JP6680431B2 - 水素と酸素を燃焼するエンジン。 - Google Patents

水素と酸素を燃焼するエンジン。 Download PDF

Info

Publication number
JP6680431B2
JP6680431B2 JP2018545513A JP2018545513A JP6680431B2 JP 6680431 B2 JP6680431 B2 JP 6680431B2 JP 2018545513 A JP2018545513 A JP 2018545513A JP 2018545513 A JP2018545513 A JP 2018545513A JP 6680431 B2 JP6680431 B2 JP 6680431B2
Authority
JP
Japan
Prior art keywords
hydrogen
engine
steam
combustion
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018545513A
Other languages
English (en)
Other versions
JPWO2019130619A1 (ja
Inventor
寛治 泉
寛治 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2019130619A1 publication Critical patent/JPWO2019130619A1/ja
Application granted granted Critical
Publication of JP6680431B2 publication Critical patent/JP6680431B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

水素と酸素を燃焼させるエンジンの技術分野である。
富化酸素と水素を燃焼出来るエンジンの燃焼工程の燃焼室部の構成についてPCT/JP2016/079312にて提案いたしており上記エンジンの燃焼室部には富化酸素と水素の燃焼による直射熱を受ける耐熱構造部を設けて燃焼室部内外壁間に水の通水路を設け該燃焼室部内壁に上記耐熱構造部と燃焼室部内に水を噴射する噴射ノズルを設けて該ノズルから水を噴射して該燃焼室内の冷却手段とするとともに水蒸気生成手段として該水蒸気生成手段の水蒸気と燃焼による水蒸気の排気ガスとを回転力取り出し工程を貫流させて回転力として取り出し、取り出した該回転力を動力若しくは電気としており、該取り出し工程を貫流したガスを燃料に生成する燃料生成工程に導入しており該燃料生成工程に合成ガス改質器と気体分離膜による分離器と気体改質分離器を設けて燃料の水素を生成して燃料を自給し、かつCO、NOを排出しないエンジンシステムの技術がある。
特許第5967682 富化酸素空気と燃料の燃焼で燃料を生成するエンジン。 炭素か、水素を含む、炭化水素系燃料を富化酸素空気で燃焼させるエンジンの構成で該エンジンの燃焼室部(燃焼装置2)を酸素と水素の燃焼熱に耐えられる手段を設け該手段の耐熱構造部に水を噴射する噴射ノズルを設けて耐熱構造部に水を噴射して水を水蒸気にしており、水蒸気生成時の吸熱により酸素と水素の燃焼を可能にしており、該燃焼室部からの排気ガス流路中に水蒸気改質か、水生ガスシフトか、ドライリフォーミングかの改質路を設けて該改質路にて生成した水素を水素燃料電池に供給して電気を生成しており、更に燃焼ガスと生成ガスとの両方でタービン翼を回転してその回転力を運搬機器の駆動力とするか発電機の発電動力とするかにしておる技術。 *本願は上記エンジンの燃焼室構成の通水路を上記耐熱構造部内に設け該通水路を水が通過する過程で該耐熱構造部の熱を吸熱し水蒸気を生成しており、上記耐熱構造部の外側に水素生成手段ZU(例えば水蒸気改質装置Kaか水蒸気電気分解装置F1か部分酸化反応装置BOかの何れか)を設け上記耐熱構造部で生成した水蒸気を水素生成手段ZU(例えば水蒸気改質装置Kaか水蒸気電気分解装置F1か部分酸化反応装置BOかの何れか)に導入し水素を生成し生成した水素を該エンジンの燃料としておる点が異なる技術。
特開2012−52162水素および酸素の製造・使用方法。製鉄所(製鉄プロセス)で副次的に発生する低品位の水蒸気を用いて、クリーンな水素および酸素を安価に製造して使用することができる水素および酸素の製造・使用方法であって、上記低品位の水蒸気を加熱して高温の水蒸気とする水蒸気加熱装置Aと、前記水蒸気加熱装置で得られた高温の水蒸気を電気分解により水素と酸素に分解する水蒸気電気分解装置Bと、前記水蒸気電気分解装置で得られた水素および酸素から顕熱を回収する顕熱回収装置C1と、前記水蒸気電気分解装置で得られた水素および酸素と前記顕熱回収装置で回収した顕熱を製鉄プロセスで利用する利用装置E1とを備えていることを特徴とする水素および酸素の製造・利用方法。*該文献技術の製鉄プロセスで副次的に発生する低品位の水蒸気を加熱して高温の水蒸気とする水蒸気加熱装置Aを設けておるのに対して本願はエンジン燃焼装置2〜2dでの水素と酸素の燃焼による直接燃焼熱及び間接熱により高温水蒸気を生成しておる点が大きな相違点であるが、該文献の水蒸気電気分解装置及び熱電エネルギー変換装置の技術部分は本願に採用しておる。
特願2008−155195 水素発生法、水素発生装置及び触媒。 金属酸化物(例えばCr2O3)と金属水酸化物(例えばKOH)を金属酸化物の融点以上、沸点以下の温度に加熱して固化せしめた触媒を触媒収納室21内に設置し、この収納室21に蒸発室内で蒸発した750℃前後の水蒸気を供給して、中間活性物質を伴う3つの反応を行い水から水素を採集する。 該発明によれば、水の分子を直接取出すのではなく、金属水酸化物の水酸基の水素を取出すようにしたので、700℃前後の水蒸気で反応をさせることができ、水の電気分解に比較して少ないエネルギーで水素を取出すことが出来る。 また、3つの反応が組み合わされて触媒自体は減少することなく、見掛け上は水を水素と酸素に分解するようにしているので、触媒自体の減少はない。 また、更に該発明の実施に必要な触媒の材料は、金属酸化物として酸化クロム、酸化チタン等、金属水酸化物として水酸化カリウム、水酸化カルシウム等、化学材料としては手に入れ易く、しかも安価である、とした技術である。*本願の燃焼装置2〜2d(燃焼装置2,2a,2ar,2b,2c,2d)の排気流5又は回転力取り出し装置3を貫流後の排気流5aの何れかの水蒸気を該発明の金属酸化物と金属水酸化物の触媒と水蒸気で水素を採集する装置SYの水蒸気とし本願に採用できる技術である。
特開2015−189721天然ガス処理物の製造方法及び処理天然ガス処理プラント。天然ガスから天然ガス処理物を製造する天然ガス処理物の製造方法であって、水を電気分解して酸素及び水素を生成し、生成した酸素を前記天然ガスと反応させて一酸化炭素及び水素を含有する合成ガスを生成し、生成した前記合成ガスを反応させて天然ガス処理物を得る技術。更に二酸化炭素に水素を反応させメタノールを製造する技術、 反応式 CO2+3H2→CH3OH+H2O 更に二酸化炭素に水素を反応させメタンを製造する技術。 反応式 CO2+4H2→CH4+2H2O。更に千代田化工建設(企業名)では二酸化炭素CO2とメタンCH4を貴金属系触媒を使用した改質で2CO+2H2の合成ガスを生成しておる技術。更に一酸化炭素COと水素を反応させてジメチルエーテルを製造する技術。 2CO+4H2→CH3OCH3+H2O *本願の二酸化炭素資源化手段CHの一つとして採用出来る技術。
英科学誌Nature Communication(ネイチャーコミュニケーションズ)平成25.8.29掲載。「ありふれた物質の表面で二酸化炭素を室温で分解」。東京工業大学細野秀雄教授、戸田喜丈特任教授らのグループは、石灰(CaO)とアルミナAl2O3から構成される化合物12CaO 7A1203(以下C12A7)の構造の中に、電子を取り込んだC12A7エレクトライドが二酸化炭素の分子を室温で選択的に吸着し、分解する事を見出しました。この特性は電子を外部に極めて与えやすい性質を持ちながらしかも化学的に安定と言う、一般的には相容れない性質を合わせ持つC12A7エレクトライドのユニークな物性に起因するものである。*該技術は本願の二酸化炭素資源化手段CHの1技術とする事が出来る。
1,上記背景技術に記載の特許文献PCT/JP2016/079312に記載の燃焼装置2に設けた耐熱伝導体SCを熱の伝熱体として活用し上記エンジン燃焼装置内で水蒸気改質や電気分解が出来る(一体型)構造を発明すること。(燃料の水素を自給自足、若しくは燃料費用に相当する対価が得られる構成のエンジン燃焼装置又は電気・水素生成手段を発明。)
2、上記1に記載しておる技術の水素を製造する燃料生成工程4での水蒸気改質を繰り返すと二酸化炭素が増えるがこの二酸化炭素を処理するシステムを構築すること。
3、上記エンジンの稼働に於ける生成物で燃料費を賄う手段を見つける、更には上記エンジンを移動形態に搭載したケースでは当該エンジンの償却費を賄う手段を見つけ電気駆動の移動体に勝る構成にする。
4.上記生成する二酸化炭素COを外部設備 (定置形態設備に設置した場合は該設備内であっても良い)にて資源として活用する二酸化炭素資源化する方法を見つける。
5、エンジン燃焼室内の温度を下げる方向にコントロールする手段を見つけ、該手段をレシプロエンジンかロータリーエンジンかディゼルエンジンかのいずれかのエンジンに設け現在製造されておるレシプロエンジンかロータリーエンジンかディゼルエンジンかのいずれかのエンジンの燃料を水素とする本願エンジン製造体制整備までの「NOX」,「CO2」排出削減策とする構成を見つける。
第一の発明は
酸素(分離装置1により分離された)と水素を燃焼させた熱で水を水蒸気にしており、該水蒸気を反応(例えば電気分解・水蒸気改質・部分酸化反応等)させて水素を生成する構成を設けたエンジン燃焼装置Zであって、(図1、2、3,10)、該燃焼装置Zの(蓄ガスタンクT1及び蓄ガスタンクT2から)燃焼ノズル2Nに酸素及び水素を供給し点火栓2Pにより点火し燃焼室NE内で燃焼しており、該燃焼室に設けておる燃焼による直射熱を受ける耐熱構造部SCと(耐熱構造部SCは直射熱を受け易い形状(例えば略円筒状)にしており)、
該耐熱構造部に設けておる(水タンクより水を供給し供給された)水を耐熱構造部SCを通過する間に上記燃焼による直射熱を受けて水を水蒸気にする通水路MHa,と、
該通水路MHa内で水蒸気Aを生成する水蒸気A生成手段と,
上記耐熱構造部の外殻体(外側)に設けておる水素生成手段ZUと、(例えばZUが電気分解装置であれはF1,F2,図1、であり、水蒸気改質であればKa、図2、であり、部分酸化反応OSであれば図10)
該水素生成手段ZUに上記水蒸気Aを供給する供給ノズルZjと
該供給ノズルZjから該水素生成手段ZUに供給しており該水素生成手段ZUにて水蒸気を反応(例えば電気分解・水蒸気改質・部分酸化反応等)させる副材料SBを供給する副材料(例えば熱・電気・酸素・炭化水素化合物等)SB供給手段と、
