JP6682307B2 - Method and apparatus for highly sensitive detection of microsphere resonance sensor - Google Patents

Method and apparatus for highly sensitive detection of microsphere resonance sensor Download PDF

Info

Publication number
JP6682307B2
JP6682307B2 JP2016049128A JP2016049128A JP6682307B2 JP 6682307 B2 JP6682307 B2 JP 6682307B2 JP 2016049128 A JP2016049128 A JP 2016049128A JP 2016049128 A JP2016049128 A JP 2016049128A JP 6682307 B2 JP6682307 B2 JP 6682307B2
Authority
JP
Japan
Prior art keywords
microspheres
substrate
microsphere
light
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016049128A
Other languages
Japanese (ja)
Other versions
JP2017166825A (en
Inventor
健志 田尻
健志 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP2016049128A priority Critical patent/JP6682307B2/en
Publication of JP2017166825A publication Critical patent/JP2017166825A/en
Application granted granted Critical
Publication of JP6682307B2 publication Critical patent/JP6682307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、食品検査分野での微生物検査に係り、特に単一の微小球を使用したウィスパリングギャラリーモード(WGM)に基づく迅速および高感度で高精度な検出方法および装置に関するものである。 The present invention relates to a microorganism inspection in the field of food inspection, and more particularly to a rapid, highly sensitive and highly accurate detection method and device based on Whispering Gallery Mode (WGM) using a single microsphere.

食品業界にとって食中毒などの食の安全・安心を脅かす事故は、企業のブランドと信用を失墜させることにつながるため、衛生管理体制の高度化が望まれている。
食品検査において微生物の検査は、簡便、正確、迅速に行なわれる必要があるが、従来の検査手法である培養法は、増菌培養し判定するまでに24時間以上は必要で、かつ、熟練者による作業が必要となる。そのため、簡便で迅速に高感度検出が可能なセンサー、並びに、それらに最適な検出方法と装置の開発が望まれていた。
For the food industry, accidents that threaten food safety and security, such as food poisoning, can damage the brand and credibility of a company, and so it is desirable to improve the hygiene management system.
In food inspection, the inspection of microorganisms needs to be simple, accurate, and rapid, but the conventional inspection method, culture method, requires 24 hours or more before the enrichment culture and determination, and Work is required. Therefore, it has been desired to develop a sensor that is simple and capable of high-sensitivity detection, and a detection method and an apparatus that are optimal for them.

近年、迅速検査手法としてイムノクロマト法、ELISA法、DNA検査法、PCR法、免疫磁気ビーズ法などによる研究や開発が進められているが、中でも抗原‐抗体反応を用いた免疫学的検査法は特異性、迅速性、簡便性等の点で優れているため、迅速検出方法(例えば、特許文献1〜2参照)として期待され開発が行われている。 In recent years, research and development by immunochromatography, ELISA, DNA test, PCR, immunomagnetic bead method, etc. have been advanced as rapid test methods, but among them, immunological test method using antigen-antibody reaction is unique. It is expected to be used as a rapid detection method (see, for example, Patent Documents 1 and 2) and is being developed because of its excellent properties, quickness, and simplicity.

特許文献1には、標的微生物特異的抗体を用いて標的微生物を分離・回収した後、標的微生物のATPを増幅し、増幅されたATPを測定する高感度迅速検出法が公開されている。 Patent Document 1 discloses a highly sensitive rapid detection method in which a target microorganism is isolated and collected using an antibody specific to the target microorganism, ATP of the target microorganism is amplified, and the amplified ATP is measured.

しかし、これらの方法は検出感度や判定精度が十分でないため増菌培養が必要となり、一般的な検査結果を得るまでは8時間以上を要している。そのため、食品製造業者にとっては、検査結果を待った出荷、あるいは、自主回収のリスクを抱えた出荷となっている。 However, in these methods, the detection sensitivity and the determination accuracy are not sufficient, so that the enrichment culture is required, and it takes 8 hours or more to obtain a general test result. Therefore, for food manufacturers, shipment is awaiting inspection results or shipment with the risk of voluntary recall.

特許文献2には、微生物の構成成分と結合する抗体を固定化した捕捉体を用いて微生物を捕捉し、更に、捕捉し洗浄された微生物から抽出されたDNAをPCR法により増幅した検出方法が公開されているが、これらの方法も抽出や増幅などの高度な技術が必要となり、簡易かつ安価に検査結果を得ることは難しい。 Patent Document 2 discloses a detection method in which a microorganism is captured by using a capturing body in which an antibody that binds to a constituent component of the microorganism is immobilized, and further, DNA extracted from the captured and washed microorganism is amplified by a PCR method. Although published, these methods also require advanced techniques such as extraction and amplification, and it is difficult to obtain test results easily and inexpensively.

このような課題を解決する手法として、単一の共振器内にプローブ光を入射し循環させる光学モードを利用したバイオセンサーが提供される。この光学共振モードおよび共振は、ウィスパリングギャラリーモード(WGM)、または、形態依存共振(MDR)と呼ばれ、プローブ光で入射した光が共振器の境界面で全反射し閉じ込められた場合に発生する。 As a method for solving such a problem, there is provided a biosensor using an optical mode in which a probe light is incident and circulated in a single resonator. This optical resonance mode and resonance are called whispering gallery mode (WGM) or form-dependent resonance (MDR), and occur when the light incident on the probe light is totally reflected and confined at the boundary surface of the resonator. To do.

WGMは表面の状態に非常に敏感であるために、微小回転楕円体の表面に標的分析物と結合する結合パートナーを固定化し、WGMのプロファイルピークを検出する方法が提案されている(例えば、特許文献3〜4参照)。また、検体溶液が検出器表面を流れ過ぎる前に、導波路と結合した光学微小共振器を含めることで、検出される信号光の割合を増加させるバイオセンサー(例えば、特許文献5参照)、および、光導波基板上に複数の微小光共振体を配置したセンシング装置(例えば、特許文献6参照)や、対物レンズを利用した全反射減衰配置による検出手法(例えば、特許文献7参照)が提案されている。 Since WGM is very sensitive to the state of the surface, a method has been proposed to detect the WGM profile peak by immobilizing the binding partner that binds to the target analyte on the surface of the microspheroid. References 3 to 4). In addition, a biosensor that increases the ratio of detected signal light by including an optical microresonator coupled with a waveguide before the sample solution flows over the surface of the detector (see, for example, Patent Document 5), and , A sensing device in which a plurality of micro optical resonators are arranged on an optical waveguide substrate (for example, refer to Patent Document 6), and a detection method by an attenuated total reflection arrangement using an objective lens (for example, refer to Patent Document 7) are proposed. ing.

しかしながら、これらのWGMの共振ピーク波長のシフトを検出するには、高分解能を要する検出器が必要となり、また測定時の迷光を拾い易いために測定誤差と波長シフトの判定ができないという問題もある。さらには、基板上に配置された微小球のWGMは様々な方向に周回し、微小球の表面状態に非常に敏感であるため、共振ピーク波長のシフト量から、微小球表面の付着物の厚みと屈折率を算出する手法(例えば、非特許文献1参照)では、検出される共振ピーク波長のS/N比の向上やスプリット現象(例えば、非特許文献2参照)の影響を少なくする必要がある。 However, in order to detect the shift of the resonance peak wavelength of these WGM, a detector that requires high resolution is required, and there is also a problem that the measurement error and the wavelength shift cannot be determined because stray light during measurement is easily picked up. . Furthermore, the WGM of the microspheres placed on the substrate orbits in various directions and is very sensitive to the surface state of the microspheres. And the method of calculating the refractive index (for example, refer to Non-Patent Document 1), it is necessary to improve the S / N ratio of the detected resonance peak wavelength and reduce the influence of the split phenomenon (for example, Non-Patent Document 2). is there.

したがって、高価な測定装置を用いることなく、迅速で簡便な測定方法と測定装置を開発するため、共振ピーク波長のS/N比とシフト精度を向上した検出方法および装置が望まれている。 Therefore, in order to develop a quick and simple measurement method and measurement apparatus without using an expensive measurement apparatus, a detection method and apparatus with improved S / N ratio of resonance peak wavelength and shift accuracy are desired.

特開2006−81506号公報JP, 2006-81506, A 特開2007−97551号公報JP, 2007-97551, A 特開2012−137490号公報JP2012-137490A 特表2012−509070号公報Special table 2012-509070 gazette 特表2008−513776号公報Japanese Patent Publication No. 2008-513776 特開2013−96707号公報JP, 2013-96707, A 特開2014−178151号公報JP, 2014-178151, A

Anal. Sci., Vol. 30, pp. 799-804, 2014Anal. Sci., Vol. 30, pp. 799-804, 2014 IEEE Sensors 2014 Conf. Proc., pp. 641-644, 2014IEEE Sensors 2014 Conf. Proc., Pp. 641-644, 2014

抗原抗体反応した微小球のWGMは、基板との接触面積が増加するため、基板側へ光が放射され、微小球の散乱光スペクトルから検出される共振ピーク波長は、S/N比が減衰してしまう。また、微小球表面を周回する光の軌道が変化してしまうため、TE偏光とTM偏光に対応したスプリットピークが同時に発生する問題が生じていた。この共振ピーク波長のスプリット間隔とシフト量は同程度であるため、共振ピーク波長から検出するシフト量は精度が低くなる。また、検出で使用する照射光の温度変化によって、検出中の微小球が移動する問題も生じていた。 Since the contact area of the WGM of the microspheres that reacted with the antigen-antibody increases with the substrate, light is emitted to the substrate side, and the resonance peak wavelength detected from the scattered light spectrum of the microspheres has an attenuated S / N ratio. Will end up. In addition, since the orbit of the light that circulates around the surface of the microspheres changes, there is a problem that split peaks corresponding to TE polarized light and TM polarized light occur at the same time. Since the split interval and the shift amount of the resonance peak wavelength are approximately the same, the shift amount detected from the resonance peak wavelength becomes less accurate. Further, there has been a problem that the microspheres being detected move due to the temperature change of the irradiation light used for the detection.

よって、本発明は、前述した従来の検出方法の場合に生じる課題を解決するために、共振ピーク波長の減衰やスプリット現象を無くし、さらには、微小球の移動を抑えることにより、共振ピーク波長の変化を高感度かつ高精度に検出する方法および装置を提供することを目的とする。 Therefore, the present invention, in order to solve the problems that occur in the case of the conventional detection method described above, eliminates the attenuation and split phenomenon of the resonance peak wavelength, further, by suppressing the movement of the microspheres, the resonance peak wavelength of An object of the present invention is to provide a method and a device for detecting changes with high sensitivity and high accuracy.

このような目的を達成するために、本発明は第一に、基板上に微小球を配置し、基板から染み出したエバネセント光により微小球表面に励起されるウィスパリングギャラリーモードを共振し、微小球の散乱光を検出する方法および装置であって、前記基板と微小球のウィスパリングギャラリーモードの軌道が接触しないように基板上に微小球を配置することを特徴とする散乱光の検出方法および装置を提供する。 In order to achieve such an object, the present invention firstly arranges microspheres on a substrate, resonates the whispering gallery mode excited on the surface of the microspheres by the evanescent light exuding from the substrate, A method and apparatus for detecting scattered light of a sphere, wherein the fine sphere is arranged on the substrate so that the substrate and the orbit of the whispering gallery mode of the microsphere do not come into contact with each other, and Provide a device.

散乱光の検出方法および装置は、溝が形成された基板上に微小球を配置することを特徴とし、溝が微小球径よりも幅狭に形成することで、該溝上に配置された微小球のズレを抑制することができる。微小球表面のウィスパリングギャラリーモードの軌道が基板と非接触状態であるため、微小球表面の付着物の増加による影響を受けないセンサーチップが作製できる。 A method and apparatus for detecting scattered light is characterized by arranging microspheres on a substrate on which grooves are formed, and by forming the grooves to be narrower than the diameter of the microspheres, the microspheres arranged on the grooves are formed. The deviation can be suppressed. Since the orbit of the whispering gallery mode on the surface of the microsphere is not in contact with the substrate, it is possible to manufacture a sensor chip that is not affected by the increase of deposits on the surface of the microsphere.

上記の散乱光の検出方法および装置は、光源からの照射光を微小球径以下に集光しエバネセント光を発生できる励起用対物レンズと、微小球からの散乱光スペクトルを検出できる検出用対物レンズを備えウィスパリングギャラリーモードの共振ピーク波長を検出できる分解能を有する分光器を備えた微小球共振センサーを用いることが望ましい。 The scattered light detection method and apparatus described above are an excitation objective lens capable of converging irradiation light from a light source into a microsphere diameter or less to generate evanescent light, and a detection objective lens capable of detecting a scattered light spectrum from the microsphere. It is desirable to use a microsphere resonance sensor equipped with a spectroscope having a resolution capable of detecting the resonance peak wavelength of the whispering gallery mode.

また、本発明は第二に、上記の散乱光の検出方法を用いた対象溶液中の微生物汚染の検出方法および装置であって、抗体が固定化された微小球、および、抗体が固定化された微小球に溶液を接触させた微小球のウィスパリングギャラリーモードの共振ピーク波長を検出し、その共振ピーク波長の変化を検出することを特徴とする対象溶液中の微生物汚染の検出方法および装置を提供する。 In addition, the present invention is secondly a method and a device for detecting microbial contamination in a target solution using the above-mentioned scattered light detection method, wherein the antibody is immobilized on microspheres, and the antibody is immobilized. A method and apparatus for detecting microbial contamination in a target solution, which is characterized by detecting a resonance peak wavelength of a whispering gallery mode of a microsphere brought into contact with a solution and detecting a change in the resonance peak wavelength. provide.

共振ピーク波長の変化を高感度かつ高精度に検出する方法および装置を提供し、迅速簡便に目的の微生物汚染を検出する安価な微小球共振センサーを使用する微生物汚染の検出装置を作製することが可能となる。 (EN) A method and an apparatus for detecting a change in resonance peak wavelength with high sensitivity and accuracy, and a method for detecting a microbial contamination using an inexpensive microsphere resonance sensor for detecting a desired microbial contamination in a quick and easy manner. It will be possible.

本発明にかかる微小球共振センサーを使用する微生物汚染の検出方法および装置は、単一の微小球により感度の増幅を行うため、検査工程において培養法を利用する必要がない。また、切削した凹形状の溝から切削方向にエバネセント光を微小球表面に作用させるだけで、共振ピーク波長の減衰やスプリット現象を抑えることができるため、抗原抗体反応による共振ピーク波長のS/N比とシフト精度を向上し、微量な標的物質の評価が可能となる。すなわち、本発明手法を利用することで、標的とする微生物汚染を高感度で高精度に判定することが可能となり、使い捨て用の安価なセンサーチップや安価な小型装置の開発も可能となる。 The method and apparatus for detecting microbial contamination using the microsphere resonance sensor according to the present invention does not require the use of a culture method in the inspection process because the sensitivity is amplified by a single microsphere. In addition, since it is possible to suppress the attenuation of the resonance peak wavelength and the split phenomenon simply by causing the evanescent light to act on the surface of the microsphere in the cutting direction from the cut concave groove, the S / N of the resonance peak wavelength due to the antigen-antibody reaction The ratio and shift accuracy are improved, making it possible to evaluate trace amounts of target substances. That is, by utilizing the method of the present invention, it becomes possible to determine the target microbial contamination with high sensitivity and high accuracy, and it is also possible to develop an inexpensive disposable sensor chip or an inexpensive small-sized device.

また、この発明は、食品分野をはじめ、環境や、医療など微生物検査が必要な分野において、バイオセンサー、化学センサー、マイクロ流路などの簡便、迅速、安価な検査判定として利用することが可能となる。 Further, the present invention can be used as a simple, quick, inexpensive test determination for biosensors, chemical sensors, microchannels, etc., in the field of foods, environment, and in fields requiring microbial testing such as medical care. Become.

(a)は、平面状基板上の微小球をエバネセント光で励起し表面を周回するWGMの模式図であり、(b)は、抗原抗体反応後のWGMと再放射光を示す模式図である。(A) is a schematic diagram of WGM that excites microspheres on a planar substrate with evanescent light and orbits the surface, and (b) is a schematic diagram showing WGM and re-emitted light after antigen-antibody reaction. . Mie散乱理論より算出した微小球の表面状態におけるWGMの共振ピーク波長を示すグラフである。6 is a graph showing the resonance peak wavelength of WGM in the surface state of microspheres calculated from Mie scattering theory. (a)は、平面状基板の凹状溝上に固定された微小球のWGMを示す模式図であり、(b)は、平面状基板の凹状溝に固定された微小球表面の抗原抗体反応を示す断面図である。(A) is a schematic diagram showing a WGM of a microsphere fixed on a concave groove of a flat substrate, and (b) shows an antigen-antibody reaction on the surface of a microsphere fixed on a concave groove of a flat substrate. FIG. 本発明の微小球の励起と観測、および、散乱光の検出を示す概略図である。It is a schematic diagram showing excitation and observation of a microsphere of the present invention, and detection of scattered light. 平面状基板への凹状溝が有無の場合における抗原抗体反応後のWGMの共振ピーク波長を示すグラフである。7 is a graph showing the resonance peak wavelength of WGM after an antigen-antibody reaction in the case where there is a concave groove on the planar substrate. 微生物汚染の検出方法および装置の実施例を示す図である。It is a figure which shows the Example of the detection method and apparatus of microbial contamination.

本発明において、標的の微生物汚染は大腸菌群とし、大腸菌群が産生する酵素のβガラクトシダーゼを検出する。平面状基板にもうけた凹形状の上に微小球を配置し、高感度・高精度に散乱光を検出する方法を説明する。以下、本発明について実施例を用いて詳細に説明するが本発明はこれらの実施例に限定されるものではない。 In the present invention, the target microbial contamination is coliforms, and β-galactosidase, an enzyme produced by the coliforms, is detected. A method for detecting scattered light with high sensitivity and high accuracy by arranging microspheres on a concave shape formed on a flat substrate will be described. Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

図1(a)に示すように、マイクロキャビティー共振器として真球性のあるポリスチレンの微小球1、または、蛍光ポリスチレンの微小球1を用いる。入射光3が平面状基板7の裏面から入射し表面で全反射した時に発生するエバネセント光2により微小球表面が励起され、微小球表面内に光を閉じ込め循環するWGMが発生する。このとき、微小球表面から発する散乱光からは、WGMに起因した周期的な共振ピーク波長を有するスペクトルが検出される。この共振ピーク波長は、微小球の直径や屈折率、微小球周辺の状態などにより非常に敏感であるため、微小球1の表面を利用した高感度なセンサーを作製することができる。表面修飾が無い微小球1は、平面状基板7との接触部4が少ないため、-X方向に運動量を有するエバネセント光2が作用すると、主にXZ平面を時計回りに周回する励起方向WGM5が励起される。同時に斜め方向WGM6も励起されるが、励起方向WGM5の成分が大きいため、散乱光は励起方向WGM5に起因した共振ピーク波長が取得される。 As shown in FIG. 1A, a spherical polystyrene microsphere 1 or a fluorescent polystyrene microsphere 1 is used as a microcavity resonator. The microsphere surface is excited by the evanescent light 2 generated when the incident light 3 enters from the back surface of the planar substrate 7 and is totally reflected by the front surface, and WGM that confines and circulates the light inside the microsphere surface is generated. At this time, a spectrum having a periodic resonance peak wavelength due to WGM is detected from the scattered light emitted from the surface of the microsphere. This resonance peak wavelength is very sensitive to the diameter and refractive index of the microspheres, the state of the periphery of the microspheres, etc., so that a highly sensitive sensor using the surface of the microspheres 1 can be manufactured. Since the microspheres 1 without surface modification have few contact portions 4 with the flat substrate 7, when the evanescent light 2 having momentum in the -X direction acts, the excitation direction WGM5 that orbits clockwise in the XZ plane is mainly generated. Be excited. At the same time, the oblique direction WGM6 is also excited, but since the component of the excitation direction WGM5 is large, the resonance peak wavelength due to the excitation direction WGM5 is acquired from the scattered light.

図1(b)は抗原抗体反応後の微小球表面を周回するWGMの状態を示す。微小球1に標的酵素9と反応する抗体8を固定化することで微生物汚染の判定が可能となる。エバネセント光などにより励起され、微小球1の表面内に光を閉じ込め循環するWGMにより、微小球1の表面から散乱光が発せられ、周期的な波長のスペクトルが形成される。抗原抗体反応により共振条件の変化が発生するため、WGMの共振波長のシフト変化から、目的とする検出物質の評価が可能となる。この評価手法は、単一の微小球をバイオプローブとして利用するためセンサーチップが安価に作製でき、また使い捨ても可能となる。また、汚染されたセンサーを再利用しないために食品検査において安全安心な検査方法として提供できる。 FIG. 1 (b) shows the state of WGM circulating on the surface of the microsphere after the antigen-antibody reaction. By immobilizing the antibody 8 that reacts with the target enzyme 9 on the microspheres 1, it becomes possible to determine microbial contamination. The WGM that is excited by evanescent light or the like and confines and circulates the light within the surface of the microsphere 1 emits scattered light from the surface of the microsphere 1 to form a periodic wavelength spectrum. Since the resonance condition changes due to the antigen-antibody reaction, the target detection substance can be evaluated from the shift change in the resonance wavelength of WGM. In this evaluation method, since a single microsphere is used as a bioprobe, a sensor chip can be manufactured at low cost and can be disposable. In addition, since the contaminated sensor is not reused, it can be provided as a safe and secure inspection method for food inspection.

しかし、図1(b)は抗原抗体反応により、微小球表面と平面状基板7との接触部4が増加するため、XZ平面を周回する励起方向WGM5は、基板との相互作用が大きくなる。そのため、WGMが微小球の上方へ散乱光されるよりも、平面状基板7と接触部4からの再放射光10が大きくなる。一方で、斜め方向WGM6は平面状基板7と接触部4の影響を受けないため、微小球1からの散乱光は、微小球表面を斜め方向WGM6に起因した共振ピーク波長が主に取得され、TE偏光とTM偏光に対応した共振ピーク波長が同時に発生しやすい。 However, in FIG. 1B, since the contact portion 4 between the surface of the microsphere and the planar substrate 7 increases due to the antigen-antibody reaction, the excitation direction WGM5 orbiting the XZ plane has a large interaction with the substrate. Therefore, the re-emitted light 10 from the planar substrate 7 and the contact portion 4 becomes larger than when the WGM is scattered above the microspheres. On the other hand, since the oblique direction WGM6 is not affected by the planar substrate 7 and the contact portion 4, the scattered light from the microsphere 1 is mainly obtained at the resonance peak wavelength due to the oblique direction WGM6 on the surface of the microsphere. Resonant peak wavelengths corresponding to TE and TM polarization are likely to occur at the same time.

図2は、ポリスチレン微小球(以下PS微小球と略称)の表面状態における散乱断面積スペクトルを示す。無修飾のPS微小球の直径と屈折率を10.04μmと1.59、純水の屈折率を1.33とし、PS微小球表面に抗体(anti-β-Galactosidase)や抗原が吸着していくと、微小球表面を周回するWGMの共振ピーク波長は長波長側へシフトすることがわかる。ここでは、PS微小球表面に抗体「Y」が単一層になって固定化されているとし、抗原抗体層の屈折率は1.50、抗体厚みは14nm、抗原厚みは16nmとして計算している。PS微小球表面に抗体や抗原が吸着すると、共振ピーク波長が約1〜4nm長波長側へシフトするため、表面に付着するタンパク質の屈折率や厚みを推定するには、TE偏光とTM偏光に対応した共振ピーク波長を高感度かつ高精度に評価することが望ましい。 FIG. 2 shows a scattering cross-section spectrum in the surface state of polystyrene microspheres (hereinafter abbreviated as PS microspheres). The diameter and refractive index of unmodified PS microspheres are 10.04 μm and 1.59, and the refractive index of pure water is 1.33. Antibodies (anti-β-Galactosidase) and antigens are adsorbed on the surface of PS microspheres. It can be seen that the resonance peak wavelength of the WGM that orbits the surface of the microsphere shifts to the long wavelength side. Here, it is assumed that the antibody "Y" is immobilized as a single layer on the surface of PS microspheres, the refractive index of the antigen-antibody layer is 1.50, the antibody thickness is 14 nm, and the antigen thickness is 16 nm. . When an antibody or antigen is adsorbed on the surface of PS microspheres, the resonance peak wavelength shifts to the long wavelength side by about 1 to 4 nm. It is desirable to evaluate the corresponding resonance peak wavelength with high sensitivity and accuracy.

そこで本発明では、図3(a)に示すように、平面状基板7に先端直径5μmのプローブで凹状形状溝11を切削し、微小球1を配置できるセンサーチップを考案した。全反射減衰配置により凹形状面から染み出したエバネセント光2が、XZ平面を周回する励起方向WGM5を励起しても、図3(b)に示すように、微小球表面に吸着した抗体8と標的酵素9は凹状形状溝11にあるため、平面状基板7との接触部4の影響を受けることがない。このため、接触部4からの再放射光10が減少し、S/N比が向上すると同時に共振ピーク波長のスプリットも抑えられるため、高感度かつ高精度に評価することが可能となる。さらには、凹状形状溝11に微小球1を固定化できるため、入射光3の温度上昇によって生じる微小球1の移動を抑えることも可能となる。 Therefore, in the present invention, as shown in FIG. 3A, a sensor chip in which the microsphere 1 can be arranged by cutting the concave groove 11 on the flat substrate 7 with a probe having a tip diameter of 5 μm was devised. Even if the evanescent light 2 exuding from the concave surface due to the attenuated total reflection arrangement excites the excitation direction WGM5 that orbits the XZ plane, as shown in FIG. 3 (b), the antibody 8 adsorbed on the surface of the microsphere Since the target enzyme 9 is in the concave groove 11, it is not affected by the contact portion 4 with the flat substrate 7. Therefore, the re-emitted light 10 from the contact portion 4 is reduced, the S / N ratio is improved, and at the same time the split of the resonance peak wavelength is suppressed, so that the evaluation can be performed with high sensitivity and high accuracy. Furthermore, since the microspheres 1 can be fixed in the concave grooves 11, it is possible to suppress the movement of the microspheres 1 caused by the temperature rise of the incident light 3.

図4は本発明の微小球1の励起と観測、および、散乱光の検出を示す概略図を示す。励起用光源12には白色光源を用い、偏光子13によってTE偏光とTM偏光の励起方向の切替え、反射ミラー14によって倒立型の励起用対物レンズ15へ入射光3を照射させる。微小球1は、ディッシュ底面に貼りつけた平面状基板7に滴下し配置させる。入射光3は大きな開口数(NA)を持つ励起用対物レンズ15により入射するため、平面状基板7への入射光3の角度は全反射角度以上となり、平面状基板7の表面上に局在波であるエバネセント光2が発生する。励起用対物レンズ15と平面状基板7の間をイマージョンオイル16で満たして、焦点が微小球1に合うようにするために、平面状基板7の厚みは170μm以下であることが望ましい。大きな開口数(NA)を持つ励起用対物レンズ15を用いることで、入射光3のスポット径は微小球1の直径以下となり、微小球1以外からの迷光を検出せず、高いS/N比で検出が可能となった。また、標的酵素9を滴下した検出部を封止ガラス17で被うことで、溶液の蒸発と厚みムラを抑えることが可能となり、高精度なスペクトルの検出が可能となった。微小球1からの散乱光は上部に取り付けられた検出用レンズ18により集光し、X軸移動ミラー19によりCCDカメラ20の観測と分光器21のスペクトル検出に切替えながら評価する。 FIG. 4 is a schematic diagram showing excitation and observation of the microsphere 1 of the present invention and detection of scattered light. A white light source is used as the excitation light source 12, and the polarizer 13 switches the excitation directions of TE polarization and TM polarization, and the reflection mirror 14 irradiates the inverted excitation objective lens 15 with the incident light 3. The microspheres 1 are dropped and placed on a planar substrate 7 attached to the bottom surface of the dish. Since the incident light 3 enters through the excitation objective lens 15 having a large numerical aperture (NA), the angle of the incident light 3 on the planar substrate 7 becomes equal to or greater than the total reflection angle, and is localized on the surface of the planar substrate 7. Evanescent light 2, which is a wave, is generated. In order to fill the space between the objective lens 15 for excitation and the planar substrate 7 with the immersion oil 16 so that the focal point matches the microsphere 1, the thickness of the planar substrate 7 is preferably 170 μm or less. By using the excitation objective lens 15 having a large numerical aperture (NA), the spot diameter of the incident light 3 becomes equal to or smaller than the diameter of the microsphere 1, stray light from other than the microsphere 1 is not detected, and a high S / N ratio is obtained. It became possible to detect. Further, by covering the detection part onto which the target enzyme 9 was dropped with the sealing glass 17, it was possible to suppress the evaporation of the solution and the thickness unevenness, and it was possible to detect the spectrum with high accuracy. The scattered light from the microspheres 1 is condensed by the detection lens 18 attached to the upper part, and is evaluated by switching the observation of the CCD camera 20 and the spectrum detection of the spectroscope 21 by the X-axis moving mirror 19.

図5に示すように、凹状形状溝11がない平面状基板7の上で抗原抗体反応をした微小球1の散乱光を検出すると、TE偏光励起にも関わらず、TM偏光にも対応した共振ピーク波長が検出され易い。しかし、凹状形状溝11を加工した上で微小球1を励起すると、偏光方向に対応した共振ピーク波長しか検出されず、シフト量を精度良く見積もることができる。また、平面状基板7の接触部4からの再放射光10が少なくなるため、共振ピーク波長の強度が約2倍となり、S/N比を向上することができる。なお、分光器21で検出した散乱光は、共振ピーク波長が約1〜4nm長波長側へシフトするため、分光器の分解能は1nm以下であることが望ましい。 As shown in FIG. 5, when the scattered light of the microsphere 1 that has undergone the antigen-antibody reaction on the flat substrate 7 without the concave groove 11 is detected, the resonance corresponding to the TM polarized light is generated despite the TE polarized light excitation. The peak wavelength is easy to detect. However, if the microsphere 1 is excited after processing the concave groove 11, only the resonance peak wavelength corresponding to the polarization direction is detected, and the shift amount can be accurately estimated. Moreover, since the re-emitted light 10 from the contact portion 4 of the planar substrate 7 is reduced, the intensity of the resonance peak wavelength is approximately doubled, and the S / N ratio can be improved. Since the resonance peak wavelength of the scattered light detected by the spectroscope 21 is shifted to the long wavelength side by about 1 to 4 nm, the resolution of the spectroscope is preferably 1 nm or less.

図6は、微生物汚染の検出方法および装置の実施例を示している。WGM光検出部22から取得した散乱光は光ファイバー23で導光され、分光器21で検出される。分光器21により光信号から変換された電気信号は、波長変化検出部24により共振ピーク波長の変化量が算出され、微生物汚染判定部25により微小球1の表面に標的の汚染物質が結合したことを判定できる。 FIG. 6 shows an embodiment of a method and apparatus for detecting microbial contamination. The scattered light acquired from the WGM light detector 22 is guided by the optical fiber 23 and detected by the spectroscope 21. Regarding the electric signal converted from the optical signal by the spectroscope 21, the change amount of the resonance peak wavelength is calculated by the wavelength change detection unit 24, and the target contaminant is bound to the surface of the microsphere 1 by the microbial contamination determination unit 25. Can be determined.

以下実証実験の状況を説明する。 The situation of the demonstration experiment will be described below.

(1)目的とする酵素
大腸菌群は食品の衛生分野において、汚染指標菌として広く用いられている。大腸菌群が糖を分解する時に産生する酵素の一種のβ-D-ガラクトシダーゼ(和光純薬工業社製)を使用した。
(1) The target enzyme coliforms is widely used as a contamination indicator bacterium in the field of food hygiene. Β-D-galactosidase (manufactured by Wako Pure Chemical Industries, Ltd.), which is one of the enzymes produced when coliform bacteria decompose sugar, was used.

(2)抗体
目的とするβガラクトシダーゼ(β-galactosidase)と反応するためにRabbit IgGのポリクロナール抗体(医学生物学研究所社製)を使用した。
(2) Antibody A polyclonal antibody of Rabbit IgG (manufactured by Institute of Medical Biology) was used to react with the target β-galactosidase.

(3)使用する照射光
使用した励起用光源12は、Technology社の白色光源(170〜2100nm)を使用した。シグマ光機社製の偏光子13(グラントムソンプリズム)を90°回転することにより、ランダム偏光からTEまたはTMの偏光方向を選択した。また、タンパク質がダメージを受ける紫外光や、照射部の温度が上昇する赤外光は、シグマ光機社製のシャープカットフィルターとコールドフィルターを使用し、主に500〜600nmの波長域で評価を実施した。
(3) Irradiation light used The excitation light source 12 used was a white light source (170-2100 nm) manufactured by Technology. A polarization direction of TE or TM was selected from random polarization by rotating a polarizer 13 (Glan-Thompson prism) manufactured by Sigma Koki Co., Ltd. by 90 °. In addition, for ultraviolet light that damages proteins and infrared light that raises the temperature of the irradiation part, use the sharp cut filter and cold filter manufactured by Sigma Koki Co., Ltd., and evaluate mainly in the wavelength range of 500 to 600 nm. Carried out.

(4)平面状基板の切削方法
平面状基板7への凹状形状溝11の切削は、マイクロサポート社のハードメタル製のプローブ(先端直径5μm)を使用した。ナリシゲ製の三次元液圧マイクロマニピュレータ(最小駆動距離1μm)に組み合わせ操作することで、線幅が5μm以下の凹状形状溝11を作製した。
(4) Cutting Method of Planar Substrate To cut the concave groove 11 on the planar substrate 7, a hard metal probe (tip diameter 5 μm) manufactured by Micro Support Co. was used. A concave groove 11 having a line width of 5 μm or less was produced by performing a combination operation with a three-dimensional hydraulic micromanipulator (minimum driving distance 1 μm) made by Narishige.

(5)微小球プローブの作製と評価方法
直径10μmのカルボキシル基が修飾されたPS微小球(micromod社製)を2回洗浄した後、水溶性のカルボジイミド(Polysciences社製)によりカルボキシル基を活性化させ、抗体を微小球の表面に固定化した。60分間程度反応した後、遠心分離機で上澄み部を取り除くことで抗体が固定化した微小球を含む溶液を作製した。
(5) Preparation of microsphere probe and evaluation method PS microspheres with a diameter of 10 μm and modified with a carboxyl group (manufactured by micromod) are washed twice, and then the carboxyl group is activated by a water-soluble carbodiimide (manufactured by Polysciences). Then, the antibody was immobilized on the surface of the microsphere. After reacting for about 60 minutes, the supernatant was removed with a centrifuge to prepare a solution containing antibody-immobilized microspheres.

作製した微小球は、図4のガラスベースディッシュ(Iwaki社製)の底面に貼りつけた平面状基板7の上に配置し、100μl程度同量のβ-D-ガラクトシダーゼを滴下する。封止ガラス17で検出部を被い白色光源で微小球を励起し、570〜600nmの波長領域で散乱光スペクトルを検出した。 The prepared microspheres are placed on the flat substrate 7 attached to the bottom surface of the glass base dish (manufactured by Iwaki) shown in FIG. 4, and about 100 μl of the same amount of β-D-galactosidase is dropped. The detection part was covered with the sealing glass 17 to excite the microspheres with a white light source, and the scattered light spectrum was detected in the wavelength region of 570 to 600 nm.

β-D-ガラクトシダーゼを滴下し15分間反応させた後、散乱光スペクトルの中に微小球の表面状態を反映した光共振反応を示すWGMの共振ピーク波長を検出できた。共振ピーク波長の位置は、TE偏光の共振ピーク波長がTM偏光の共振ピーク波長より2〜3nm長波長側に取得できる。 After β-D-galactosidase was added dropwise and reacted for 15 minutes, the resonance peak wavelength of WGM showing an optical resonance reaction reflecting the surface state of the microspheres could be detected in the scattered light spectrum. Regarding the position of the resonance peak wavelength, the resonance peak wavelength of the TE polarized light can be acquired on the longer wavelength side of 2 to 3 nm than the resonance peak wavelength of the TM polarized light.

検出した共振ピーク波長は、図2のグラフで示したMie理論による散乱断面積とフィッティングすることで付着物の屈折率や厚みが見積れ、抗体や抗原の仕様とも一致した。図5のグラフに示すように、凹状形状溝11の上で抗原抗体反応をした微小球1を励起し散乱光を検出すると、スプリット現象を抑えた共振ピーク波長が検出できる。さらには、平面状基板7の接触部4からの再放射光10を抑えることができるため、散乱光から検出される共振ピーク波長の強度は約2倍となり、S/N比を向上することができた。 The detected resonance peak wavelength was fitted to the scattering cross section according to the Mie theory shown in the graph of FIG. 2 to estimate the refractive index and the thickness of the adherent, which was in agreement with the antibody and antigen specifications. As shown in the graph of FIG. 5, when the microspheres 1 that have undergone an antigen-antibody reaction on the concave groove 11 are excited to detect scattered light, a resonance peak wavelength that suppresses the split phenomenon can be detected. Furthermore, since the re-emitted light 10 from the contact portion 4 of the planar substrate 7 can be suppressed, the intensity of the resonance peak wavelength detected from the scattered light is approximately doubled, and the S / N ratio can be improved. did it.

図6の波長変化検出部24により、抗原抗体反応の前後で共振ピーク波長は約1〜4nm長波長側へシフトする。分光器21の波長分解能を1nmに設定し、微生物検出判定部18により微生物汚染を判定すると、判定時間は8分、検出下限濃度は5μg/mLとなる。 The resonance peak wavelength is shifted to the long wavelength side by about 1 to 4 nm before and after the antigen-antibody reaction by the wavelength change detecting unit 24 in FIG. When the wavelength resolution of the spectroscope 21 is set to 1 nm and the microorganism detection determination unit 18 determines the contamination of microorganisms, the determination time is 8 minutes and the lower detection limit concentration is 5 μg / mL.

上記に述べたように、本発明によって、高精度で高感度な微小球センサーの検出手法を用いることで迅速に微生物を検出できる装置を提供することが可能となった。 As described above, according to the present invention, it is possible to provide an apparatus capable of rapidly detecting a microorganism by using a highly accurate and highly sensitive detection method of a microsphere sensor.

本発明は、微生物の検査が必要な食品分野における検査方法に関するものであるが、環境衛生分野、医薬品分野等での利用も可能であり、分野において、バイオセンサー、化学センサー、マイクロ流路などの簡便、迅速、安価な検査判定として利用することが可能となる。さらには、高価な検出装置等を用いることなく、高感度で高精度、しかも低コスト検査チップを実現できる微小球共振センサーを使用する微生物検査を提供することができる。 The present invention relates to an inspection method in the field of food that requires inspection of microorganisms, but can also be used in the fields of environmental hygiene, the field of pharmaceuticals, etc., in which biosensors, chemical sensors, microchannels, etc. It can be used as a simple, quick, and inexpensive inspection judgment. Further, it is possible to provide a microbe test using a microsphere resonance sensor that can realize a highly sensitive and highly accurate and low-cost test chip without using an expensive detection device or the like.

1 微小球
2 エバネセント光
3 入射光
4 接触部
5 励起方向WGM
6 斜め方向WGM
7 平面状基板
8 抗体
9 標的酵素
10 再放射光
11 凹状形状溝
12 励起用光源
13 偏光子
14 反射ミラー
15 励起用対物レンズ
16 イマージョンオイル
17 封止ガラス
18 検出用レンズ
19 X軸移動ミラー
20 CCDカメラ
21 分光器
22 WGM光検出部
23 光ファイバー
24 波長変化検出部
25 微生物汚染判定部

1 Microsphere 2 Evanescent light 3 Incident light 4 Contact part 5 Excitation direction WGM
6 Diagonal WGM
7 Planar substrate 8 Antibody 9 Target enzyme 10 Re-emitted light 11 Concave groove 12 Excitation light source 13 Polarizer 14 Reflection mirror 15 Excitation objective lens 16 Immersion oil 17 Sealing glass 18 Detection lens 19 X-axis moving mirror 20 CCD Camera 21 spectroscope 22 WGM light detector 23 optical fiber 24 wavelength change detector 25 microbial contamination determiner

Claims (5)

基板上に微小球を配置し、基板から染み出したエバネセント光により微小球表面に励起されるウィスパリングギャラリーモードを共振し、微小球の散乱光を検出する方法であって、
前記基板と微小球のウィスパリングギャラリーモードの軌道が接触しないように基板上に微小球を配置することを特徴とする散乱光の検出方法。
The microspheres were placed on a substrate, resonates the whispering gallery modes to be excited in microspheres surface by evanescent light oozed from the substrate, a way to detect the scattered light of the microspheres,
Detection how the scattered light, characterized in that the trajectory of the whispering gallery mode of the substrate and the microsphere is placed microspheres to the substrate not in contact.
溝が形成された基板上に微小球を配置することを特徴とする請求項1記載の散乱光の検出方法。 Detection how the scattered light according to claim 1, wherein placing the microspheres on a substrate in which grooves are formed. 光源からの照射光を微小球径以下に集光しエバネセント光を発生できる励起用対物レンズと、微小球からの散乱光スペクトルを検出できる検出用対物レンズを備えウィスパリングギャラリーモードの共振ピーク波長を検出できる分解能を有する分光器を備えた微小球共振センサーを用いることを特徴とする請求項1又は2記載の散乱光の検出方法。 The resonance objective wavelength of the whispering gallery mode is provided with an objective lens for excitation that can collect the emitted light from the light source to a microsphere diameter or less to generate evanescent light and an objective lens for detection that can detect the scattered light spectrum from the microsphere. detection how the scattered light according to claim 1, wherein the use of microsphere resonance sensor with a spectrometer having a resolution that can be detected. 請求項1〜のいずれか記載の散乱光の検出方法を用いた対象溶液中の微生物汚染の検出方法であって、
抗体が固定化された微小球、および、抗体が固定化された微小球に溶液を接触させた微小球のウィスパリングギャラリーモードの共振ピーク波長を検出し、その共振ピーク波長の変化を検出することを特徴とする対象溶液中の微生物汚染の検出方法。
A detecting how the microbial contamination of the target solution using a method of detecting scattered light according to any one of claims 1 to 3,
Detecting the resonance peak wavelength of whispering gallery mode of antibody-immobilized microspheres and microspheres in which a solution is contacted with antibody-immobilized microspheres, and detecting the change in the resonance peak wavelength. detection how the microbial contamination of the target solution and said.
溝が形成された基板と、該基板の溝上に配置可能な微小球とを備え、A substrate having a groove formed therein, and a microsphere that can be arranged on the groove of the substrate,
前記基板と前記微小球のウィスパリングギャラリーモードの軌道が接触しないように、基板上に微小球を配置し、基板から染み出したエバネセント光により微小球表面に励起されるウィスパリングギャラリーモードを共振し、微小球の散乱光を検出するThe microspheres are arranged on the substrate so that the substrate and the orbits of the whispering gallery mode of the microspheres do not contact with each other, and the whispering gallery mode excited by the evanescent light exuding from the substrate resonates the whispering gallery mode. , Detect scattered light from microspheres
ことを特徴とするバイオセンサー用又は化学センサー用のチップ。A chip for a biosensor or a chemical sensor, which is characterized in that
JP2016049128A 2016-03-14 2016-03-14 Method and apparatus for highly sensitive detection of microsphere resonance sensor Expired - Fee Related JP6682307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016049128A JP6682307B2 (en) 2016-03-14 2016-03-14 Method and apparatus for highly sensitive detection of microsphere resonance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016049128A JP6682307B2 (en) 2016-03-14 2016-03-14 Method and apparatus for highly sensitive detection of microsphere resonance sensor

Publications (2)

Publication Number Publication Date
JP2017166825A JP2017166825A (en) 2017-09-21
JP6682307B2 true JP6682307B2 (en) 2020-04-15

Family

ID=59908834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049128A Expired - Fee Related JP6682307B2 (en) 2016-03-14 2016-03-14 Method and apparatus for highly sensitive detection of microsphere resonance sensor

Country Status (1)

Country Link
JP (1) JP6682307B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596814B (en) * 2018-06-12 2021-06-15 中国计量大学 Optical fiber corrosion groove type echo wall resonator based on microspheres
CN109990975B (en) * 2019-04-10 2021-04-23 暨南大学 Detection system, debugging system and sensor based on optical microcavity mechanical mode
CN112683793A (en) * 2020-12-09 2021-04-20 哈尔滨工程大学 Sensor for detecting concentration of liquid drops based on double-microsphere coupling mode splitting

Also Published As

Publication number Publication date
JP2017166825A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
Uniyal et al. Recent advances in optical biosensors for sensing applications: a review
Mandal et al. A multiplexed optofluidic biomolecular sensor for low mass detection
KR101245925B1 (en) Systems and methods for biosensing and microresonator sensors for same
US20070009935A1 (en) Arrangements, systems and methods capable of providing spectral-domain optical coherence reflectometry for a sensitive detection of chemical and biological sample
CN108474743B (en) Optical detection of substances in fluids
JP2010525334A (en) Methods of using biosensors to detect small molecules that bind directly to an immobilized target
JP2008102117A (en) Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
SK151396A3 (en) Process for detecting evanescently excited luminescence
WO2006138161A2 (en) Large scale parallel immuno-based allergy test and device for evanescent field excitation of fluorescence
Daaboul et al. Label-free optical biosensors for virus detection and characterization
JP6682307B2 (en) Method and apparatus for highly sensitive detection of microsphere resonance sensor
Matveeva et al. Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood
JP2008224561A (en) Surface plasmon enhancing fluorescence sensor
US8666201B2 (en) Photonic crystal sensor
US8029994B2 (en) Method of identifying a target analyte using photonic crystal resonators, and related device
JP2014178151A (en) Microorganism detection method and device using microsphere resonance sensor
JP2010540924A (en) Sensor device for detection of target components
TWI471547B (en) Sensor for detection of a target of interest
JP2013096707A (en) Sensing unit, sensing device equipped with the same and method for detection of target object
Chou et al. Fiber optic biosensor for the detection of C-reactive protein and the study of protein binding kinetics
Jahanshahi et al. Optical and analytical investigations on dengue virus rapid diagnostic test for IgM antibody detection
US20060148099A1 (en) Sensor device for determining protein aggregation
JP7177913B2 (en) High-sensitivity biosensor chip, measurement system, and measurement method using high-extinction-coefficient marker and dielectric substrate
Tabbakh et al. Optoelectronics and optical bio-sensors
JP4632156B2 (en) Analysis method using fluorescence depolarization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6682307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees