトルXは、参照画像(高解像画像)の画素値(例えば、輝度値)をラスタスキャン順に並べた縦ベクトルである。
行列W、及び行列Bσは、姿勢に基づく画像変形を表す行列、及びボケ(ブラー:blur)を表す行列である。例えば、画像劣化部160は、ブラーとして、標準偏差σ[単位は画素]の幅を持つガウスフィルタを用いて近似させる行列Bσを用いてもよい。また、画像劣化部160は、画像変形を表す行列Wとして、各特徴点を基に算出された姿勢変換を表す射影変形(ホモグラフィ(H):homography)を用いてもよい。ベクトルNは、ノイズを表す縦ベクトルである。
また、関数D(・)、関数Ccr(・)、及び関数G(・)は、それぞれ、インターレースを考慮したダウンサンプリング関数、圧縮(jpeg圧縮)を行う関数、及び明度を変化させる関数である。
各関数は、例えば、次のような関数である。
ダウンサンプリング関数D(・)は、劣化パラメータに応じた圧縮方式として、次に示すようなダウンサンプリングを実行する関数である。例えば、対象となる画像が、プログレッシブ映像から切り出された画像の場合、関数D(・)は、一般的なダウンサンプリングと同様の方式を用いてダウンサンプリングを実行する。また、対象となる映像がインターレース映像から切り出された画像の場合、関数D(・)は、次のように動作すれば良い。すなわち、関数D(・)は、奇数フィールドでは、一般的なダウンサンプリングを実行する。一方、関数D(・)は、偶数フィールドでは、奇数フィールド(偶数フィールドの上下の奇数フィールド)の画素を用いた線形補間を実行する。あるいは、反対に、関数D(・)は、偶数フィールドにおいて、一般的なダウンサンプリングを実行する。そして、関数D(・)は、奇数フィールドでは偶数フィールド(奇数フィールドの上下の偶数フィールド)の画素を用いた線形補間を実行してもよい。だたし、画像劣化部160における圧縮方法は、これらに限らず、別の方法でもよい。
圧縮関数Ccr(・)は、添え字crの値に応じて、次の数式2に示す規格となる量子化行列Qの値を変換した量子化行列Q’を生成し、量子化行列Q及び量子化行列Q’を用いて、画像を圧縮する関数である。なお、crは、圧縮量を表す値である。crの範囲は、−1から1(cr∈[−1,1])である。
[数式2]
Figure 0006686890
数式2において、max[Q,1]は、行列Qの各成分(各要素)について、1よりも小さい要素を、1に置き換える処理である。また、「Q(1−cr)」は、行列Qの各要素に(1−cr)を掛けることを示す。つまり、cr>0の場合、行列Q’の要素は、行列Qの要素に(1−cr)を掛け、掛けた結果が1より小さい要素を1に置き換えた値である。
また、(255−Q)は、「255」から行列Qの各要素を引いた値を示す。つまり、cr>0でない場合、行列Q’の要素は、「255」から行列Qの要素を引いた値に(1+cr)を掛け、さらに、「255」から掛けた結果の値を引いた値である。
行列Q’を生成後、関数Ccr(・)は、引数であるベクトル(画素値のベクトル)に行列Q’の逆行列を掛け合わせ、掛け合わせた結果であるベクトルにおける要素の少数点以下を四捨五入して整数化し、さらに、その結果のベクトルに行列Qを掛ける。
明度変化関数G(・)は、添え字pの値に応じて、引数のベクトルの成分毎に、γ補正を実行する。ここで、関数G(・)の添え字pは、アピアランス相違度を算出する領域を区別するための添え字である。つまり、pは、p∈P(アピアランス相違度を算出する領域全体の集合)となる。例えば、具体的には、ベクトルの要素の値をx、添え字をp(領域p)とした場合、関数G(・)を用いた変換後のベクトルの要素の値(y)は、次に示す数式3のように算出される。
[数式3]
Figure 0006686890
なお、画像劣化部160は、特徴点仮説と参照画像との組合せの数の劣化画像を生成する。例えば、参照画像の枚数がM枚、特徴点仮説の数がL個の場合、画像劣化部160は、M×L枚の劣化画像を生成する。さらに、劣化パラメータの複数の組合せが存在する場合、画像劣化部160は、上記の組合せに加え、劣化パラメータとの組合せに対応する劣化画像を生成する。例えば、上記に加え、U組の劣化パラメータの組合せがある場合、画像劣化部160は、M×L×U枚の劣化画像を生成する。
ただし、画像劣化部160は、上記より少ない数の劣化画像を生成してもよい。
信頼度算出部170は、対象画像と劣化画像と特徴点仮説とを基に、特徴点仮説の信頼度(以下、「統合信頼度」と呼ぶ)を算出する。
図2は、信頼度算出部170の構成の一例を示すブロック図である。
信頼度算出部170は、輪郭信頼度算出部171と、アピアランス相違度算出部172と、信頼度統合部173とを含む。ただし、信頼度算出部170の構成は、これに限る必要はない。例えば、信頼度算出部170は、輪郭信頼度算出部171又はアピアランス相違度算出部172のいずれか一方を含んでもよい。つまり、信頼度算出部170は、以下で説明する輪郭信頼度又はアピアランス相違度を、統合信頼度として出力してもよい。
輪郭信頼度算出部171は、対象(オブジェクト)の特徴点仮説を輪郭(枠)とした場合の信頼度(以下、「輪郭信頼度」と呼ぶ)を算出する。ここで輪郭とは、対象画像に含まれる対象の輪郭である。例えば、対象画像に撮像されている対象が顔の場合、頬の輪郭又は目の縁などが、輪郭として定義される。あるいは、撮像されている対象がナンバープレートの場合、ナンバープレートの枠の部分が、輪郭として定義される。
また、輪郭信頼度算出部171が信頼度を算出する方法は、特に制限はない。例えば、輪郭信頼度算出部171は、次のような方法を用いてもよい。まず、輪郭信頼度算出部171は、受信した対象画像と劣化画像とにソーベルフィルタを適用してエッジを検出する。そして、輪郭信頼度算出部171は、検出したエッジを基にエッジ強度を算出する。そして、輪郭信頼度算出部171は、仮定した直線上でのエッジ強度を、輪郭に沿って積分する。そして、輪郭信頼度算出部171は、エッジ強度の積分値を輪郭の信頼度とすればよい。