該水素生成手段ZUに供給された水蒸気Aと上記供給された副材料SBの何れか(熱・電気・酸素・炭化水素化合物等)一以上を使用して水素若しくは水素を含む混合ガスを生成する水素若しくは水素を含む混合ガス生成手段と、
該混合ガスから水素を分離する分離装置と、
該分離装置に水素若しくは水素を含む混合ガスを導入して水素を取り出しており、得られた水素を上記エンジン燃焼装置Zの燃料の水素としており、
上記通水路MHaで生成した水蒸気Aを燃焼室NEに供給する供給ノズルZjと該供給ノズルZjから供給された水蒸気Aは燃焼室NE内の熱を吸熱してさらに高熱に成った水蒸気Aaと
該水蒸気Aaは上記燃焼で生成される水蒸気Bと水素生成手段ZUで分解(改質)されなかった未分解水蒸気(STn及び未改質水蒸気STm)とともに下流に排気として排出される排気流5と、
を備えておる水素を燃焼し水素を生成するエンジン燃焼装置Zを特徴とする水素と酸素を燃焼するエンジンを提供する。
*上記エンジンの燃焼室NE内に設けておる燃料の燃焼火炎2Fの直射熱を受ける吸熱構造手段SCを耐熱吸熱構造材(例えば熱伝導率及び耐熱温度が高いアルミナAl系合金が好ましい)にして設け、上記吸熱構造手段SC内に水を水蒸気にする通水路MHaを設け水が該通水路を通過する間に水を水蒸気Aとし該水蒸気Aを上記水素生成手段ZUと該エンジン燃焼室NEに噴射してエンジン燃焼室の冷却手段と水蒸気生成手段ZU(装置)に水蒸気を供給する手段としたことが酸素と水素を燃焼を可能にし、更に該燃焼装置Z内で水素を生成出来るエンジンを考案出来た新規技術である。
*(富化)酸素と水素の燃焼では燃焼炎の中心温度は2800℃程度で空気(中の酸素)と水素の燃焼では燃焼炎の中心温度は1900℃程度で(富化)酸素の使用により47%程度燃焼炎の中心温度が上がる、(富化)酸素を使用したエンジンと、空気(の酸素)を使用したエンジンとでは上記水蒸気改質器に使用するか水の電気分解に使用するか部分酸化反応BOに使用するかの何れかの水蒸気の製造を計算上47%多く出来る(酸素密度の差であり、本願ではこれを酸素エネルギーと呼ぶ)。
*エンジン燃焼装置Zの水素生成手段ZUが水蒸気改質及び部分酸化反応の場合水蒸気改質CH+HO→CO+3Hと(部分酸化反応CH+O→CO+2H2)シフト反応部を設けておるCO+HO→CO+H構成であるが、上記シフト反応部を設けない構成にして二酸化炭素に替えて一酸化炭素を生成する構成でもよい。
第二の発明は
上記エンジン燃焼装置Zの下流に設けておる回転力取り出し装置3に該燃焼装置Zからの排気流5を貫流させ該回転力取り出し装置3を貫流した排気流5aを上記耐熱構造部SC内に設けておる通水路MHaに(全部または半分以上)戻し入れる手段(例えば戻し入れ管路)を設けて上記通水路MHaに排気流5aを戻し入れており更に上記戻し入れる手段を燃焼装置2,2a(後述)に設け、上記燃焼装置下流の回転力取り出し装置3を貫流した排気流を燃焼室NEに戻し入れる手段R2としておる事を特徴とする第一の発明に記載の水素と酸素を燃焼するエンジンを提供する。
*エンジン燃焼装置Zの水素生成手段ZUが水蒸気改質の場合供給する水蒸気の供給量は炭素析出対応により理論値の2〜5倍供給(HO/CH(モル比)2〜5程度の水蒸気過剰化で供給)しており、余剰に供給した水蒸気は未改質水蒸気STmとなり排気に合流して排気流5から回転力取り出し装置3を貫流して排気流5aとなり下流に排出されており、該排気流5aを上記耐熱構造部の通水路MHaに戻し入れる手段R1(例えば戻し入れ管路、図面なし)を設け該排気流5aを水素生成手段の水蒸気Aに再生する再生手段であり、更に該再生手段を上記燃焼装置2,2aに設け、上記燃焼装置下流の回転力取り出し装置を貫流した排気を燃焼室NEに戻し入れる手段とする。
*エンジン燃焼装置Zの水素生成手段ZUが電気分解装置F1、F2の場合水蒸気の電気分解率は例えば水蒸気を固体電解質セルを通過させ分解する装置での分解率を50〜60%とした場合排出される未分解水蒸気を戻し入れ再加熱し再度電気分解装置F1、F2に投入する事で分解率を上げる構成とする(電気分解能力UP=セル設置数を増やす)ことが出来る。
第三の発明は
上記回転力取り出し装置3の回転翼体3aであって、(図8)
排気流5の略直線的な排気流力を回転力に変換する回転翼体と
該回転翼体3aの回転力を取り出す一方の回転軸3cと、
該回転軸3cの他方の回転軸3c1と、
上記回転力取り出し装置3の外殻体3dと、
上記他方の回転軸3c1端部から回転軸3c1内と回転翼体3a内を通り回転翼体3a外に通じる通水路3MHとを備えており、
上記通水路3MHに水を導入し該通水路を通過する過程で該水が回転翼体3aの熱を吸熱し水蒸気Cとなり回転力取り出し装置3貫流後の排気流5a(と合流)として下流に排出される構造で、回転翼体3aの冷却手段を有する回転力取り出し装置3とした事を特徴とする第一の発明から第ニの発明に記載の水素と酸素を燃焼するエンジンを提供する。
第四の発明は
エンジン燃焼装置Zを搭載するエンジンの回転力取り出し装置3を貫流した排気流5a、を導入して電気&水素を生成する電気&水素生成手段4であって、
該手段に導入されておる排気流5aの持つ熱(例えば上記エンジンの設定次第ではあるが概略1000℃程度)と水蒸気(水蒸気A,水蒸気Aa,水蒸気B,水蒸気C,未分解水蒸気STn若しくは未改質水蒸気STmの内何れか1以上)及び回転力取り出し装置3で取り出した電気Ea及び海水(例えば船舶での水蒸気化に使用の水)の内の1以上を材料として、
(例えば、)水蒸気電気分解装置F1か水蒸気電気分解装置FS1か金属酸化物と金属水酸化物の触媒と水蒸気で水素を採取する装置SYか水蒸気改質装置Ka1か水熱化学分解F2か熱電エネルギー変換装置DEか、熱交換器Gか燃料電池発電機FD1か海水真水化(淡水化)装置Waかの技術のいずれか1種以上の装置を用いるか組み合わせて、電気か水素の一方か両方を生成(製造)し、上記生成した水素の量により上記エンジン燃焼装置2,2a,2arを有するエンジンを複数台稼働させて稼働した複数台のエンジンから電気又は動力の何れか一方か両方かを更に生成する事を特徴とする第一の発明から第三の発明に記載の水素と酸素を燃焼するエンジンを提供する。
*上記電気&水素生成手段4に記載のいずれかの装置の単独稼動かあるいは組み合わせ稼働かについては複数の形態が想到でき該装置と機器との構成に矛盾がない(理論上成立する)構成は自在に出来る(例えば燃料電池発電機FD1で発電し該電気を水蒸気電気分解装置F1の電気とする構成での組み合わせ)。
第五の発明は
上記水素生成手段ZUを有すエンジンを稼働させ該水素生成手段ZUで生成した水素を当該エンジンと水素生成手段ZUを有さないエンジン燃焼装置2及び2a及び2arかの何れかの燃焼装置を複数台稼働させ水素生成手段ZUを有すエンジン1台と水素生成手段ZUを有さないエンジン複数台で電気又は動力の何れか一方か両方かを生成しておる事を特徴とする第一の発明から第四の発明に記載の水素と酸素を燃焼するエンジンを提供する。
*上記エンジン燃焼装置2b1台と水蒸気改質Kaを持たない(上記2bと同じ量の水素を消費する規模の燃焼装置)エンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arの3種の内の何れか一種以上で構成した複数台(例えば3台)を稼働させ合計(例えば4台)分の(上記エンジン燃焼装置Zは(水蒸気改質の場合)水蒸気改質Kaに用いた水蒸気分程の排気流5の流力は少ないが上記水蒸気改質Kaを持たないエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arは該装置からの排気流5の流力は概100%であり3台+1台(水蒸気改質Kaに用いた水蒸気分程マイナスにした))の排気流5力を排出する構成にして下流の回転力取り出し手段3で上記エンジンの動力及び電気を製造し、該回転力取り出し手段3を貫流し排出される排気流5aを導入して電気及び水素を生成する電気・水素生成手段4で更に電気・水素を製造しておることを特徴とする水素と酸素を燃焼するエンジン。
*上記燃焼装置2は(図4,5,6)参照、上記エンジン燃焼装置2b,2cから電気分解装置F1、及び水蒸気改質部Kaをそれぞれ除いた構成でかつ耐熱構造部SC(通水路MHaは設けていない)を設けたものが上記燃焼装置2で上記耐熱構造部SCを設けないで該耐熱構造部SCに替えて水を直接燃焼室内壁2Uに噴射する噴射ノズルMjを設けた構成が上記燃焼装置2aであり該燃焼室NEに上記エンジンの電気・水素生成手段4(燃料生成部4)で未改質となった水蒸気を上記燃焼室NEに戻し上記未改質水蒸気を再加熱する水蒸気再加熱手段WRを設けた構成が上記エンジン燃焼装置2arである。
第六の発明は
上記エンジンで生成した電気を蓄電器40に蓄電し移動体の移動電力として使用し、余剰となった蓄電しておる電気か移動体非移動時の該エンジン稼働により生成する電気かのいずれかの電気の受け渡し形態を電気授受システムEaSTとしておる事を特徴とする第一の発明から第の五発明に記載の水素と酸素を燃焼するエンジンを提供する。
*電気授受システムEaSTは、
1、 該移動体で生成し移動体内で蓄電器に蓄電した電気を、
1a,,電気授受ステーションに引き取らせる手段を設けて該電気を引き取らせる(売電する)。
1b, 電気授受ステーション及び移動体の駐機場に於ける蓄電器交換システム(複数の蓄電器を1単位としてセットされているのを1単位のセットごと交換して電気の補充時間を短縮)を導入して移動体内で生成し充電した蓄電器と充電量が下限設定値(近く)に成っておる蓄電器と交換するシステム。
2、 移動体の駐機場に於いて該移動体駐機中にエンジンを稼働させ、該移動体で生成した電気を直接ケーブル等で接続し売電する手段。(太陽光発電で発電した電気を電力会社に売電するのと同じ形態)
以上を電気授受システムEaSTの代表事例としたものである。
*上記エンジン燃焼装置2,2a,2ar,Z(2b,2c、2d)を備えたエンジンを移動体に搭載した該エンジン搭載機器(航空機・船舶・鉄道・自動車等々)の駐機場(駐車場・桟橋・マリーナ等の係船場・飛行場・軍隊の基地等々)に一酸化炭素CO又は二酸炭素COをガスステーション又は移動式ガスステーションを設けて該ステーションに引き取らせ水と炭化水素化合物(例えばメタンCH)の供給を受ける形態にするか該エンジンにより生成される電気を引き取らせる設備(電気授受ステーション)を設けて電気を引き取らせるものである。
すなわち上記移動体移動時は該移動体を稼働して燃料の水素(及び酸素)を生成し移動体のエネルギーとして消費し、かつ、余剰となった一酸化炭素CO又は二酸化炭素COをガスステーション又は移動式ガスステーションに買い取らせ水と炭化水素化合物(例えばメタンCH)の供給を受ける形態にするか、該エンジンにより生成される電気を移動体の動力として消費しかつ、消費量を超えて生成し余剰となった電気を電気授受システムEaSTにて引き取らせる(外部社会電力エネルギー供給インフラへの電力供給)かのいずれか一方か両方かにすることで該エンジンで余剰となつた一酸化炭素CO又は二酸化炭素CO及び電気を有価物とする手段とした。
