JP6683214B2 - Anti-reflection structure - Google Patents

Anti-reflection structure Download PDF

Info

Publication number
JP6683214B2
JP6683214B2 JP2018096842A JP2018096842A JP6683214B2 JP 6683214 B2 JP6683214 B2 JP 6683214B2 JP 2018096842 A JP2018096842 A JP 2018096842A JP 2018096842 A JP2018096842 A JP 2018096842A JP 6683214 B2 JP6683214 B2 JP 6683214B2
Authority
JP
Japan
Prior art keywords
nanostructure
antireflection structure
saturation
shape
nanostructures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018096842A
Other languages
Japanese (ja)
Other versions
JP2018124595A (en
Inventor
和田 豊
豊 和田
有馬 光雄
光雄 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2018096842A priority Critical patent/JP6683214B2/en
Publication of JP2018124595A publication Critical patent/JP2018124595A/en
Application granted granted Critical
Publication of JP6683214B2 publication Critical patent/JP6683214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、モスアイ構造を有する反射防止構造体の設計方法及びその方法により得られる反射防止構造体に関する。   The present invention relates to a method for designing an antireflection structure having a moth-eye structure and an antireflection structure obtained by the method.

ディスプレイ、印刷物等の観察物を観察するときに外光反射を低減させて視認性が改善するように、可視光波長以下のピッチの表面凹凸(即ち、ナノ構造体)を有する所謂モスアイフィルムを観察物の表面に設けることが行われている。
また観察物とは別に、発光素子の表面やレンズなどの光学素子の表面に設ける使われ方も行われている。
Observing a so-called moth-eye film having surface irregularities (that is, nanostructures) with a pitch below the visible light wavelength so that external light reflection is reduced and visibility is improved when observing observation objects such as displays and printed matter. It is provided on the surface of an object.
In addition to the observation object, it is also used by being provided on the surface of a light emitting element or the surface of an optical element such as a lens.

WO2012/133943号公報(特許文献1)には、このようなモスアイフィルムにおいて反射防止特性を向上させるため、ナノ構造体の充填率を、100%を上限として、65%以上とすることが記載されている。ここで、充填率とは、モスアイフィルムを形成しているナノ構造体の配列の単位格子の面積に対するナノ構造体の底面の面積である。   In WO 2012/133394 (Patent Document 1), in order to improve antireflection properties in such a moth-eye film, it is described that the filling rate of the nanostructures is 65% or more, with 100% being the upper limit. ing. Here, the filling rate is the area of the bottom surface of the nanostructure with respect to the area of the unit cell of the array of nanostructures forming the moth-eye film.

また、特開2012−151012号公報(特許文献2)には、モスアイ構造を有する光学素子とその上に設けた透明導電層からなる透明導電性素子において、波長依存性を少なくして視認性を向上させるために、平坦部の面積の比率を好ましくは0〜30%にすることが記載されている。ここで、平坦部の面積の比率は、モスアイ構造の単位格子面積からナノ構造体の底面積を差し引いた残りの面積の、単位格子面積に対する比率である。   Further, in JP 2012-151012 A (Patent Document 2), in a transparent conductive element including an optical element having a moth-eye structure and a transparent conductive layer provided thereon, wavelength dependency is reduced to improve visibility. It is described that the area ratio of the flat portion is preferably set to 0 to 30% in order to improve. Here, the area ratio of the flat portion is the ratio of the remaining area obtained by subtracting the bottom area of the nanostructure from the unit lattice area of the moth-eye structure to the unit lattice area.

WO2012/133943号公報WO2012 / 133943 Publication 特開2012-151012号公報JP 2012-151012 JP

従来のモスアイフィルムでは、モスアイ構造を構成する個々のナノ構造体の形状や配列によっては可視光波長領域の長波長側、短波長側の反射率が上昇してしまう。上述の特許文献には、ナノ構造体の充填率あるいは平坦部の面積比率がモスアイフィルムの色味に影響することが記載されているが、詳細な検討はなされていない。   In the conventional moth-eye film, the reflectance on the long-wavelength side and the short-wavelength side of the visible light wavelength region increases depending on the shape and arrangement of the individual nanostructures constituting the moth-eye structure. The above-mentioned patent documents describe that the filling rate of the nanostructures or the area ratio of the flat portion influences the tint of the moth-eye film, but detailed studies have not been made.

一方、樹脂を用いてナノ構造体を原盤からの転写によって作製する場合、その樹脂の粘度が転写されるナノ構造体の凸状部の形状の再現性に強く影響する。即ち、粘度が高い場合は原盤に設けられた凹凸への充填性や追随性が不足するなどにより、結果として製造されるナノ構造体は、原盤で設計されたナノ構造体よりも高さが低くなり、形状は意図したものよりも先端が丸くなる。   On the other hand, when a nanostructure is produced from a master using a resin, the viscosity of the resin strongly affects the reproducibility of the shape of the convex portion of the nanostructure to which the resin is transferred. That is, when the viscosity is high, the filling and the conformability to the irregularities provided on the master are insufficient, and the resulting nanostructure is lower in height than the nanostructure designed on the master. And the tip has a rounder tip than intended.

さらに原盤による転写を連続で行う場合、樹脂そのものが原盤の凹部に埋まることなどにより、転写の開始から終了にかけて微小ではあるがナノ構造体の高さが低くなっていくことが懸念される。この問題は、原盤を連続的に用いてモスアイフィルムの原反が製造される場合に一つの原反に止まらず、引き続いて製造される他の原反でも継続されていくこととなる。   Further, when the transfer is continuously performed by the master, there is a concern that the height of the nanostructure becomes small from the start to the end of the transfer due to the resin itself being buried in the recesses of the master. This problem is not limited to one original sheet when the original sheet of the moth-eye film is produced by continuously using the original sheet, and is continued in the other original sheets produced subsequently.