例えば、撮像されている対象がナンバープレート画像の場合について、図面を参照して説明する。
図12は、輪郭信頼度が低い場合の特徴点仮説の一例を示す図である。
図13は、輪郭信頼度が高い場合の特徴点仮説の一例を示す図である。
図12に示す場合、特徴点仮説、つまり、輪郭(例えば、ナンバープレートの枠)の輝度変化が少ない。つまり、輪郭上でのエッジ強度が、小さい。そのため、図12に示す場合、エッジ強度の積分値は、小さい。
一方、図13に示す場合、特徴点仮説、つまり、輪郭の輝度変化が大きい。つまり、輪郭上でのエッジ強度が、大きい。そのため、図13に示す場合、エッジ強度の積分値は、大きい。
ここで、sを線素、対象画像のエッジ強度を表す関数を関数f(s)、輪郭上の微小線素をdsとした場合、特徴点仮説lに対応する積分値Tは、次に示す数式4のようになる。
[数式4]
Figure 0006686890
輪郭信頼度算出部171は、関数f(s)を積分して、積分値Tを算出すればよい。
なお、エッジ強度の算出方法として、輪郭信頼度算出部171は、ソーベルフィルタ以外の方法を用いてもよい。例えば、輪郭信頼度算出部171は、Cannyの方法を用いてもよい。
そして、輪郭信頼度算出部171は、特徴点仮説の積分値Tを、Z値(正規分布を用いるZ検定)を用いて正規化した輪郭信頼度Sを算出する。輪郭信頼度Sは、次に示す数式5となる。
[数式5]
Figure 0006686890
アピアランス相違度算出部172は、劣化画像と対象画像とを基に、劣化画像と対象画像とにおける対象のアピアランスの信頼度を算出する。アピアランス相違度算出部172は、対象画像と、全ての劣化画像との組合せについて、アピアランス相違度を計算する。
アピアランス相違度算出部172について、さらに説明する。なお、以下の説明においても、対象画像は、ナンバープレートの画像とする。ただし、本実施形態は、これに限定されるわけではない。また、以下の説明において、参照画像を添え字「m」を用いて区別する。
アピアランス相違度算出部172は、対象画像の所定の領域について、対象画像と劣化画像とのアピアランス相違度を算出する。アピアランス相違度は、見かけの相違度である。アピアランス相違度算出部172は、例えば、アピアランス相違度を、対象画像と劣化画像との所定の各領域から抽出した特徴ベクトルの差のL距離を用いて、算出してもよい。あるいは、アピアランス相違度算出部172は、アピアランス相違度を、対象画像と劣化画像との所定の各領域から抽出した特徴ベクトルの差のL距離又はKL(カルバック・ライブラー)距離を用いて算出してもよい。
以下の説明では、アピアランス相違度を算出に使用する画像から抽出される特徴ベクトルの一例として、正規化相互相関を用いる。ただし、本実施形態は、これに限定されるわけではない。
また、以下の説明では、特徴ベクトルを算出する領域を区別するための添え字として、Rを用いる。また、アピアランス相違度算出部172が各領域から抽出した特徴ベクトルをFlm と表す。この時、アピアランス相違度算出部172は、劣化画像における各領域に対して、全ての劣化画像の中から最小となる特徴ベクトルFlm を選択する。そして、アピアランス相違度算出部172は、選択した特徴ベクトルFlm の和を、各特徴点仮説lに対するアピアランス相違度Fとすれば良い。これは、次に示す数式6となる。
[数式6]
Figure 0006686890
数式6に示されている各D は、以下の数式7となる。
[数式7]
Figure 0006686890
信頼度統合部173は、輪郭信頼度算出部171が算出した輪郭信頼度Sと、アピアランス相違度算出部172が算出したアピアランス相違度Fとを線形結合し、特徴点の信頼度である統合信頼度Jを算出する。統合信頼部Jは、次の数式8となる。
[数式8]
Figure 0006686890
数式8におけるα及びβは、ナンバープレート内のアピアランスが鮮明であるほどαの値が大きく、輪郭が鮮明であるほどβの値が小さくなるように、予め、信頼度統合部173に設定されている定数である。例えば、情報処理装置100の利用者が、予め、下記に示すαとβを、信頼度算出部170に設定しておけばよい。
クラスの相違度は、アピアランスが不鮮明な場合に比べ、アピアランスが鮮明である場合、より分散している。そのため、αは、例えば、数式9に示すように、分散が大きくなるほど、その値が大きくなればよい。
[数式9]
Figure 0006686890
数式9において、D及びDは、予め、定められた定数である。
一方、積分値Tの最大値が大きいほど、輪郭が鮮明である。そのため、βは、例えば、数式10に示すように、Tの最大値が大きくなるほど、その値が小さくなればよい。
[数式10]
Figure 0006686890
特徴点推定部180は、推定する特徴点(特徴点候補)として、特徴点仮説の中で、統合信頼度Jが最も大きな1つの特徴点仮説、又は、大きい方から所定の数の特徴点仮説を選択(推定)する。そして、特徴点推定部180は、選択された特徴点(特徴点候補)を用いて、劣化画像(又は参照画像)と対象画像との位置合わせを実行する。なお、特徴点推定部180における位置合わせの手法は、特に制限はない。例えば、特徴点推定部180は、特許文献2に記載の位置合わせの手法を用いてもよい。また、特徴点推定部180は、位置合わせの処理において、必要に応じて画像を変形してもよい。
上記のとおり、特徴点推定部180は、1つの特徴点の組(特徴点仮説)を選択してもよく、所定の複数の特徴点仮説を選択してもよい。複数の特徴点仮説を選択する場合、特徴点推定部180は、特徴点仮説毎に、位置合わせを実行する。
特徴点推定部180は、位置合わせの結果を、図示しない表示機器に表示、又は、図示しない装置に送信してもよい。
なお、例えば、情報処理装置100は、信頼度算出部170が算出した統合信頼度を、図示しない対象画像を送信した装置に送信してもよい。この場合、情報処理装置100は、特徴点推定部180を含まなくてもよい。
なお、本実施形態では、画像劣化部160は、特徴点サンプリング部120が生成した全ての特徴点仮説に対して、劣化画像を生成した。そして、信頼度算出部170は、全ての劣化画像に対して、信頼度を算出した。しかし、本実施形態は、これに限定されない。
例えば、信頼度算出部170は、特徴点サンプリング部120が生成した特徴点仮説の中で、信頼度が明らかに小さいと予測できる特徴点仮説を棄却して、信頼度算出の計算を省略してもよい。さらに、信頼度算出部170は、棄却する特徴点仮説を画像劣化部160に通知して、画像劣化部160における劣化画像の生成を省略してもよい。
例えば、特徴点仮説から算出された姿勢を撮影するために想定されるカメラ位置と、実際に撮影したカメラの位置とが大きく異なる場合、信頼度算出部170は、その特徴点仮説を棄却してもよい。より具体的な例として、遠方からナンバープレートなどの長方形の物体を撮像する場合について説明する。遠方から長方形の物体を撮像した場合、この物体は、画像上で平行四辺形に近い形状になる。そのため、特徴点仮説に基づいて得られた形状が、平行四辺形から大きく外れる場合、信頼度算出部170は、その特徴点仮説を棄却してもよい。
特徴点仮説を棄却する方法は、上記に限定されない。例えば、信頼度算出部170は、輪郭信頼度算出部171が算出した輪郭信頼度の値が著しく小さい場合、アピアランス相違度算出部172におけるアピアランス相違度を算出する前に、その特徴点仮説を棄却してもよい。
[動作の説明]
次に、図面を参照して、本実施形態の情報処理装置100の動作について説明する。
図3は、本実施形態に係る情報処理装置100の動作の一例を示す流れ図である。
まず、対象画像受信部110が、対象画像を受信する(ステップS301)。
次に、特徴点サンプリング部120が、特徴点の初期値を受信し、初期値を基に特徴点仮説を生成する(ステップS302)。
参照画像受信部140、及び劣化パラメータ受信部150が、それぞれ、参照画像、及び劣化パラメータを受信する(ステップS303)。
次に、画像劣化部160が、特徴点仮説と、参照画像とを基に、劣化画像を生成する(ステップS304)。
次に、輪郭信頼度算出部171が、輪郭信頼度を算出する(ステップS305)。
アピアランス相違度算出部172が、アピアランス相違度を算出する(ステップS306)。
そして、信頼度統合部173が、輪郭信頼度と、アピアランス相違度とを統合し、統合信頼度を算出する(ステップS307)。
特徴点推定部180が、信頼度が高い特徴点仮説(特徴点の組)を選択する(ステップS308)。なお、この選択は、特徴点の推定に相当する。
[効果の説明]
次に、第1の実施形態の効果について説明する。
本実施形態の情報処理装置100は、低解像、圧縮、又はノイズが多く、撮像対象のパターンのバリエーションが多様である場合でも、高精度な位置合わせを実現するとの効果を奏することができる。つまり、情報処理装置100は、対象画像及び参照画像のパターンが複雑な場合でも、位置合わせを実現するとの効果を奏することができる。
その理由は、次のとおりである。
特徴点サンプリング部120が、特徴点の初期値と対象画像とを基に、特徴点仮説を生成する。画像劣化部160が、特徴点仮説と参照画像と劣化パラメータとを基に、参照画像を劣化させた劣化画像を生成する。そして、信頼度算出部170が、対象画像と特徴点仮説と劣化画像とを基に、各特徴点仮説の信頼度を算出する。そして、特徴点推定部180が、信頼度が高い特徴点仮説、つまり、特徴点候補を選択するためである。
つまり、情報処理装置100は、対象画像と、参照画像を劣化させた劣化画像とを用いる。そのため、情報処理装置100は、対象画像と参照画像とのパターンの分布が大きく異なる場合でも、正確な信頼度を算出できるためである。つまり、情報処理装置100は、パターンのバリエーションが多様な場合でも、高精度な位置合わせが可能である。
また、情報処理装置100は、必要な範囲の全ての参照画像の劣化画像と、必要な範囲の全ての(姿勢などの)劣化パラメータとの組合せを用いる。そのため、情報処理装置100は、パターンにバリエーションが多い場合でも、対象画像の姿勢を見つけることができるためである。
その結果、情報処理装置100は、高精度な画像の位置合わせを実現できる。つまり、情報処理装置100は、圧縮率が高い又はノイズが多い低解像な画像についても、高精度に位置合わせ可能である。
<第2の実施形態>
第2の実施形態に係る情報処理装置101は、参照画像を識別する識別子(ID:Identifier)を用いる。以下、本実施形態について図面を参照して説明する。
[構成の説明]
図4は、第2の実施形態に係る情報処理装置101の構成の一例を示すブロック図である。
情報処理装置101は、第1の実施形態の情報処理装置100の信頼度算出部170と特徴点推定部180に換えて、信頼度算出部175とID識別部181とを含み、さらに、ID受信部130を含む。以下の説明では、本構成を用いて説明するが、本実施形態の構成は、上記に限定されない。例えば、情報処理装置101は、特徴点推定部180を含んでもよい。
以下、第1の実施形態と同様の構成及び動作の説明を適宜省略し、本実施形態に特有の構成及び動作を中心に説明する。
ID受信部130は、参照画像を区別するためのID(識別子:Identifier)を受信する。本実施形態において、IDは、特に制限はない。例えば、参照画像が人の顔の場合、IDは、個人を識別するためのID(例えば、社員番号又は会員番号)でもよい。あるいは、参照画像がナンバープレートの場合、IDは、ナンバープレートの数値でもよい。
ID受信部130が受信したIDは、参照画像に関連付けられる。例えば、参照画像受信部140が、IDを参照画像に関連付けてもよい。あるいは、ID受信部130が、参照画像受信部140が受信した参照画像に、IDを関連付けてもよい。なお、参照画像受信部140が受信する参照画像が、IDを含んでもよい。この場合、情報処理装置101は、ID受信部130を含まなくてもよい。
信頼度算出部175は、第1の実施形態の信頼度算出部170と同様に、動作する。さらに、信頼度算出部175は、下記で説明するように、スコアK(n)を算出する。
図5は、第2の実施形態に係る信頼度算出部175の構成の一例を示すブロック図である。
信頼度算出部175は、輪郭信頼度算出部171と、アピアランス相違度算出部172と、信頼度統合部173と、スコア算出部176とを含む。ただし、信頼度算出部175の構成は、これに限る必要はない。
ここで、輪郭信頼度算出部171と、アピアランス相違度算出部172と、信頼度統合部173とは、第1に実施形態と同様に動作する。そのため、スコア算出部176について説明する。
まず、スコア算出部176は、次の数式11に示すように、アピアランス相違度をFlm と輪郭信頼度Sとを線形結合したスコアVlm を算出する。
[数式11]
Figure 0006686890
数式11のα及びβは、線形結合の定数であり、第1の実施形態の数式8で説明した定数と同様の定数である。なお、数式11と、数式6ないし8とを比較から明らかなとおり、数式8の統合信頼度Jと数式11のスコアVlm とは、次の点で異なる。統合信頼度Jは、アピアランス相違度Flm の最小値を用いている。これに対し、スコアVlm は、Flm を用いている。
次に、スコア算出部176は、統合信頼度を線形結合したスコアVlm の上位k個(統合信頼度において、値の高い方からk個)の参照画像に対応するIDを用いて、スコアK(n)を算出する。ここで、kは、予め情報処理装置101の利用者が設定しておく値である。また、スコアK(n)は、上位に選択された参照画像に関連する(紐付く)IDが偏っているほど(例えば、ある1つのIDに偏っているほど)、そのIDのスコアが高くなるように算出される値である。例えば、スコア算出部176は、次に示す数式12を用いて、各参照画像のスコアK(n)を算出してもよい。数式12に示すK(n)は、上位k個の参照画像に関連するIDに対して、重みwで重み付け投票を実行する。
[数式12]
Figure 0006686890
数式12において、nは、各参照画像のID(このIDは、クラスでもある)である。nは、j位の参照画像のIDである。δ(・,・)は、2つの引数の値が一致するときは「1」を取り、それ以外のときは「0」を取る関数である。また、重み付投票に用いる重みwは、j位に設定された重みを与える係数である。wは、例えば、次に示す数式13のように定義される。
[数式13]
Figure 0006686890
このように、スコア算出部176は、統合信頼度が上位の参照画像に対し、偏りが多いほどその値が高くなるように、各参照画像のスコアを算出する。
ID識別部181は、第1の実施形態の特徴点推定部180と同様に動作する。つまり、ID識別部181は、特徴点推定部の変形でもある。
さらに、ID識別部181は、信頼度算出部175が算出したスコアK(n)が最も大きいIDの参照画像を選択する。つまり、ID識別部181は、偏りが大きい参照画像を選択する。
そして、ID識別部181は、対象画像と、選択した特徴点仮説と、選択した参照画像(又は、参照画像に対応する劣化画像)とを基に、位置合わせを実行する。
[動作の説明]
次に、図面を参照して、本実施形態に係る情報処理装置101の動作について説明する。
図6は、第2の実施形態に係る情報処理装置101の動作の一例を示す流れ図である。
なお、適宜、第1の実施形態と同様の動作の詳細な説明を省略する。
ステップS301からS302は、第1の実施形態と同様の動作である。
ステップS403において、ID受信部130が、IDを受信し、さらに、ステップS303と同様に、参照画像受信部140及び劣化パラメータ受信部150が、参照画像、及び劣化パラメータを受信する。
ステップS304からS306は、第1の実施形態と同様の動作である。
そして、信頼度算出部175は、統合信頼度を算出後、スコアK(n)を算出する(ステップS407)。
ID識別部181は、スコアが最も高いID(参照画像)を選択する(ステップS408)。
[効果の説明]
次に、本実施形態の効果について説明する。
本実施形態の情報処理装置101は、第1の実施形態の効果に加え、参照画像のパターンが複雑な場合でも、参照画像のIDを識別できるとの効果を奏することができる。
これは、本実施形態の情報処理装置101が、参照画像にIDを関連付けるためである。
さらに、情報処理装置101は、IDの偏りに基づくスコアK(n)を用いるためである。
<第3の実施形態>
第3の実施形態に係る情報処理装置102は、対象画像に対応する画像(復元画像)を復元する。以下、本実施形態について図面を参照して説明する。
[構成の説明]
図7は、第3の実施形態に係る情報処理装置102の構成の一例を示すブロック図である。
情報処理装置102は、第1の実施形態の情報処理装置100の構成に加え、画像復元用辞書作成部210と、画像復元部220と、画像出力部230とを含む。以下に説明では、本実施形態について、この構成を用いて説明する。ただし、本実施形態の構成は、上記に限定されない。例えば、情報処理装置102は、ID識別部181を含んでもよい。
以下、第1の実施形態と同様の構成及び動作の説明を適宜省略し、本実施形態に特有の構成及び動作を中心に説明する。
画像復元用辞書作成部210は、参照画像及び劣化画像から、対応する位置の小領域(パッチ)を切り出す。なお、小領域(パッチ)の大きさは、予め、画像復元用辞書作成部210に設定されている。例えば、情報処理装置102の利用者が、予め、小領域(パッチ)の大きさを、設定しておけばよい。なお、小領域は、「局所領域」とも呼ばれる。
そして、画像復元用辞書作成部210は、参照画像と劣化画像とにおける各小領域の組(パッチペア)を辞書(図示せず)に登録する。例えば、画像復元用辞書作成部210は、辞書に登録する組の情報として、各小領域に対する特徴ベクトルのパッチペアを辞書に登録する。ただし、画像復元用辞書作成部210は、特徴点推定部180が選択(推定)した特徴点候補の領域内から、小領域を切り出す。つまり、画像復元用辞書作成部210は、特徴点候補の領域内の小領域(パッチ)を辞書に登録する。
なお、画像復元用辞書作成部210は、参照画像について、大きさ及び明度を正規化してもよい。例えば、画像復元用辞書作成部210は、参照画素の縦横の画素数を、所定の値となるように、拡大又は縮小してもよい。あるいは、画像復元用辞書作成部210は、明度に関して、背景色の輝度値を基に、コントラストを補正してもよい。
ここで、辞書に登録される特徴ベクトルは、特に制限はない。例えば、辞書に記憶する特徴ベクトルΨは、対応する小領域の輝度値をラスタスキャン順に並べたベクトルv=(v,v,…,v,…,v)及び重みベクトルw=(w,w,…,w,…,w)を用いて、数式14のように定義されてもよい。なお、数式14における「n」は、特徴ベクトルΨの次元である。
[数式14]
Figure 0006686890
数式14において、小領域のi番目の画素における重みベクトルwは、小領域を選択する際に、小領域の中心の明度が類似している小領域を優先的に選択するための重みである。重みwは、画素iと小領域の中心からの距離rと重みの減衰率を決定するパラメータρを用いて、次に示す数式15のように定義される。
[数式15]
Figure 0006686890
画像復元部220は、対象画像の画素毎に、小領域に関連する(紐付く)特徴ベクトルの相違度に基づき、作成された辞書から復元に用いる小領域を探索する。そして、画像復元部220は、復元画像の各画素について、探索された対応する複数の小領域の重み付き平均を基に、画素値を合成して、対象画像に対応する復元画像を生成する。
画像出力部230は、復元された復元画像を、図示しない装置(例えば、表示装置)に出力する。画像出力部230が、表示機器を含み、復元画像を表示してよい。
[動作の説明]
次に、図面を参照して本実施形態の動作について説明する。
図8は、第3の実施形態に係る情報処理装置102の動作の一例を示す流れ図である。
なお、適宜、第1の実施形態と同様の動作の詳細な説明を省略する。
情報処理装置102は、ステップS301からS308までの第1の実施形態と同様に動作する。
そして、画像復元用辞書作成部210は、画像復元用辞書を作成する(ステップS509)。すなわち、画像復元用辞書作成部210は、前述した各小領域の組(パッチペア)を辞書に登録する。
画像復元部220は、画像復元用の辞書を用いて、前述したように対象画像に対応する復元画像を復元する(ステップS510)。
画像出力部230は、復元画像を出力する(ステップS511)。
[効果の説明]
本実施形態の効果について説明する
本実施形態の情報処理装置102は、第1の実施形態の効果に加え、高精度な画像を復元するとの効果を奏することができる。
その理由は、情報処理装置102は、第1の実施形態と同様に、高精度な画像の位置合わせが可能である。そして、情報処理装置102は、高精度の位置に応じた画像復元用の辞書を用いて画像を復元するからである。そのため、情報処理装置102は、高精度に画像を復元することができる。
<第4の実施形態>
以上の説明した情報処理装置100ないし情報処理装置102の構成について、第4の実施形態として説明する。情報処理装置100ないし情報処理装置102は、次のように構成される。
例えば、情報処理装置100ないし情報処理装置102の各構成部は、ハードウェア回路で構成されても良い。
また、情報処理装置100ないし情報処理装置102は、各構成部をネットワーク又はバスなど(以下、「ネットワークなど」と呼ぶ)を介して接続した複数の情報処理装置を用いて構成されても良い。
図9は、本実施形態に係る情報処理装置103の構成の一例を示すブロック図である。
情報処理装置103は、特徴点サンプリング部120と、画像劣化部160と、信頼度算出部170とを含む。
情報処理装置103の各構成は、情報処理装置100の構成と同様に動作する。
特徴点サンプリング部120は、特徴点仮説をサンプリングする。
画像劣化部160は、特徴点仮説と劣化パラメータと参照画像とを基に、劣化画像を生成する。
信頼度算出部170は、対象画像と劣化画像と特徴点仮説とを基に、特徴点仮説の信頼度を算出する。
このように構成された情報処理装置103は、情報処理装置100の効果を奏することができる。
その理由は、上記のとおり、情報処理装置103の各構成が、情報処理装置100の構成と同様に動作し、対象画像と参照画像の劣化画像とを基に、特徴点仮説の信頼度を、適切に算出できるためである。
なお、本実施形態に係る情報処理装置103は、本発明の最小構成である。
<第5の実施形態>
また、情報処理装置100ないし情報処理装置103(以下、「情報処理装置100など」と呼ぶ)の別の構成について、第5の実施形態として説明する。情報処理装置100などは、複数の構成部を1つのハードウェアで構成されても良い。
また、情報処理装置100などは、CPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)とを含むコンピュータ装置として実現されても良い。情報処理装置100などは、上記構成に加え、さらに、入出力接続回路(IOC:Input / Output Circuit)と、ネットワークインターフェース回路(NIC:Network Interface Circuit)とを含むコンピュータ装置として実現されても良い。
図14は、情報処理装置100などの変形例である第5の実施形態に係る情報処理装置600の構成の一例を示すブロック図である。
情報処理装置600は、CPU610と、ROM620と、RAM630と、内部記憶装置640と、IOC650と、NIC680とを含み、コンピュータ装置を構成している。
CPU610は、ROM620からプログラムを読み込む。そして、CPU610は、読み込んだプログラムに基づいて、RAM630と、内部記憶装置640と、IOC650と、NIC680とを制御する。
そして、CPU610を含むコンピュータは、これらの構成を制御し、図1、図4、図7又は図9に示す各部としての各機能を実現する。図1に示す各部とは、対象画像受信部110と、特徴点サンプリング部120と、参照画像受信部140と、劣化パラメータ受信部150と、画像劣化部160と、信頼度算出部170と、特徴点推定部180とである。図4に示す各部とは、対象画像受信部110と、特徴点サンプリング部120と、ID受信部130と、参照画像受信部140と、劣化パラメータ受信部150と、画像劣化部160と、信頼度算出部175と、ID識別部181とである。図7に示す各部とは、図1に示す構成に加え、画像復元用辞書作成部210と、画像復元部220と、画像出力部230とである。図9に示す各部とは、特徴点サンプリング部120と、画像劣化部160と、信頼度算出部170とである。
CPU610は、各機能を実現する際に、RAM630又は内部記憶装置640を、プログラムの一時記憶として使用しても良い。
また、CPU610は、コンピュータで読み取り可能にプログラムを記憶した記憶媒体700が含むプログラムを、図示しない記憶媒体読み取り装置を用いて読み込んでも良い。あるいは、CPU610は、NIC680を介して、図示しない外部の装置からプログラムを受け取り、RAM630に保存して、保存したプログラムを基に動作しても良い。
ROM620は、CPU610が実行するプログラム及び固定的なデータを記憶する。ROM620は、例えば、P−ROM(Programmable-ROM)又はフラッシュROMである。
RAM630は、CPU610が実行するプログラム及びデータを一時的に記憶する。RAM630は、例えば、D−RAM(Dynamic-RAM)である。
内部記憶装置640は、情報処理装置600が長期的に保存するデータ及びプログラムを記憶する。また、内部記憶装置640は、CPU610の一時記憶装置として動作しても良い。内部記憶装置640は、例えば、ハードディスク装置、光磁気ディスク装置、SSD(Solid State Drive)又はディスクアレイ装置である。
ここで、ROM620と内部記憶装置640は、不揮発性の記憶媒体である。一方、RAM630は、揮発性の記憶媒体である。そして、CPU610は、ROM620、内部記憶装置640、又は、RAM630に記憶されているプログラムを基に動作可能である。つまり、CPU610は、不揮発性記憶媒体又は揮発性記憶媒体を用いて動作可能である。
IOC650は、CPU610と、入力機器660及び表示機器670とのデータを仲介する。IOC650は、例えば、IOインターフェースカード又はUSB(Universal Serial Bus)カードである。
入力機器660は、情報処理装置600の操作者からの入力指示を受け取る機器である。入力機器660は、例えば、キーボード、マウス又はタッチパネルである。
表示機器670は、情報処理装置600の操作者に情報を表示する機器である。表示機器670は、例えば、液晶ディスプレイである。
NIC680は、ネットワークを介した図示しない外部の装置とのデータのやり取りを中継する。NIC680は、例えば、LAN(Local Area Network)カードである。
このように構成された情報処理装置600は、情報処理装置100などと同様の効果を奏することができる。
その理由は、情報処理装置600のCPU610が、プログラムに基づいて、情報処理装置100などと同様の機能を実現できるためである。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成及び詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2014年10月3日に出願された日本出願特願2014−205007を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100 情報処理装置
101 情報処理装置
102 情報処理装置
103 情報処理装置
110 対象画像受信部
120 特徴点サンプリング部
130 ID受信部
140 参照画像受信部
150 劣化パラメータ受信部
160 画像劣化部
170 信頼度算出部
171 輪郭信頼度算出部
172 アピアランス相違度算出部
173 信頼度統合部
175 信頼度算出部
176 スコア算出部
180 特徴点推定部
181 ID識別部
210 画像復元用辞書作成部
220 画像復元部
230 画像出力部
600 情報処理装置
610 CPU
620 ROM
630 RAM
640 内部記憶装置
650 IOC
660 入力機器
670 表示機器
680 NIC
700 記憶媒体

Claims (10)

  1. 処理対象である対象画像に含まれる対象の位置合わせに用いる特徴点の初期値を基に、前記対象画像において複数の特徴点の組である特徴点仮説を生成する特徴点サンプリング手段と、
    前記特徴点仮説と、画像を劣化させるためのパラメータである劣化パラメータとを基に、前記対象画像の処理に用いる参照画像を劣化させた画像である劣化画像を生成する画像劣化手段と、
    前記対象画像と、前記劣化画像と、前記特徴点仮説とを基に、前記特徴点仮説の信頼度を算出する信頼度算出手段と
    を含む情報処理装置。
  2. 前記信頼度算出手段が、
    前記対象画像において、前記特徴点仮説を対象の輪郭とした場合の輪郭信頼度を算出する輪郭信頼度算出手段と、
    前記対象画像と、前記劣化画像とにおけるアピアランス相違度を算出するアピアランス相違度算出手段と、
    前記特徴点の信頼度として、前記輪郭信頼度と、前記アピアランス相違度とを基に統合信頼度を算出する信頼度統合手段と、
    を含む請求項1に記載の情報処理装置。
  3. 前記統合信頼度が最も大きな1つ又は所定の数の特徴点仮説を選択し、前記選択した特徴点仮説を用いて、前記対象画像と、前記参照画像又は前記劣化画像との位置合わせを実行する特徴点推定手段
    をさらに含む請求項2に記載の情報処理装置。
  4. 前記信頼度算出手段が、
    前記統合信頼度が所定の上位の範囲に含まれる前記参照画像に対し、偏りの大きさを示すスコアを算出するスコア算出手段、
    を含む請求項2に記載の情報処理装置。
  5. 前記スコアが最も大きな前記参照画像を選択し、前記選択した画像を用いて前記画像の位置合わせを実行する特徴点推定手段
    をさらに含む請求項4に記載の情報処理装置。
  6. 前記特徴点推定手段が位置合わせした後の前記参照画像及び前記劣化画像から、前記特徴点推定手段が対応する小領域の組を切り出し、画像復元用の処理に前記小領域の組を辞書に登録する画像復元用辞書作成手段と、
    前記辞書と前記対象画像とを基に、前記対象画像に対応する復元画像を生成する画像復元手段と
    をさらに含む請求項3又は5に記載の情報処理装置
  7. 前記対象画像を受信する対象画像受信手段と、
    前記参照画像を受信する参照画像受信手段と、
    前記劣化パラメータの少なくとも一部を受信する劣化パラメータ受信手段と
    をさらに含む請求項1ないし6のいずれか1項に記載の情報処理装置。
  8. 前記参照画像を区別するための識別子を受信するID受信手段をさらに含み、
    前記スコア算出手段が、
    前記識別子を用いて前記スコアを算出する
    請求項5に記載の情報処理装置。
  9. 処理対象である対象画像に含まれる対象の位置合わせに用いる特徴点の初期値を基に、前記対象画像において複数の特徴点の組である特徴点仮説を生成し、
    前記特徴点仮説と、画像を劣化させるためのパラメータである劣化パラメータとを基に、前記対象画像の処理に用いる参照画像を劣化させた画像である劣化画像を生成し、
    前記対象画像と、前記劣化画像と、前記特徴点仮説とを基に、前記特徴点仮説の信頼度を算出する
    情報処理方法。
  10. 処理対象である対象画像に含まれる対象の位置合わせに用いる特徴点の初期値を基に、前記対象画像において複数の特徴点の組である特徴点仮説を生成する処理と、
    前記特徴点仮説と、画像を劣化させるためのパラメータである劣化パラメータとを基に、前記対象画像の処理に用いる参照画像を劣化させた画像である劣化画像を生成する処理と、
    前記対象画像と、前記劣化画像と、前記特徴点仮説とを基に、前記特徴点仮説の信頼度を算出する処理と
    をコンピュータに実行させるプログラム。
JP2016551508A 2014-10-03 2015-09-17 情報処理装置、情報処理方法、及び、プログラム Active JP6686890B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014205007 2014-10-03
JP2014205007 2014-10-03
PCT/JP2015/004748 WO2016051707A1 (ja) 2014-10-03 2015-09-17 情報処理装置、情報処理方法、及び、記録媒体

Publications (2)

Publication Number Publication Date
JPWO2016051707A1 JPWO2016051707A1 (ja) 2017-07-13
JP6686890B2 true JP6686890B2 (ja) 2020-04-22

Family

ID=55629782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016551508A Active JP6686890B2 (ja) 2014-10-03 2015-09-17 情報処理装置、情報処理方法、及び、プログラム

Country Status (3)

Country Link
US (1) US10380450B2 (ja)
JP (1) JP6686890B2 (ja)
WO (1) WO2016051707A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3089307C (en) * 2017-12-14 2022-01-25 The Joan and Irwin Jacobs Technion-Cornell Institute System and method for creating geo-localized enhanced floor plans

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3444171B2 (ja) 1997-12-17 2003-09-08 三菱電機株式会社 物品認識装置
WO2006075394A1 (ja) * 2005-01-14 2006-07-20 Morhpo, Inc. 動きベクトル演算方法とこの方法を用いた手ぶれ補正装置、撮像装置、並びに動画生成装置
WO2006131967A1 (ja) * 2005-06-08 2006-12-14 Fujitsu Limited 画像処理装置
JP4946730B2 (ja) 2007-08-27 2012-06-06 ソニー株式会社 顔画像処理装置及び顔画像処理方法、並びにコンピュータ・プログラム
JP4881278B2 (ja) 2007-10-31 2012-02-22 株式会社東芝 物体認識装置及びその方法
JP2009300230A (ja) 2008-06-12 2009-12-24 Olympus Corp 位置合わせを行う装置、方法、およびプログラム、ならびに基準モデルを作成する装置、方法、およびプログラム
CN102714695B (zh) 2010-11-11 2015-11-25 松下电器(美国)知识产权公司 图像处理装置、图像处理方法
JP2016004486A (ja) * 2014-06-18 2016-01-12 株式会社リコー 情報処理装置、情報処理プログラム、および情報処理システム

Also Published As

Publication number Publication date
JPWO2016051707A1 (ja) 2017-07-13
US20170293821A1 (en) 2017-10-12
WO2016051707A1 (ja) 2016-04-07
US10380450B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
US10210415B2 (en) Method and system for recognizing information on a card
JP6789402B2 (ja) 画像内の物体の姿の確定方法、装置、設備及び記憶媒体
Wang et al. Structural approaches to image quality assessment
US9405960B2 (en) Face hallucination using convolutional neural networks
US11222211B2 (en) Method and apparatus for segmenting video object, electronic device, and storage medium
US20120275653A1 (en) Method for recognizing license plate image, and related computer program product, computer-readable recording medium, and image recognizing apparatus using the same
US20130208997A1 (en) Method and Apparatus for Combining Panoramic Image
US20110170784A1 (en) Image registration processing apparatus, region expansion processing apparatus, and image quality improvement processing apparatus
US9613404B2 (en) Image processing method, image processing apparatus and electronic device
WO2014070273A1 (en) Recursive conditional means image denoising
US20230394833A1 (en) Method, system and computer readable media for object detection coverage estimation
CN110658918B (zh) 用于视频眼镜的眼球追踪相机的定位方法、设备及介质
WO2019123554A1 (ja) 画像処理装置、画像処理方法、及び、記録媒体
JP6686890B2 (ja) 情報処理装置、情報処理方法、及び、プログラム
Satiro et al. Super-resolution of facial images in forensics scenarios
CN115294493A (zh) 视角路径获取方法、装置、电子设备及介质
CN114758145A (zh) 一种图像脱敏方法、装置、电子设备及存储介质
JP7386630B2 (ja) 画像処理装置、画像処理装置の制御方法及びプログラム
Petrou et al. Super-resolution in practice: the complete pipeline from image capture to super-resolved subimage creation using a novel frame selection method
CN112991179B (zh) 用于输出信息的方法、装置、设备以及存储介质
Zhong A knife-edge input point spread function estimation method for document images
Singh Face Recognition using relationship learning based super resolution algorithm
Anabtawi et al. An auto focus framework for computer vision systems
Lin et al. The role of motion models in super-resolving surveillance video for face recognition
CN116452675A (zh) 相机标定方法、装置、设备及存储介质

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6686890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150