*上記移動体例えば公道を走行する自動車の多くは燃料を燃焼しその回転力で電気を生成する機器を備えており、該移動体を非走行時稼働させ電力を生成し生成した電気を売電することでインプットされる炭化水素費用とアウトプットされる電気料金との差し引き計算で受け取る費用―投入費用がプラスであれば上記非稼働時の稼働による収益を得ることが出来る本願のエンジンではその構成が出来る (非走行時稼動させ利益を得ることが出来る)エンジンである。
*上記エンジンで生成した水素量が該エンジンで消費(移動体の移動動力として消)しさらに余剰の電気を生成出来る量であれば該余剰の電気を一時的に蓄電器40に蓄電するか或いは直接電気輸送手段にて売電する。
*上記移動体非稼働時を活用する手段によりエンジン内の停止・稼働の繰り返しによる該エンジンの構成材の疲労による亀裂破壊等を防止出来該エンジンの寿命延長に繋げるとともに該エンジン生成物の販売もしくは使用(例えば自工場で使用)により該エンジンの原価償却を早く出来る。
第七の発明は上記エンジン燃焼装置Zを備えるエンジンに供給する供給気体を酸素と水素に加え不活性ガスを(例えばアルゴンガス)混入させる手段を設け該燃焼装置(例えば2,2a,2ar、2b、2c、2d)での火炎中心温度をさげる方向にコントロールする手段としており、更に該エンジンの排気ガスから上記不活性ガスを採取する手段を設けて、該不活性ガスを採取しておる事を特徴とする第一の発明から第六の発明に記載の水素と酸素を燃焼するエンジンを提供する。
第八の発明は、上記エンジンに供給する供給気体(酸素と水素に加え不活性ガスを(例えばアルゴンガス)混入したガス)をレシプロエンジンかロータリーエンジンかディゼルエンジンかの何れかのエンジンに供給し該エンジンの排気ガスから(排気ガスを機器外に排出する排気口上流に設けた)上記不活性ガスを採取する採取手段にて採取しておる事を特徴とする第七の発明に記載の水素と酸素を燃焼するエンジンを提供する。
第九の発明は上記エンジン搭載機器の駐機器場に上記エンジンで生成した電気を受電する受電手段と該エンジンに水を供給する水供給手段を設け上記エンジン搭載機器の駐機器中に当該エンジンを稼働させ電気を製造し該電気を上記受電設備に供給し上記水を受給する事を特徴とする第一の発明から第八の発明に記載の水素と酸素を燃焼するエンジンを提供する。
<<上記問題を解決する手段の補足説明>>
<酸素分離装置1>(図7)空気大気から窒素Nを分離除去する酸素(富化)手段であるが、気体の膜による分離{例えば、プリズムセパレーター(モンサント社)、プリズムアルファガス(モンサント社)(企業名)PV(透過気化)、等}は、現技術に於いては深冷分離方や吸着分離方と並んで常識と成っておる技術であり、分離膜システムはモンサント、ダウ、セパレック、WRグレース、我が国では、宇部興産(何れも会社名)等がそれぞれ独自の分離膜システムを商品化しておる。
*ガスを分離する膜分離の原理構成は、分離する気体の相対的透過速度により分離する物で、早いガスは膜の壁を通って簡単に透過し、サイドポートに出て行き、遅いガスは膜の壁の透過が困難なために、中空糸の内部を移動し、排出口から排出される構成であり、早いガスには、HO,H,HS,CO,Oがあり、遅いガスにはAr,CO,N,CH等がある。
運転圧力8〜150Kg/CmG (8Kg/cm未満の圧力で可能な物もある)
(富化)酸素ガス純度は70%〜100%未満(NOxを排出しない範囲)
被分離ガスに圧力が有ることが条件であり、該分離膜システムの駆動力は圧力差の利用である。コンプレッサーとしては、軸流式、往復式、スクリュー式、ロータリ式、スクロール式等のいずれをも用いることが出来る。
<水蒸気改質装置Ka>触媒を担持した水蒸気改質装置Kaで炭化水素化合物(例えばメタンCH)とスチーム(水蒸気)を反応させ合成ガスを製造する方法で大きな吸熱反応でH2とCOのモル比が3と水素が多く製造される下記反応式で表される。
例えば被改質物質としてメタンCHを用いた改質反応式 CH+HO⇔3H+CO (1) CO+HO⇔H+CO (2) シフト反応・・該反応は(1)の反応時に副次的に起こる。
*上記水蒸気改質用触媒としては、例えば、ニッケル系触媒などの公知の触媒を用いることができる、 ・改質温度650〜1000℃程度。
<炭化水素化合物の部分酸化反応装置BO>上記水素生成手段ZUで触媒を必要としない手段の部分酸化反応であって、炭化水素化合物(例えばメタンCH)と上記酸素分離装置1で分離し高密度となった酸素(1/2O)とを水素生成手段Zに導入し該混合気体の部分酸化反応装置BOに上記水蒸気Aの熱を(耐熱伝導体SCの伝熱で)供給し燃焼を促進して該部分酸化反応装置BOで、水素と一酸化炭素の合成ガスを得、該合成ガスに上記水蒸気Aを供給しシフト反応で水素と二酸化炭素を生成し生成ガスから水素を選択的に透過して取り出す選択透過膜型反応器を使用する構成に出来る。 上記水蒸気改質Ka、電気分解F1,F2に替えて部分酸化反応BOを使用する構成。 上記水素生成手段の他の方法には、メタン直接改質等があり、本願の改質技術として使用する事ができる。
<改質器設置例>本願エンジンでの改質装置及び電気分解装置で反応時間が必要な場合、改質ガスの量を多くする場合等を同時進行で行いたい場合等に複数の水素生成装置を設ける構成にも出来るし、上記改質で吸熱された後の(500℃程度の)排気ガスを使用した改質器を別に設け、更に定置形態のエンジン(例えば発電所の発電に係るエンジン)では改質・分解・分離等が時間(例えば数時間)を要する技術を採用する事も出来、移動形態での設置では上記改質・分解・分離等のサイクルの短い技術を採用するのが好ましい。例えば図4に記載のエンジン燃焼装置2bの水蒸気改質部Kaを4分割し(90°*4)順次水蒸気を噴射(導入)する構成。
<耐熱構造部SC>エンジン燃焼装置2、2b,2c,2d(図1,2,4,5,6、10参照)(富化)酸素と水素の燃焼では燃焼炎の中心温度は2800℃程度で空気(中の酸素)と水素の燃焼では燃焼炎の中心温度は1900℃程度で(富化)酸素の使用により47%程度燃焼炎の中心温度が上がる、上記酸素と水素を燃焼する燃焼熱に耐えれる燃焼室内壁材としては例えばタングステンWかハフニュウムHfかセラミックスかアルミナAlかチタンTiかニッケルNiか炭化ケイ素SiC(炭化ケイ素セラミックス)あるいはそれらをコーティング(蒸着)した物やボイラー等の定置設備では水冷壁の耐火煉瓦が考えられるが移動形態の燃焼室内壁材としては上記タングステンやハフニュウムは加工性、価格の面で問題がある。上記エンジンの燃焼室NE内に設けておる燃料の燃焼火炎2Fの直射熱を受ける吸熱構造手段SCを例えば熱伝導率及び耐熱温度が高いアルミナAl系合金にして設け、該エンジン燃焼室NE内の吸熱構造手段と水素生成手段ZU壁に水蒸気Aを噴射する噴射手段をエンジン燃焼室の冷却手段と水蒸気生成手段の水蒸気Aとしたことが酸素と水素を連続燃焼出来る新技術とすることが出来た。
<水蒸気電気分解FS1>
1a,水蒸気電気分解装置・
サンシャイン計画(産業技術総合研究所)で個体電解質として安定化ジルコニア(Zro−10%Y2O3(酸化イットリュウム))薄膜を用いて800℃〜1000℃で水蒸気を電解する方法が開発されておる、作動温度は900℃〜1000℃、電流密度40A/dm
槽電圧1.3、電力変換効率90%の性能である。
*特開2017-45601(記載)
実施例において、64本から成る固体酸化物形燃料電池スタック10では40〜64Vの高電圧が得られたとしておる。
固体酸化物形燃料電池スタック及び固体酸化物形燃料電池モジュールは、
可搬型固体電解質形燃料電池小型発電機、電気分解反応による水素発生装置の技術分野において好適に利用することができる。
*1b、<電気分解装置F1及びF2>特開2012-52162の水蒸気電気分解技術を上記エンジンの燃料の水素と酸素に分解する技術とすることも出来る技術であり、上記エンジン燃焼装置から排出される排気ガスを上記回転力取り出し装置3を貫流させ貫流後の熱を持つ高温の水蒸気を水蒸気電気分解装置F1,F2にて電気分解(水蒸気電解)し、水素および酸素を発生させる。水蒸気電解温度は高温ほど、熱源の直接利用に有利となる。600℃で作動する中温水蒸気電解装置を用いても良く、1000℃で作動する電気分解装置を用いればさらによい。なお、中温水蒸気電解装置は、電解質としてプロトン伝導体:SrZr0.5Ce0.40.13−aを用い、電極として、水を分解するアノードには、高活性であるSm0.5Sr0.5CoOという組成の酸化物電極、また、水素発生極であるカソードにはニッケル電極と電解質の間にセレート系のプロトン伝導体の薄い層を挿入する構造を採用することにより、600℃、0.2A/cmの条件で0.3Vという低過電圧で作動する技術。本願のエンジン燃焼装置2cに内蔵しておる電気分解装置F1及びF2として採用出来る技術及び電気・水素生成手段4に採用できる電気分解装置F1の技術である。
*1c、<電気分解装置F1及びF2>水蒸気電気分解装置の技術に属する技術であり、高温水蒸気ガスが固体電解質セル内を通過する間に電気分解する構成の技術が開示されておる特開2006−307290や特開平9−228085や特開2017−33816等に記載されており該開示技術記載では約900℃前後の高温条件下において、水蒸気を吹き込みながら外部電源によって燃料極及び空気極に通電することにより、水分子が分解される。具体的には、燃料極において水分子由来の水素ガスが取り出され、空気極において水分子由来の酸素ガスが取り出される。この高温水蒸気電解は、低温の水分解に比べて理論分解電圧が低い(例えば1000℃では0.9V)としておる技術。
*1d, 固体酸化物形水蒸気電解装置(特開2008-243744記載技術)400℃〜600℃の作動温度においても、原子の透過性を向上させることができる金属薄膜を用いた水蒸気電解装置で該金属薄膜を金属組成物と、前記金属組成物の結晶粒界に分散させた酸化物とを含有する。前記金属組成物を構成する金属ターゲットと、前記酸化物を構成する酸化物ターゲットとを同時にスパッタリングして形成した技術であり、上記高温水蒸気電解にて未分解となった水蒸気を更に分解する技術(電気分解装置F2)に出来る。
*1E,<金属酸化物と金属水酸化物の触媒と水蒸気で水素採取装置SY,>特願2008−155195水素発生法、水素発生装置及び触媒。 金属酸化物(例えばCr)と金属水酸化物(例えばKOH)を金属酸化物の融点以上、沸点以下の温度に加熱して固化せしめた触媒を触媒収納室21内に設置し、この収納室21に蒸発室内で蒸発した750℃前後の水蒸気を供給して、中間活性物質を伴う3つの反応を行い水から水素を採集する技術。