ナノ構造体が原盤から転写されることによって作製されたモスアイフィルムの原反は、ロール状態で、もしくは裁断され枚葉化された状態で運搬されることになるが、このような取り扱い時においても、不用な摩擦などでナノ構造体が欠落するなどの問題が生じる。同様に、モスアイフィルムを反射防止の実施対象に貼り付ける際の作業によっても同種の問題が生じる。これに対しては、モスアイフィルムを接触や磨耗の頻度の高い基体の表面に設ける場合に、モスアイフィルムを弾性率の低い樹脂で構成することが考えられるが、ナノ構造体の欠落を解消することはできていない。   The original fabric of the moth-eye film produced by transferring the nanostructures from the master is transported in a roll state or in a cut and sheeted state, but even during such handling However, problems such as the loss of nanostructures due to unnecessary friction occur. Similarly, the same kind of problem arises by the work of attaching the moth-eye film to the antireflection object. On the other hand, when the moth-eye film is provided on the surface of the substrate that is frequently contacted and worn, it may be possible to configure the moth-eye film with a resin having a low elastic modulus, but to eliminate the lack of nanostructures. Is not done.

このようにモスアイフィルムの製造、運搬、貼り付け作業、使用の各過程でナノ構造体の高さにばらつきが生じたり、欠落が生じたりすることが懸念される。ナノ構造体の高さにばらつきが生じたり欠落が生じたりすると分光反射率が変わってしまい、色味のばらつきが生じる。そのため、色味のばらつきを一定の範囲内に収める設計方法が求められている。   As described above, there is concern that the height of the nanostructure may vary or may be lost during each process of manufacturing, transporting, attaching, and using the moth-eye film. If the height of the nanostructures varies or is missing, the spectral reflectance changes, causing variations in tint. Therefore, there is a demand for a design method that keeps the variation in color tone within a certain range.

本発明の課題は、モスアイ構造を有する反射防止構造体において、白色光源に対する反射光の彩度√(a*2+b*2) をできる限りゼロに近づける設計条件を見出すことで、反射防止構造体を表面に設けた対象物の色味が、対象物本来の色味に対して変わることを抑制ないしは制御することにある。 An object of the present invention is to find a design condition for an antireflection structure having a moth-eye structure so that the saturation √ (a * 2 + b * 2 ) of reflected light with respect to a white light source is as close to zero as possible. The object is to suppress or control the change of the tint of the object provided on the surface with respect to the original tint of the object.

本発明者は、モスアイ構造を有する反射防止構造体において、モスアイ構造を構成する個々のナノ構造体の高さが特定の範囲にある場合に、白色光源に対する反射光の彩度√(a*2+b*2) が、ナノ構造体の充填率によって変化し、特定の充填率で極小値をとることを見出し、本発明を想到した。 In the antireflection structure having a moth-eye structure, the present inventor has found that the saturation of reflected light with respect to a white light source √ (a * 2 ) when the height of each nanostructure constituting the moth-eye structure is within a specific range. The present invention was conceived by finding that + b * 2 ) changes depending on the filling rate of the nanostructure and takes a minimum value at a specific filling rate.

即ち、本発明は、基体表面の凸部により形成されたナノ構造体が、可視光波長以下の間隔で複数設けられている反射防止構造体の設計方法であって、ナノ構造体の基体表面平坦部からの高さの平均を180nm以上290nm、好ましくはその高さのばらつきが10%以内、反射防止構造体の平面視における基体表面の面積に対するナノ構造体の底面の面積の比率であるナノ構造体の充填率を、該充填率と反射防止構造体の白色光に対する反射光の彩度√(a*2+b*2)との関係において、該彩度が極小値をとる充填率の±5%、より好ましくは0〜−5%の範囲とする方法を提供する。 That is, the present invention is a method for designing an antireflection structure in which a plurality of nanostructures formed by convex portions on the substrate surface are provided at intervals of a visible light wavelength or less, and the substrate surface of the nanostructure is flat. The average height from the part is 180 nm or more and 290 nm, preferably the variation in height is within 10%, and the nanostructure is the ratio of the area of the bottom surface of the nanostructure to the area of the substrate surface in plan view of the antireflection structure. The filling rate of the body is ± 5 of the filling rate at which the saturation has a minimum value in the relationship between the filling rate and the saturation √ (a * 2 + b * 2 ) of the reflected light with respect to the white light of the antireflection structure. %, More preferably in the range of 0 to -5%.

また、本発明は、基体表面の凸部により形成されたナノ構造体が、可視光波長以下の間隔で多数設けられている反射防止構造体であって、ナノ構造体の基体表面平坦部からの高さの平均が180nm以上290nm以下であり、反射防止構造体の平面視における基体表面の面積に対するナノ構造体の底面の面積の比率であるナノ構造体の充填率が85%以上100%未満である反射防止構造体を提供する。   In addition, the present invention is an antireflection structure in which a large number of nanostructures formed by convex portions on the surface of a substrate are provided at intervals of a visible light wavelength or less, and The average height is 180 nm or more and 290 nm or less, and the filling rate of the nanostructure, which is the ratio of the area of the bottom surface of the nanostructure to the area of the substrate surface in plan view of the antireflection structure, is 85% or more and less than 100%. An antireflective structure is provided.

ここで、上記ナノ構造体の高さの平均は、反射防止構造体の表面凹凸を、該反射防止構造体の平面内の任意の同一方向に沿って原子間力顕微鏡(AFM)で好ましくは5回以上測定し、その平均から求められる。また、個々の測定値のばらつきは、各測定値とその平均との差の平均に対する割合から求められる[(各測定値−各測定値の平均)/各測定値の平均]×100 (%))。また、この測定は、反射防止構造体が、ロール状の転写原盤を用いて転写法により長尺のフィルム状に形成される場合、その短手方向に行うことが好ましい。以下、「ナノ構造体の高さの平均」を、「ナノ構造体の高さ」と略する。   Here, the average height of the nanostructures is preferably 5 by an atomic force microscope (AFM) along the surface irregularities of the antireflection structure along any same direction in the plane of the antireflection structure. It is measured more than once and calculated from the average. The dispersion of individual measured values is calculated from the ratio of the difference between each measured value and its average to the average [(each measured value-average of each measured value) / average of each measured value] x 100 (%) ). Further, when the antireflection structure is formed into a long film shape by a transfer method using a roll-shaped transfer master, this measurement is preferably performed in the lateral direction. Hereinafter, the “average height of nanostructures” is abbreviated as “height of nanostructures”.

本発明の反射防止構造体の設計方法によれば、白色光源に対する反射光の彩度 √(a*2+b*2) が、ナノ構造体の充填率との関係において、可能な限りゼロに近づいたものとなるので、反射防止構造体の被着物が不用に色づいて観察されることを顕著に抑制することができる。 According to the method of designing an antireflection structure of the present invention, the saturation √ (a * 2 + b * 2 ) of the reflected light with respect to the white light source is as close to zero as possible in relation to the filling rate of the nanostructure. Therefore, it is possible to remarkably prevent the adherend of the antireflection structure from being colored unnecessarily.

また、本発明の反射防止構造体によれば、製造方法に起因してナノ構造体の高さにばらつきが存在しても、白色光源に対する反射光の彩度 √(a*2+b*2) が抑制されているので、本発明の反射防止構造体を貼着した観察物が色づいて見えることを抑制することができる。 In addition, according to the antireflection structure of the present invention, the saturation of the reflected light with respect to the white light source is √ (a * 2 + b * 2 ) even if the height of the nanostructure varies due to the manufacturing method. Is suppressed, it is possible to prevent the observed object to which the antireflection structure of the present invention is attached from being colored.

図1Aは、実施例の反射防止構造体1Aの斜視図である。FIG. 1A is a perspective view of an antireflection structure 1A of an example. 図1Bは、実施例の反射防止構造体1Aの上面図である。FIG. 1B is a top view of the antireflection structure 1A of the embodiment. 図1Cは、実施例の反射防止構造体1Aの断面図である。FIG. 1C is a cross-sectional view of the antireflection structure 1A of the example. 図2Aは、ナノ構造体(高さH180nm)の充填率と彩度 √(a*2+b*2)との関係図である。FIG. 2A is a relationship diagram of the filling factor of the nanostructure (height H180 nm) and the saturation √ (a * 2 + b * 2 ). 図2Bは、ナノ構造体(高さH200nm)の充填率と彩度 √(a*2+b*2)との関係図である。FIG. 2B is a diagram showing the relationship between the filling factor of the nanostructure (height H200 nm) and the saturation √ (a * 2 + b * 2 ). 図2Cは、ナノ構造体(高さH230nm)の充填率と彩度 √(a*2+b*2)との関係図である。FIG. 2C is a relationship diagram of the filling factor of the nanostructure (height H230 nm) and the saturation √ (a * 2 + b * 2 ). 図2Dは、ナノ構造体(高さH290nm)の充填率と彩度 √(a*2+b*2)との関係図である。FIG. 2D is a diagram showing the relationship between the filling factor and the saturation √ (a * 2 + b * 2 ) of the nanostructure (height H290 nm). 図2Eは、ナノ構造体(高さH150nm)の充填率と彩度 √(a*2+b*2)との関係図である。FIG. 2E is a diagram showing the relationship between the filling factor and the saturation √ (a * 2 + b * 2 ) of the nanostructure (height H150 nm). 図3Aは、円錐形のナノ構造体が4方格子に配列した反射防止構造体1Bの上面図である。FIG. 3A is a top view of an antireflection structure 1B in which conical nanostructures are arranged in a four-way lattice. 図3Bは、反射防止構造体1Bにおけるナノ構造体の充填率と彩度 √(a*2+b*2)との関係図である。FIG. 3B is a relationship diagram between the filling rate of the nanostructures and the saturation √ (a * 2 + b * 2 ) in the antireflection structure 1B. 図4Aは、楕円錐形のナノ構造体が6方格子に配列した反射防止構造体1Cの上面図である。FIG. 4A is a top view of an antireflection structure 1C in which elliptical cone-shaped nanostructures are arranged in a hexagonal lattice. 図4Bは、反射防止構造体1Cにおけるナノ構造体の充填率と彩度 √(a*2+b*2)との関係図である。FIG. 4B is a relationship diagram between the filling rate of the nanostructures and the saturation √ (a * 2 + b * 2 ) in the antireflection structure 1C. 図5Aは、楕円錐形のナノ構造体が4方格子に配列した反射防止構造体1Dの上面図である。FIG. 5A is a top view of an antireflection structure 1D in which elliptical cone-shaped nanostructures are arranged in a four-sided lattice. 図5Bは、反射防止構造体1Dにおけるナノ構造体の充填率と彩度 √(a*2+b*2)との関係図である。FIG. 5B is a relationship diagram between the filling rate of the nanostructures in the antireflection structure 1D and the saturation √ (a * 2 + b * 2 ). 図6は、反射防止構造体1Aにおいて、屈折率を1.1とした場合のナノ構造体の充填率と彩度 √(a*2+b*2)との関係図である。FIG. 6 is a relationship diagram between the filling factor of the nanostructure and the saturation √ (a * 2 + b * 2 ) when the refractive index is 1.1 in the antireflection structure 1A. 図7は、反射防止構造体1Aにおいて、屈折率を3.0とした場合のナノ構造体の充填率と彩度 √(a*2+b*2)との関係図である。FIG. 7 is a relationship diagram between the filling factor of the nanostructure and the saturation √ (a * 2 + b * 2 ) when the refractive index is 3.0 in the antireflection structure 1A.

以下、図面を参照し、本発明を詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。   Hereinafter, the present invention will be described in detail with reference to the drawings. In each figure, the same reference numerals represent the same or equivalent constituent elements.

図1Aは、本発明の一実施例の反射防止構造体1Aの斜視図であり、図1Bは上面図、図1Cはそのx−x断面図である。   FIG. 1A is a perspective view of an antireflection structure 1A according to an embodiment of the present invention, FIG. 1B is a top view, and FIG. 1C is an xx sectional view thereof.

この反射防止構造体1Aは、透明な基体2の表面の凸部により形成されたナノ構造体3が可視光波長以下のピッチで縦横に多数配列したモスアイ構造を備えている。より具体的には、ナノ構造体3が所定の配置ピッチDpで多数配列したトラックT1、T2、T3が、所定のトラックピッチTpで多数配列しており、ナノ構造体3の中心が6方格子に配列している。ここで、配置ピッチDpは、通常は150nm以上270nm以下とされ、トラックピッチTpは、通常、130nm以上190nm以下とされる。   This antireflection structure 1A has a moth-eye structure in which a large number of nanostructures 3 formed by convex portions on the surface of a transparent substrate 2 are arranged vertically and horizontally at a pitch of a visible light wavelength or less. More specifically, a large number of tracks T1, T2, T3 in which a large number of nanostructures 3 are arranged at a predetermined arrangement pitch Dp are arranged at a predetermined track pitch Tp, and the center of the nanostructures 3 is a hexagonal lattice. Are arranged in. Here, the arrangement pitch Dp is usually 150 nm or more and 270 nm or less, and the track pitch Tp is usually 130 nm or more and 190 nm or less.

また、個々のナノ構造体3は、頂部を丸めた円錐形であり、釣鐘型とも見える形状をしており、そのアスペクト比(ナノ構造体の高さH/トラックピッチTp )は、0.95以上2.2以下である。   Further, each nanostructure 3 has a conical shape with a rounded top, and has a shape that can be seen as a bell shape, and its aspect ratio (height H of nanostructure / track pitch Tp) is 0.95. The above is 2.2 or less.

なお、本発明において、ナノ構造体3の形状はこのような円錐形や釣鐘型に類されるものに限られず、楕円錐形、半球体状、半楕体状、柱状、針状等種々の形状をとることができる。
In the present invention, the shape of the nanostructure 3 is not limited to those classes to such conical or bell-shaped, elliptic conical, semi-spherical, semi-ellipsoid shape, columnar, needle-shaped, etc. Various Can take the form of.

また、ナノ構造体の配列も、6方格子の他、4方格子、これらに準ずる準4方格子ないしは準6方格子等とすることができる。ここで、6方格子とは、正6角形の各角と中心にナノ構造体の中心が位置する配列である。また、4方格子とは正方形の各角にナノ構造体の中心が位置する配列である。準4方格子ないしは準6方格子とは、4方格子ないしは6方格子をトラック方向に引き延ばす等により歪ませた格子である。4方格子もしくは6方格子の中間に類するものとなる。さらに、ナノ構造体の配置をランダムとする場合でも、充填率を、反射防止構造体の平面視における基体表面の面積に対するナノ構造体の底面の面積の比率とすることにより、発明を適用することができる。即ち、ナノ構造体の充填構造の規則性によらず、ナノ構造体の充填率と、反射防止構造体の白色光に対する反射光の彩度√(a*2+b*2) との関係において、該彩度が特定の充填率で極小値をとる限り、本発明を適用することができる。 Further, the array of the nanostructures can be a tetragonal lattice, a quasi-tetragonal lattice or a quasi-hexagonal lattice that is similar to these, in addition to the hexagonal lattice. Here, the hexagonal lattice is an array in which the center of the nanostructure is located at each corner and center of the regular hexagon. Further, the four-sided lattice is an array in which the center of the nanostructure is located at each corner of the square. The quasi-tetragonal lattice or the quasi-hexagonal lattice is a lattice which is distorted by stretching the tetragonal lattice or the hexagonal lattice in the track direction. It is similar to a 4-way lattice or a 6-way lattice. Further, even when the nanostructures are randomly arranged, the invention is applied by setting the filling rate to be the ratio of the area of the bottom surface of the nanostructure to the area of the substrate surface in plan view of the antireflection structure. You can That is, regardless of the regularity of the filling structure of the nanostructure, in the relationship between the filling rate of the nanostructure and the saturation √ (a * 2 + b * 2 ) of the reflected light with respect to the white light of the antireflection structure, The present invention can be applied as long as the saturation has a minimum value at a specific filling rate.

この反射防止構造体1Aは、ナノ構造体の基体表面平坦部からの高さHが180nm以上290nm以下であり、ナノ構造体3の配列の単位格子の面積に対するナノ構造体3の底面の面積の比率であるナノ構造体の充填率が、85%以上100%未満であることを特徴としている。これにより、反射防止構造体1Aの白色光源に対する反射光の彩度√(a*2+b*2) が、ナノ構造体3の充填率との関係において、可能な限りゼロに近づき、反射防止構造体1Aを被着体の表面に設けて被着体を観察した場合に、被着体が不用に色づいて観察されることを防止することができる。このことは、基体2の屈折率が、少なくとも1.1以上3.0以下の範囲にあり、ナノ構造体3の基体2の表面平坦部からの高さHが180nm以上290nm以下の範囲にある場合に、ナノ構造体3の充填率と反射防止構造体1Aの彩度 √(a*2+b*2)との関係において、ナノ構造体3の充填率が85%以上100%未満の範囲で彩度√(a*2+b*2)が極小値をとることを本発明者が見出したことに基づいている。 In this antireflection structure 1A, the height H of the nanostructure from the flat surface of the substrate surface is 180 nm or more and 290 nm or less, and the area of the bottom surface of the nanostructure 3 with respect to the area of the unit lattice of the array of the nanostructure 3 is The filling rate of the nanostructure, which is the ratio, is 85% or more and less than 100%. As a result, the saturation √ (a * 2 + b * 2 ) of the reflected light of the antireflection structure 1A with respect to the white light source is as close to zero as possible in relation to the filling rate of the nanostructure 3, and the antireflection structure When the body 1A is provided on the surface of the adherend and the adherend is observed, the adherend can be prevented from being unnecessarily colored and observed. This means that the refractive index of the substrate 2 is at least 1.1 or more and 3.0 or less, and the height H of the nanostructure 3 from the flat surface of the substrate 2 is 180 nm or more and 290 nm or less. In this case, in the relationship between the filling rate of the nanostructures 3 and the saturation √ (a * 2 + b * 2 ) of the antireflection structure 1A, the filling rate of the nanostructures 3 is 85% or more and less than 100%. This is based on the finding by the present inventor that the saturation √ (a * 2 + b * 2 ) has a minimum value.

即ち、図2は、図1Aに示した円錐形ないしは釣鐘型のナノ構造体3が6方向格子に配列した反射防止構造体1Aにおいて、ナノ構造体3の高さHを180nm、基体2の屈折率を1.50とした場合のナノ構造体3の充填率と彩度 √(a*2+b*2)との関係図である。
ここで、充填率は、単位格子の面積に対するナノ構造体3の底面の面積の比率であり、図1Bに示す菱形の面積S1に対する、この菱形に含まれる4つのナノ構造体の扇形の面積S2の比率(%)として次式により算出することができる。
充填率(%)=(S2/S1)×100
That is, FIG. 2 shows that in the antireflection structure 1A in which the conical or bell-shaped nanostructures 3 shown in FIG. 1A are arranged in a 6-direction lattice, the height H of the nanostructures 3 is 180 nm and the refraction of the substrate 2 is small. FIG. 6 is a relationship diagram between the filling rate of the nanostructures 3 and the saturation √ (a * 2 + b * 2 ) when the rate is 1.50.
Here, the filling factor is the ratio of the area of the bottom surface of the nanostructure 3 to the area of the unit lattice, and is the area S2 of the fan shape of the four nanostructures included in this diamond with respect to the area S1 of the diamond shown in FIG. 1B. Can be calculated by the following formula.
Filling rate (%) = (S2 / S1) x 100

また、彩度√(a*2+b*2)は、JISZ8729に準拠する方法で計算して求める。即ち、波長380nm〜780nmの反射スペクトルからL***表色系における色度a*、b*を算出し、求める。 Further, the saturation √ (a * 2 + b * 2 ) is calculated and obtained by a method according to JISZ8729. That is, the chromaticities a * and b * in the L * a * b * color system are calculated and obtained from the reflection spectrum of the wavelength of 380 nm to 780 nm.

図2Bは、同様の反射防止構造体において、ナノ構造体の高さHを200nmとした場合の関係図であり、図2Cは、同様の反射防止構造体において、ナノ構造体の高さHを230nmとした場合の関係図であり、図2Dは同様の反射防止構造体において、ナノ構造体3の高さHを290nmとした場合の関係図であり、図2Eは、同様の反射防止構造体において、ナノ構造体3の高さHを150nmとした場合の関係図である。これらの関係図から、ナノ構造体の高さHが180nm以上290nm以下の範囲にある場合に、充填率95〜99%で彩度√(a*2+b*2)が極小値をとっていることがわかる。したがって、この極小値を示すナノ構造体の充填率と高さを設定することで、安定した色味を示す反射防止フィルムを得ることができるようになる。 FIG. 2B is a relationship diagram when the height H of the nanostructure is 200 nm in the same antireflection structure, and FIG. 2C shows the height H of the nanostructure in the same antireflection structure. FIG. 2D is a relationship diagram when the thickness H is 230 nm, FIG. 2D is a relationship diagram when the height H of the nanostructure 3 is 290 nm in the same antireflection structure, and FIG. 2E is the same antireflection structure. 3 is a relational diagram when the height H of the nanostructure 3 is set to 150 nm. From these relationship diagrams, when the height H of the nanostructure is in the range of 180 nm or more and 290 nm or less, the saturation √ (a * 2 + b * 2 ) takes the minimum value at the filling rate of 95 to 99%. I understand. Therefore, by setting the filling rate and height of the nanostructure exhibiting this minimum value, it becomes possible to obtain an antireflection film exhibiting a stable tint.

なお、ナノ構造体の高さHを180〜290nmとした場合において、図2Aに示したように、彩度√(a*2+b*2)が極小値をとらず最小値でほぼ水平となるときには、最小値をとる変曲点(ボトムの終点近傍)を便宜的に極小値と見なす。 When the height H of the nanostructure is 180 to 290 nm, as shown in FIG. 2A, the saturation √ (a * 2 + b * 2 ) does not have a minimum value and is substantially horizontal at the minimum value. In some cases, the inflection point that takes the minimum value (near the end point of the bottom) is regarded as the minimum value for convenience.

これに対し、同様の反射防止構造体1Aにおいて、ナノ構造体3の高さHが180nmよりも低いと、図2Eに示すように、充填率75〜100%の間で彩度√(a*2+b*2)に極小値は見られず、反対に極大値が現れる。 On the other hand, in the same antireflection structure 1A, when the height H of the nanostructure 3 is lower than 180 nm, as shown in FIG. 2E, the saturation √ (a *) is obtained between the filling rates of 75 to 100% . 2 + b * 2 ) does not have a local minimum, but a local maximum appears.

なお、ナノ構造体の高さHが180nm以上であっても、充填率が100%近傍からそれよりも高くなるのに伴い、彩度√(a*2+b*2)が急激に大きくなっているのは、充填率が100%を超えることにより、隣り合うナノ構造体の下端部同士が重なり合い、ナノ構造体の実質的な高さHが小さくなるためと推測される。 Even when the height H of the nanostructure is 180 nm or more, the saturation √ (a * 2 + b * 2 ) increases rapidly as the filling rate increases from near 100%. It is speculated that the filling rate exceeds 100% because the lower end portions of the adjacent nanostructures overlap with each other, and the substantial height H of the nanostructures decreases.

つまり、本発明においてナノ構造体同士が接近しすぎてナノ構造体の実質的な高さHが減少しない範囲でナノ構造体を密に充填することにより、反射防止構造体に色味がつくことを抑制しているといえる。   That is, in the present invention, the nanostructures are densely packed within a range in which the nanostructures are not too close to each other and the substantial height H of the nanostructures is not reduced, so that the antireflection structure is colored. Can be said to be suppressing.

一方、図2Dに示すように、ナノ構造体3の高さHを290nmとすると極小値は充填率95%になり、充填率を向上させることによる反射防止特性の向上と、彩度の低減とを両立できる状態が得られる。しかしながら、ナノ構造体3の高さHを290nmより高くすることは、ナノ構造体3のアスペクト比が高くなることから、原盤を用いた転写法により反射防止構造体を製造するにあたり、原盤から良好に形状を転写することが困難となる。   On the other hand, as shown in FIG. 2D, when the height H of the nanostructure 3 is 290 nm, the minimum value becomes a filling rate of 95%, and by improving the filling rate, the antireflection property is improved and the saturation is reduced. A state in which both can be achieved is obtained. However, if the height H of the nanostructures 3 is set higher than 290 nm, the aspect ratio of the nanostructures 3 becomes high. Therefore, when manufacturing the antireflection structure by the transfer method using the master, it is preferable to use the master. It becomes difficult to transfer the shape to.

また、ナノ構造体3の高さHにばらつきが大きいと、上述のナノ構造体の充填率と彩度√(a*2+b*2)との関係において、彩度√(a*2+b*2)に明確な極小値が出にくい。そこで、ナノ構造体の高さHのばらつきは、10%以内とすることが好ましい。 Further, when the variation in the height H of the nano-structures 3 is large in relation to the filling rate and saturation √ nanostructure described above (a * 2 + b * 2 ), saturation √ (a * 2 + b * It is difficult to obtain a clear minimum value in 2 ). Therefore, it is preferable that the variation of the height H of the nanostructure is within 10%.

以上により、本発明の反射防止構造体の設計方法においては、ナノ構造体3の高さHを180nm以上290nm以下、好ましくは200nm以上270以下、特に好ましくは200nm以上250nm以下とし、また、ナノ構造体3の高さHのばらつきを好ましくは10%以下、より好ましくは8.7%以下とする場合において、ナノ構造体3の高さHと、充填率と彩度√(a*2+b*2)との関係において、彩度√(a*2+b*2)が極小値及びその近傍となる充填率に設定する。これにより、反射防止構造体1Aの彩度√(a*2+b*2)を可能な限りゼロに近づけ、反射防止構造体の被着体が色づいて見えることを可能な限り防止することができる。 As described above, in the method for designing an antireflection structure of the present invention, the height H of the nanostructure 3 is set to 180 nm or more and 290 nm or less, preferably 200 nm or more and 270 or less, and particularly preferably 200 nm or more and 250 nm or less. When the variation of the height H of the body 3 is preferably 10% or less, more preferably 8.7% or less, the height H of the nanostructure 3, the filling rate and the saturation √ (a * 2 + b *). In relation to 2 ), the saturation √ (a * 2 + b * 2 ) is set to a minimum value or a filling rate that is in the vicinity thereof. As a result, the saturation √ (a * 2 + b * 2 ) of the antireflection structure 1A can be made as close to zero as possible, and the adherend of the antireflection structure can be prevented from appearing colored as much as possible. .

なお、ナノ構造体3の充填率と彩度√(a*2+b*2)との関係図において、彩度√(a*2+b*2)が極小値をとるときの彩度√(a*2+b*2)の数値や、そのときの充填率の数値は、ナノ構造体3の配列、ナノ構造体3の形状、ナノ構造体3を形成する基体2の屈折率等によって変化するが、屈折率が1.1〜3.3の範囲内においては、材質によらず彩度√(a*2+b*2)の極小値の近傍とすることができる。 In the relationship diagram between the filling rate of the nanostructures 3 and the saturation √ (a * 2 + b * 2 ), the saturation √ (a when the saturation √ (a * 2 + b * 2 ) takes a minimum value The numerical value of * 2 + b * 2 ) and the numerical value of the filling rate at that time vary depending on the arrangement of the nanostructures 3, the shape of the nanostructures 3, the refractive index of the substrate 2 forming the nanostructures 3, and the like. When the refractive index is in the range of 1.1 to 3.3, it can be set to the vicinity of the minimum value of the saturation √ (a * 2 + b * 2 ) regardless of the material.

例えば、図1Aに示した反射防止構造体1Aのナノ構造体3と同様の円錐形(釣鐘型)のナノ構造体(屈折率:1.5)を、図3Aに示すように4方格子に配列した反射防止構造体1Bの場合、ナノ構造体3の高さHが250nmのときの充填率と彩度 √(a*2+b*2)との関係は、図3Bに示すように充填率93%付近で極小値を示す。 For example, a conical (bell-shaped) nanostructure (refractive index: 1.5) similar to the nanostructure 3 of the antireflection structure 1A shown in FIG. 1A is converted into a four-way lattice as shown in FIG. 3A. In the case of the arrayed antireflection structures 1B, the relationship between the filling factor and the saturation √ (a * 2 + b * 2 ) when the height H of the nanostructures 3 is 250 nm is as shown in FIG. 3B. A minimum value is shown near 93%.

また、図1Aに示した反射防止構造体1Aにおいて、ナノ構造体3の底面形状を、図4Aに示すように楕円にすることによりナノ構造体3を楕円錐形(釣鐘型)とし、その楕円錐形(釣鐘型)のナノ構造体3を6方格子に配列した反射防止構造体1Cの場合、ナノ構造体3の高さHが250nmのときの充填率と彩度√(a*2+b*2)との関係は、図4Bに示すように充填率99%付近で極小値を示す。楕円錐形(釣鐘型)の底面形状の長軸Lと短軸Sとの比(L/S)を1〜2の間で変化させると、彩度√(a*2+b*2)は、充填率85%以上100%未満で極小値を示す。 Further, in the antireflection structure 1A shown in FIG. 1A, the bottom surface shape of the nanostructure 3 is elliptical as shown in FIG. 4A so that the nanostructure 3 has an elliptic cone shape (bell shape). In the case of the antireflection structure 1C in which the pyramidal (bell-shaped) nanostructures 3 are arranged in a hexagonal lattice, the filling factor and the saturation √ (a * 2 + b) when the height H of the nanostructures 3 is 250 nm * 2 ) shows a minimum value near the filling rate of 99% as shown in FIG. 4B. When the ratio (L / S) of the long axis L and the short axis S of the elliptical cone-shaped bottom shape is changed between 1 and 2, the saturation √ (a * 2 + b * 2 ) becomes A minimum value is shown when the filling rate is 85% or more and less than 100%.

また、上述の反射防止構造体1Cと同様にナノ構造体3を楕円錐形(釣鐘型)とし、それを図5Aに示すように6方格子に配列した反射防止構造体1Dの場合、ナノ構造体3の高さHが250nmのときの充填率と彩度 √(a*2+b*2)との関係は、図5Bに示すように充填率95%付近で極小値を示す。この場合にも、楕円錐形(釣鐘型)の底面形状の長軸Lと短軸Sとの比(L/S)を1〜2の間で変化させると、彩度 √(a*2+b*2)は、充填率85%以上100%未満で極小値を示す。 In the case of the antireflection structure 1D in which the nanostructures 3 have an elliptical cone shape (bell shape) and are arranged in a hexagonal lattice as shown in FIG. The relationship between the filling factor and the saturation √ (a * 2 + b * 2 ) when the height H of the body 3 is 250 nm shows a minimum value near the filling factor of 95% as shown in FIG. 5B. Also in this case, if the ratio (L / S) of the major axis L and the minor axis S of the elliptical cone-shaped bottom shape is changed between 1 and 2, the saturation becomes √ (a * 2 + b * 2 ) shows a minimum value when the filling rate is 85% or more and less than 100%.

また、屈折率と彩度√(a*2+b*2)との関係については、図1Aに示した反射防止構造体1Aにおいて、ナノ構造体3の高さHが250nmのときに屈折率を1.1とした場合、図6に示すように、彩度√(a*2+b*2)の極小値付近の傾きは、屈折率が1.5の場合ほど大きくはないが、彩度√(a*2+b*2)の数値は低い。これに対し、図1Aに示した反射防止構造体1Aにおいて、ナノ構造体3の高さHが250nmのときに屈折率を3.0にした場合には、図7に示すように、充填率90%付近の極小値における彩度√(a*2+b*2)自体の数値は、屈折率が1.5の場合の極小値よりも大きいが、極小値付近の傾きは大きく、明瞭な極小値となる。したがって、本発明において、基体の屈折率は1.1以上3.0以下とする。 Regarding the relationship between the refractive index and the saturation √ (a * 2 + b * 2 ), in the antireflection structure 1A shown in FIG. 1A, when the height H of the nanostructure 3 is 250 nm, the refractive index is When set to 1.1, as shown in FIG. 6, the slope of the saturation √ (a * 2 + b * 2 ) in the vicinity of the minimum value is not as large as when the refractive index is 1.5, but the saturation √ The value of (a * 2 + b * 2 ) is low. On the other hand, in the antireflection structure 1A shown in FIG. 1A, when the height H of the nanostructure 3 is 250 nm and the refractive index is 3.0, the filling rate is as shown in FIG. The value of saturation √ (a * 2 + b * 2 ) itself at the minimum value around 90% is larger than the minimum value when the refractive index is 1.5, but the slope around the minimum value is large and there is a clear minimum. It becomes a value. Therefore, in the present invention, the refractive index of the substrate is 1.1 or more and 3.0 or less.

ところで、反射防止構造体を静止画像表示物に使用する場合には、彩度√(a*2+b*2)は、ゼロに近いほど好ましいものの、2以下であれば反射防止構造体が設けられた表面を観察した場合に、不用に色づいて感じられることはなく、静止画像表示物に使用する場合には、彩度 √(a*2+b*2)は2以下であればよい。また、反射防止性能の点からは、充填率と彩度√(a*2+b*2)との関係において、彩度√(a*2+b*2)に明瞭な極小値が現れる方が好ましい。このような点から、静止画像表示物に使用する反射防止構造体では、ナノ構造体の屈折率を1.5以上、3.0以下とし、ナノ構造体の充填率を85%以上99%未満とすることが好ましい。静止画像表示物とは、高い解像度が求められる印刷物などがある。 By the way, when the antireflection structure is used for a still image display, the saturation √ (a * 2 + b * 2 ) is preferably closer to zero, but if it is 2 or less, the antireflection structure is provided. The surface does not feel unnecessarily colored when observed, and the saturation √ (a * 2 + b * 2 ) may be 2 or less when used for a still image display. From the viewpoint of antireflection performance, it is preferable that a clear minimum value appears in the saturation √ (a * 2 + b * 2 ) in the relationship between the filling rate and the saturation √ (a * 2 + b * 2 ). . From such a point, in the antireflection structure used for the still image display, the refractive index of the nanostructure is 1.5 or more and 3.0 or less, and the filling rate of the nanostructure is 85% or more and less than 99%. It is preferable that The still image display material includes a printed material requiring high resolution.

また、反射防止構造体が光学レンズ等の光屈折率材料である場合には、基板の屈折率に近似させることが好ましい。例えば、サファイア基盤等に設ける場合には、屈折率を1.7以上とすることが好ましい。   Further, when the antireflection structure is a light refractive index material such as an optical lens, it is preferable to approximate the refractive index of the substrate. For example, when provided on a sapphire substrate or the like, the refractive index is preferably 1.7 or more.

これに対し、反射防止構造体を静止画像表示物等に貼り合せて使用する場合には、近年の高解像度画像の要請に鑑みて、本発明の製法にあるような均一に高密度充填された反射防止構造体であることが望ましい。さらに反射防止構造体の反射防止性能を高めるためにはナノ構造体の屈折率を周囲の媒体の屈折率(空気の屈折率=1)に近づけるほど好ましく、空気中で使用する場合には、ナノ構造体の屈折率を1.5未満とし、ナノ構造体の充填率を95%以上99%とすることが好ましい。   On the other hand, when the antireflection structure is used by being attached to a still image display object or the like, in view of the recent demand for high resolution images, it is uniformly packed with high density as in the manufacturing method of the present invention. It is preferably an antireflection structure. Further, in order to improve the antireflection performance of the antireflection structure, it is preferable that the refractive index of the nanostructure be closer to the refractive index of the surrounding medium (refractive index of air = 1). It is preferable that the refractive index of the structure is less than 1.5 and the filling rate of the nanostructure is 95% or more and 99%.

なお、本発明の反射防止構造体の製造方法としては、ロール原盤を使用して転写法により製造する場合、例えば、WO2012/133943号公報に記載のように、まず、ロールガラス原盤をレーザ光を用いてフォトリソグラフの手法によりパターニングしてその表面に微細な凹凸パターンを形成し、その凹凸パターンを、反射防止構造体を形成する樹脂に転写することにより得ることができる。この場合、本発明の反射防止構造体のナノ構造体3の基部には、必要に応じてナノ構造体3とは別個に形成した基材を設けてもよい。   As a method for producing the antireflection structure of the present invention, in the case of producing by a transfer method using a roll master, for example, as described in WO2012 / 1333943, first, a roll glass master is irradiated with laser light. It can be obtained by patterning by using a photolithographic method to form a fine concavo-convex pattern on the surface and transferring the concavo-convex pattern to the resin forming the antireflection structure. In this case, the base of the nanostructure 3 of the antireflection structure of the present invention may be provided with a base material formed separately from the nanostructure 3 if necessary.

こうして得られる反射防止構造体はフィルムに形成されているのが一般的であり、ロール体もしくは枚葉化されたフィルムであってもよい。枚葉化フィルムには、ナノ構造体の充填の仕方などでコーディングされており、識別化が可能になっているものも含まれる。   The antireflection structure thus obtained is generally formed into a film, and may be a roll body or a sheet-shaped film. The single-wafer film also includes a film that is coded by a method of filling the nanostructures and that can be identified.

本発明の反射防止構造体は、印刷物、液晶表示装置などの静止画像を表示する媒体に特に好ましく使用されるが、動画に用いる各種ディスプレイに使用しても特に問題は無い。   The antireflection structure of the present invention is particularly preferably used for a medium that displays a still image such as a printed matter and a liquid crystal display device, but there is no particular problem even if it is used for various displays used for moving images.

1A、1B、1C、1D 反射防止構造体
2 基体
3 ナノ構造体
Dp 配置ピッチ
H 高さ
Tp トラックピッチ
T1、T2、T3 トラック
1A, 1B, 1C, 1D Antireflection structure 2 Substrate 3 Nanostructure Dp arrangement pitch H height Tp track pitch T1, T2, T3 track

Claims (6)

基体表面の凸部により形成されたナノ構造体が、可視光波長以下の間隔で多数設けられている反射防止構造体であって、
ナノ構造体の基体表面平坦部からの高さについて、その平均が180nm以上290nm以下であり且つばらつきが10%以内であり
ナノ構造体の形状が、円錐形状、釣鐘形状、楕円錐形状、半球体形状又は半楕円体形状であって、その底面形状が平面視で円形状又は楕円形状であり、
反射防止構造体の平面視における基体表面の面積に対するナノ構造体の底面の面積の比率であるナノ構造体の充填率が、95〜99%であり、且つ該充填率と反射防止構造体の白色光に対する反射光の彩度√(a*2+b*2)の関係において、該彩度が極小値をとる充填率の±5%の範囲となっていることを特徴とする反射防止構造体。
The nanostructure formed by the convex portion on the surface of the substrate is an antireflection structure provided in large numbers at intervals of a visible light wavelength or less,
The height from the substrate surface flat portion of the nanostructures, the average of that is less 1 80 nm or more 290nm and variations are within 10%,
The shape of the nanostructure is a cone shape, a bell shape, an elliptical cone shape, a hemispherical shape or a semielliptic shape, and the bottom surface shape is a circular shape or an elliptical shape in a plan view,
The filling rate of the nanostructure, which is the ratio of the area of the bottom surface of the nanostructure to the area of the substrate surface in plan view of the antireflection structure, is 95 to 99% , and the filling rate and the white color of the antireflection structure. An antireflection structure characterized in that, in the relationship of the saturation √ (a * 2 + b * 2 ) of the reflected light with respect to the light, the saturation is within a range of ± 5% of the filling rate at which the saturation has a minimum value.
ナノ構造体のアスペクト比が、0.95以上2.2以下である請求項1記載の反射防止構造体。   The antireflection structure according to claim 1, wherein the aspect ratio of the nanostructure is 0.95 or more and 2.2 or less. ナノ構造体のトラックピッチが、130nm以上190nm以下である請求項1又は2記載の反射防止構造体。 The antireflection structure according to claim 1 or 2 , wherein the track pitch of the nanostructure is 130 nm or more and 190 nm or less. ナノ構造体の配置ピッチが、150nm以上270nm以下である請求項1〜のいずれかに記載の反射防止構造体。 The arrangement pitch of the nanostructure antireflection structure according to any one of claims 1 to 3, at 150nm or 270nm or less. 基体の屈折率が、1.1以上3.0以下である請求項1〜のいずれかに記載の反射防止構造体。 Refractive index of the substrate, the anti-reflection structure according to any one of claims 1-4 is 1.1 to 3.0. 枚葉化されたフィルム状に形成されている請求項1〜のいずれかに記載の反射防止構造体。 The antireflection structure according to any one of claims 1 to 6 , which is formed into a sheet-shaped film.
JP2018096842A 2018-05-21 2018-05-21 Anti-reflection structure Active JP6683214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018096842A JP6683214B2 (en) 2018-05-21 2018-05-21 Anti-reflection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018096842A JP6683214B2 (en) 2018-05-21 2018-05-21 Anti-reflection structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014003483A Division JP6343937B2 (en) 2014-01-10 2014-01-10 Anti-reflection structure and design method thereof

Publications (2)

Publication Number Publication Date
JP2018124595A JP2018124595A (en) 2018-08-09
JP6683214B2 true JP6683214B2 (en) 2020-04-15

Family

ID=63109609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018096842A Active JP6683214B2 (en) 2018-05-21 2018-05-21 Anti-reflection structure

Country Status (1)

Country Link
JP (1) JP6683214B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010831A (en) * 2004-06-23 2006-01-12 Alps Electric Co Ltd Antireflection structure, antireflection body, lighting device, and liquid crystal display device
JP4518860B2 (en) * 2004-07-29 2010-08-04 花王株式会社 Labeled container
GB0712605D0 (en) * 2007-06-28 2007-08-08 Microsharp Corp Ltd Optical film
US9784889B2 (en) * 2012-06-22 2017-10-10 Sharp Kabushiki Kaisha Antireflection structure and display device

Also Published As

Publication number Publication date
JP2018124595A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2015105071A1 (en) Anti-reflective structure and method for designing same
US9784889B2 (en) Antireflection structure and display device
TWI531086B (en) An optical substrate, a semiconductor light-emitting element, and a semiconductor light-emitting element
JP4583506B2 (en) Antireflection film, optical element including antireflection film, stamper, stamper manufacturing method, and antireflection film manufacturing method
JP4959841B2 (en) Antireflection film and display device
JP5948763B2 (en) Anti-glare film, polarizing plate and image display device
US9025250B2 (en) Antireflection film, method for manufacturing antireflection film, and display apparatus
CN106030349A (en) Method for producing laminate, laminate, polarizing plate, image display device, and method for improving readability of image display device
TWI457589B (en) Mold for motheye structure, mold manufacturing method and motheye structure formation method
JP6642442B2 (en) Optical element, optical composite element and optical composite element with protective film
JP2011169961A (en) Hydrophilic antireflection structure and method of manufacturing the same
JP2014123077A (en) Anti-reflection body and manufacturing method therefor
JP6683214B2 (en) Anti-reflection structure
TWI825055B (en) Concave-convex structures, optical components and electronic equipment
CN106716184A (en) Antireflection member
JPWO2016006651A1 (en) Optical member and manufacturing method thereof
WO2017126673A1 (en) Functional structural body
CN108149190A (en) Mask plate and preparation method thereof
TWI727481B (en) Optical film
TWI490831B (en) Display device, anti-reflective transparent substrate and manufacturing method thereof
KR101492503B1 (en) Double nano structure with ultra low reflection in visible wavelength region
KR20130030953A (en) Film for preventing light reflection and polarizing plate comprising the panel
JP2016018081A (en) Antireflection structure and antireflection infrared optical element
TWI436501B (en) A substrate having a reflective dot array
JP2013105054A (en) Anti-reflection film and optical apparatus including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200309

R150 Certificate of patent or registration of utility model

Ref document number: 6683214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250