JP2014178151A - Microorganism detection method and device using microsphere resonance sensor - Google Patents

Microorganism detection method and device using microsphere resonance sensor Download PDF

Info

Publication number
JP2014178151A
JP2014178151A JP2013050970A JP2013050970A JP2014178151A JP 2014178151 A JP2014178151 A JP 2014178151A JP 2013050970 A JP2013050970 A JP 2013050970A JP 2013050970 A JP2013050970 A JP 2013050970A JP 2014178151 A JP2014178151 A JP 2014178151A
Authority
JP
Japan
Prior art keywords
microorganism
detecting
single microparticle
resonance sensor
wgm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013050970A
Other languages
Japanese (ja)
Inventor
Takeshi Tajiri
健志 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP2013050970A priority Critical patent/JP2014178151A/en
Publication of JP2014178151A publication Critical patent/JP2014178151A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of determining a microorganism from a whispering gallery mode (hereinafter abbreviated as WGM), an inexpensive sensor, and a measuring device.SOLUTION: Provided is an inexpensive microorganism detection device for rapidly and conveniently detecting a target microorganism, that uses a method of preparing a single microparticle in which antibodies are immobilized for specifically detecting a target microorganism existing in a solution and thereby detecting a bonding target microorganism using a split change of a WGM, and that further uses a spectroscope which includes an object lens on which evanescent light is made incident and an object lens capable of detecting scattered light enclosed in the single microparticle and which has resolution power to detect one or more WGM peak signals, and a sensor encapsulated by a glass cover.

Description

本発明は、食品検査分野での微生物検査に係り、特に単一微小粒子を使用したウィスパリングギャラリーモード(WGM)に基づく迅速および高感度な検出装置と方法に関するものである。   The present invention relates to microbial testing in the field of food testing, and more particularly to a rapid and sensitive detection apparatus and method based on whispering gallery mode (WGM) using a single microparticle.

食品業界にとって食中毒などの食の安全・安心を脅かす事故は、企業のブランドと信用を失墜させることにつながるため、衛生管理体制の高度化が望まれている。   Accidents that threaten food safety and security, such as food poisoning, for the food industry will lead to the loss of corporate brand and trust, and so the hygiene management system should be improved.

食品検査において微生物の検査は、簡便、正確、迅速に行なわれる必要があるが、従来の検査手法である培養法は、増菌培養し判定するまでに24時間以上は必要で、かつ、熟練者による作業が必要となる。そのため、簡便で迅速に高感度検出が可能なセンサー、並びに、それらに最適な検出手法と装置の開発が望まれていた。   In food inspection, microorganisms need to be tested simply, accurately, and quickly, but the conventional culture method, which is a conventional inspection method, requires more than 24 hours to incubate and judge, and a skilled person Work is required. Therefore, it has been desired to develop a sensor capable of simple and rapid high-sensitivity detection, and a detection method and apparatus optimal for them.

近年、迅速検査手法としてイムノクロマト法、ELISA法、DNA検査法、PCR法、免疫磁気ビーズ法などによる研究や開発が進められているが、中でも抗原‐抗体反応を用いた免疫学的検査法は特異性、迅速性、簡便性等の点で優れているため、迅速検出手法(例えば、特許文献1〜2参照)として期待され開発が行われている。   In recent years, research and development using immunochromatography, ELISA, DNA testing, PCR, immunomagnetic bead methods, etc., have been promoted as rapid testing methods. Among them, immunological testing using antigen-antibody reaction is unique. Therefore, it is expected to be developed as a rapid detection method (see, for example, Patent Documents 1 and 2) and is being developed.

特許文献1には、標的微生物特異的抗体を用いて標的微生物を分離・回収した後、標的微生物のATPを増幅し、増幅されたATPを測定する高感度迅速検出法が公開されている。   Patent Document 1 discloses a high-sensitivity rapid detection method in which a target microorganism is separated and collected using a target microorganism-specific antibody, ATP of the target microorganism is amplified, and the amplified ATP is measured.

しかし、これらの方法は検出感度や判定精度が十分でないため増菌培養が必要となり、一般的な検査結果を得るまでは8時間以上を要している。そのため、食品製造業者にとっては、検査結果を待った出荷、あるいは、自主回収のリスクを抱えた出荷となっている。   However, these methods have insufficient detection sensitivity and determination accuracy, so that enrichment culture is required, and it takes 8 hours or more to obtain a general test result. Therefore, for food manufacturers, the shipment waits for the inspection result, or the shipment has a risk of self-collection.

特許文献2には、微生物の構成成分と結合する抗体を固定化した捕捉体を用いて微生物を捕捉し、更に、捕捉し洗浄された微生物から抽出されたDNAをPCR法により増幅した検出方法が公開されている。   Patent Document 2 discloses a detection method in which a microorganism is captured using a capturing body on which an antibody that binds to a constituent component of the microorganism is immobilized, and DNA extracted from the captured and washed microorganism is amplified by a PCR method. It has been published.

しかし、これらの方法も抽出や増幅などの高度な技術が必要となり、簡易かつ安価に検査結果を得ることは難しい。   However, these methods also require advanced techniques such as extraction and amplification, and it is difficult to obtain test results easily and inexpensively.

したがって、高価な装置やセンサーを用いることなく、簡便で迅速に高感度検出が可能なセンサー、並びに、それらに最適な検出手法と装置は未だ提供されていない。   Therefore, a sensor capable of simple and quick high-sensitivity detection without using an expensive device or sensor, and a detection technique and device optimal for them have not yet been provided.

このような課題を解決する手法として、単一の共振器内にプローブ光を入射し循環させる光学モードを利用したバイオセンサーが提供される。この光学共振モードおよび共振は、ウィスパリングギャラリーモード(以下WGMと略称)、または、形態依存共振(MDR)と呼ばれ、プローブ光で入射した光が共振器の境界面で全反射し閉じ込められた場合に発生する。   As a technique for solving such a problem, a biosensor using an optical mode in which probe light is incident and circulated in a single resonator is provided. This optical resonance mode and resonance are called whispering gallery mode (hereinafter abbreviated as WGM) or form-dependent resonance (MDR), and the light incident on the probe light is totally reflected and confined at the interface of the resonator. Occurs when.

WGMは表面の状態に非常に敏感であるために、微小回転楕円体の表面に標的分析物と結合する結合パートナーを固定化し、WGMのプロファイルピークを検出する方法が提案されている(例えば、特許文献3〜4参照)。また、検体溶液が検出器表面を流れ過ぎる前に、導波路と結合した光学微小共振器を含めることで、検出される信号光の割合を増加させるバイオセンサーも提案されている(例えば、特許文献5参照)。   Since WGM is very sensitive to surface conditions, a method has been proposed in which a binding partner that binds to a target analyte is immobilized on the surface of a microspheroid and a profile peak of WGM is detected (for example, a patent) Reference 3-4). Biosensors have also been proposed that increase the proportion of detected signal light by including an optical microresonator coupled to a waveguide before the analyte solution flows too much on the detector surface (eg, patent literature). 5).

しかしながら、これらのWGMのプロファイルピークの波長シフトを検出するには、高分解能を要する検出器が必要となり、また測定時の迷光を拾い易いために測定誤差と波長シフトの判定ができないという問題もある。したがって、高価な測定装置を用いることなく、迅速で簡便な測定手法と測定装置の開発が望まれている。   However, in order to detect the wavelength shift of these WGM profile peaks, a detector requiring high resolution is required, and there is also a problem that determination of measurement error and wavelength shift cannot be performed because stray light at the time of measurement is easily picked up. . Therefore, it is desired to develop a quick and simple measurement technique and measurement device without using an expensive measurement device.

特開2006−81506号公報JP 2006-81506 A 特開2007−97551号公報JP 2007-97551 A 特開2012−137490号公報JP 2012-137490 A 特表2012−509070号公報Special table 2012-509070 gazette 特表2008−513776号公報Special table 2008-513776

本発明は前述した従来における問題を解決し、微生物をWGMのスペクトルピークのスプリット変化から容易に判定できる方法、並びに、高価な測定装置を用いることなく安価なセンサーと測定装置を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide a method for easily determining microorganisms from the split change of the spectrum peak of WGM, and an inexpensive sensor and measurement apparatus without using an expensive measurement apparatus. And

このような目的を達成するために、本発明は第一に、溶液中に存在する目的の微生物を特異的に検出する抗体を固定化した単一微小粒子に目的の微生物を結合し、結合した目的の微生物をWGMに対応したピークのスプリット変化で検出することを特徴とする微小球共振センサーを使用する微生物検出方法である。本発明の単一微小粒子は、抗体の固定化および目的の微生物の結合と一致する波長で共振する条件をみたす直径と、媒質の屈折率よりも高いことを特徴とし、単一微粒子が、1〜10μmの直径を有することで、高感度のWGMピークを検出することができる。   In order to achieve such an object, the present invention firstly binds and binds a target microorganism to a single microparticle on which an antibody that specifically detects the target microorganism present in a solution is immobilized. A microorganism detection method using a microsphere resonance sensor, which detects a target microorganism by a split change of a peak corresponding to WGM. The single microparticle of the present invention is characterized in that it has a diameter satisfying a condition that resonates at a wavelength that coincides with the immobilization of an antibody and the binding of a target microorganism, and is higher than the refractive index of the medium. By having a diameter of -10 μm, a highly sensitive WGM peak can be detected.

また、本発明は第二に、単一微小粒子の直径以下に集光したエバネセント光をカバーグラスで封止された単一微小粒子に入射できる励起用対物レンズと、単一微小粒子に閉じ込めた散乱光を検出できる検出用対物レンズを含み、暗視野照明を備え、1つ以上のWGMのピーク信号を検出できる分解能をもつ分光器を用いることで、迅速簡便に目的の微生物を検出する安価な微小球共振センサーを使用する微生物検出装置を作製することが可能となる。   In addition, the present invention secondly, an excitation objective lens capable of entering evanescent light condensed to a diameter smaller than the diameter of a single microparticle into a single microparticle sealed with a cover glass, and the single microparticle confined. Low cost to detect target microorganisms quickly and easily by using a spectroscope that includes a detection objective lens that can detect scattered light, has dark field illumination, and has a resolution that can detect one or more WGM peak signals It becomes possible to produce a microorganism detection apparatus using a microsphere resonance sensor.

本発明にかかる微小球共振センサーを使用する微生物検出方法は、単一の微小粒子により感度の増幅を行うため、検査工程において培養法を利用する必要がなく、さらに、WGMのピーク信号のスプリット変化により容易に微生物を判定することができる。すなわち、目的とする微生物を単一の微小粒子のみで判定できることが可能となり、ピーク信号に対応する波長の光源を用いることで、使い捨て用の安価なセンサーと小型装置の開発が可能となる。   The microorganism detection method using the microsphere resonance sensor according to the present invention amplifies the sensitivity with a single microparticle, so there is no need to use a culture method in the inspection process, and further, the split change of the peak signal of WGM Therefore, microorganisms can be easily determined. That is, it becomes possible to determine the target microorganism with only a single fine particle, and by using a light source having a wavelength corresponding to the peak signal, it becomes possible to develop a disposable and inexpensive sensor and a small device.

また、食品分野をはじめ、環境や、医療など微生物検査が必要な分野において、簡便、迅速、安価な検査判定を行うことが可能となる。   In addition, it is possible to perform simple, quick, and inexpensive test determination in the food field and other fields that require microbiological testing such as the environment and medical treatment.

目的の微生物を検出する抗体を固定化した単一微小粒子を示す概略図。Schematic which shows the single microparticle which fix | immobilized the antibody which detects the target microorganism. 溶液中におけるポリスチレン微粒子の観測を示す図。The figure which shows the observation of the polystyrene fine particle in a solution. 目的の微生物が産生した酵素と結合した場合のWGMのスプリット信号を示す図。The figure which shows the split signal of WGM at the time of couple | bonding with the enzyme which the target microorganism produced. 本発明のWGM光検出部を示す概略図。Schematic which shows the WGM light detection part of this invention. 微生物検出装置の実施例を示す図である。It is a figure which shows the Example of a microorganisms detection apparatus.

本発明において、検出対象の目的となる微生物は大腸菌群とし、大腸菌群が産生する酵素のβガラクトシダーゼを迅速、高精度に検出するための微生物検出方法を説明する。   In the present invention, the microorganism to be detected is the coliform group, and a microorganism detection method for rapidly and accurately detecting β-galactosidase, an enzyme produced by the coliform group, will be described.

以下、本発明について実施例を用いて詳細に説明するが本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to these Examples.

図1に示すように、マイクロキャビティー共振器のバイオセンサーとして、真球性のあるポリスチレンの単一微小粒子1または、蛍光ポリスチレンの単一微小粒子1に目的の検出対象と反応する抗体2を固定化することで微生物の判定が可能となる。エバネセント光などにより励起され、単一微小粒子1の表面内に光を閉じ込め循環するWGMにより単一微小粒子1の表面から散乱光が発せられ、周期的な波長のスペクトルが形成される。この波長スペクトルは微小粒子の直径や屈折率、微小粒子周辺の状態などにより非常に敏感であるため、単一微小粒子1の表面に対象となるβガラクトシダーゼに対する抗体2を固定化することで、抗原抗体反応による共振条件の変化が発生する。そのため、WGMが共鳴する波長のシフトやスペクトルピークの信号変化から、目的とする検出物の判定が可能となる。この測定手法は、単一の微小粒子をバイオセンサーとして利用するために、センサーが安価に作製でき、また使い捨ても可能となる。汚染されたセンサーを再利用しないために食品検査において安全安心な検査方法を提供できた。   As shown in FIG. 1, as a biosensor for a microcavity resonator, a single microparticle 1 of polystyrene having a sphericity or an antibody 2 that reacts with a target to be detected on a single microparticle 1 of fluorescent polystyrene. The microorganism can be determined by immobilization. Scattered light is emitted from the surface of the single microparticle 1 by the WGM excited by evanescent light and confined and circulated within the surface of the single microparticle 1 to form a periodic wavelength spectrum. Since this wavelength spectrum is very sensitive to the diameter and refractive index of the microparticles, the state around the microparticles, etc., by immobilizing the antibody 2 against the target β-galactosidase on the surface of the single microparticle 1, The resonance condition changes due to the antibody reaction. Therefore, it is possible to determine the target detection object from the shift of the wavelength at which the WGM resonates and the signal change of the spectrum peak. In this measurement method, since a single microparticle is used as a biosensor, the sensor can be produced at low cost and can be disposable. We could provide a safe and secure inspection method for food inspection because the contaminated sensor was not reused.

溶液中で単一微小粒子1に光を閉じ込めWGMを発生させるには、βガラクトシダーゼを含む溶液に対して高い屈折率を有する必要がある。WGMを発生するには、単一微小粒子1の屈折率は1.50以下であると溶液中で周期的な波長スペクトルが形成されないため1.50以上あることが望ましく、WGM のスペクトルピークの間隔は、単一微小粒子1の直径に依存しており、直径が大きくなるほどスペクトルピークの間隔が狭くなるため、単一微小粒子1の直径は表1に示すように迷光の軽減、ピーク検出の精度、検査の観測・操作性より1〜10μmであることが望ましい。   In order to confine light in a single microparticle 1 in a solution and generate WGM, it is necessary to have a high refractive index with respect to a solution containing β-galactosidase. In order to generate WGM, if the refractive index of the single microparticle 1 is 1.50 or less, a periodic wavelength spectrum is not formed in the solution, so it is desirable that it be 1.50 or more. Depends on the diameter of the single microparticle 1, and the larger the diameter, the narrower the spectral peak interval, so the diameter of the single microparticle 1 is reduced in stray light and peak detection accuracy as shown in Table 1. From the observation / operability of the inspection, it is desirable that the thickness is 1 to 10 μm.

本発明における溶液中での単一微小粒子1は空気中での単一微粒子1の場合と比較し基板ガラス3との屈折率差が小さいため、図2に示すように、単一微小粒子1を確認するために基板ガラス3へ観測用照明光5を入射する暗視野照明を用い、封止ガラス6を使用することで、目的の酵素4を含む溶液に対しても、単一微小粒子1の観測が可能となった。   Since the single microparticle 1 in the solution of the present invention has a smaller refractive index difference from the substrate glass 3 than the single microparticle 1 in the air, as shown in FIG. In order to confirm the above, by using the dark field illumination in which the observation illumination light 5 is incident on the substrate glass 3 and using the sealing glass 6, the single microparticle 1 can be obtained even for the solution containing the target enzyme 4. It became possible to observe.

図3に示すように、微小粒子の表面に目的の酵素となるβガラクトシダーゼに対する抗体を固定化し、抗原抗体反応が起こることでスペクトルピークにスプリット変化を確認することが可能となる。βガラクトシダーゼに対する抗体を固定化しない場合は、スペクトルピークのシフトのみが確認できるが、スプリット変化までは確認できない。単一微小粒子を循環する光共振条件がβガラクトシダーゼの結合により変化し、新しい共振モードが発生する本検査手法を利用することで、容易に微生物の判定が可能となる。   As shown in FIG. 3, an antibody against β-galactosidase, which is the target enzyme, is immobilized on the surface of the microparticle, and an antigen-antibody reaction occurs, whereby it is possible to confirm a split change in the spectrum peak. When the antibody against β-galactosidase is not immobilized, only the shift of the spectrum peak can be confirmed, but the split change cannot be confirmed. By using this test method in which the optical resonance condition circulating through a single microparticle changes due to the binding of β-galactosidase and a new resonance mode is generated, microorganisms can be easily determined.

図4に示すように、本発明のWGM光検出部16は、基板ガラス3の上に微小粒子を滴下し固定させる。入射光8は大きな開口数(NA)を持つ励起用対物レンズ7により入射するため、基板ガラス3への入射光8の角度は全反射角度以上となり、基板ガラス3の表面上に局在波であるエバネセント光11が発生する。基板ガラス3の厚みは励起用対物レンズ7の焦点が微小粒子に合うようにするためにイマージョンオイル9を用い、励起用対物レンズ7からの入射光8が集光するように170μm以下であることが望ましい。基板ガラス3を動かすXYZ移動ステージ10と大きな開口数(NA)を持つ励起用対物レンズ7を用いることで、単一微小粒子1の直径以下に入射光のスポット径をできるため、単一微小粒子以外からの迷光を抑えることができ、高いS/N比をもつ検出が可能となった。   As shown in FIG. 4, the WGM light detection unit 16 of the present invention drops and fixes fine particles on the substrate glass 3. Since the incident light 8 is incident by the excitation objective lens 7 having a large numerical aperture (NA), the angle of the incident light 8 on the substrate glass 3 becomes equal to or greater than the total reflection angle, and is localized on the surface of the substrate glass 3. Some evanescent light 11 is generated. The thickness of the substrate glass 3 is 170 μm or less so that an immersion oil 9 is used so that the excitation objective lens 7 is focused on fine particles, and the incident light 8 from the excitation objective lens 7 is condensed. Is desirable. By using an excitation objective lens 7 having a large numerical aperture (NA) and an XYZ moving stage 10 for moving the substrate glass 3, the spot diameter of incident light can be made smaller than the diameter of the single microparticle 1, so that a single microparticle Stray light from other sources can be suppressed, and detection with a high S / N ratio is possible.

滴下した溶液量により微小粒子1からの散乱光状態が異なる。滴下後の検査部は封止ガラス6で被うことで溶液の蒸発とムラを抑えることが可能となるために、高精度なスペクトルの検出が可能となった。単一微小粒子からの散乱光は上部に取り付けられた検出用対物レンズ13により集光し光ファイバー14で導光され分光器15で検出される。   The state of scattered light from the microparticles 1 varies depending on the amount of the dropped solution. Since the inspection part after dropping is covered with the sealing glass 6, it is possible to suppress evaporation and unevenness of the solution, so that it is possible to detect the spectrum with high accuracy. Scattered light from a single microparticle is collected by a detection objective lens 13 attached to the upper part, guided by an optical fiber 14 and detected by a spectrometer 15.

図5に示すように、分光器15で検出した散乱光は、スプリット変化検出部17によりWGMのピーク信号のスプリット変化が認識され、スプリット変化があるWGMスペクトルは微生物検出判定部18により微小粒子の表面に目的の酵素となるβガラクトシダーゼが結合したことを判定できる。なお、検出した散乱光の波長ピークのスプリット間隔は3nm以上となるために、分光器の分解能は3nm以下であることが望ましい。   As shown in FIG. 5, the scattered light detected by the spectroscope 15 is recognized by the split change detection unit 17 as a split change in the WGM peak signal. It can be determined that β-galactosidase, which is the target enzyme, is bound to the surface. In addition, since the split interval of the wavelength peak of the scattered light detected is 3 nm or more, the resolution of the spectrometer is desirably 3 nm or less.

以下実証実験の状況を説明する。
(1)目的とする酵素
大腸菌群は食品の衛生分野において、汚染指標菌として広く用いられている。大腸菌群が糖を分解する時に産生する酵素の一種のβ-D-ガラクトシダーゼ(和光純薬工業社製)を使用した。
(2)抗体
目的とするβガラクトシダーゼ(β-galactosidase)と反応するためにRabbit IgGのポリクロナール抗体(医学生物学研究所社製)を使用した。
(3)単一微小粒子の選定
単一微小粒子の直径は、検出するピーク信号のS/N比や検査の観測・操作性を比較して1〜10μmを選定している。表1に示すように、励起光のスポット径が単一微小粒子の直径よりも小さくなることで、基板ガラス3からの迷光を軽減できた。さらに、単一微小粒子からの散乱光のピークの間隔が4nm以上離れているために、容易に分光器で検出が可能となった。また、単一微小粒子の直径が大きくなる程、光学顕微鏡での観測も可能となるため、検出部の確認が容易となった。
The status of the demonstration experiment is described below.
(1) Target enzyme The coliform group is widely used as a contamination indicator in the field of food hygiene. Β-D-galactosidase (manufactured by Wako Pure Chemical Industries, Ltd.), a kind of enzyme produced when the coliform group decomposes sugar, was used.
(2) Antibody In order to react with the target β-galactosidase, a polyclonal antibody of Rabbit IgG (manufactured by Institute of Medical Biology) was used.
(3) Selection of single fine particle The diameter of the single fine particle is selected from 1 to 10 μm by comparing the S / N ratio of the peak signal to be detected and the observation / operability of the inspection. As shown in Table 1, stray light from the substrate glass 3 could be reduced by making the spot diameter of the excitation light smaller than the diameter of the single microparticle. Furthermore, since the interval between the peaks of scattered light from a single microparticle is 4 nm or more apart, it can be easily detected with a spectrometer. Moreover, since the observation with an optical microscope becomes possible, so that the diameter of a single microparticle becomes large, confirmation of the detection part became easy.

(4)単一微小粒子を用いた微生物の判定
直径10μmのカルボキシル基が修飾された蛍光ポリスチレン微小粒子(micromod社製)を2回洗浄した後、水溶性のカルボジイミド(Polysciences社製)によりカルボキシル基を活性化させ、抗体を微小粒子の表面に固定化した。60分間程度反応した後、遠心分離機で上澄み部を取り除くことで抗体が固定化した微小粒子を含む溶液を作製した。作製した微粒子は図4のXYZ移動ステージ10に設置したガラスベースディッシュ(Iwaki社製)上に20〜50μl程度滴下し、さらに同量のβ-D-ガラクトシダーゼを滴下する。532nmの光で微小粒子を励起すると、560〜620nmの波長領域に蛍光スペクトルを検出した。β-D-ガラクトシダーゼを滴下し15分間反応させた後、蛍光スペクトルの中に微粒子の中に閉じ込められた光共振反応を示すWGMの波長ピークのスペクトルが検出でき、図3の破線のグラフに示すように、ピークスペクトルが2つにスプリットしているのが確認できた。β-D-ガラクトシダーゼを滴下しない場合や、抗体を固定化していない微粒子のWGMの波長ピークにはスプリットが検出できないため、β-D-ガラクトシダーゼの結合に起因するモードであることが分かり、図5のスプリット変化検出部17により、最も検出感度が高いWGMのピーク信号にスプリット変化が現れるかを微生物検出判定部18により検出することで迅速、簡便に微生物を判定できることを示している。
(4) Microorganism determination using single microparticles After washing the fluorescent polystyrene microparticles (micromod) modified with a carboxyl group having a diameter of 10 μm twice, the carboxyl groups were dissolved in water-soluble carbodiimide (Polysciences). And the antibody was immobilized on the surface of the microparticles. After reacting for about 60 minutes, the supernatant was removed with a centrifuge to prepare a solution containing microparticles with immobilized antibodies. About 20 to 50 μl of the produced fine particles are dropped on a glass base dish (manufactured by Iwaki) installed on the XYZ moving stage 10 in FIG. 4, and the same amount of β-D-galactosidase is further dropped. When microparticles were excited with 532 nm light, a fluorescence spectrum was detected in the wavelength region of 560 to 620 nm. After dropping β-D-galactosidase and reacting for 15 minutes, the spectrum of the wavelength peak of WGM showing the optical resonance reaction confined in the fine particles can be detected in the fluorescence spectrum, and is shown in the broken line graph of FIG. Thus, it was confirmed that the peak spectrum was split into two. When β-D-galactosidase is not added dropwise, or because no split is detected in the wavelength peak of WGM of fine particles to which no antibody is immobilized, it can be seen that this mode is caused by the binding of β-D-galactosidase. It is shown that the microorganism detection determination unit 18 can quickly and easily determine the microorganism by detecting whether the split change appears in the peak signal of the WGM having the highest detection sensitivity.

上記に述べたように、本発明によって、高精度で安価な微小粒子センサーを用いることで迅速に微生物を検出できる装置を提供することが可能となった。   As described above, according to the present invention, it is possible to provide an apparatus capable of detecting microorganisms quickly by using a highly accurate and inexpensive microparticle sensor.

本発明は、微生物の検査が必要な食品分野における検査方法に関するものであるが、環境衛生分野、医薬品分野等での利用も可能である。高価な検出装置等を用いることなく、高感度で迅速、しかも低コスト検査チップを実現できる微小球共振センサーを使用する微生物検査を提供することができる。   The present invention relates to a test method in the food field that requires microbiological tests, but can also be used in the environmental health field, the pharmaceutical field, and the like. It is possible to provide a microorganism test using a microsphere resonance sensor capable of realizing a high-sensitivity, rapid, and low-cost test chip without using an expensive detection device or the like.

1 単一微小粒子
2 抗体
3 基板ガラス
4 目的の酵素
5 観測用照明光
6 封止ガラス
7 励起用対物レンズ
8 入射光
9 イマージョンオイル
10 XYZ移動ステージ
11 エバネセント光
12 観測用光源
13 検出用対物レンズ
14 光ファイバー
15 分光器
16 WGM光検出部
17 スプリット変化検出部
18 微生物検出判定部
DESCRIPTION OF SYMBOLS 1 Single microparticle 2 Antibody 3 Substrate glass 4 Target enzyme 5 Observation illumination light 6 Sealing glass 7 Excitation objective lens 8 Incident light 9 Immersion oil 10 XYZ moving stage 11 Evanescent light 12 Observation light source 13 Detection objective lens 14 Optical fiber 15 Spectrometer 16 WGM light detection unit 17 Split change detection unit 18 Microorganism detection determination unit

Claims (5)

溶液中に存在する目的の微生物を特異的に検出する抗体を単一微小粒子に固定化し、結合した目的の微生物をウィスパリングギャラリーモードに対応したピークのスプリット変化で検出することを特徴とする微小球共振センサーを使用する微生物検出方法。   An antibody that specifically detects a target microorganism present in a solution is immobilized on a single microparticle, and the target target microorganism is detected by splitting a peak corresponding to the whispering gallery mode. A method for detecting microorganisms using a spherical resonance sensor. 上記単一微小粒子は、抗体の固定化および目的の微生物の結合と一致する波長で共振する条件をみたす直径と、媒質の屈折率よりも高いことを特徴とする請求項1に記載の微小球共振センサーを使用する微生物検出方法。   2. The microsphere according to claim 1, wherein the single microparticle has a diameter satisfying a condition of resonating at a wavelength corresponding to the immobilization of an antibody and binding of a target microorganism, and a refractive index of the medium is higher. A method for detecting microorganisms using a resonance sensor. 上記単一微粒子が、1〜10μmの直径を有することを特徴とする請求項1に記載の微小球共振センサーを使用する微生物検出方法。   The microorganism detection method using the microsphere resonance sensor according to claim 1, wherein the single fine particle has a diameter of 1 to 10 μm. 請求項2または請求項3に記載の単一微小粒子の直径以下に集光し及びエバネセント光を入射できる励起用対物レンズと、単一微小粒子に閉じ込めた散乱光を検出できる検出用対物レンズを含み、暗視野照明を備え、1つ以上のウィスパリングギャラリーモードのピーク信号を検出できる分解能を有する分光器からなることを特徴とする微小球共振センサーを使用する微生物検出装置。   An excitation objective lens capable of condensing less than the diameter of the single microparticle according to claim 2 or 3 and receiving evanescent light, and a detection objective lens capable of detecting scattered light confined in the single microparticle. A microorganism detection apparatus using a microsphere resonance sensor, comprising a spectroscope including dark field illumination and having a resolution capable of detecting one or more whispering gallery mode peak signals. 上記単一微小粒子は、カバーグラスで封止されたことを特徴とする請求項4に記載の微小球共振センサーを使用する微生物検出装置。   The microorganism detecting apparatus using the microsphere resonance sensor according to claim 4, wherein the single microparticle is sealed with a cover glass.
JP2013050970A 2013-03-13 2013-03-13 Microorganism detection method and device using microsphere resonance sensor Pending JP2014178151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013050970A JP2014178151A (en) 2013-03-13 2013-03-13 Microorganism detection method and device using microsphere resonance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013050970A JP2014178151A (en) 2013-03-13 2013-03-13 Microorganism detection method and device using microsphere resonance sensor

Publications (1)

Publication Number Publication Date
JP2014178151A true JP2014178151A (en) 2014-09-25

Family

ID=51698265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013050970A Pending JP2014178151A (en) 2013-03-13 2013-03-13 Microorganism detection method and device using microsphere resonance sensor

Country Status (1)

Country Link
JP (1) JP2014178151A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205993A (en) * 2015-04-22 2016-12-08 オーソ・クリニカル・ダイアグノスティックス株式会社 Method for detection or quantitative determination, resonating additive, usage of resonating structure, and container
JP2016205994A (en) * 2015-04-22 2016-12-08 オーソ・クリニカル・ダイアグノスティックス株式会社 Method for detection or quantitative determination and device
CN106814185A (en) * 2017-01-11 2017-06-09 东南大学 A kind of micro-fluidic detection chip based on Whispering-gallery-mode microcavity array
CN106908397A (en) * 2017-01-04 2017-06-30 浙江大学宁波理工学院 Integrated optics biochemical sensitive chip based on limited drop resonance and preparation method thereof
JP2020003505A (en) * 2019-09-24 2020-01-09 オーソ・クリニカル・ダイアグノスティックス株式会社 Method for detection or quantitative determination, resonating additive, usage of resonating structure, and container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333497A (en) * 2006-06-14 2007-12-27 Hitachi High-Technologies Corp Fluorescence detection device and apparatus
JP2008513776A (en) * 2004-09-20 2008-05-01 スリーエム イノベイティブ プロパティズ カンパニー System and method for biosensing and microresonator sensor therefor
JP2012509070A (en) * 2008-11-21 2012-04-19 ジェネラ バイオシステムズ リミテッド Analyte detection assay

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513776A (en) * 2004-09-20 2008-05-01 スリーエム イノベイティブ プロパティズ カンパニー System and method for biosensing and microresonator sensor therefor
JP2007333497A (en) * 2006-06-14 2007-12-27 Hitachi High-Technologies Corp Fluorescence detection device and apparatus
JP2012509070A (en) * 2008-11-21 2012-04-19 ジェネラ バイオシステムズ リミテッド Analyte detection assay

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205993A (en) * 2015-04-22 2016-12-08 オーソ・クリニカル・ダイアグノスティックス株式会社 Method for detection or quantitative determination, resonating additive, usage of resonating structure, and container
JP2016205994A (en) * 2015-04-22 2016-12-08 オーソ・クリニカル・ダイアグノスティックス株式会社 Method for detection or quantitative determination and device
CN106908397A (en) * 2017-01-04 2017-06-30 浙江大学宁波理工学院 Integrated optics biochemical sensitive chip based on limited drop resonance and preparation method thereof
CN106814185A (en) * 2017-01-11 2017-06-09 东南大学 A kind of micro-fluidic detection chip based on Whispering-gallery-mode microcavity array
CN106814185B (en) * 2017-01-11 2018-05-08 东南大学 A kind of micro-fluidic detection chip based on Whispering-gallery-mode microcavity array
JP2020003505A (en) * 2019-09-24 2020-01-09 オーソ・クリニカル・ダイアグノスティックス株式会社 Method for detection or quantitative determination, resonating additive, usage of resonating structure, and container

Similar Documents

Publication Publication Date Title
Ventura et al. Colorimetric test for fast detection of SARS-CoV-2 in nasal and throat swabs
Shah et al. Enzyme-linked immunosorbent assay (ELISA): the basics
Bonanno et al. Whole blood optical biosensor
Obahiagbon et al. A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications
JP2014178151A (en) Microorganism detection method and device using microsphere resonance sensor
AU2010206657A1 (en) Apparatus and methods for detecting inflammation using quantum dots
JP2013521500A (en) Method or system for extending the dynamic range in an assay to detect molecules or particles
JP2008102117A (en) Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
Zhang et al. Printed nanochain‐based colorimetric assay for quantitative virus detection
Cognetti et al. Disposable photonics for cost-effective clinical bioassays: application to COVID-19 antibody testing
Lee et al. Optical immunosensors for the efficient detection of target biomolecules
JP6682307B2 (en) Method and apparatus for highly sensitive detection of microsphere resonance sensor
Maigler et al. A new device based on interferometric optical detection method for label-free screening of C-reactive protein
CN108291909B (en) Analyte detection and methods thereof
JP4068148B2 (en) Assay method
JP4812962B2 (en) Specific microorganism measuring method and specific microorganism measuring apparatus
Liu et al. A fiber optic biosensor for specific identification of dead Escherichia coli O157: H7
Daneshvar et al. Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor
JP2017508993A (en) Methods and devices for analyzing biological specimens
CN103728278B (en) The effect of surfactant, surface plasma resonance detect the method that the signal of low molecular weight substance amplifies
US7829349B2 (en) Base carrier for detecting target substance, element for detecting target substance, method for detecting target substance using the element, and kit for detecting target substance
Wang et al. Development of combination tapered fiber-optic biosensor dip probe for quantitative estimation of interleukin-6 in serum samples
JP7177913B2 (en) High-sensitivity biosensor chip, measurement system, and measurement method using high-extinction-coefficient marker and dielectric substrate
Yamamoto et al. Development of a highly sensitive, quantitative, and rapid detection system for Plasmodium falciparum-infected red blood cells using a fluorescent blue-ray optical system
CN103728279B (en) The effect of surfactant, surface plasma resonance detect the method that the signal of low molecular weight substance amplifies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170613