<固体電解質膜型反応器> 部分酸化反応利用,特開2006−298664の記載では、多孔質支持体1と、この上に形成された酸素イオン・電子混合伝導性固体電解質からなる緻密層2と、前記緻密層2の上に形成された触媒層3とからなる3層構造の反応構造体を用いた膜型反応器であって、前記触媒層3表面に炭化水素を主成分とした被処理ガス4を、前記多孔質支持体1側表面に高純度酸素ガス5を、それぞれ供給し、改質ガス(合成ガス等)を得ることを特徴とする技術の高純度酸素ガスを供給する膜型反応器。
<海水淡水(真水)化装置Wa>上記エンジン燃焼装置2,2a,2ar,2b,2c,2dを搭載したエンジンに於いて海面走行の船舶等の淡水取得手段であって、海水淡水(真水)化に係る技術は数多く公開され実用化されておりそのいずれかの技術を使用する事でも良い。例えば特開2018−30133では海水をろ過する海水ろ過器とろ過器でろ過した水を逆浸透膜で淡水に分離する逆浸透膜分離装置と取水する水取水部への貝類の付着を制御する制御剤とを備えた海水淡水化装置がある。
<熱交換器G,G3> 上記熱交換装置であるがすでに常識となっておる熱を移動させる系の製品で例えばエャーコンディショナーのエャーを熱媒との熱交換で圧縮した熱媒の熱を水もしくは空気と交換する等の技術である。
<熱電エネルギー変換装置、>特開2012−52162水素および酸素の製造・使用方法。特許文献2に記載の技術であって、熱を電気に直接変換する熱電変換装置となる技術に係る熱で熱電変換モジュールが試作され、発電試験が実施されており、発電試験の結果(300℃に加熱し無負荷=電流ゼロ)起電力0.39Vを取り出すのに成功した事例が公開されておる、上記施策された発電モジュールは、p型材料にFe2V0.9Ti0.1Al2,n型材料にFe2val0.9si0.1を用いて18個の熱電素子からなるのである、 電極には銅が使用され、p,n各材料と拡散接合で接合しており、該モジュールの片方は20℃で一定とし、他方面を300℃に加熱し上下面の温度差により発電する技術である。
<燃料電池発電機FD1>上記特許文献1に記載しておるエンジン燃焼装置2で生成した水素を燃料スタックに送り該燃料スタックで電気を生成し該電気を走行動力とする構成(燃料電池発電機と言える構成)。
上記水素と酸素で電気を生成して自動車の動力とする構成はすでにハイブリッド車として商品化されておる技術であるが本願生成の水素と酸素と燃料スタックで電気を生成する構成も電気生成手段4の1手段としている。
<気体分離膜による分離器(分離手段)>・高分子膜分離器,水素の膜分離で工業的に実績のある物にポリイミド、ポリアミド、ポリスルホン、等が有り
・金属分離膜(パラジュウムPd金属薄膜),金属パラジュウム膜は、水素分子のみ透過する。すなわち、水素分子が膜表面で原子化してプロトン(H)とエレクトロン(e)となり、これが膜中を拡散して膜の表面で再結合し、分子化して分離する物であり、パラジュウム合金の細管を300℃〜500℃に加熱する事で水素を分離出来る、この膜は高純度の水素製造に適している。
・高温水素ガス分離膜(セラミックス)700℃程度の高温水素ガス分離膜システムがあり例えば600℃〜1000℃で改質をする水蒸気改質で改質された水素と一酸化炭素の合成ガスから水素を分離して取り出す高温ガス分離に適している。
・膜型反応器(反応器と分離器一体型)特開2008−302334の記載では
含酸素炭化水素を主原料ガスとし、水(水蒸気)、二酸化炭素、酸素等を副原料ガスとして用いて改質反応、部分酸化反応、分解反応等の化学反応を利用して、水素を含む混合ガスを生成した後に、水素を選択的に透過させることの出来る選択透過膜(例えばパラジウム合金膜)によって混合ガスから水素を分離して取り出す膜型反応器であり上記の化学反応と選択分離とを同時に行うことの可能な選択透過膜型反応器(メンブレンリアクタともいう)である。
*上記水素及び一酸化炭素及び酸素及び水蒸気の高温帯で分離する分離膜での高温ガス分離が使用困難な場合熱交換装置にて吸熱後の低温(例えば100〜200℃程度)ガスから公知の分離方法(例えばPAS吸着法やメンブレン分離膜等で)で分離する構成にも出来る。
排気流力5を回転力として取り出す回転力取り出し装置3であるが、流体(水、水蒸気、燃焼ガス)の略直線方向の流力を回転力にして取り出す構造にはダムからの落水力や潮流の干満潮の流力、農業用水路の水流力等の水の流れる力を回転力に替える技術及び蒸気機関(水蒸気の圧力を利用してピストンの往復運動を回転力にする原動機)やタービン〔水蒸気を吹き付けて羽根車を回転運動させる原動機の翼体やガスタービンの圧縮空気に燃料をまぜて燃焼させた高温・高圧のガスを使ってタービンを回す原動機の翼体(動翼)等〕があり、本願では常識化(公知の技術)されておる翼体(羽根車)であれば良く上記回転力取出し構造部3を貫流する排気ガス及び水蒸気は少なくとも600℃の高温なので必要に応じて耐熱構造手段(例えばニッケル合金にセラミックコーティング等の加工をする)を設けるかあるいは上記通水路MHの水を上記回転力取出し構造部3の回転翼体の軸部から水を導入する手段(例えば水を散水するスプリンクラーの回転する回転体に水を供給する構造)にて回転翼体に水を供給し該回転翼体の熱を吸熱した水もしくは水蒸気を回転翼体外に放出し該回転翼体を貫流しておる排気流5と合流し下流に流す構造として翼体(羽根車)の冷却手段とする構成でも良い。
移動式ガスステーションとは,例えば二酸化炭素又は一酸化炭素の何れか一種以上の空のタンクを備えた大型トラックや大型トレーラーをガスステーション(給油ステーション等)に配備し該大型トラックや大型トレーラーのタンクの二酸化炭素(又は一酸化炭素)の積載量が規定値に達すると空の二酸化炭素ガス(又は一酸化炭素ガス)タンク車と入れ替え基地に運搬し、更に炭化水素化合物(例えばメタンCH)を積載しておる大型トラックや大型トレーラーをガスステーション(給油ステーション等)に配備し該大型トラックや大型トレーラーの積載量が空になるとガス基地に帰り積載する形態である。上記移動式ガスステーションの別の形態では現在流通しておる酸素ガスボンベ・二酸化炭素ガスボンベ・炭化水素化合物(例えばメタン)ボンベ等の高圧ガスボンベ若しくは液化ガスボンベを複数本積載できるラックに搭載し運搬する形態にすれば、上記ガス授受システム(のインフラ整備として)とすることが出来る。
<二酸化炭素CO資源化手段CH>上記水蒸気改質Ka、及び電気・水素生成手段で生成した二酸化炭素CO資源化手段CHであって、上記二酸化炭素COを改質分解技術で炭素と酸素を含む資源(例えば一酸化炭素・メタンCH・メタノールCHOH・ジメチルエーテルCHOH等)を得る技術。
*上記資源化手段CH1は、特許文献4に記載の技術にて資源化手段とする。
*−1、水素を製造しておる設備を有する外部施設に引き渡し該外部施設で炭化水素化合物(例えばメタンCH・メタノールCHOH・ジメチルエーテルCHOH)に加工する。
*−2、太陽光・風力・波力発電等の発電設備を有する外部施設の電力で水を電気分解して水素H2を得その水素と二酸化炭素COで炭化水素化合物(例えばメタンCH・メタノールCHOH・ジメチルエーテルCHOH)に加工する。
*−3、水素Hを余剰として排出しておる石油精製所等に引き渡し該石油精製所にて炭化水素化合物(例えばメタンCH・メタノールCHOH・ジメチルエーテルCHOH)に加工する。
*二酸化炭素CO資源化手段CH2は、水蒸気改質を有する外部施設にて炭化水素化合物に加工する。例えば千代田化工建設(企業名)では二酸化炭素COとメタンCHを貴金属系触媒を使用した改質で2CO+2Hの合成ガスを生成しており(スチーム/COリフォーミング)その技術を活用。
*二酸化炭素CO資源化手段CH3は,東京工業大学細野英雄教授らのグループが発明されておる。C12A7エレクトライドが二酸化炭素の分子を室温で選択的に吸着し、分解する技術(後述)にて二酸化炭素を一酸化炭素に分解する技術使用。
*−1、石灰(CaO)とアルミナAl2O3から構成される化合物12CaO 7Aⅼ(以下C12A7)の構造の中に、電子を取り込んだC12A7エレクトライドが二酸化炭素の分子を室温で選択的に吸着し、一酸化炭素と酸素に分解する分解技術。
*二酸化炭素CO資源化手段CH4は,・グローバル二酸化炭素リサイクル
東北大学金属研究所らのグループでは、海水を電気分解により水素を生成し生成した水素と二酸化炭素から、常圧300℃でメタンの生成と、該生成に使用する触媒の発明を含む技術を発明されておられ、該電気は中東地区等の砂漠での太陽光発電で発電しており、該二酸化炭素は二酸化炭素排出国からの輸送で調達するものである。
*二酸化炭素CO資源化手段CH5は,二酸化炭素のカソード還元(特開2018−24895)触媒及び電極触媒、並びに電極触媒の製造方法、 水の電気分解による水素の生成、または二酸化炭素をカソード還元して炭素含有物質に変換する触媒=銅酸化物の被膜を有する触媒。 CO+8H+8e+→CH+2HO 二酸化炭素と水素でメタンを生成する構成。
*二酸化炭素CO資源化手段CH6は,二酸化炭素は最近工業プロセスで超臨界流体COを溶媒として使用する方法が見出されており、該方法での活用も出来る。
<上記不活性ガス混入手段>該エンジン燃焼装置(Z又は2,2a,2ar,2b,2c,2d)の燃焼ノズルに該不活性ガスを導入し燃焼時の酸素濃度をコントロールする一手段であって該手段を導入する事で現在製造されておるレシプロエンジンやディゼルエンジンやロータリーエンジンをそのまま(若しくは耐熱手段を施す事で)水素と酸素を燃焼可能なエンジンとする事が出来る手段である。
1、最大の課題は地球温暖化に対処する「CO」の排出削減であり、(富化)酸素を使用する事で、窒素酸化物「NO」を排出しないエンジンとするとともに課題である二酸化炭素をも排出しない構成にしておるので、温室効果ガス削減施策課題の1つを構成する温室効果ガス排出削減策のエンジンとする事が出来た。
2、改質で生成した水素と一酸化炭素CO又は二酸化炭素COを移動式ガスステーション(又はガスステーション)に引き渡す形態としたことでメタンと水の供給費用より多くの対価を得ることが出来た。
3、エンジンで生成した電気を電気授受システムEaSTで売電する形態とした事で多くの対価を得ることが出来た。
4、上記不活性ガス混入手段を設けた事で水素生成手段ZUを有すエンジンに移行する体制の整備までの期間上記エンジンを「CO」、「NO」を排出しなエンジンとする事が出来る。(例えばドイツの化石燃料燃焼エンジンの使用禁止対応策とする)
図面に於けるそれぞれの寸法関係は、重要部分は拡大し、詳細が解り難いところは誇張している、また広範囲部分、又は本願発明で重要度の低い部分を、記載する時は縮小している、従って図面間及び図面内の寸法は比例していないし、実寸、縮尺寸法ではない。又線間の間隔が狭い場合スキャンの段階で黒く太く1本の線に成り易いので、線間の間隔を広げるか、一本の線で記載している、更に本願発明の根幹(主要)機構以外部に付いては、図面間で省略している部分もある。
(分離装置1により分離された)酸素と水素を燃焼させるエンジン燃焼装置Zであって(図1)、該燃焼装置内に水素生成手段ZUを内蔵しており、該燃焼装置は蓄ガスタンクT1及び蓄ガスタンクT2から燃焼ノズル2Nに酸素及び水素を供給し点火栓2Pにより点火し燃焼室NE内で燃焼しており、該燃焼室には燃焼による直射熱を受ける耐熱構造部SCを設けており該耐熱構造部には水タンクより水を供給し供給された水を耐熱構造部SCを通過する間に上記燃焼による直射熱を受けて水を水蒸気にする通水路MHaを設けて該通水路MHa内で水蒸気Aを生成しており生成した水蒸気Aを上記耐熱構造部の外殻体(外側)に設けておる水素生成手段ZU内に噴射する水蒸気噴射ノズルZjを設け該噴射ノズルから噴射しており、該水素生成手段ZUにて水蒸気を反応(例えば電気分解・水蒸気改質・部分酸化反応等)させる副材料SBを供給する副材料(例えば熱・電気・酸素・炭化水素化合物等)SB供給手段と、該水素生成手段ZUに供給された水蒸気Aと上記供給された副材料SBの何れか(熱・電気・酸素・炭化水素化合物等)一以上を使用して水素若しくは水素を含む混合ガスを生成する水素若しくは水素を含む混合ガス生成手段と、該水素若しくは水素を含む混合ガスから水素を分離する分離装置と、該分離装置に水素若しくは水素を含む混合ガスを導入して水素を取り出しており、得られた水素を上記エンジン燃焼装置Zの燃料の水素としており、上記通水路MHaで生成した水蒸気Aを燃焼室NEに供給する供給ノズルZjと該供給ノズルZjから供給された水蒸気Aは燃焼室NE内の熱を吸熱してさらに高熱に成った水蒸気Aaと,該水蒸気Aaは上記燃焼で生成される水蒸気Bと水素生成手段ZUで分解(改質)されなかった未分解水蒸気STn(及び未分解水蒸気STm)とともに下流に排気として排出される排気流5と、を備えておる水素を燃焼し水素を生成するエンジン燃焼装置Z。
燃焼装置Zの下流に回転力取り出し装置3を設けており、上記排気流5を該回転力取り出し装置3に導入し回転力取り出し装置3(内の例えば回転翼体)を貫流させ略直線方向の流力を回転力に変換して取り出し取り出した電気(か動力のいずれか一方か両方)は蓄電器40に蓄電されるか、動力として消費されるか電気として使用されるか、電気・水素生成手段4で使用するかあるいは電気授受システムEaSTに引き渡す(例えば電力会社に売電する)かいずれか1以上の形態としており、
上記回転力取り出し装置3を貫流し排出された排気流5aを受けて該排気流5aの熱と水蒸気を導入して電気Ea・水素を生成する電気Ea・水素生成手段4を設けており、該電気Ea・水素生成手段4(下記電気Ea・水素生成手段については上記しており、詳細説明は省略する)は例えば水蒸気電気分解装置F1・水蒸気電気分解装置FS1・水蒸気改質Ka1・熱電エネルギー変換装置DE・海水真水化装置Wa・燃料電池発電機FD1・熱交換器G等の組み合わせ可能な(電気Ea・水素生成が理論上出来る構成)上記排気流5aの熱及び水蒸気を電気・水素のいずれか一方か両方かを生成する装置(公知の技術使用)であり、更に該エンジンを中大型船(例えば500トン以上)や定置形態設置では,改質・分解に時間を要する水熱化学分解F2等を用いた電気Ea・水素生成手段4とすることが出来る。上記生成手段内で生成する中間生成物(例えば一酸化炭素CO・水素・酸素・電気等)を上記排気流5aの熱と水蒸気にプラスして使用することも含む。上記電気Ea・水素生成手段4で未分解(又は生成された)となった水蒸気は水蒸気再加熱(手段)装置WR(水循環ループ)で上記電気分解装置F1の下流(燃焼室NE)に戻入れるか水タンクT4に戻し入れる。
上記エンジン燃焼装置Zと同じ構成部は同じ符号を用いて説明を省略しており異なる部分のみを解説する。
上記水素生成手段ZUのの水素生成手段を電気分解装置F1としたエンジン燃焼装置2cであって(図2)、
上記水蒸気Aを上記耐熱構造部の外殻体に設けておる電気分解装置F1と燃焼室NE内に噴射する水噴射ノズルTjを設け該噴射ノズルから噴射しており、電気分解装置F1に蓄電器40から(定置形態(例えば発電所)エンジンでは外部からの電力であっても良い)電気Eaを供給しており、電気分解装置F1に噴射された水蒸気Aと上記供給された電気とで電気分解装置F1で水素と酸素に分解して取り出しており、得られた水素と酸素から顕熱を回収する熱交換器G3に導入し(直接燃焼ノズル2Nに供給することも可能)該熱交換器G3で回収した熱Eは該エンジン燃焼装置2C以降で水素及び酸素及び一酸化炭素及び電気及び動力のいずれか1以上を得るエネルギーとして使用する形態にしておる水素と酸素を燃焼させる燃焼装置。
上記エンジン燃焼装置Zと同じ構成部は同じ符号を用いて説明を省略しており異なる部分のみを解説する。
上記水素生成手段ZU水素生成手段を水蒸気改質部Kaとしたエンジン燃焼装置2b(図3)、であって、
上記水素生成手段ZUに水蒸気改質部Kaを設け該水蒸気改質部Kaの外殻部(外側)にメタンCH(炭化水素化合物、以降メタンで解説する)通気路MCを設けてメタンCH4をメタンCH噴射ノズルCjから水蒸気改質路Kaに導入しており、
上記水蒸気Aを上記耐熱構造部の外側(外殻部)に設けておる水蒸気改質部Kaと燃焼室NE内に水噴射ノズルTjから噴射しており、
噴射されたメタンCHと水蒸気Aは水蒸気改質部Ka内で水素と二酸化炭素の合成ガスに改質され(該水蒸気改質部は例えば触媒をアルミナ担体に担持したハニカム構造)改質された水素ガスは分離手段(例えば高温水素ガス分離膜(セラミックス))で水素と二酸化炭素+未改質水蒸気STmに分離され水素を取り出し、更に二酸化炭素+未改質水蒸気STmを分離し二酸化炭素を取り出し未改質水蒸気STmは排気流5に合流して下流に排出される。上記取り出された水素は(水素タンクT2経由)燃料として燃焼ノズル2Nに導入されるサイクルを構成し、二酸化炭素は二酸化炭素タンクT7に蓄ガスし二酸化炭素資源化手段CHにて資源として活用される。
上記二酸化炭素は一酸化炭素の状態で取り出す(シフト反応はしない)事も出来る。
ガスの運搬時の安全性は二酸化炭素が勝が一酸化炭素であっても良い。該水蒸気改質部KaではHO/CH(モル比)2〜5程度の水蒸気過剰化でおこなわれる。
上記エンジン燃焼装置2bで生成した水素で該燃焼装置の水蒸気改質部Kaを除いたエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arの燃料の水素とし更に自らのエンジン燃焼装置2bの燃料の水素を自給する構成、 CH+HO=CO+3H これをシフト反応(発熱反応)で CO+HO=H+CO が生成することになり、上記燃焼熱で4分子弱の水蒸気を生成出来、水蒸気から2分子の水素とメタンから2分子の水素Hと1分子のCOが生成することになり、上記4分子弱の水素が生成するとすれば、燃焼には1分子の水素があればよく水蒸気改質を持つ燃焼室2bは一つあれば水蒸気改質をもたないエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arの何れか3個弱を燃焼させる水素が確保される計算になる.上記1に満たない水素の不足分(未改質分)は電気+水素生成手段4から補給出来るので図4の記載例の様に水蒸気改質Kaを持つエンジン燃焼装置2b一台で水蒸気改質Kaを持たないエンジン燃焼装置2か2aか2arを3台稼働させるエンジンCPT(コンプリート)に出来〔又上記シフト改質をしない構成では水蒸気改質Kaを持つエンジン燃焼装置2b一台で水蒸気改質Kaを持たないエンジン燃焼装置2か2aか2arかの何れかを2台稼働させるエンジンCPT(コンプリート)に出来〕ることを表した図5。
上記エンジン燃焼室2は水素(H)を(富化)酸素(O)で連続(間欠にも出来る)燃焼させるエンジンの燃焼工程の概略構成フロー図6であって、エンジン燃焼工程2に空気から窒素を分離除去する酸素分離器を設けており、該酸素分離器には空気圧縮装置と空気を(富化)酸素と窒素とに分離する分離装置{例えばメンブレン分離膜(図)}と分離した(富化)酸素を畜ガスする畜ガスタンクT1を備えており、該畜ガスタンクから(富化)酸素導入管3にて燃料噴射ノズル2Nに供給されており、燃料の水素を畜ガスしておる水素畜ガスタンクT2より水素導入管2にて燃料噴射ノズルに供給されており、該燃焼ノズルから燃焼室部NEに噴射された燃料の水素と富化酸素に点火栓2Pにて点火され連続燃焼し、該燃焼による排気ガス(大半は水蒸気)は排気流5となって排出される。上記エンジン燃焼工程(外郭体)の内外壁間(2G,2U間)に通水路MHを設けて該通水路MHに水タンクから水導入管4にて水を該通水路MHに導入しており、燃焼室部内壁2Uには通水路の水を燃焼室部内に噴射する噴射ノズルTJを複数設けており、上記(富化)酸素と水素の連続燃焼による燃焼火炎の直射熱を受ける吸熱構造手段SCを上記燃焼室部内壁の内側中心方向に間隔を開けて設けて水素と(富化)酸素の燃焼による燃焼室内壁面の(燃焼温度に対する)保護手段としており、該水を噴射ノズルTJから吸熱構造手段の大径方向面及びエンジンの燃焼室部内に噴射しており該エンジンの燃焼室部内の吸熱構造手段に噴射した水は吸熱構造手段SCの熱を吸熱して該水を水蒸気にしており、燃焼室部内NEに噴射した水も該燃焼室部内の燃焼熱(排気ガスの熱)を吸熱して該水を水蒸気にしおり、該燃焼室部内の冷却手段及び水蒸気生成手段としており、噴射された水は水蒸気と成り上記(富化)酸素と水素の燃焼で生成された排気ガスとともに排気ガス流路5に排出される構成の水素と(富化)酸素空気を連続燃焼するエンジンの燃焼工程2。
上記エンジンの燃焼工程2a(図6)は水素(H)を(富化)酸素(O)で燃焼させるエンジン燃焼装置であって、該エンジン燃焼装置2aに酸素を分離供給する酸素分離装置1と,分離した酸素(酸素路3にて供給)と水素(水素タンクから水素路2にて供給)を燃焼ノズル2Nに送り点火栓2Pにて点火され燃焼させるエンジン燃焼装置2と,上記エンジン燃焼装置2の内外壁間(2G,2U間)に設けておる通水路MHと,該通水路MHに水タンクT4から水路4にて水を該通水路MHに導入しており、燃焼室部内壁2Uに設けておる通水路の水を燃焼室内壁面に直接噴射する複数の噴射ノズルMJと,該噴射ノズルMJから噴射した水を水蒸気aとする水蒸気生成手段とを備え,上記(化)酸素と水素の燃焼で生成された排気ガスの水蒸気Bともに排気流5となって排出しておる事を特徴とする水素と酸素を燃焼するエンジン燃焼装置2a。
上記エンジンのエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2ar又はエンジン燃焼装置2b又はエンジン燃焼装置2c又はエンジン燃焼装置2dのいずれか1以からの熱及び水蒸気及び回転力取り出し手段3で生成された電気Eaの一部を使用した電気・水素生成手段4にて改質・分解等々で未分解(未改質)となった水蒸気を燃焼装置2aの燃焼室NE内に戻し入れ排気流5に合流させ該排気流5の熱を吸熱し再加熱水蒸気とする水蒸気再加熱装置WRを備え水循環ループを構成した燃焼装置(図7)。

上記実施例3に記載の構成の下流に上記4台分の燃焼室の排気流5を一台の回転力取り出し装置3に連結した概略構成図5(B)であって、メタンを改質するエンジン燃焼装置2b1台で4台分の燃焼室の排気流5を回転力に変換する構造にした一例であり上記形態(CPT)で商品化出来るもの。
上記エンジン燃焼装置2,2a,2ar,2b,2c,2dを有するエンジンの好ましい移動体での実施形態は上記燃焼装置及び電気・水素生成手段4を一定の設定条件で稼働し移動体の移動に係る制御は電気とする。
上記エンジン上記実施例2〜5のエンジンを移動体に搭載した該エンジン搭載機器(航空機・船舶・鉄道・自動車等々)の駐機場(駐車場・桟橋・マリーナ等の係船場・飛行場・軍隊の基地等)に一酸化炭素CO又は二酸化炭素COをガスステーション又は移動式ガスステーションを設けて該ステーションに引き取らせ水と炭化水素化合物(例えばメタンCH)の供給を受ける形態にするか該エンジンにより生成される電気を引き取らせる設備(電気授受システムEaST)を設けて電気を引き取らせるものである。
すなわち上記移動体移動時は上記エンジンを稼働して燃料の水素(及び酸素)を生成し移動体のエネルギーとし移動と言う仕事を終えた後は上記移動体エンジンを稼働させ生成した一酸化炭素CO又は二酸化炭素COをガスステーション又は移動式ガスステーションに買い取らせ水と炭化水素化合物(例えばメタンCH4)の供給を受ける形態にするか該エンジンにより生成される電気を引き取り設備(外部社会電力エネルギー供給インフラへの電力供給)にて引き取らせるかするかのいずれかにすることで該移動体非稼働時を活用する手段とする。
該手段によりエンジン内の停止・稼働の繰り返しによる該エンジンの構成材の疲労による亀裂破壊等を防止出来該エンジンの寿命延長に繋げるとともに該エンジン生成物の販売もしくは使用(例えば自工場で使用)により該エンジンの原価償却を早く出来る。
上記水素生成手段ZUを部分酸化反応装置OS(エンジン燃焼装置2d)とした一例であって(図10)、水素生成手段部にメタンCH4と酸素を供給し該水素生成手段ZU部を流れておる水蒸気Aの熱を耐熱伝熱構造部SCを介して上記メタンCH4と酸素の混合ガスに供給し部分酸化反応を促進し該反応で生成した合成ガスをシフト反応部に送りさらに水蒸気Aを導入し水素と二酸化炭素を生成し、生成したガスから選択透過膜にて水素を分離して取り出しておる構造。
*上記耐熱構造部SCの外殻(外側)に該耐熱構造部の熱と該エンジン外から供給される炭化水素化合物と上記酸素分離器1から供給される酸素を改質する部分酸化反応装置OSで、水素を含む混合ガスを生成した後に、該混合ガスに水蒸気Aを供給し水素と二酸化炭素を生成し生成した該ガスから水素を分離して取り出し取り出した水素を該燃料エンジンの燃料の水素としておる事を特徴とする水素と酸素を燃焼するエンジである。
*上記炭化水素を主原料ガスとし、水(水蒸気)、二酸化炭素、酸素等を副原料ガスとして用いて部分酸化反応、分解反応等の化学反応を利用して、水素を含む混合ガスを生成した(更にシフト反応後に)、水素を選択的に透過させることの出来る選択透過膜(例えば高温水素ガス分離膜(セラミックス))によって混合ガスから水素を分離して取り出す技術を本願の水素生成手段ZUの一手段としておる。
本願の特許請求の範囲に記載の権利範囲事項から容易に想到出来る構造を使用したもの全て本願の権利範囲である。
本願は空気中の酸素を分離した(富化)酸素と水素を燃焼させるエンジンであり、水を原料とした水素燃料として幅広く産業に利用できるエンジンである。
酸素と水素を燃焼させるエンジンの燃焼装置Zの1例図(軸線方向断面図)。 酸素と水素を燃焼させるエンジンの燃焼装置2cで水蒸気電気分解装置F1内蔵(一体)型の1例図(軸線方向断面図)。 上記水蒸気電気分解装置F1に替えて水蒸気改質部Kaを設けたエンジンの燃焼装置2bの1例図(軸線方向断面図)。 上記水蒸気改質部Kaを設けたエンジン燃焼装置2bで生成した水素4Hで4台のエンジン燃焼装置の燃料とした概略構成図。 (A)エンジン燃焼装置2bの軸線方向の中心部を径方向の断面から燃料噴射ノズル方向を見た断面図。 (B)上記径方向の断面から排気排出口方向を見た断面図。 (A,B,E)エンジン燃焼装置2、2a、2arの長手方向断面図,(C)(D)燃焼室内壁面に噴射する噴射ノズル設置要領図。 上記エンジン燃焼装置2、2a、2arから回転力取り出し装置3(を経由して)から電気・水素生成装置4(を経由して)から水蒸気再加熱手段WRにて上記エンジン燃焼装置2、2a、2ar内に戻し入れる循環ループの概略図。 酸素分離装置1の概略構成図。 上記回転力取り出し装置3の回転翼体の冷却手段を表した回転翼体断面図。 上記水素生成手段ZU部に部分酸化反応を設けた概略構成図。

Claims (9)

  1. 酸素と水素を燃焼させた熱で水を水蒸気にしており、該水蒸気を反応させて水素を生成する構成を設けたエンジン燃焼装置Zであって、該燃焼装置Zの燃焼ノズルに酸素及び水素を供給し点火栓により点火し燃焼室内で燃焼しており、該燃焼室に設けておる燃焼による直射熱を受ける耐熱構造部と、該耐熱構造部に設けておる水を耐熱構造部を通過する間に上記燃焼による直射熱を受けて水を水蒸気にする通水路と、該通水路内で水蒸気Aを生成する水蒸気A生成手段と,上記耐熱構造部の外殻体に設けておる水素生成手段ZUと、該水素生成手段ZUに上記水蒸気Aを供給する供給ノズルと該供給ノズルから該水素生成手段ZUに供給しており該水素生成手段ZUにて水蒸気を反応させる副材料を供給する副材料供給手段と、該水素生成手段ZUに供給された水蒸気Aと上記供給された副材料の内の何れか一以上を使用して水素若しくは水素を含む混合ガスを生成する水素若しくは水素を含む混合ガス生成手段と、該混合ガスから水素を分離する分離装置と、該分離装置に水素若しくは水素を含む混合ガスを導入して水素を取り出しており、得られた水素を上記エンジン燃焼装置Zの燃料の水素としており、上記通水路で生成した水蒸気Aを燃焼室に供給する供給ノズルと該供給ノズルから供給された水蒸気Aは燃焼室内の熱を吸熱してさらに高熱に成った水蒸気Aaと該水蒸気Aaは上記燃焼で生成される水蒸気Bと水素生成手段ZUで分解されなかった未分解水蒸気とともに下流に排気として排出される排気流と、を備えておる水素を燃焼し水素を生成するエンジン燃焼装置Zを特徴とする水素と酸素を燃焼するエンジン。
  2. 上記エンジン燃焼装置Zの下流に設けておる回転力取り出し装置に該燃焼装置Zからの排気流5を貫流させ該回転力取り出し装置を貫流した排気流5aを上記耐熱構造部内に設けておる通水路に戻し入れる手段を設けて上記通水路に排気流5aを戻し入れており、更に上記戻し入れ手段を燃焼装置2,2aに設け、上記燃焼装置下流の回転力取り出し装置を貫流した排気流を燃焼室に戻し入れる手段としておる事を特徴とする請求項1に記載の水素と酸素を燃焼するエンジン。
  3. 上記回転力取り出し装置の回転翼体であって、排気流5の略直線的な排気流力を回転力に変換する回転翼体と該回転翼体の回転力を取り出す一方の回転軸と、該回転軸の他方の回転軸と、上記回転力取り出し装置の外殻体と上記他方の回転軸端部から回転軸内と回転翼体内を通り回転翼体外に通じる通水路とを備えており、上記通水路に水を導入し該通水路を通過する過程で該水が回転翼体の熱を吸熱し水蒸気Cとなり回転力取り出し装置貫流後の排気流5aとして下流に排出される構造で、回転翼体の冷却手段を有する回転力取り出し装置とした事を特徴とする請求項1から請求項2に記載の水素と酸素を燃焼するエンジン。
  4. 上記エンジン燃焼装置Zを搭載するエンジンの回転力取り出し装置を貫流した排気流5a、を導入して電気&水素を生成する電気&水素生成手段であって、該手段に導入されておる排気流5aの持つ熱と水蒸気及び回転力取り出し装置で取り出した電気及び海水の内の1以上を材料として、水蒸気電気分解装置F1か水蒸気電気分解装置FS1か金属酸化物と金属水酸化物の触媒と水蒸気で水素を採取する装置か水蒸気改質装置か水熱化学分解か熱電エネルギー変換装置か、熱交換器か燃料電池発電機か海水真水化装置かの技術のいずれか1種以上の装置を用いるか組み合わせて、電気か水素の一方か両方を生成し、上記生成した水素の量により上記エンジン燃焼装置2,2aを有するエンジンを複数台稼働させて稼働した複数台のエンジンから電気又は動力の何れか一方か両方かを更に生成する事を特徴とする請求項1から請求項3に記載の水素と酸素を燃焼するエンジン。
  5. 上記水素生成手段ZUを有すエンジンを稼働させ該水素生成手段ZUで生成した水素を当該エンジンと水素生成手段ZUを有さないエンジン燃焼装置2及び2a及び2arかの何れかの燃焼装置を複数台稼働させる水素とし、水素生成手段ZUを有すエンジン1台と水素生成手段ZUを有さないエンジン複数台稼働させ稼働させたエンジン全部で電気又は動力の何れか一方か両方かを生成しておる事を特徴とする請求項1から請求項4に記載の水素と酸素を燃焼するエンジン。
  6. 上記エンジンで生成した電気を蓄電器に蓄電し移動体の移動電力として使用し、余剰となった電気か移動体非移動時の該エンジン稼働により生成する電気かのいずれかの電気の受け渡し形態を電気授受システムとしておる事を特徴とする請求項1及び請求項4乃至請求項5に記載の水素と酸素を燃焼するエンジン。
  7. 上記エンジン燃焼装置Zを備えるエンジンに供給する供給気体を酸素と水素に加え不活性ガスを混入させる手段を設け該燃焼装置での火炎中心温度を下げる方向にコントロールする手段としており更に該エンジンの排気ガスから上記不活性ガスを採集する手段を設けて、該不活性ガスを採集しておる事を特徴とする請求項1から請求項6に記載の水素と酸素を燃焼するエンジン。
  8. 上記エンジンに供給する供給気体をレシプロエンジンかロータリーエンジンかディゼルエンジンかのいずれかのエンジンに供給し該エンジンの排気ガスから上記不活性ガスを採集する手段を設けて、該不活性ガスを採集しておる事を特徴とする請求項7に記載の水素と酸素を燃焼するエンジン。
  9. 上記エンジン搭載機器の駐機器場に上記エンジンで生成した電気を受電する受電手段と該エンジンに水を供給する水供給手段を設け上記エンジン搭載機器の駐機器中に当該エンジンを稼働させ電気を製造し該電気を上記受電設備に供給し上記水を受給する事を特徴とする請求項1から請求項8に記載の水素と酸素を燃焼するエンジン。
JP2018545513A 2017-12-28 2018-05-14 水素と酸素を燃焼するエンジン。 Expired - Fee Related JP6680431B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017254895 2017-12-28
JP2017254895 2017-12-28
PCT/JP2018/018606 WO2019130619A1 (ja) 2017-12-28 2018-05-14 水素と酸素を燃焼するエンジン。

Publications (2)

Publication Number Publication Date
JPWO2019130619A1 JPWO2019130619A1 (ja) 2020-02-06
JP6680431B2 true JP6680431B2 (ja) 2020-04-15

Family

ID=67063364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018545513A Expired - Fee Related JP6680431B2 (ja) 2017-12-28 2018-05-14 水素と酸素を燃焼するエンジン。

Country Status (2)

Country Link
JP (1) JP6680431B2 (ja)
WO (1) WO2019130619A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7004887B2 (ja) * 2019-12-03 2022-02-07 寛治 泉 水素と酸素を燃焼するエンジン。
WO2021186089A1 (es) * 2020-03-19 2021-09-23 Luis Cuenca Adrover Motor rotativo de propulsión por empuje
RU2763804C1 (ru) * 2021-03-04 2022-01-11 Виктор Фёдорович Карбушев Двигатель внутреннего сгорания
CN115614184A (zh) * 2022-10-27 2023-01-17 北京航天试验技术研究所 一种小型蒸汽发生器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239488A (ja) * 2004-02-26 2005-09-08 Tohoku Techno Arch Co Ltd 水の熱化学的分解方法
JP5271545B2 (ja) * 2007-12-05 2013-08-21 高正 浅川 水素発生方法、水素発生装置及び触媒
JP5967682B1 (ja) * 2015-10-16 2016-08-10 寛治 泉 富化酸素空気と燃料の燃焼で燃料を生成するエンジン。
JP6748802B2 (ja) * 2016-07-31 2020-09-02 寛治 泉 水素と富化酸素空気を連続燃焼するエンジンシステム。

Also Published As

Publication number Publication date
JPWO2019130619A1 (ja) 2020-02-06
WO2019130619A1 (ja) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6680431B2 (ja) 水素と酸素を燃焼するエンジン。
EP2941475B1 (en) Carbon dioxide conversion to hydrocarbon fuel via syngas production cell harnessed from solar radiation
EP2692008B1 (en) Solid-oxide fuel cell high-efficiency reform-and-recirculate system
CA2528691C (en) Fuel cell, operating method thereof, sintering furnace, and power generator
CN106133973A (zh) 用于制氢的重整器‑电解槽‑净化器(rep)组件、包含其的系统以及制氢的方法
JP5967682B1 (ja) 富化酸素空気と燃料の燃焼で燃料を生成するエンジン。
US20130260268A1 (en) Fuel cell reforming system with carbon dioxide removal
JP2021504504A (ja) 車両排気からの二酸化炭素の液体燃料および燃料添加剤への変換
Prigent On board hydrogen generation for fuel cell powered electric cars. A review of various available techniques
CN109707992A (zh) 一种多功能充电加氢站
Milewski et al. Concept of a solid oxide electrolysis-molten carbonate fuel cell hybrid system to support a power-to-gas installation
CN109638324A (zh) 针对多种碳氢燃料的一体化多套管结构的纯氢催化装置及pemfc发电系统
KR20160036881A (ko) 이산화탄소 재활용 방법 및 이를 이용한 이산화탄소 재활용 장치
JP6473955B2 (ja) 分離手段により分離された酸素と水素を燃焼するエンジン。
EP3906356B1 (en) System and method for adjusting pressure in a reservoir
KR102153760B1 (ko) 선박
KR102168018B1 (ko) 메탄화 기능이 추가된 연료개질기와 연계된 연료전지 시스템
WO2017051610A1 (ja) 内燃機関
KR102190948B1 (ko) 선박
JP2019196028A (ja) 水素と酸素を燃焼するエンジン。
CN115354345A (zh) 光伏光热耦合共电解结合垃圾发电的综合能源系统及其工艺方法
KR101842581B1 (ko) 자립형 셀프서스테이닝 방식의 열교환기타입 모듈형 리포머
CN112786934A (zh) 一种以甲醇为原料的磷酸燃料电池动力系统及其发电方法
KR102190938B1 (ko) 선박
KR102153758B1 (ko) 선박

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200305

R150 Certificate of patent or registration of utility model

Ref document number: 6680431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees