JP6680412B1 - Surface treated steel plate - Google Patents

Surface treated steel plate Download PDF

Info

Publication number
JP6680412B1
JP6680412B1 JP2019555039A JP2019555039A JP6680412B1 JP 6680412 B1 JP6680412 B1 JP 6680412B1 JP 2019555039 A JP2019555039 A JP 2019555039A JP 2019555039 A JP2019555039 A JP 2019555039A JP 6680412 B1 JP6680412 B1 JP 6680412B1
Authority
JP
Japan
Prior art keywords
coating film
steel sheet
plating layer
alloy plating
rust preventive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019555039A
Other languages
Japanese (ja)
Other versions
JPWO2019225765A1 (en
Inventor
史生 柴尾
史生 柴尾
亜希子 平井
亜希子 平井
邦彦 東新
邦彦 東新
保明 河村
保明 河村
植田 浩平
浩平 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68616862&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6680412(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6680412B1 publication Critical patent/JP6680412B1/en
Publication of JPWO2019225765A1 publication Critical patent/JPWO2019225765A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating With Molten Metal (AREA)

Abstract

本発明は、鋼板、鋼板の少なくとも片面に形成されたZn系合金めっき層、及びZn系合金めっき層上に形成された防錆剤とバインダー樹脂とを含む塗膜を有し、Zn系合金めっき層と塗膜との界面から10nm離れた位置における前記塗膜中の防錆剤の濃度が、塗膜中の防錆剤の平均濃度の1.5〜5.0倍であることを特徴とする表面処理鋼板に関する。The present invention has a steel sheet, a Zn-based alloy plating layer formed on at least one surface of the steel sheet, and a coating film containing a rust preventive agent and a binder resin formed on the Zn-based alloy plating layer. The concentration of the rust preventive agent in the coat film at a position 10 nm away from the interface between the layer and the coat film is 1.5 to 5.0 times the average concentration of the rust preventive agent in the coat film. The present invention relates to a surface-treated steel sheet.

Description

本発明は、耐食性に優れた表面処理鋼板に関する。   The present invention relates to a surface-treated steel sheet having excellent corrosion resistance.

家電用、建材用、自動車用などに使用される耐食性に優れた様々なめっき鋼板が知られている。例えば、溶融亜鉛めっきなどにより鋼板上に亜鉛めっき層を形成した亜鉛めっき鋼板が知られている。このように亜鉛めっき層を鋼板上に設けると、例えば亜鉛めっき鋼板が傷ついて鋼板が露出した場合でも、鋼板を構成する鉄より腐食しやすい亜鉛が先に腐食して保護皮膜を形成し、そしてその保護皮膜により鋼板の腐食を防止することができる。したがって、亜鉛めっき鋼板は耐食性を要求される様々な用途に展開されている。   Various plated steel sheets having excellent corrosion resistance used for home appliances, building materials, automobiles, etc. are known. For example, a galvanized steel sheet is known in which a galvanized layer is formed on the steel sheet by hot dip galvanizing or the like. When the galvanized layer is provided on the steel sheet in this manner, for example, even when the galvanized steel sheet is damaged and the steel sheet is exposed, zinc that is more corrosive than iron forming the steel sheet corrodes first to form a protective film, and The protective film can prevent corrosion of the steel sheet. Therefore, the galvanized steel sheet has been developed for various applications requiring corrosion resistance.

しかしながら、亜鉛めっき鋼板などの種々のめっき鋼板の表面は、周辺環境によって劣化する場合がある。例えば、大気中に含まれる塩分等の電解質や、高温多湿環境下において存在する酸素、水分によってめっき層が酸化し、白錆を生成するという問題がある。白錆の生成は、外観均一性が損なわれるおそれがあるため、亜鉛めっき鋼板にはより高い耐食性が要求されている。   However, the surfaces of various galvanized steel sheets such as galvanized steel sheets may deteriorate depending on the surrounding environment. For example, there is a problem that the plating layer is oxidized by an electrolyte such as salt contained in the atmosphere, oxygen and water existing in a high temperature and high humidity environment, and white rust is generated. Since the formation of white rust may impair the uniformity of appearance, galvanized steel sheets are required to have higher corrosion resistance.

亜鉛めっき鋼板の耐食性をさらに高めた技術としてZn−Al−Mg系合金めっき等を施したZn系合金めっき鋼板が知られている。   As a technique for further improving the corrosion resistance of a galvanized steel sheet, a Zn-based alloy plated steel sheet subjected to Zn-Al-Mg-based alloy plating or the like is known.

しかしながら、このようなZn系合金めっき鋼板においても、更なる耐食性の向上が要求されており、特に、酸素等の腐食因子が合金めっき層に到達するのを防ぐことにより、優れた耐食性を担保するような技術が要求されている。そして、このような合金めっき鋼板に加工を施した場合においても、優れた耐食性を維持できることが要求されている。   However, even in such a Zn-based alloy plated steel sheet, further improvement in corrosion resistance is required, and in particular, excellent corrosion resistance is ensured by preventing corrosion factors such as oxygen from reaching the alloy plating layer. Such technology is required. Further, it is required that excellent corrosion resistance can be maintained even when such an alloy-plated steel sheet is processed.

特許文献1では、鋼板と、鋼板の表面に形成されたZn−Al−Mg系合金めっき層と、合金めっき層上に形成されたアルミニウムを含む皮膜とを含む、耐食性に優れた亜鉛めっき鋼板が開示されている。   In Patent Document 1, a galvanized steel sheet having excellent corrosion resistance, including a steel sheet, a Zn-Al-Mg-based alloy plating layer formed on the surface of the steel sheet, and a film containing aluminum formed on the alloy plating layer is provided. It is disclosed.

また、特許文献2では、金属板等に少なくとも一層の塗膜層を有する表面処理金属板であって、最表面に形成された塗膜層が、アニオン性官能基を有する有機樹脂と、Liなどから選ばれる少なくとも1種のカチオン性金属元素とを含有し、塗膜層の外表面に近い領域にカチオン性金属元素が濃化していることを特徴とする表面処理金属板が開示されており、このような表面処理鋼板は、耐食性を低下させることなく、耐アルカリ性、耐溶剤性を向上させることができることが教示されている。   Further, in Patent Document 2, in a surface-treated metal plate having at least one coating layer on a metal plate or the like, the coating layer formed on the outermost surface is an organic resin having an anionic functional group, Li, etc. Disclosed is a surface-treated metal plate containing at least one cationic metal element selected from the following, wherein the cationic metal element is concentrated in a region near the outer surface of the coating layer, It is taught that such a surface-treated steel sheet can improve alkali resistance and solvent resistance without lowering corrosion resistance.

さらに、特許文献3では、特定の有機ケイ素化合物と、ヘキサフルオロ金属酸と、特定のカチオン性基を有するウレタン樹脂と、バナジウム化合物と、水性媒体を含む塗装鋼板用下地処理組成物が開示されており、このような組成物を使用することで、鋼板上に耐軒下耐食性を有する下地処理層を形成することができることが教示されている。   Further, Patent Document 3 discloses a ground treatment composition for a coated steel sheet containing a specific organosilicon compound, hexafluorometal acid, a urethane resin having a specific cationic group, a vanadium compound, and an aqueous medium. However, it is taught that by using such a composition, it is possible to form an undercoating layer having corrosion resistance under the eaves on a steel sheet.

特許文献4〜6では、亜鉛系めっき鋼板上に、例えばバナジウム系の防錆顔料を含む樹脂皮膜を有する塗装鋼板が開示されている。   Patent Documents 4 to 6 disclose coated steel plates having a resin film containing, for example, a vanadium rust preventive pigment on a zinc-based plated steel plate.

国際公開第2015/075792号International Publication No. 2015/075792 特開2009−248460号公報JP, 2009-248460, A 特開2014−214315号公報JP, 2014-214315, A 特開2005−015834号公報JP, 2005-015834, A 特開2013−194145号公報JP, 2013-194145, A 特開2001−003181号公報JP 2001-003181 A

特許文献1に記載の亜鉛めっき鋼板では、鋼板上にZn−Al−Mg−Si合金めっき層を設け、主にこの合金めっき層により亜鉛めっき鋼板の耐食性を担保している。また、特許文献1では、合金めっき層上の皮膜中に防錆剤をさらに添加することができることが教示されているが、皮膜中の防錆剤の濃度分布やその制御方法については必ずしも十分な検討がなされていない。したがって、特許文献1に記載の亜鉛めっき鋼板には、耐食性の向上について依然として改善の余地がある。   In the galvanized steel sheet described in Patent Document 1, a Zn-Al-Mg-Si alloy plating layer is provided on the steel sheet, and the corrosion resistance of the galvanized steel sheet is mainly secured by this alloy plating layer. Further, Patent Document 1 teaches that a rust preventive agent can be further added to the coating film on the alloy plating layer, but the concentration distribution of the rust preventive agent in the coating film and its control method are not always sufficient. It has not been examined. Therefore, the galvanized steel sheet described in Patent Document 1 still has room for improvement in the improvement of corrosion resistance.

また、特許文献2に記載の発明は、耐食性を低下させることなく、主に耐アルカリ性、耐溶剤性を向上した塗膜を有する表面処理金属板に関するものである。そして、塗膜層中のカチオン性金属元素の濃化の程度については必ずしも十分な検討がなされておらず、したがって、特許文献2に記載の表面処理金属板においても、耐食性の向上について依然として改善の余地がある。   Further, the invention described in Patent Document 2 relates to a surface-treated metal plate having a coating film mainly having improved alkali resistance and solvent resistance without lowering corrosion resistance. And, the degree of concentration of the cationic metal element in the coating layer has not necessarily been sufficiently studied, and therefore, even in the surface-treated metal plate described in Patent Document 2, improvement in corrosion resistance is still improved. There is room.

さらに、特許文献3に記載の組成物中において、耐食性を向上させるためにバナジウム化合物を使用しているが、この組成物を用いて得られた下地処理層中のバナジウム化合物の濃度分布については必ずしも十分な検討がなされておらず、耐食性の向上について依然として改善の余地がある。特許文献4〜6に記載の発明においても同様に、皮膜中のバナジウム化合物等の防錆顔料の濃度分布については必ずしも十分な検討がなされておらず、耐食性の向上について依然として改善の余地がある。   Further, in the composition described in Patent Document 3, a vanadium compound is used in order to improve the corrosion resistance, but the vanadium compound concentration distribution in the undercoat layer obtained using this composition is not always limited. It has not been sufficiently examined, and there is still room for improvement in corrosion resistance. Similarly, in the inventions described in Patent Documents 4 to 6, the concentration distribution of the rust preventive pigment such as the vanadium compound in the film has not necessarily been sufficiently examined, and there is still room for improvement in improving the corrosion resistance.

そこで、本発明は、上記問題点に鑑み、Zn系合金めっき鋼板において、耐食性に優れた表面処理鋼板を提供することを目的とする。   Therefore, in view of the above problems, an object of the present invention is to provide a Zn-based alloy plated steel sheet, which is a surface-treated steel sheet having excellent corrosion resistance.

本発明者らは、耐食性に優れた表面処理鋼板を得るためには、Zn系合金めっき層上に形成される塗膜中に防錆剤を含め、かつ、当該Zn系合金めっき層と塗膜との界面から10nm離れた位置における塗膜中の防錆剤の濃度を、塗膜中の防錆剤の平均濃度の1.5倍以上5.0倍以下にすることが重要であることを見出した。すなわち、本発明によれば、塗膜中であって、塗膜とZn系合金めっき層との界面付近の領域では、他の領域に比べて防錆剤が濃化して存在している。そのため、この防錆剤の濃化領域により、酸素等の腐食因子が塗膜を通過してZn系合金めっき層を腐食するのを抑制することができる。すなわち、この防錆剤の濃化領域が、塗膜中において下地のZn系合金めっき層のためのバリア領域としての役割を果たすことができる。また、このようなバリア領域は、本発明に係る表面処理鋼板に加工を施した後でも十分にその役割を果たすことができる。したがって、このような塗膜を有する本発明に係る表面処理鋼板は、極めて優れた耐食性を提供することが可能となる。   In order to obtain a surface-treated steel sheet having excellent corrosion resistance, the present inventors include a rust preventive agent in the coating film formed on the Zn-based alloy plating layer, and the Zn-based alloy plating layer and the coating film. It is important to make the concentration of the rust preventive agent in the coating film at a position 10 nm away from the interface with and 1.5 times to 5.0 times the average concentration of the rust preventive agent in the coating film. I found it. That is, according to the present invention, the rust-preventive agent is concentrated and present in the region near the interface between the coating film and the Zn-based alloy plating layer in the coating film as compared with other regions. Therefore, the concentrated region of the rust preventive agent can suppress corrosion factors such as oxygen from passing through the coating film and corroding the Zn-based alloy plating layer. That is, this concentrated region of the rust preventive agent can serve as a barrier region for the underlying Zn-based alloy plating layer in the coating film. Further, such a barrier region can sufficiently play its role even after processing the surface-treated steel sheet according to the present invention. Therefore, the surface-treated steel sheet according to the present invention having such a coating film can provide extremely excellent corrosion resistance.

本発明は、上記知見を基になされたものであり、その主旨は以下のとおりである。
(1)
鋼板、前記鋼板の少なくとも片面に形成されたZn系合金めっき層、及び前記Zn系合金めっき層上に形成された防錆剤とバインダー樹脂とを含む塗膜を有し、
前記Zn系合金めっき層の化学組成が、質量%で、
Al:0.01〜60%、
Mg:0.001〜10%、及び
Si:0〜2%であり、
前記Zn系合金めっき層と前記塗膜との界面から10nm離れた位置における前記塗膜中の前記防錆剤の濃度が、前記塗膜中の前記防錆剤の平均濃度の1.5〜5.0倍であることを特徴とする、表面処理鋼板。
(2)
前記防錆剤が、P、V及びMgの少なくとも1種を含むことを特徴とする、(1)に記載の表面処理鋼板。
(3)
前記塗膜中の前記防錆剤の平均濃度が、質量%で、3〜15%であることを特徴とする、(1)又は(2)に記載の表面処理鋼板。
(4)
前記塗膜が光輝顔料をさらに含み、前記光輝顔料が、アルミニウム及び酸化物の少なくとも1種を含むことを特徴とする、(1)〜(3)のいずれか1つに記載の表面処理鋼板。
(5)
前記酸化物が、アルミナ、シリカ、マイカ、ジルコニア、チタニア、ガラス、又は酸化亜鉛であることを特徴とする、(4)に記載の表面処理鋼板。
(6)
前記光輝顔料が、Rh、Cr、Ti、Ag、及びCuの少なくとも1種をさらに含むことを特徴とする、(4)又は(5)に記載の表面処理鋼板。
(7)
前記塗膜中の前記光輝顔料の平均濃度が、質量%で、5〜15%であることを特徴とする、(4)〜(6)のいずれか1つに記載の表面処理鋼板。
The present invention is based on the above findings, and its gist is as follows.
(1)
A steel sheet, a Zn-based alloy plating layer formed on at least one surface of the steel sheet, and a coating film containing a rust preventive agent and a binder resin formed on the Zn-based alloy plating layer,
The chemical composition of the Zn-based alloy plating layer is% by mass,
Al: 0.01-60%,
Mg: 0.001 to 10%, and Si: 0 to 2%,
The concentration of the rust-preventive agent in the coating film at a position 10 nm away from the interface between the Zn-based alloy plating layer and the coating film is 1.5 to 5 of the average concentration of the rust-preventing agent in the coating film. A surface-treated steel sheet characterized by being 0.0 times.
(2)
The surface-treated steel sheet according to (1), wherein the rust preventive agent contains at least one of P, V and Mg.
(3)
The surface-treated steel sheet according to (1) or (2), wherein the average concentration of the rust preventive agent in the coating film is 3 to 15% by mass.
(4)
The surface-treated steel sheet according to any one of (1) to (3), wherein the coating film further contains a bright pigment, and the bright pigment contains at least one of aluminum and an oxide.
(5)
The surface-treated steel sheet according to (4), wherein the oxide is alumina, silica, mica, zirconia, titania, glass, or zinc oxide.
(6)
The surface-treated steel sheet according to (4) or (5), wherein the bright pigment further contains at least one of Rh, Cr, Ti, Ag, and Cu.
(7)
The surface-treated steel sheet according to any one of (4) to (6), characterized in that an average concentration of the bright pigment in the coating film is 5 to 15% by mass.

本発明によれば、Zn系合金めっき層上に形成される塗膜中に防錆剤が含まれ、かつ、Zn系合金めっき層と塗膜との界面から10nm離れた位置での防錆剤の濃度が、塗膜中の防錆剤の平均濃度の1.5倍以上5.0倍以下である。すなわち、塗膜中であって、塗膜とZn系合金めっき層との界面付近の領域で、防錆剤が他の部分に比べて濃化して存在する。そのため、その防錆剤の濃化領域が、酸素等の腐食因子に対するZn系合金めっき層のためのバリア領域の役割を果たし、その結果、耐食性に優れた表面処理鋼板を提供することができる。また、本発明によれば、本発明に係る表面処理鋼板に加工を施した場合においても優れた耐食性を維持することが可能となる。   According to the present invention, the coating film formed on the Zn-based alloy plating layer contains a rust preventive agent, and the rust preventive agent is at a position 10 nm away from the interface between the Zn-based alloy plating layer and the coating film. Is not less than 1.5 times and not more than 5.0 times the average concentration of the rust preventive agent in the coating film. That is, in the coating film, in the region near the interface between the coating film and the Zn-based alloy plating layer, the rust preventive agent is concentrated and present as compared with other portions. Therefore, the concentrated region of the rust preventive agent serves as a barrier region for the Zn-based alloy plating layer against corrosion factors such as oxygen, and as a result, a surface-treated steel sheet having excellent corrosion resistance can be provided. Further, according to the present invention, it becomes possible to maintain excellent corrosion resistance even when the surface-treated steel sheet according to the present invention is processed.

また、本発明によれば、Zn系合金めっき層上の塗膜中に光輝顔料が含まれる場合がある。そのような場合、その光輝顔料の金属的外観により、本発明に係る表面処理鋼板の輝度が向上し、意匠性に優れた表面処理鋼板を提供することができる。さらに、光輝顔料が塗膜中に含まれる場合、例えばZn系合金めっき層の亜鉛の酸化などでZn系合金めっき層が黒く変色(以下、黒変と記載)しても、塗膜中に含まれる光輝顔料によってその黒変を見えなくすることができ、すなわち塗膜の外観上の変化を抑制し、意匠性に優れた表面処理鋼板を提供することができる。   Further, according to the present invention, a bright pigment may be contained in the coating film on the Zn-based alloy plating layer. In such a case, due to the metallic appearance of the bright pigment, the brightness of the surface-treated steel sheet according to the present invention is improved, and a surface-treated steel sheet excellent in designability can be provided. Furthermore, when the bright pigment is contained in the coating film, it is contained in the coating film even if the Zn-based alloy plating layer is discolored black (hereinafter, referred to as black discoloration) due to, for example, zinc oxidation of the Zn-based alloy plating layer. It is possible to make the black discoloration invisible by the bright pigment, that is, suppress the change in the appearance of the coating film, and to provide a surface-treated steel sheet excellent in designability.

さらに、本発明によれば、塗膜を形成する際にpH3.0〜5.0の酸性塗料を用いるため、Zn系合金めっき層の表面上の酸化被膜が適切に除去され、Zn系合金めっき層と塗膜とが化学的に結合することにより、加工時に優れた密着性を有することが可能となる。また、本発明によれば、塗料を上記pHにすることで、防錆剤が安定的に溶解した状態の塗料を作製することができ、アルカリ性の塗料に比べて優れた貯蔵安定性を有することが可能となる。   Further, according to the present invention, since the acidic coating material having a pH of 3.0 to 5.0 is used when forming the coating film, the oxide film on the surface of the Zn-based alloy plating layer is appropriately removed, and the Zn-based alloy plating is performed. By chemically bonding the layer and the coating film, it becomes possible to have excellent adhesion during processing. Further, according to the present invention, it is possible to prepare a coating material in which a rust preventive agent is stably dissolved by setting the coating material to the above-mentioned pH, and it has excellent storage stability as compared with an alkaline coating material. Is possible.

[表面処理鋼板]
本発明の表面処理鋼板は、鋼板、鋼板の少なくとも片面に形成されたZn系合金めっき層、及びZn系合金めっき層上に形成された防錆剤とバインダー樹脂とを含む塗膜を有し、前記Zn系合金めっき層の化学組成が、質量%で、Al:0.01〜60%、Mg:0.001〜10%、及びSi:0〜2%であり、Zn系合金めっき層と塗膜との界面から10nm離れた位置における前記塗膜中の防錆剤の濃度が、塗膜中の防錆剤の平均濃度の1.5〜5.0倍であることを特徴とする。以下、本発明に係る表面処理鋼板の構成要件について説明する。
[Surface-treated steel sheet]
The surface-treated steel sheet of the present invention includes a steel sheet, a Zn-based alloy plating layer formed on at least one surface of the steel sheet, and a coating film containing a rust inhibitor and a binder resin formed on the Zn-based alloy plating layer, The chemical composition of the Zn-based alloy plating layer is mass%, Al: 0.01 to 60%, Mg: 0.001 to 10%, and Si: 0 to 2%. The concentration of the rust preventive agent in the coating film at a position 10 nm away from the interface with the film is 1.5 to 5.0 times the average concentration of the rust preventive agent in the coating film. The constituent features of the surface-treated steel sheet according to the present invention will be described below.

<鋼板>
本発明における鋼板(めっき原板)としては、特に限定されず、熱延鋼板、冷延鋼板などの一般的な鋼板を使用することができる。鋼種も、特に限定されず、例えばAlキルド鋼、Ti、Nbなどを含有した極低炭素鋼、及びこれらにP、Si、Mnなどの元素を含有した高張力鋼などを使用することが可能である。本発明における鋼板の板厚は、特に限定されないが、例えば、0.25〜3.5mmであればよい。
<Steel plate>
The steel plate (plating original plate) in the present invention is not particularly limited, and a general steel plate such as a hot rolled steel plate or a cold rolled steel plate can be used. The steel type is not particularly limited, and it is possible to use, for example, Al-killed steel, ultra-low carbon steel containing Ti, Nb, etc., and high-strength steel containing P, Si, Mn, and other elements. is there. The plate thickness of the steel plate in the present invention is not particularly limited, but may be, for example, 0.25 to 3.5 mm.

<Zn系合金めっき層>
本発明におけるZn系合金めっき層は鋼板上に形成されている。このZn系合金めっき層は鋼板の片面に形成されていても、両面に形成されていてもよい。Zn系合金めっき層は、少なくともAlとMgとを含有するZn−Al−Mg合金めっき層であってもよく、さらにSiを含有するZn−Al−Mg−Si合金めっき層であってもよい。これらの各含有量(濃度)は、質量%で、Al:0.01〜60%、Mg:0.001〜10%、Si:0〜2%であり、残部がZn及び不純物である。以下、Zn系合金めっき層の化学組成について単に「%」と記した場合は、「質量%」を意味するものとする。
<Zn-based alloy plating layer>
The Zn-based alloy plating layer in the present invention is formed on the steel plate. This Zn-based alloy plating layer may be formed on one side or both sides of the steel sheet. The Zn-based alloy plating layer may be a Zn-Al-Mg alloy plating layer containing at least Al and Mg, or may be a Zn-Al-Mg-Si alloy plating layer containing Si. The content (concentration) of each of these is, in mass%, Al: 0.01 to 60%, Mg: 0.001 to 10%, Si: 0 to 2%, and the balance is Zn and impurities. Hereinafter, when the chemical composition of the Zn-based alloy plating layer is simply described as “%”, it means “mass%”.

Zn系合金めっき層のAl含有量が0.01%未満ではAlを含有したことによるめっき鋼板の耐食性向上効果が十分に発揮されず、60%超では耐食性を向上させる効果が飽和する。したがって、Al含有量は、0.01%以上、例えば、0.1%以上、0.5%以上、1%以上、3%以上又は5%以上であってよく、また、60%以下、例えば、55%以下、50%以下、40%以下又は30%以下であってよい。好ましいAl含有量は1〜60%であり、より好ましくは5〜60%である。   When the Al content of the Zn-based alloy plating layer is less than 0.01%, the effect of improving corrosion resistance of the plated steel sheet due to the inclusion of Al is not sufficiently exhibited, and when it exceeds 60%, the effect of improving corrosion resistance is saturated. Therefore, the Al content may be 0.01% or more, for example, 0.1% or more, 0.5% or more, 1% or more, 3% or more, or 5% or more, and 60% or less, for example, , 55% or less, 50% or less, 40% or less, or 30% or less. The Al content is preferably 1 to 60%, more preferably 5 to 60%.

Zn系合金めっき層のMg含有量が0.001%未満ではMgを含有したことによるめっき鋼板の耐食性向上効果が十分に発揮されない場合がある。一方、10%超ではめっき浴中にMgが溶解しきれずに酸化物として浮遊し(一般にドロスと呼ばれる)、このめっき浴で亜鉛めっきするとめっき表層に酸化物が付着して外観不良を起こし、あるいは、めっきされない部分(一般的に不めっきと呼ばれる)が発生するおそれがある。したがって、Mg含有量は、0.001%以上、例えば、0.01%以上、0.1%以上、0.5%以上、1%以上又は2%以上であってよく、また、10%以下、例えば、8%以下、6%以下、5%以下又は4%以下であってよい。Mg含有量は、好ましくは1〜5%であり、より好ましくは1〜4%である。   If the Mg content of the Zn-based alloy plating layer is less than 0.001%, the effect of improving the corrosion resistance of the plated steel sheet due to the inclusion of Mg may not be sufficiently exhibited. On the other hand, if it exceeds 10%, Mg cannot be completely dissolved in the plating bath and floats as an oxide (generally called dross), and when zinc plating is performed in this plating bath, the oxide adheres to the plating surface layer to cause poor appearance, or However, there is a possibility that a non-plated portion (generally called non-plating) may occur. Therefore, the Mg content may be 0.001% or more, for example, 0.01% or more, 0.1% or more, 0.5% or more, 1% or more, or 2% or more, and 10% or less. , For example 8% or less, 6% or less, 5% or less or 4% or less. The Mg content is preferably 1 to 5%, more preferably 1 to 4%.

Zn系合金めっき層のSi含有量は、下限は0%であってもよいが、Zn系合金めっき層の耐食性をより向上させるためには、0.001%〜2%としてもよい。Si含有量は、例えば、0.005%以上、0.01%以上、0.05%以上、0.1%以上又は0.5%以上であってもよく、また、1.8%以下、1.5%以下又は1.2%以下であってもよい。Si含有量は、好ましくは0.1〜2%であり、より好ましくは0.5〜1.5%である。   The lower limit of the Si content of the Zn-based alloy plating layer may be 0%, but it may be 0.001% to 2% in order to further improve the corrosion resistance of the Zn-based alloy plating layer. The Si content may be, for example, 0.005% or more, 0.01% or more, 0.05% or more, 0.1% or more, or 0.5% or more, and 1.8% or less, It may be 1.5% or less or 1.2% or less. The Si content is preferably 0.1 to 2%, more preferably 0.5 to 1.5%.

本発明におけるZn系合金めっき層は、溶融めっきや蒸着めっきなどの公知のめっき方法により形成することができる。例えば、Zn系合金めっき層の厚さは1〜30μmであればよい。   The Zn-based alloy plating layer in the present invention can be formed by a known plating method such as hot dipping or vapor deposition plating. For example, the Zn-based alloy plating layer may have a thickness of 1 to 30 μm.

<塗膜>
本発明における塗膜はZn系合金めっき層上に形成されている。塗膜中には、防錆剤とバインダー樹脂とを含む。表面処理鋼板の輝度を向上させるために、好ましくは、さらに塗膜中に光輝顔料を含むとよい。本発明に係る表面処理鋼板における塗膜中では、防錆剤は、微細な化合物(例えば、P化合物やV化合物)として存在している。このように防錆剤を塗膜中で微細な化合物として存在させ、かつ、上述したように塗膜とZn系合金めっき層との界面領域に防錆剤の濃化領域を形成するために、本発明における塗膜を形成するための塗料には、例えばpH3.0〜5.0の酸性の塗料を用いることが有効である。なお、防錆剤は塗膜中でミクロに分散しているため、通常の分析方法では、塗膜中において、微細な防錆剤と、塗膜を形成するバインダー樹脂とを明確に区別して特定するのは困難であり、塗膜中では、防錆剤とバインダー樹脂とが同じ領域に分布しているように観測される。したがって、本発明において、塗膜中に「防錆剤を含む」とは、上記微細な化合物を構成する防錆機能を発揮する元素、例えばP、V、Mgの元素を塗膜中に含むことを意味する。よって、後述する防錆剤の「濃度」とは、例えばP、V、Mgの元素の濃度(含有量)の合計を意味し、その単位は質量%とする。
<Coating film>
The coating film in the present invention is formed on the Zn-based alloy plating layer. The coating film contains a rust preventive agent and a binder resin. In order to improve the brightness of the surface-treated steel sheet, it is preferable that the coating film further contains a bright pigment. In the coating film on the surface-treated steel sheet according to the present invention, the rust preventive agent exists as a fine compound (for example, P compound or V compound). Thus, the rust inhibitor is present as a fine compound in the coating film, and, as described above, in order to form a concentrated region of the rust inhibitor in the interface region between the coating film and the Zn-based alloy plating layer, As the paint for forming the coating film in the present invention, it is effective to use an acidic paint having a pH of 3.0 to 5.0, for example. Since the rust preventive agent is microscopically dispersed in the coating film, in the usual analysis method, the fine rust preventive agent and the binder resin forming the coating film are clearly identified in the coating film. It is difficult to do so, and it is observed that the rust preventive agent and the binder resin are distributed in the same region in the coating film. Therefore, in the present invention, "containing a rust preventive agent" in the coating film means that the coating film contains an element exhibiting a rust preventive function constituting the fine compound, such as P, V, or Mg. Means Therefore, the “concentration” of the rust preventive agent described later means, for example, the total concentration (content) of elements of P, V, and Mg, and the unit thereof is mass%.

このように本発明における塗膜を形成するための塗料を例えばpH3.0〜5.0の酸性とすることで、防錆剤の成分が塗料中で溶解した状態で存在することが可能となる。すなわち、本発明に係る防錆剤の成分は、化合物の状態(すなわち固形成分)として塗料中に含まれるわけではなく、イオンの状態(すなわち溶解成分)として塗料中に含まれる。したがって、このような塗料をZn系合金めっき層の表面に塗布して硬化させると、形成された塗膜中で、防錆剤を略均一に微細な化合物として存在させることが可能となる。   By thus making the coating material for forming the coating film in the present invention acidic, for example, pH 3.0 to 5.0, it becomes possible for the components of the rust preventive agent to exist in a dissolved state in the coating material. . That is, the components of the rust preventive agent according to the present invention are not contained in the paint as a compound state (that is, a solid component), but are contained in the paint as an ionic state (that is, a dissolved component). Therefore, when such a coating material is applied to the surface of the Zn-based alloy plating layer and cured, the rust preventive agent can be made to exist substantially uniformly as a fine compound in the formed coating film.

また、pH3.0〜5.0の酸性の塗料をZn系合金めっき層の表面に塗布すると、その酸性の塗料がZn系合金めっき層の表面上の酸化被膜を除去し、Zn系合金めっき層の表面付近で、イオンの状態の防錆剤の成分とZn系合金めっき層中の成分とが反応する。その結果、塗料を硬化させた後に、Zn系合金めっき層と塗膜との界面付近に、反応生成物が濃化した領域を形成することができる。したがって、塗膜中においてこのような反応生成物が存在する領域では、防錆剤として、塗膜中で略均一に存在している微細な化合物だけでなく上記のように形成された反応生成物も存在するため、防錆剤(例えば、P、V、Mg)が他の領域に比べて濃化しており、その結果、この濃化領域が塗膜中において腐食因子の侵入を防ぐバリア領域として作用する。したがって、pH3.0〜5.0の酸性の塗料を用いて製造された本発明に係る表面処理鋼板は、Zn系合金めっき層と塗膜との界面付近に防錆剤の濃化領域を有し、極めて高い耐食性を提供することができる。   Moreover, when an acidic paint having a pH of 3.0 to 5.0 is applied to the surface of the Zn-based alloy plating layer, the acidic paint removes the oxide film on the surface of the Zn-based alloy plating layer, The components of the rust preventive agent in the ionic state react with the components in the Zn-based alloy plating layer near the surface of the. As a result, after the coating material is cured, a region where the reaction product is concentrated can be formed near the interface between the Zn-based alloy plating layer and the coating film. Therefore, in the area where such a reaction product is present in the coating film, not only the fine compound which is almost uniformly present in the coating film as the rust preventive agent but also the reaction product formed as described above Also, since the rust preventive agent (for example, P, V, Mg) is thicker than other regions, the thickened region serves as a barrier region for preventing invasion of corrosion factors in the coating film. To work. Therefore, the surface-treated steel sheet according to the present invention produced by using an acidic paint having a pH of 3.0 to 5.0 has a concentrated region of the rust preventive agent near the interface between the Zn-based alloy plating layer and the coating film. However, it is possible to provide extremely high corrosion resistance.

塗膜の平均厚さは、特に限定されないが、例えば、3〜15μmであることができる。このような範囲の塗膜の平均厚さであることで、塗膜が下地のZn系合金めっき層の腐食を十分に抑制するバリアとしての役割を果たし、本発明に係る表面処理鋼板に十分な耐食性を提供することができる。また、塗膜の平均厚さが上述の範囲であれば、このような塗膜を有する本発明に係る表面処理鋼板に加工を加えても塗膜に亀裂等が入らず、加工性にも優れた塗膜を提供することが可能となる。   The average thickness of the coating film is not particularly limited, but can be, for example, 3 to 15 μm. With the average thickness of the coating film in such a range, the coating film serves as a barrier that sufficiently suppresses corrosion of the underlying Zn-based alloy plating layer, and is sufficient for the surface-treated steel sheet according to the present invention. Can provide corrosion resistance. Further, if the average thickness of the coating film is in the above range, cracks and the like do not occur in the coating film even if the surface-treated steel sheet according to the present invention having such a coating film is processed, and the workability is excellent. It is possible to provide a coating film that is excellent.

塗膜の平均厚さが3μm未満であると、下地のZn系合金めっき層の腐食の進行を十分に抑制するためには厚さが不十分である場合があり、したがって本発明に係る表面処理鋼板の耐食性が不十分になるおそれがある。一方、塗膜の平均厚さが15μm超であると、塗膜の厚さを増やすことによる耐食性の増加の効果が小さくなり、硬化にも時間を要することとなり、コスト面で不利になるおそれがある。また、塗膜が厚すぎると塗膜を有する鋼板に曲げ等の加工を施した際に塗膜に亀裂を生じるおそれがあり、本発明に係る表面処理鋼板の加工性が低下するおそれがある。塗膜の平均厚さは、例えば、3μm以上、4μm以上、又は5μm以上であってよく、また、12μm以下又は10μm以下であってよい。したがって、塗膜の平均厚さは、好ましくは3μm以上12μm以下であり、より好ましくは5μm以上10μm以下である。   When the average thickness of the coating film is less than 3 μm, the thickness may be insufficient to sufficiently suppress the progress of corrosion of the underlying Zn-based alloy plating layer, and therefore the surface treatment according to the present invention. The corrosion resistance of the steel sheet may become insufficient. On the other hand, if the average thickness of the coating film is more than 15 μm, the effect of increasing the corrosion resistance by increasing the thickness of the coating film becomes small, and it takes time to cure, which may be disadvantageous in terms of cost. is there. Further, if the coating film is too thick, the coating film may crack when the steel sheet having the coating film is subjected to processing such as bending, and the workability of the surface-treated steel sheet according to the present invention may deteriorate. The average thickness of the coating film may be, for example, 3 μm or more, 4 μm or more, or 5 μm or more, and may be 12 μm or less or 10 μm or less. Therefore, the average thickness of the coating film is preferably 3 μm or more and 12 μm or less, and more preferably 5 μm or more and 10 μm or less.

本発明に係る塗膜の「平均厚さ」は、当業者に公知の任意の方法で決定することができる。例えば、塗膜を有する鋼板の断面を観察し、Zn系合金めっき層と塗膜との界面上の5か所の任意の位置から、それぞれの塗膜の表面までの最短の距離を測定(すなわち界面と垂直方向に距離を測定)して、それらの測定値を平均化することで決定することができる。   The "average thickness" of the coating film according to the present invention can be determined by any method known to those skilled in the art. For example, the cross section of a steel sheet having a coating film is observed, and the shortest distances from the five arbitrary positions on the interface between the Zn-based alloy plating layer and the coating film to the surface of each coating film are measured (that is, It can be determined by measuring the distance in the direction perpendicular to the interface) and averaging the measured values.

(バインダー樹脂)
本発明の塗膜の成分として使用されるバインダー樹脂は、酸性の溶媒中で使用可能な樹脂であれば特に限定されないが、例えば、ポリエステル樹脂、ウレタン樹脂、又はアクリル樹脂であるとよい。バインダー樹脂の硬化剤としては、酸性の溶媒中で使用可能であり、上記のバインダー樹脂を硬化させることができるものであれば特に限定されないが、例えば、メラミン樹脂、イソシアネート樹脂、又はエポキシ樹脂などを使用することができる。好ましくは、本発明におけるバインダー樹脂はポリエステル樹脂であり、硬化剤はメラミン樹脂である。また、ポリエステル樹脂は、−20〜70℃のガラス転移温度Tgと、3000〜30000の平均分子量を有するものが好ましい。バインダー樹脂がウレタン樹脂の場合、Tgは0〜50℃、数平均分子量は5000〜25000のものが好ましい。バインダー樹脂がアクリル樹脂の場合、Tgは0〜50℃、数平均分子量は3000〜25000のものが好ましい。
(Binder resin)
The binder resin used as a component of the coating film of the present invention is not particularly limited as long as it is a resin that can be used in an acidic solvent, but may be, for example, a polyester resin, a urethane resin, or an acrylic resin. The curing agent for the binder resin is not particularly limited as long as it can be used in an acidic solvent and can cure the binder resin, and examples thereof include a melamine resin, an isocyanate resin, or an epoxy resin. Can be used. Preferably, the binder resin in the present invention is a polyester resin and the curing agent is a melamine resin. The polyester resin preferably has a glass transition temperature Tg of −20 to 70 ° C. and an average molecular weight of 3,000 to 30,000. When the binder resin is a urethane resin, it preferably has a Tg of 0 to 50 ° C. and a number average molecular weight of 5,000 to 25,000. When the binder resin is an acrylic resin, it preferably has a Tg of 0 to 50 ° C. and a number average molecular weight of 3,000 to 25,000.

(防錆剤)
本発明に係る表面処理鋼板の耐食性を向上させるために、防錆剤(典型的にP及び/又はV)が塗膜中に含まれる。本発明における防錆剤は、上述したように、塗膜中で略均一に微細な化合物として存在しているが、本発明においては、「防錆剤」とは防錆剤を構成する防錆機能を発揮する元素、例えばP元素、V元素、Mg元素を意味する。このように塗膜中に微細な化合物として存在する防錆剤は水に可溶であるため、塗膜が例えば湿潤環境下に晒された場合、塗膜中の防錆剤が水に溶解して防錆剤の成分が溶出し、Zn系合金めっき層の腐食を抑制する防錆機能を発揮することができる。また、上述したように、Zn系合金めっき層と塗膜との界面付近の濃化領域では、防錆剤の成分(例えばP、Vなど)とZn系合金めっき層中の成分との反応生成物を形成しており、この反応生成物の存在する領域が腐食因子のバリア領域として作用する。したがって、本発明に係る表面処理鋼板は、防錆剤が塗膜中に微細な化合物として存在し、かつ、Zn系合金めっき層と塗膜との界面領域に防錆剤の濃化領域を有するため、優れた耐食性を有している。
(anti-rust)
In order to improve the corrosion resistance of the surface-treated steel sheet according to the present invention, a rust preventive agent (typically P and / or V) is contained in the coating film. As described above, the rust preventive agent in the present invention exists as a substantially uniformly fine compound in the coating film, but in the present invention, the "rust preventive agent" means the rust preventive agent constituting the rust preventive agent. It means an element that exhibits a function, for example, P element, V element, and Mg element. Since the rust preventive agent present as a fine compound in the coating film is soluble in water, the rust preventive agent in the coating film dissolves in water when the coating film is exposed to, for example, a humid environment. As a result, the components of the rust preventive agent are eluted and the rust preventive function of suppressing the corrosion of the Zn-based alloy plating layer can be exhibited. Further, as described above, in the concentrated region near the interface between the Zn-based alloy plating layer and the coating film, the reaction formation of the components of the rust preventive agent (for example, P, V, etc.) and the components in the Zn-based alloy plating layer. The reaction product is present in the region acting as a barrier region for corrosion factors. Therefore, in the surface-treated steel sheet according to the present invention, the rust preventive agent is present as a fine compound in the coating film, and has a concentrated area of the rust preventive agent in the interface region between the Zn-based alloy plating layer and the coating film. Therefore, it has excellent corrosion resistance.

本発明に係る防錆剤を含む塗膜を形成するための塗料中に添加することができる化合物(以下、防錆剤源と記載)としては、酸性の塗料に溶解することができる任意の化合物を用いることができる。このような酸性の塗料中で溶解している防錆剤は、カチオンインヒビターと称される場合がある。   As a compound that can be added to a coating material for forming a coating film containing the rust preventive agent according to the present invention (hereinafter referred to as a rust preventive agent source), any compound that can be dissolved in an acidic coating material Can be used. The rust preventive dissolved in such an acidic paint is sometimes called a cation inhibitor.

本発明における防錆剤源としては、例えば、P(リン)化合物、V(バナジウム)化合物、及びMg(マグネシウム)化合物が挙げられる。好ましくは、本発明における塗膜中に、P及びVが単独で又は組み合わせて含まれる。より好ましくは、塗膜中に、P単独か又はPとVとの組み合わせが含まれる。   Examples of the rust preventive agent source in the present invention include P (phosphorus) compounds, V (vanadium) compounds, and Mg (magnesium) compounds. Preferably, P and V are contained alone or in combination in the coating film of the present invention. More preferably, P alone or a combination of P and V is contained in the coating film.

塗膜中に防錆剤としてPが含まれる場合、特に加工部耐食性を向上させることができる。加工部耐食性とは、塗膜を有する鋼板に加工(例えば曲げ加工)を施した場合の、その加工部での耐食性を意味する。このように塗膜中にPが含まれることで加工部耐食性が向上する理由は、PがZn系合金めっき層の表面と反応してリン酸塩層を形成して加工部を不動態化させる効果、P自身が難溶性塗膜を形成し腐食因子に対するバリア性を発揮する効果、及び、Pが下地金属板から溶出した金属イオンを補足し、金属イオンとともに難溶性の化合物を形成し、バリア性を発揮する効果を有するためであると考えられる。本発明におけるPを含む防錆剤源としては、特に限定されないが、例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等のリン酸類、リン酸三アンモニウム、リン酸水素二アンモニウム等のアンモニウム塩、Na、Mg、Al、K、Ca、Mn、Ni、Zn、Fe等との金属塩、アミノトリ(メチレンホスホン酸)、1−ヒドロキシエチリデン−1,1−ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等のホスホン酸類及びそれらの塩、フィチン酸等の有機リン酸類及びそれらの塩等を挙げることができる。これらの防錆剤源は、本発明における塗膜を形成するための塗料中に、単独で又は組み合わせて添加することができる。   When P is contained in the coating film as a rust preventive, the corrosion resistance of the processed part can be particularly improved. The processed part corrosion resistance means the corrosion resistance in the processed part when the steel sheet having a coating film is processed (for example, bent). The reason why the corrosion resistance of the processed portion is improved by including P in the coating film is that P reacts with the surface of the Zn-based alloy plating layer to form a phosphate layer to passivate the processed portion. The effect is that P itself forms a poorly soluble coating film and exhibits a barrier property against corrosion factors, and that P complements the metal ions eluted from the underlying metal plate and forms a sparingly soluble compound together with the metal ion to form a barrier. It is considered that this is because it has the effect of exerting the property. The source of the rust preventive agent containing P in the present invention is not particularly limited, but examples thereof include phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, triammonium phosphate and dihydrogen phosphate. Ammonium salts such as ammonium, metal salts with Na, Mg, Al, K, Ca, Mn, Ni, Zn, Fe, etc., aminotri (methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra Examples thereof include phosphonic acids such as (methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid) and salts thereof, and organic phosphoric acids such as phytic acid and salts thereof. These rust preventive agent sources can be added alone or in combination in the coating material for forming the coating film in the present invention.

また、塗膜中に防錆剤としてVが含まれる場合、特に端面部耐食性を向上させることができる。端面部耐食性とは、例えば塗膜を有する鋼板に加工(例えば切断加工)を施した場合の、その端面部での耐食性を意味する。このように塗膜中にVが含まれることで端面部耐食性が向上する理由は、端面部において、塗膜から溶出したVとZn系合金めっき層から溶出したZnやAlとが反応し腐食生成物を形成し、Zn系合金めっき層の表層を不動態化させることで腐食の進行を抑制することができるためである。本発明におけるVを含む防錆剤源としては、五酸化バナジウム、メタバナジン酸HVO3、メタバナジウム酸アンモニウム、オキシ三塩化バナジウムVOCl3、三酸化バナジウムV23、二酸化バナジウム、オキシ硫酸バナジウムVOSO4、バナジウムオキシアセチルアセトネートVO(OC(=CH2)CH2COCH33、バナジウムアセチルアセトネートV(OC(=CH2)CH2COCH33、三塩化バナジウムVCl3などが挙げられる。これらの防錆剤源は、本発明における塗膜を形成するための塗料中に、単独で又は組み合わせて添加することができる。Further, when V is contained as a rust preventive in the coating film, the end face corrosion resistance can be particularly improved. The end face corrosion resistance means, for example, the corrosion resistance at the end face when a steel sheet having a coating film is processed (for example, cut). The reason why the corrosion resistance is improved by the inclusion of V in the coating film is that the V eluted from the coating film reacts with Zn or Al eluted from the Zn-based alloy plating layer at the end surface to form corrosion. This is because it is possible to suppress the progress of corrosion by forming a substance to passivate the surface layer of the Zn-based alloy plating layer. Examples of the rust preventive agent source containing V in the present invention include vanadium pentoxide, HVO 3 metavanadate, ammonium metavanadate, vanadium oxytrichloride VOCl 3 , vanadium trioxide V 2 O 3 , vanadium dioxide, and vanadium oxysulfate VOSO 4 , Vanadium oxyacetylacetonate VO (OC (= CH 2 ) CH 2 COCH 3 ) 3 , vanadium acetylacetonate V (OC (= CH 2 ) CH 2 COCH 3 ) 3 , vanadium trichloride VCl 3 and the like. These rust preventive agent sources can be added alone or in combination in the coating material for forming the coating film in the present invention.

本発明におけるMgを含む防錆剤源としては、硝酸マグネシウムMg(NO32、硫酸マグネシウムMgSO4、酢酸マグネシウムMg(CH3COO)2などが挙げられる。これらの防錆剤源は、本発明における塗膜を形成するための塗料中に、単独で又は組み合わせて添加することができる。Mgは前記V同様に端面部耐食性を向上させることができる。端面部耐食性が向上する理由もV同様と考えられる。Examples of the rust preventive agent source containing Mg in the present invention include magnesium nitrate Mg (NO 3 ) 2 , magnesium sulfate MgSO 4 , magnesium acetate Mg (CH 3 COO) 2, and the like. These rust preventive agent sources can be added alone or in combination in the coating material for forming the coating film in the present invention. Mg can improve the corrosion resistance of the end face portion as in the case of V described above. The reason why the corrosion resistance of the end face portion is improved is considered to be the same as V.

塗膜中の防錆剤の平均濃度は、質量%で、3〜15%であることができる。なお、上述したように、「防錆剤の平均濃度」とは、塗膜中の例えばP、V、Mgの元素の濃度(質量%)の合計に基づくものである。このような範囲の塗膜中の防錆剤の平均濃度であることで、塗膜全体に十分な防錆剤が存在するため、本発明に係る表面処理鋼板に十分な耐食性を提供することが可能となる。また、上述のように塗膜とZn系合金めっき層との界面付近に防錆剤が濃化しても、その他の領域で防錆剤の濃度が不足することなく、塗膜全体、すなわち本発明に係る表面処理鋼板において、十分な耐食性を提供することができる。   The average concentration of the rust preventive agent in the coating film can be 3% to 15% by mass. As described above, the “average concentration of the rust preventive agent” is based on the total concentration (mass%) of elements such as P, V and Mg in the coating film. With the average concentration of the rust preventive agent in the coating film in such a range, since there is sufficient rust preventive agent in the entire coating film, it is possible to provide the surface-treated steel sheet according to the present invention with sufficient corrosion resistance. It will be possible. Further, even if the rust preventive agent is concentrated near the interface between the coating film and the Zn-based alloy plating layer as described above, the concentration of the rust preventive agent is not insufficient in other regions, and the entire coating film, that is, the present invention In the surface-treated steel sheet according to the above, sufficient corrosion resistance can be provided.

塗膜中の防錆剤の平均濃度が、質量%で、3%未満であると、塗膜全体での防錆剤の濃度が不足し、防錆剤の効果による耐食性の向上が限定的になり、十分な耐食性を得ることができなくなるおそれがある。一方、塗膜中の防錆剤の平均濃度が15%超であると、防錆剤の添加による耐食性向上の効果が飽和し、コスト的に好ましくない。塗膜中の防錆剤の平均濃度は、質量%で、5%以上、7%以上、又は10%以上であってもよく、したがって、好ましくは5%以上15%以下、より好ましくは7%以上15%以下、さらに好ましくは10%以上15%以下である。   When the average concentration of the rust preventive agent in the coating film is less than 3% by mass%, the concentration of the rust preventive agent in the entire coating film is insufficient, and the corrosion resistance improvement due to the effect of the rust preventive agent is limited. Therefore, there is a possibility that sufficient corrosion resistance cannot be obtained. On the other hand, if the average concentration of the rust preventive agent in the coating film exceeds 15%, the effect of improving the corrosion resistance due to the addition of the rust preventive agent is saturated, which is not preferable in terms of cost. The average concentration of the rust preventive agent in the coating film may be 5% or more, 7% or more, or 10% or more by mass%, and therefore, preferably 5% or more and 15% or less, more preferably 7%. It is not less than 15% and more preferably not less than 10% and not more than 15%.

本明細書で使用される場合、「塗膜中の防錆剤の平均濃度」は以下の方法で決定される。まず、塗膜を有する鋼板の断面をTEMで観察し、塗膜の表面上で無作為に選択した位置から、塗膜の表面に垂直な方向(厚さ方向)にZn系合金めっき層へ向けて直線を引く。次いで、その直線上で塗膜の厚さを11等分して、11個の領域に分割する。そして、その領域の中から最もZn系合金めっき層に近い領域を除いた塗膜中の10個の領域で防錆剤の濃度、すなわち、例えばP、V、Mgの元素の濃度の合計を測定して、それらの測定値を平均化して決定される。各位置での防錆剤の濃度の測定は、SEMやTEMに付属のエネルギー分散型X線分光器(EDS)を用いて元素分析することで求められる。   As used herein, "average concentration of rust inhibitor in coating" is determined by the following method. First, the cross section of the steel sheet having the coating film is observed by TEM, and from the randomly selected position on the surface of the coating film, it is directed to the Zn-based alloy plating layer in the direction (thickness direction) perpendicular to the surface of the coating film. Draw a straight line. Then, the thickness of the coating film is divided into 11 equal parts on the straight line and divided into 11 regions. Then, the concentration of the rust preventive agent, that is, the total concentration of the elements of P, V, and Mg, for example, is measured in 10 regions of the coating film excluding the region closest to the Zn-based alloy plating layer from that region. Then, the measured values are averaged and determined. The concentration of the rust preventive agent at each position can be measured by elemental analysis using an energy dispersive X-ray spectrometer (EDS) attached to the SEM or TEM.

本発明においては、Zn系合金めっき層と塗膜との界面から10nm離れた位置における塗膜中の防錆剤の濃度が、塗膜中の防錆剤の平均濃度の1.5倍以上5.0倍以下である。すなわち、塗膜中であって、塗膜とZn系合金めっき層との界面付近の領域に防錆剤が濃化している。このように塗膜とZn系合金めっき層との界面付近の領域で、防錆剤を他の部分に比べて濃化させると、その防錆剤の濃化領域が酸素等の腐食因子に対するZn系合金めっき層のためのバリア領域として作用することが可能となる。そのため、腐食因子がZn系合金めっき層に浸食するのを最小限に抑制でき、表面処理鋼板が極めて優れた耐食性を有することができる。また、上記のような防錆剤の濃化領域により、表面処理鋼板に加工を施した後であっても十分に耐食性を維持することが可能となる。   In the present invention, the concentration of the rust preventive agent in the coat film at a position 10 nm away from the interface between the Zn-based alloy plating layer and the coat film is 1.5 times or more the average concentration of the rust preventive agent in the coat film 5 0.0 times or less. That is, in the coating film, the rust inhibitor is concentrated in the region near the interface between the coating film and the Zn-based alloy plating layer. Thus, when the rust preventive agent is concentrated in the area near the interface between the coating film and the Zn-based alloy plating layer as compared with other areas, the concentrated area of the rust preventive agent becomes Zn against corrosion factors such as oxygen. It becomes possible to act as a barrier region for the system alloy plating layer. Therefore, it is possible to suppress corrosion of the Zn-based alloy plating layer by a corrosion factor to a minimum, and the surface-treated steel sheet can have extremely excellent corrosion resistance. Further, due to the concentrated region of the rust preventive agent as described above, it becomes possible to sufficiently maintain the corrosion resistance even after processing the surface-treated steel sheet.

この値が1.5倍未満であると、塗膜中であって、塗膜とZn系合金めっき層側との界面付近において、腐食因子が通過してZn系合金めっき層を腐食するのを抑制するバリア領域としての効果が弱まり、腐食因子がZn系合金めっき層に到達する場合があり、塗膜が十分な耐食性を提供できない場合がある。一方、この値が5.0倍超であると、防錆剤の濃化領域における濃化の程度が高すぎるために、表面処理鋼板を加工した際に防錆剤の濃化領域で塗膜が凝集破壊する場合がある。そうすると、加工密着性が低下し、その結果、加工部での耐食性が維持できなくなり耐食性が不十分となるおそれがある。Zn系合金めっき層と塗膜との界面から10nm離れた位置における塗膜中の防錆剤の濃度は、塗膜中の防錆剤の平均濃度の1.7倍以上、2.0倍以上、又は2.2倍以上であってよく、また、4.8倍以下、4.5倍以下、4.2倍以下、4.0倍以下又は3.5倍以下であってよく、好ましくは2.0倍以上4.5倍以下、より好ましくは2.0倍以上4.0倍以下、さらに好ましくは2.5倍以上4.0倍以下である。   If this value is less than 1.5 times, in the coating film, in the vicinity of the interface between the coating film and the Zn-based alloy plating layer side, a corrosion factor passes and corrodes the Zn-based alloy plating layer. The effect as a barrier region to suppress may be weakened, the corrosion factor may reach the Zn-based alloy plating layer, and the coating film may not provide sufficient corrosion resistance. On the other hand, if this value is more than 5.0 times, the degree of thickening in the concentrated area of the rust preventive agent is too high, and therefore, when the surface-treated steel sheet is processed, the coating film is applied in the concentrated area of the rust preventive agent. May cause cohesive failure. If so, the work adhesion decreases, and as a result, the corrosion resistance in the processed portion may not be maintained, and the corrosion resistance may become insufficient. The concentration of the rust inhibitor in the coating film at a position 10 nm away from the interface between the Zn-based alloy plating layer and the coating film is 1.7 times or more and 2.0 times or more the average concentration of the rust agent in the coating film. , Or 2.2 times or more, and 4.8 times or less, 4.5 times or less, 4.2 times or less, 4.0 times or less or 3.5 times or less, preferably It is 2.0 times or more and 4.5 times or less, more preferably 2.0 times or more and 4.0 times or less, and further preferably 2.5 times or more and 4.0 times or less.

「Zn系合金めっき層と塗膜との界面から10nm離れた位置における塗膜中の防錆剤の濃度」は、TEM−EDSを用いて、塗膜を有する鋼板の断面から決定される。具体的には、観察された断面のTEM画像から、無作為に選択したZn系合金めっき層と塗膜との界面から垂直な方向に塗膜の表面に向かって10nm離れた5か所の位置でTEM−EDSにより防錆剤の濃度(すなわち、例えばP、V、Mgの元素の合計濃度)を測定し、それらの測定値を平均化して決定される。   The “concentration of the rust preventive agent in the coating film at a position 10 nm away from the interface between the Zn-based alloy plating layer and the coating film” is determined from the cross section of the steel sheet having the coating film using TEM-EDS. Specifically, from the TEM image of the observed cross section, five positions 10 nm apart from the interface between the randomly selected Zn-based alloy plating layer and the coating film in the direction perpendicular to the surface of the coating film were located. Then, the concentration of the rust preventive agent (that is, the total concentration of P, V, and Mg elements, for example) is measured by TEM-EDS, and the measured values are averaged to determine.

前述のようにpH3.0〜5.0の酸性の塗料がZn系合金めっき層の表面上の酸化被膜を除去するため、本発明における塗膜中に含まれる防錆剤の成分(例えばP)と、Zn系合金めっき層に含まれる成分(例えばZn)は、塗膜とZn系合金めっき層との界面付近で反応して、その界面付近の領域で反応生成物(例えばZnとPとを含む反応生成物)を形成する。この反応生成物の存在する領域においては、その他の領域と同様に塗膜中に均一に分散している防錆剤の成分と、反応生成物を構成する防錆剤の成分との両方が存在している。そのため、本発明に係る表面処理鋼板では、塗膜中であって、塗膜とZn系合金めっき層との界面付近の領域で、防錆剤(例えばP)が他の領域に比べて濃化して存在している。   As described above, the acidic coating material having a pH of 3.0 to 5.0 removes the oxide film on the surface of the Zn-based alloy plating layer, so that the component (for example, P) of the rust preventive agent contained in the coating film in the present invention. And a component (for example, Zn) contained in the Zn-based alloy plating layer reacts near the interface between the coating film and the Zn-based alloy plating layer, and a reaction product (for example, Zn and P) is generated in a region near the interface. Reaction product containing) is formed. In the area where this reaction product is present, both the components of the rust preventive agent that are uniformly dispersed in the coating film and the components of the rust preventive agent that make up the reaction product are present, as in the other areas. are doing. Therefore, in the surface-treated steel sheet according to the present invention, the rust preventive agent (for example, P) is concentrated in the coating film in the region near the interface between the coating film and the Zn-based alloy plating layer as compared with other regions. Exists.

このような反応生成物が存在する領域は、当業者に公知の元素分析方法を使用して測定することができる。具体的には、例えば防錆剤としてPが含まれる場合、塗膜の表面からZn系合金めっき層に向けて塗膜の表面に垂直な方向に、すなわち厚さ方向に元素分析を行うと、塗膜とZn系合金めっき層との界面付近に防錆剤の成分としてのPが濃化している領域を測定することができる。さらに、このように測定されたPの濃化領域を、当業者に公知の原子間の結合エネルギーを測定する方法で分析することで、防錆剤成分のPと、Zn系合金めっき層の成分のZnやAlとの反応生成物を測定することができる。   The area where such a reaction product is present can be measured using an elemental analysis method known to those skilled in the art. Specifically, for example, when P is contained as a rust preventive, when elemental analysis is performed from the surface of the coating film toward the Zn-based alloy plating layer in a direction perpendicular to the surface of the coating film, that is, in the thickness direction, A region where P as a component of the rust preventive is concentrated can be measured near the interface between the coating film and the Zn-based alloy plating layer. Further, the P concentration region measured in this manner is analyzed by a method known to those skilled in the art for measuring the bond energy between atoms, whereby P of the rust preventive component and the component of the Zn-based alloy plating layer are analyzed. The reaction product with Zn or Al can be measured.

(光輝顔料)
本発明に係る表面処理鋼板において、上述した防錆剤に加え、意匠性を向上させるために、光輝顔料が塗膜中に含まれると好ましい。本明細書で使用される場合、「光輝顔料」とは、表面で光が反射する顔料を意味する。なお、光輝顔料には、塗膜を作製するための酸性塗料中で溶解せず、塗料に添加した状態のまま塗膜中に含まれるものを用いる。したがって、本発明において、塗膜中に「光輝顔料を含む」とは、以下で説明する金属単体、酸化物又は合金などを塗膜中に含むことを意味し、塗膜中においては、光輝顔料と、塗膜を形成するバインダー樹脂とを明確に区別して特定することが可能である。よって、後述する光輝顔料の「濃度」とは、以下で説明する金属単体、酸化物又は合金などとしての合計濃度を意味する。
(Bright pigment)
In the surface-treated steel sheet according to the present invention, it is preferable that, in addition to the above-mentioned rust preventive agent, a bright pigment is contained in the coating film in order to improve designability. As used herein, "bright pigment" means a pigment that reflects light on its surface. As the bright pigment, one that does not dissolve in the acidic coating material for producing the coating film and is contained in the coating film as it is added to the coating material is used. Therefore, in the present invention, "containing a bright pigment" in the coating film means that the coating contains a metal simple substance, an oxide, or an alloy described below, and in the coating film, the bright pigment is included. And the binder resin forming the coating film can be clearly distinguished and specified. Therefore, the “concentration” of the bright pigment described below means the total concentration of a simple metal, an oxide, an alloy, or the like described below.

意匠性を向上させる理由としては、Zn系合金めっき鋼板を建材用や屋外家電用に使用した製品は、一般的に、使用者等から見える場所で使用されることが多いため、このようなZn系合金めっき鋼板は良好な視覚的品質(外観)を有することが好ましいためである。特に、光輝顔料がZn系合金めっき層に近い意匠の場合、塗膜厚のむらが目立ち難かったり、疵が目立ち難かったりする。そのため、塗膜厚を薄くすることができ、経済的に好ましい。   One of the reasons for improving the design is that Zn-based alloy-plated steel sheets used for building materials and outdoor home appliances are generally used in places where users can see them. This is because the base alloy-plated steel plate preferably has good visual quality (appearance). Particularly, in the case of a design in which the bright pigment is close to the Zn-based alloy plating layer, the unevenness of the coating film thickness is less noticeable or the flaw is less noticeable. Therefore, the coating film thickness can be reduced, which is economically preferable.

そこで、上述したような光輝顔料を塗膜中で使用することで、その金属的外観(例えばシルバー色)により表面処理鋼板の輝度を向上させることができ、外観に優れた高い意匠性を有する表面処理鋼板を提供することが可能となる。さらに、光輝顔料がZn系合金めっき層と同一又は類似の色調を有する場合は、塗膜が傷ついた際に傷による外観の変化を目立ちにくくすることができ、したがって耐傷付性を向上させることができ、長期に本発明に係る表面処理鋼板の優れた外観を維持することができる。   Therefore, by using the bright pigment as described above in the coating film, it is possible to improve the brightness of the surface-treated steel sheet due to its metallic appearance (for example, silver color), and a surface having excellent appearance and high designability. It is possible to provide a treated steel sheet. Furthermore, when the bright pigment has the same or similar color tone as that of the Zn-based alloy plating layer, it is possible to make the change in appearance due to scratches less noticeable when the coating film is scratched, thus improving scratch resistance. Therefore, the excellent appearance of the surface-treated steel sheet according to the present invention can be maintained for a long period of time.

そして、光輝顔料が塗膜中に含まれることにより、本発明における表面処理鋼板を、塗膜の表面に垂直な方向から観察した場合に、光輝顔料により下地のZn系合金めっき層を見えなくすることができる。このようにすると、例えば、Zn系合金めっき層に含まれるZnが空気中の酸素等の影響で酸化されて、酸素が欠乏したZn酸化物を形成し、Zn系合金めっき層が黒変した場合であっても、その黒変を光輝顔料により見えなくすることが可能となり、本発明に係る表面処理鋼板の意匠性を維持することが可能となる。   When the surface-treated steel sheet according to the present invention is observed from the direction perpendicular to the surface of the coating film by containing the bright pigment in the coating film, the bright pigment makes the underlying Zn-based alloy plating layer invisible. be able to. In this case, for example, when Zn contained in the Zn-based alloy plating layer is oxidized under the influence of oxygen in the air to form oxygen-deficient Zn oxide and the Zn-based alloy plating layer turns black. However, the blackening can be made invisible by the bright pigment, and the design of the surface-treated steel sheet according to the present invention can be maintained.

本発明における光輝顔料としては、本発明で用いるpH3.0〜5.0の酸性の塗料中で使用できる、すなわちこのpH範囲で溶解しないものであれば特に限定されないが、例えば、アルミニウム又は酸化物を使用することができる。酸化物の例としては、限定されないが、例えば、アルミナ、シリカ、マイカ、ジルコニア、チタニア、ガラス、酸化亜鉛などが挙げられる。これらの顔料は、シリカなどの金属酸化物でコーティングされており、金属的外観(メタリック外観とも称される)を有する。これらは、塗膜中において単独で又は組み合わせて使用することができる。   The bright pigment in the present invention is not particularly limited as long as it can be used in an acidic coating material having a pH of 3.0 to 5.0 used in the present invention, that is, it does not dissolve in this pH range, and examples thereof include aluminum and oxides. Can be used. Examples of oxides include, but are not limited to, alumina, silica, mica, zirconia, titania, glass, zinc oxide and the like. These pigments are coated with a metal oxide such as silica and have a metallic appearance (also called metallic appearance). These can be used alone or in combination in the coating film.

本発明における光輝顔料として、上述のアルミニウム又は酸化物の他に、高い輝度を提供できる金属を塗膜中にさらに添加することができる。このような金属の例としては、高い輝度を有する金属であり、酸性の塗料中で使用できるものであれば特に限定されないが、例えば、Rh(ロジウム)、Cr(クロム)、Ti(チタン)、Ag(銀)、及びCu(銅)などの金属単体、Zn−Cu(黄銅)などの合金などが挙げられる。これらの金属は、塗膜中で単独で又は組み合わせて使用することができる。このような高い輝度を提供できる金属を塗膜中に含めることで、塗膜の金属的外観をより高めることが可能となり、したがって本発明に係る表面処理鋼板の輝度をさらに向上でき、表面処理鋼板の意匠性をさらに向上させることができる。   As the bright pigment in the present invention, in addition to the above-mentioned aluminum or oxide, a metal capable of providing high brightness can be further added to the coating film. Examples of such a metal are metals having high brightness and are not particularly limited as long as they can be used in an acidic paint, and examples thereof include Rh (rhodium), Cr (chrome), Ti (titanium), Examples include simple metals such as Ag (silver) and Cu (copper), alloys such as Zn-Cu (brass), and the like. These metals can be used alone or in combination in the coating film. By including a metal capable of providing such a high brightness in the coating film, it becomes possible to further enhance the metallic appearance of the coating film, and therefore, the brightness of the surface-treated steel sheet according to the present invention can be further improved. The designability of can be further improved.

本発明における光輝顔料の平均粒径は、特に限定されないが、例えば、1μm以上30μm以下の範囲であることができる。光輝顔料の平均粒径が1μm以上30μm以下の範囲であることで、輝度のムラが発生することなく、耐食性を維持したまま十分な意匠性を提供することが可能となる。光輝顔料の平均粒径が1μm未満であると、本発明における塗膜を形成するための塗料中で均一に分散させることが難しくなり、形成された塗膜の色調にムラが発生し十分な意匠性を担保できない場合がある。一方、光輝顔料の平均粒径が30μm超であると、光輝顔料が塗膜の表面から突出し、その突出した部分から腐食因子が侵入するおそれがあり、耐食性が劣化するおそれがある。さらに、そのような突出した部分が存在すると均一な外観を有することが難しくなり、意匠性が不十分になるおそれがある。光輝顔料の平均粒径は、2μm以上又は3μm以上であってよく、また、25μm以上以下、20μm以下又は15μm以下であってよく、好ましくは3μm以上25μm以下、より好ましくは3μm以上20μm以下、さらに好ましくは3μm以上15μm以下である。   The average particle diameter of the bright pigment in the present invention is not particularly limited, but may be, for example, in the range of 1 μm or more and 30 μm or less. When the average particle diameter of the bright pigment is in the range of 1 μm or more and 30 μm or less, it is possible to provide sufficient designability while maintaining the corrosion resistance without causing uneven brightness. When the average particle diameter of the bright pigment is less than 1 μm, it becomes difficult to disperse the paint uniformly in the coating material for forming the coating film of the present invention, and the formed coating film has unevenness in color tone and is sufficiently designed. There is a case that the sex cannot be guaranteed. On the other hand, when the average particle diameter of the bright pigment is more than 30 μm, the bright pigment may project from the surface of the coating film, and a corrosion factor may enter from the projected portion, resulting in deterioration of corrosion resistance. Furthermore, if such a protruding portion is present, it becomes difficult to have a uniform appearance, and the designability may be insufficient. The average particle diameter of the bright pigment may be 2 μm or more or 3 μm or more, and may be 25 μm or more, 20 μm or less or 15 μm or less, preferably 3 μm or more and 25 μm or less, more preferably 3 μm or more and 20 μm or less, It is preferably 3 μm or more and 15 μm or less.

本明細書で使用される場合は、本発明に係る光輝顔料についての「平均粒径」は、例として、以下の方法で決定することができる。塗膜の表面に対して垂直方向から電界放出型電子プローブマイクロアナライザー(Field Emission−Electron Prove Micro Analyzer:FE−EPMA)により光輝顔料を構成する元素のマッピング像を求める。マッピング像の測定範囲の面積は20mm×20mm以上とする。得られたマッピング像から測定範囲内に存在する光輝顔料の輪郭を特定し、その輪郭で囲まれる合計の面積Sを求める。また、測定範囲内に存在する光輝顔料の個数Nを求める。そして、求めた面積Sが、断面が直径(粒径)Dを有する円形であるN個の光輝顔料により構成されていると仮定し、光輝顔料の平均粒径を[D=2×(S/(πN))0.5]の式から求める。As used herein, the "average particle size" for the bright pigments according to the invention can be determined by the following method, as an example. A mapping image of the elements constituting the bright pigment is obtained from a direction perpendicular to the surface of the coating film by a field emission-electron probe micro analyzer (FE-EPMA). The area of the measurement range of the mapping image is 20 mm × 20 mm or more. The contour of the bright pigment existing in the measurement range is specified from the obtained mapping image, and the total area S surrounded by the contour is determined. Further, the number N of bright pigments existing in the measurement range is determined. Then, assuming that the obtained area S is composed of N bright pigments each having a circular cross section with a diameter (particle diameter) D, the average particle diameter of the bright pigment is [D = 2 × (S / (ΠN)) 0.5 ].

本発明における光輝顔料の形状は、任意の形状のものを使用することができるが、例えば、球状、楕円状、針状、扁平状、薄板状、鱗片状などであることができる。好ましくは、光輝顔料の形状は鱗片状であることができる。本発明における光輝顔料の形状が鱗片状であると、光輝顔料によって効果的に下地のZn系合金めっき層を見えなくすることができ、すなわち効果的にZn系合金めっき層の黒変による製品の外観上の変化を抑制でき、極めて意匠性に優れた表面処理鋼板を提供することが可能となる。   The shape of the bright pigment in the present invention may be any shape, and may be, for example, a spherical shape, an elliptical shape, a needle shape, a flat shape, a thin plate shape, a scale shape, or the like. Preferably, the bright pigment may have a scaly shape. When the shape of the bright pigment in the present invention is scale-like, the bright pigment can effectively make the underlying Zn-based alloy plating layer invisible, that is, the product is effectively blackened by the Zn-based alloy plating layer. It is possible to provide a surface-treated steel sheet that can suppress changes in appearance and that is extremely excellent in design.

塗膜中の光輝顔料の平均濃度は、例えば、質量%で、5〜15%であることができる。このような範囲の塗膜中の光輝顔料の平均濃度であることで、塗膜の加工性を損なうことなく、本発明に係る表面処理鋼板に均一な金属的外観を提供することが可能となり、意匠性に優れた表面処理鋼板を提供することができる。塗膜中の光輝顔料の平均濃度が、5%未満だと、塗膜中の光輝顔料が不足し、十分な金属的外観を提供できず、輝度が不十分となり、十分な意匠性を提供できなくなる場合がある。一方、塗膜中の光輝顔料の平均濃度が15%超であると、光輝顔料の添加による輝度の向上が飽和するため、コスト的に好ましくない。また、塗膜中に光輝顔料が多く存在することで、相対的に塗膜を構成するバインダー樹脂の割合が低下し、加工した際に塗膜に亀裂が入るなど加工性が低下するおそれがある。好ましくは、塗膜中の光輝顔料の平均濃度は5%以上12%以下、より好ましくは6%以上10%以下である。   The average concentration of the bright pigment in the coating film can be, for example, 5 to 15% by mass. By the average concentration of the bright pigment in the coating film in such a range, it is possible to provide a uniform metallic appearance to the surface-treated steel sheet according to the present invention without impairing the processability of the coating film, It is possible to provide a surface-treated steel sheet excellent in designability. If the average concentration of the bright pigment in the coating film is less than 5%, the amount of the bright pigment in the coating film is insufficient, a sufficient metallic appearance cannot be provided, the brightness becomes insufficient, and sufficient designability can be provided. It may disappear. On the other hand, if the average concentration of the bright pigment in the coating film exceeds 15%, the improvement in brightness due to the addition of the bright pigment is saturated, which is not preferable in terms of cost. In addition, the presence of a large amount of bright pigment in the coating film may relatively reduce the proportion of the binder resin constituting the coating film, resulting in a decrease in processability such as cracking of the coating film when processed. . The average concentration of the bright pigment in the coating film is preferably 5% or more and 12% or less, more preferably 6% or more and 10% or less.

本明細書で使用される場合、「塗膜中の光輝顔料の平均濃度」とは公知の方法で求めることができる。例えばグロー放電発光表面分析装置(Glow Discharge Optical Emission Spectrometry:GD-OES)を用いて測定することができる。具体的には、光輝顔料の種類、すなわち光輝顔料の具体的な化合物が判明している場合は、まず塗膜を表面からZn系合金めっき層に向かってスパッタリングし、光輝顔料を構成する主要な元素について、深さ方向の濃度プロファイルを1.0μmごとに測定する。その後、測定した主要な元素の濃度の平均値を求め、既知の着色顔料の化合物の分子量に基づいて測定した濃度を換算し、塗膜中の光輝顔料の平均濃度を求める。また、塗膜を機械的または化学的に剥離し、塗膜の全体質量を測定する。その後、剥離した塗膜に含まれる光輝顔料濃度を分析により測定する。剥離した塗膜中の光輝顔料の濃度の分析方法としては、例えば誘導プラズマ発光分析(Inductively Coupled Plasma:ICP)や蛍光X線分析を用いることができる。光輝顔料の種類、すなわち光輝顔料の具体的な化合物が不明である場合は、塗膜の断面(塗膜の表面と垂直な面)に対してFE−EPMAにより、光輝顔料を構成する元素を分析することで光輝顔料の種類を特定した後に、上記のように「塗膜中の光輝顔料の平均濃度」を測定することができる。光輝顔料が合金である黄銅の場合、CuとZnの含有量(濃度)の合計を塗膜中の光輝顔料の平均濃度とする。   As used herein, the "average concentration of the bright pigment in the coating film" can be determined by a known method. For example, it can be measured by using a glow discharge optical emission spectroscopy (GD-OES). Specifically, when the kind of the bright pigment, that is, the specific compound of the bright pigment is known, first, the coating film is sputtered from the surface toward the Zn-based alloy plating layer to form the main pigment constituting the bright pigment. For the element, the concentration profile in the depth direction is measured every 1.0 μm. Then, the average value of the measured concentrations of the main elements is calculated, the measured concentration is converted based on the molecular weight of the compound of the known coloring pigment, and the average concentration of the bright pigment in the coating film is calculated. Further, the coating film is peeled mechanically or chemically, and the total mass of the coating film is measured. Then, the concentration of the bright pigment contained in the peeled coating film is measured by analysis. As a method for analyzing the concentration of the bright pigment in the peeled coating film, for example, induction plasma emission analysis (ICP) or fluorescent X-ray analysis can be used. When the type of the bright pigment, that is, the specific compound of the bright pigment is unknown, the elements constituting the bright pigment are analyzed by FE-EPMA with respect to the cross section of the coating film (the surface perpendicular to the surface of the coating film). After specifying the type of the bright pigment by doing so, the "average concentration of the bright pigment in the coating film" can be measured as described above. When the bright pigment is brass, which is an alloy, the total content (concentration) of Cu and Zn is the average concentration of the bright pigment in the coating film.

本発明における塗膜中には、必要に応じて、本発明における防錆剤及び光輝顔料以外の顔料や骨材などを添加することができる。また、ポリエチレンワック又はPTFEワックスのようなワックス、アクリル樹脂ビーズ又はウレタン樹脂ビーズのような樹脂ビーズ、並びにフタロシアニンブルー、フタロシアニングリーン、メチルオレンジ、メチルバイオレット、又はアリザリンのような染料等を塗膜中に添加することができる。これらを添加することで塗膜の強度を高めたり、塗膜に所望の色を付与できたりするためより好ましい。これらの添加量は、本発明における塗膜にとって不利にならないよう、適宜決定すればよい。   In the coating film of the present invention, a pigment other than the rust preventive agent and bright pigment of the present invention, an aggregate and the like can be added, if necessary. In addition, wax such as polyethylene wax or PTFE wax, resin beads such as acrylic resin beads or urethane resin beads, and dyes such as phthalocyanine blue, phthalocyanine green, methyl orange, methyl violet, or alizarin may be used in the coating film. It can be added. Addition of these is more preferable because the strength of the coating film can be increased and a desired color can be imparted to the coating film. The addition amount of these may be appropriately determined so as not to be disadvantageous for the coating film of the present invention.

特に、本発明における塗膜、したがって本発明に係る表面処理鋼板に所望の色を付与するために、着色剤として染料を使用することができる。染料は単独で使用してもよく、複数の染料を組み合わせて使用してもよい。また、染料を着色顔料と併用してもよい。本発明における塗膜中で使用できる染料の種類としては、特に限定はされないが、公知の染料を使用することができ、例えば、フタロシアニンブルー、フタロシアニングリーン、メチルオレンジ、メチルバイオレット、又はアリザリンを使用することができる。   In particular, a dye can be used as a colorant for imparting a desired color to the coating film of the present invention, and thus the surface-treated steel sheet of the present invention. The dyes may be used alone, or a plurality of dyes may be used in combination. Further, the dye may be used in combination with the color pigment. The type of dye that can be used in the coating film in the present invention is not particularly limited, but known dyes can be used, for example, phthalocyanine blue, phthalocyanine green, methyl orange, methyl violet, or alizarin is used. be able to.

[表面処理鋼板の製造方法]
本発明に係る表面処理鋼板の製造方法を以下で説明する。本発明に係る表面処理鋼板は、例えば、鋼板上に形成されたZn系合金めっき層上に、少なくとも防錆剤とバインダー樹脂とを含むpH3.0〜5.0の酸性の塗料を塗布し、加熱して塗料を硬化させることで製造することができる。
[Method of manufacturing surface-treated steel sheet]
The method for manufacturing the surface-treated steel sheet according to the present invention will be described below. The surface-treated steel sheet according to the present invention, for example, on a Zn-based alloy plating layer formed on the steel sheet, apply an acidic paint of pH 3.0 to 5.0 containing at least a rust inhibitor and a binder resin, It can be manufactured by heating to cure the paint.

<Zn系合金めっき層の形成>
鋼板としては、任意の板厚及び化学組成を有するものを使用することができる。例えば、板厚0.25〜3.5mmの冷延鋼板を使用することができる。また、Zn系合金めっき層は、例えば、400〜550℃のZn−Al−Mg溶融めっき浴又はZn−Al−Mg−Si溶融めっき浴を用いて5〜30μmの厚さで形成することができる。
<Formation of Zn-based alloy plating layer>
As the steel plate, one having any plate thickness and chemical composition can be used. For example, a cold rolled steel plate having a plate thickness of 0.25 to 3.5 mm can be used. Further, the Zn-based alloy plating layer can be formed to a thickness of 5 to 30 μm using, for example, a Zn-Al-Mg hot-dip bath or a Zn-Al-Mg-Si hot-dip bath at 400 to 550 ° C. .

<塗料の調製>
塗料は、例えば、溶媒に分散させたバインダー樹脂と、硬化剤とを混合して、次いで、その混合物中に所定量の防錆剤源と、任意選択で光輝顔料とを分散させることで得ることができる。混合の順序は異なってもよい。バインダー樹脂としては、特に限定されないが、ポリエステル樹脂、ウレタン樹脂又はアクリル樹脂などを使用することができ、硬化剤としてはメラミン樹脂などを使用することができる。また、溶媒としては酸性のものを使用し、防錆剤源としてはその酸性溶媒中に溶解するもの、例えばP化合物、V化合物、Mg化合物又はそれらの2種以上を用いることができる。一方、光輝顔料としては、酸性溶媒中で溶解しない顔料から適宜選択することができる。バインダー樹脂と硬化剤との比は適宜決定することができるが、例えば、1:1〜9:1の範囲であることができる。
<Preparation of paint>
The paint is obtained by, for example, mixing a binder resin dispersed in a solvent and a curing agent, and then dispersing a predetermined amount of a rust inhibitor source and optionally a bright pigment in the mixture. You can The order of mixing may be different. The binder resin is not particularly limited, but a polyester resin, a urethane resin, an acrylic resin, or the like can be used, and a melamine resin or the like can be used as a curing agent. Further, an acidic solvent can be used as the solvent, and a rust preventive agent source that can be dissolved in the acidic solvent, for example, a P compound, a V compound, a Mg compound or two or more thereof can be used. On the other hand, the bright pigment can be appropriately selected from pigments that do not dissolve in an acidic solvent. The ratio of the binder resin to the curing agent can be appropriately determined, but can be, for example, in the range of 1: 1 to 9: 1.

本発明における塗膜を得るために使用する塗料のpHは、3.0以上5.0以下であることが重要である。塗料のpHをこのような範囲にすることで、防錆剤源を塗料中で溶解させることができるだけでなく、このような塗料をZn系合金めっき層に塗布した場合に、Zn系合金めっき層の表面上の酸化被膜を適切に除去できる。そうすると、Zn系合金めっき層の表面付近で、イオンの状態の防錆剤の成分とZn系合金めっき層中の成分とが反応し、その結果、塗料を硬化させた後に、Zn系合金めっき層と塗膜との界面付近に、反応生成物が濃化した領域を形成することが可能となる。塗料のpHが3.0未満であると、防錆剤の濃化領域における濃化の程度が高くなりすぎ、表面処理鋼板を加工した際に防錆剤の濃化領域で塗膜が凝集破壊する場合がある。そうすると、加工密着性が低下し、その結果、加工部での耐食性が維持できなくなり耐食性が不十分となるおそれがある。さらに塗料中にZnが溶出し塗料の貯蔵安定性が低下するおそれがある。一方、塗料のpHが5.0超であると、Zn系合金めっき層の表面上の酸化被膜を十分に除去できず、塗膜とZn系合金めっき層との界面付近の領域に防錆剤が十分に濃化しないおそれがある。さらに、pHがアルカリ性、すなわち7.0超となると、塗料作成時に塗料が固化(ゲル化)し、塗料としての貯蔵安定性に欠け使用上の問題が発生する。塗料のpHは、3.2以上又は3.5以上であってもよく、また、4.8以下又は4.5以下であってもよい。塗料のpHは好ましくは3.2〜4.8、より好ましくは3.5〜4.5である。なお、塗料を硬化させて塗膜になった後はpHを測定することはできない。   It is important that the pH of the coating material used to obtain the coating film in the present invention is 3.0 or more and 5.0 or less. By setting the pH of the coating material in such a range, not only the rust inhibitor source can be dissolved in the coating material, but also when such coating material is applied to the Zn-based alloy plating layer, the Zn-based alloy plating layer The oxide film on the surface of the can be removed properly. Then, in the vicinity of the surface of the Zn-based alloy plating layer, the components of the rust preventive agent in the ionic state react with the components in the Zn-based alloy plating layer, and as a result, after the coating material is cured, the Zn-based alloy plating layer It becomes possible to form a region where the reaction product is concentrated near the interface between the coating film and the coating film. If the pH of the paint is less than 3.0, the degree of thickening in the concentrated area of the rust preventive agent becomes too high, and when the surface-treated steel sheet is processed, the coating film cohesively fails in the concentrated area of the rust preventive agent. There is a case. If so, the work adhesion decreases, and as a result, the corrosion resistance in the processed portion may not be maintained, and the corrosion resistance may become insufficient. Further, Zn may be eluted in the paint to reduce the storage stability of the paint. On the other hand, if the pH of the coating exceeds 5.0, the oxide film on the surface of the Zn-based alloy plating layer cannot be sufficiently removed, and the rust preventive agent is formed in the region near the interface between the coating film and the Zn-based alloy plating layer. May not be fully concentrated. Further, if the pH is alkaline, that is, more than 7.0, the coating material solidifies (gels) during the preparation of the coating material, resulting in lack of storage stability as the coating material and a problem in use. The pH of the paint may be 3.2 or higher or 3.5 or higher, and may be 4.8 or lower or 4.5 or lower. The pH of the coating material is preferably 3.2 to 4.8, more preferably 3.5 to 4.5. Note that the pH cannot be measured after the coating material is cured to form a coating film.

塗料のpHは、原材料の溶媒等の製造ロットにより変化する場合がある。このため、酸又はアルカリ水溶液を用いてpHを調整する必要がある。より具体的には、塗料の調合後のpHを測定し、目標とするpHに応じて、pH値を下げる場合は硝酸、塩酸又は硫酸を用いればよく、pH値を上げる場合は水酸化ナトリウム水溶液等を使用することができる。これらの酸又はアルカリ水溶液は、pH調整に使用する前に希釈して使用することが好ましい。   The pH of the paint may change depending on the production lot of the raw material solvent and the like. Therefore, it is necessary to adjust the pH using an acid or alkaline aqueous solution. More specifically, after measuring the pH of the paint after preparation, nitric acid, hydrochloric acid or sulfuric acid may be used to lower the pH value depending on the target pH, and an aqueous sodium hydroxide solution may be used to raise the pH value. Etc. can be used. These acid or alkali aqueous solutions are preferably diluted before use for pH adjustment.

<塗膜の形成>
次いで、得られた塗料をZn系合金めっき層上に塗膜が所定の厚さになるように塗布し、焼付け、硬化させる。塗料の塗布方法は、特に限定されず、当業者に公知な任意の塗布方法により行うことができ、例えばロールコーターなどで行えばよい。焼付けは、塗料が硬化する任意の加熱条件で行うことができ、例えば、5〜70℃/秒の加熱速度で180〜230℃の鋼板温度になるように加熱する。
<Formation of coating film>
Next, the obtained coating material is applied onto the Zn-based alloy plating layer so that the coating film has a predetermined thickness, baked and cured. The method for applying the coating material is not particularly limited, and any coating method known to those skilled in the art may be used. For example, a roll coater or the like may be used. Baking can be performed under arbitrary heating conditions for curing the paint, for example, heating is performed at a heating rate of 5 to 70 ° C./sec to a steel plate temperature of 180 to 230 ° C.

上述したとおり、本発明に係る表面処理鋼板においては、例えばP、V又はMgを含む防錆剤は、塗膜中で微細な化合物として存在している。このような構成にするために、本発明に係る表面処理鋼板の製造方法では、防錆剤をイオンの状態で塗料中に存在させるために、酸性の溶媒に防錆剤源(例えばP化合物、V化合物又はMg化合物)を溶解させ、本発明における塗膜を形成するための塗料を調製している。本発明者らは、このような製造方法を用いると以下のような点で有利であることを見出した。   As described above, in the surface-treated steel sheet according to the present invention, the rust preventive agent containing, for example, P, V or Mg exists as a fine compound in the coating film. In order to have such a structure, in the method for producing a surface-treated steel sheet according to the present invention, in order to allow the rust preventive agent to exist in the paint in an ionic state, the rust preventive agent source (for example, P compound, V compound or Mg compound) is dissolved to prepare a coating material for forming a coating film in the present invention. The present inventors have found that the use of such a manufacturing method is advantageous in the following points.

例えば、本発明とは異なり、防錆顔料が塗膜中に固形成分(例えば粉末)として含まれるような場合、形成される塗膜中で防錆顔料を均一に分布させるために、その塗膜を形成するための塗料中で防錆顔料を均一に分散させることが必要となると考えられる。その上、このような製造方法では、塗料中に防錆顔料を多く添加すると、塗料中で防錆顔料を均一に分散させるのが難しくなったり、さらに、形成された塗膜の主成分の樹脂の割合が低下し塗膜が脆くなったりするおそれがあり、塗膜中への防錆顔料の添加量には上限があると考えられる。また、このような塗料は、防錆顔料を分散させて塗料を調製した後に使用まで塗料を保管している間に、分散状態が悪化して、結果として、防錆顔料が均一に分布した塗膜を得られないなどの問題がある。   For example, unlike the present invention, when the rust preventive pigment is contained as a solid component (for example, powder) in the coating film, the coating film is formed in order to uniformly distribute the rust preventive pigment in the formed coating film. It is considered necessary to uniformly disperse the rust preventive pigment in the paint for forming the. Moreover, in such a manufacturing method, if a large amount of rust preventive pigment is added to the paint, it becomes difficult to uniformly disperse the rust preventive pigment in the paint, and further, the resin as the main component of the formed coating film. It is thought that there is an upper limit to the amount of the rust preventive pigment added to the coating film, since the ratio may decrease and the coating film may become brittle. In addition, such a coating composition has a dispersion state that is deteriorated during storage of the coating composition until it is used after the coating composition is prepared by dispersing the anticorrosion pigment. There are problems such as not being able to obtain a film.

さらに、例えば、本発明とは異なり、防錆剤源としてアルカリ性の溶媒に溶解する化合物を使用して、塗膜用のアルカリ性の塗料を調製した場合については、その化合物の添加量を増やしていくと、その防錆剤源が十分に溶解されず塗料中に固形物が生じる場合がある。また、塗料の保管中に塗料が固まる(ゲル化する)ことがあり、塗料を保管する上での塗料の貯蔵安定性の問題がある。また、アルカリ性の塗料をZn系合金めっき層上に塗布しても、Zn系合金めっき層上の酸化被膜を十分に除去することはできないと考えられる。   Further, for example, unlike the present invention, when a compound that dissolves in an alkaline solvent is used as a source of a rust preventive agent and an alkaline coating material for a coating film is prepared, the addition amount of the compound is increased. In some cases, the source of the rust preventive agent is not sufficiently dissolved and solid matter may be generated in the paint. In addition, the paint may harden (gelate) during storage of the paint, which poses a problem of storage stability of the paint during storage. Further, it is considered that even if the alkaline coating is applied on the Zn-based alloy plating layer, the oxide film on the Zn-based alloy plating layer cannot be sufficiently removed.

一方、本発明においては、酸性の塗料と、防錆剤源としてその塗料に溶解する化合物とを使用し、酸性の塗料中にその化合物を溶解させている。そのため、防錆剤の成分を塗料中で均一に分散させることについて、粉末の防錆顔料を使用した場合のような制限は存在しない。したがって、このような製造方法では、粉末等の防錆顔料を含む塗料に比べて、防錆剤を均一に分散させた状態で、多くの防錆剤を塗料中に添加することができる。また、本発明における塗膜を形成するためのpH3.0〜5.0の酸性の塗料は、防錆剤源を塗料中に多く添加した場合でも、アルカリ性の塗料に比べて塗料が固まりにくく塗料の貯蔵安定性に優れている。以上のように、本発明における塗膜を形成するための塗料は、塗料の貯蔵安定性を有しながら多くの防錆剤源を添加することができ、結果として、塗膜中に高濃度の防錆剤が含まれる塗膜を形成することが可能となる。したがって、このような塗料を用いて塗膜を形成することで、極めて優れた耐食性を有する表面処理鋼板を形成することが可能となる。   On the other hand, in the present invention, an acidic coating material and a compound that dissolves in the coating material as a rust preventive source are used, and the compound is dissolved in the acidic coating material. Therefore, there is no limitation on uniformly dispersing the components of the rust preventive agent in the coating material as in the case of using a powdered rust preventive pigment. Therefore, in such a manufacturing method, as compared with a paint containing a rust preventive pigment such as powder, many rust preventive agents can be added to the paint in a state in which the rust preventive agent is uniformly dispersed. Further, the acidic paint having a pH of 3.0 to 5.0 for forming the coating film in the present invention is a paint which is hard to be solidified as compared with an alkaline paint even when a large amount of a rust preventive source is added to the paint. It has excellent storage stability. As described above, the coating material for forming the coating film in the present invention can have many rust preventive agent sources added while having the storage stability of the coating material. It is possible to form a coating film containing a rust preventive agent. Therefore, by forming a coating film using such a coating material, it becomes possible to form a surface-treated steel sheet having extremely excellent corrosion resistance.

さらに、上述したように、本発明者らは、このようなpH3.0〜5.0の酸性の塗料をZn系合金めっき層上に塗布すると、Zn系合金めっき層の表面に形成されていた酸化被膜がその塗料により除去され、防錆剤の成分とZn系合金めっき層中の成分とが反応し、その結果、塗膜とZn系合金めっき層との界面付近の領域において防錆剤とZn系合金めっき層中の金属との反応生成物(例えば、PとZnとの反応生成物)が形成されることを見出した。この酸化被膜の除去は、Zn系合金めっき層上に塗布する本発明で使用される塗料が酸性であることに起因している。そして、酸化被膜の除去により、Zn系合金めっき層の酸化被膜下の活性金属が露出し、その活性金属が塗膜中の防錆剤の成分と反応することで、上記反応生成物が形成される。このように生成された反応生成物が存在する領域では、他の領域に比べて防錆剤が濃化している。したがって、この濃化領域が、腐食因子がZn系合金めっき層に侵入するのを防止するバリア領域として作用することで、本発明に係る表面処理鋼板が極めて高い耐食性を有することが可能となる。   Further, as described above, when the present inventors applied such an acidic coating material having a pH of 3.0 to 5.0 on the Zn-based alloy plating layer, it was formed on the surface of the Zn-based alloy plating layer. The oxide film is removed by the coating material, and the components of the rust preventive agent and the components in the Zn-based alloy plating layer react with each other, and as a result, the rust preventive agent is formed in the region near the interface between the coating film and the Zn-based alloy plating layer. It has been found that a reaction product with a metal in the Zn-based alloy plating layer (for example, a reaction product of P and Zn) is formed. This removal of the oxide film is due to the fact that the coating material used in the present invention applied on the Zn-based alloy plating layer is acidic. Then, the removal of the oxide film exposes the active metal under the oxide film of the Zn-based alloy plating layer, and the active metal reacts with the components of the rust preventive agent in the coating film to form the reaction product. It In the region where the reaction product thus generated is present, the rust preventive agent is more concentrated than in other regions. Therefore, the concentrated region acts as a barrier region that prevents a corrosion factor from entering the Zn-based alloy plating layer, and thus the surface-treated steel sheet according to the present invention can have extremely high corrosion resistance.

本発明に係る表面処理鋼板、すなわち、Zn系合金めっき層と塗膜との界面から10nm離れた位置における塗膜中の防錆剤の濃度が、塗膜中の防錆剤の平均濃度の1.5倍以上5.0倍以下である表面処理鋼板は、pH3.0〜5.0の酸性の塗料を使用し、さらに製造時の様々なパラメータ、例えば、塗料中の防錆剤の種類、防錆剤の添加量、塗料の温度、塗料を硬化させる際の加熱温度及び加熱時間、バインダー樹脂と硬化剤の比、合金めっき層への前処理などを適切に調整することで、製造することができる。すなわち、所定量の防錆剤の成分と任意選択で光輝顔料とを含むpH3.0〜5.0の酸性の塗料を用い、このようなパラメータを適切に調整することで、塗膜中の防錆剤の濃化の程度を調整することが可能となり、したがって、本発明に係る表面処理鋼板を製造することが可能となる。   The surface-treated steel sheet according to the present invention, that is, the concentration of the rust inhibitor in the coating film at a position 10 nm away from the interface between the Zn-based alloy plating layer and the coating film is 1 times the average concentration of the rust inhibitor in the coating film. The surface-treated steel sheet that is 5 times or more and 5.0 times or less uses an acidic paint having a pH of 3.0 to 5.0, and further has various parameters during production, such as the type of rust preventive agent in the paint, Manufacture by appropriately adjusting the addition amount of rust preventive agent, coating temperature, heating temperature and heating time for curing coating, ratio of binder resin and curing agent, pretreatment of alloy plating layer, etc. You can That is, by using an acidic paint having a pH of 3.0 to 5.0 containing a predetermined amount of a rust preventive component and optionally a bright pigment, and appropriately adjusting such parameters, the anti-corrosion effect in the coating film can be improved. It is possible to adjust the degree of concentration of the rust agent, and thus it is possible to manufacture the surface-treated steel sheet according to the present invention.

さらに、Zn系合金めっき層の酸化被膜が除去されて、Zn系合金めっき層の活性金属と塗料中の成分とが反応することで、Zn系合金めっき層と塗膜との間に強力な化学的な結合が生じるため、Zn系合金めっき層と塗膜間で優れた密着性を有する表面処理鋼板を得ることが可能となる。より詳細には、特定の理論に束縛されるものではないが、塗料中の防錆剤の成分が反応して水酸化物を形成し、その水酸化物の官能基が樹脂と反応して不可逆的なかつ化学的な結合をもたらすことで、結果としてZn系合金めっき層と塗膜との間で密着性が向上する。このような密着性は、例えば塗膜の形成に中性やアルカリ性の塗料を用いた場合では達成できず、したがって、塗膜の形成のためにpH3.0〜5.0の酸性の塗料を使用した場合は、中性やアルカリ性の塗料を使用した場合に比べて密着性が向上する。   Further, the oxide film of the Zn-based alloy plating layer is removed, and the active metal of the Zn-based alloy plating layer reacts with the components in the coating material, resulting in a strong chemical reaction between the Zn-based alloy plating layer and the coating film. As a result, a surface-treated steel sheet having excellent adhesion between the Zn-based alloy plating layer and the coating film can be obtained. More specifically, without being bound to a particular theory, the components of the rust inhibitor in the paint react to form hydroxides, and the functional groups of the hydroxide react with the resin to cause irreversible As a result, the adhesiveness is improved between the Zn-based alloy plating layer and the coating film. Such adhesion cannot be achieved, for example, when a neutral or alkaline paint is used for forming the coating film, and therefore an acidic paint having a pH of 3.0 to 5.0 is used for forming the coating film. In this case, the adhesion is improved as compared with the case where a neutral or alkaline paint is used.

上述したような製造方法を用いることで、本発明に係る表面処理鋼板を製造することができる。すなわち、鋼板、鋼板の少なくとも片面に形成されたZn系合金めっき層、及びZn系合金めっき層上に形成された防錆剤とバインダー樹脂とを含む塗膜を有し、Zn系合金めっき層と塗膜との界面から10nm離れた位置における塗膜中の防錆剤の濃度が、塗膜中の防錆剤の平均濃度の1.5倍以上5.0倍以下である表面処理鋼板を製造することができる。   The surface-treated steel sheet according to the present invention can be manufactured by using the manufacturing method as described above. That is, a steel sheet, a Zn-based alloy plating layer formed on at least one surface of the steel sheet, and a coating film containing a rust inhibitor and a binder resin formed on the Zn-based alloy plating layer, and a Zn-based alloy plating layer Production of a surface-treated steel sheet in which the concentration of the rust preventive agent in the coating film at a position 10 nm away from the interface with the coating film is 1.5 times or more and 5.0 times or less the average concentration of the rust preventing agent in the coating film. can do.

本例では、塗膜中の防錆剤の平均濃度及び濃度分布、光輝顔料の平均濃度、防錆剤及び光輝顔料の種類、バインダー樹脂の種類、並びにZn系合金めっき層の化学組成を様々に変更して製造した表面処理鋼板について、それらの耐食性、輝度、加工密着性及び貯蔵安定性を評価した。なお、本発明に係る表面処理鋼板について、以下で幾つかの例を挙げてより詳細に説明する。しかしながら、以下で説明される特定の例によって特許請求の範囲に記載された本発明の範囲が制限されることは意図されない。   In this example, the average concentration and concentration distribution of the rust preventive agent in the coating film, the average concentration of the bright pigment, the type of the rust preventive agent and the bright pigment, the type of the binder resin, and the chemical composition of the Zn-based alloy plating layer were varied. About the surface-treated steel plate manufactured by changing, the corrosion resistance, brightness, work adhesion, and storage stability were evaluated. The surface-treated steel sheet according to the present invention will be described in more detail below with some examples. However, the particular examples described below are not intended to limit the scope of the invention as claimed.

<表面処理鋼板の試料の作製>
(Zn系合金めっき層の形成)
厚さ1mmの冷延鋼板を、化学組成がAl:約11%、Mg:約3%、及びZn:約86%の約450℃の溶融めっき浴に3〜5秒間浸漬し、冷延鋼板上に約10μmの厚さのZn−11%Al−3%Mg合金めっき層を形成した。また、溶解めっき浴の組成を変更し、同様の手順で冷延鋼板上に約10μmの厚さのZn−1%Al−1%Mg合金めっき層及びZn−40%Al−8%Mg合金めっき層を形成した。あるいは、厚さ1mmの冷延鋼板を、化学組成がAl:約11%、Mg:約3%、Si:約1%、及びZn:約85%の約450℃の溶融めっき浴に3〜5秒間浸漬し、冷延鋼板上に約10μmの厚さのZn−11%Al−3%Mg−1%Si合金めっき層を形成した。また、溶解めっき浴の組成を変更し、同様の手順で冷延鋼板上に約10μmの厚さのZn−11%Al−3%Mg−0.4%Si合金めっき層及びZn−11%Al−3%Mg−1.5%Si合金めっき層を形成した。
<Preparation of surface treated steel sheet sample>
(Formation of Zn-based alloy plating layer)
A cold-rolled steel sheet having a thickness of 1 mm is immersed in a hot-dip bath having a chemical composition of Al: about 11%, Mg: about 3%, and Zn: about 86% at about 450 ° C. for 3 to 5 seconds, and then placed on the cold-rolled steel sheet. A Zn-11% Al-3% Mg alloy plating layer having a thickness of about 10 μm was formed on the substrate. Further, the composition of the hot dip plating bath was changed, and a Zn-1% Al-1% Mg alloy plating layer and a Zn-40% Al-8% Mg alloy plating having a thickness of about 10 μm were formed on the cold-rolled steel sheet by the same procedure. Layers were formed. Alternatively, a cold-rolled steel sheet having a thickness of 1 mm is placed in a hot dip bath having a chemical composition of Al: about 11%, Mg: about 3%, Si: about 1%, and Zn: about 85% at about 450 ° C. for 3 to 5 ° C. It was immersed for 2 seconds, and a Zn-11% Al-3% Mg-1% Si alloy plating layer having a thickness of about 10 μm was formed on the cold rolled steel sheet. In addition, the composition of the hot dip plating bath was changed, and a Zn-11% Al-3% Mg-0.4% Si alloy plating layer and Zn-11% Al having a thickness of about 10 μm were formed on the cold rolled steel sheet by the same procedure. A -3% Mg-1.5% Si alloy plating layer was formed.

(塗料の調製)
酸性の溶媒中にバインダー樹脂としてポリエステル樹脂(分子量:16,000;ガラス転移点:10℃)及びポリウレタン樹脂(分子量:10000;ガラス転移点:20℃)をエマルジョンとして分散させ、試料No.3〜21及び25〜36で使用した塗料については、硝酸又は水酸化ナトリウムを用いてpHが3.0〜5.0になるように調整した。その中にイミノ基型メラミン樹脂を混合した。ポリエステル樹脂とメラミン樹脂との濃度の比は100:20であった。次いで、その混合物中に、防錆剤源及び光輝顔料を添加して塗料を調製した。なお、試料No.1、2及び24で使用した塗料については、pHが5.0超となるように調整し、試料No.22及び23で使用した塗料については、pHが3.0未満となるように調整した。各試料で使用した塗料のpHを表1に示す。そして、No.25については光輝顔料を添加しなかった。防錆剤としてP、V及びMgを含む試料についての防錆剤源としては、それぞれ、オルトリン酸、五酸化バナジウム及び硫酸マグネシウムを使用した。光輝顔料としては、表1に記載のものを使用した。
(Preparation of paint)
A polyester resin (molecular weight: 16,000; glass transition point: 10 ° C.) and a polyurethane resin (molecular weight: 10000; glass transition point: 20 ° C.) were dispersed as an emulsion in an acidic solvent as an emulsion. Regarding the paints used in 3 to 21 and 25 to 36, nitric acid or sodium hydroxide was used to adjust the pH to 3.0 to 5.0. An imino group type melamine resin was mixed therein. The ratio of the concentrations of polyester resin and melamine resin was 100: 20. Then, a rust preventive agent source and a bright pigment were added to the mixture to prepare a coating material. Sample No. The paints used in Nos. 1, 2 and 24 were adjusted so that the pH was higher than 5.0, and the sample No. The paints used in Nos. 22 and 23 were adjusted to have a pH of less than 3.0. The pH of the paint used for each sample is shown in Table 1. And No. For No. 25, no bright pigment was added. Orthophosphoric acid, vanadium pentoxide and magnesium sulfate were used as the rust preventive agent sources for the samples containing P, V and Mg as the rust preventive agent, respectively. The bright pigments listed in Table 1 were used.

塗料中への防錆剤源の添加量は、得られた塗膜の断面に基づきTEM−EDSを用いて測定した場合に、所望の塗膜中の防錆剤の平均濃度(3%、5%、10%、13%又は15%)が得られるように適宜調整した。また、光輝顔料の濃度は、GD−OESで用いて測定した場合に平均濃度が10%又は5%になるように適宜調整した。   The amount of the rust preventive agent added to the paint is determined by TEM-EDS based on the cross section of the obtained paint film, and the average concentration of the rust preventive agent in the desired paint film (3%, 5% %, 10%, 13% or 15%). Further, the concentration of the bright pigment was appropriately adjusted so that the average concentration was 10% or 5% when measured by GD-OES.

(塗膜の形成)
上記のように調製した塗料を、形成される塗膜の平均厚さが5μmになるようにZn系合金めっき層上に塗布し、焼付けることで硬化させた。焼付けは、約20℃/秒の加熱速度、及び約200℃の鋼板温度とし、塗料が完全に硬化するまで行った。
(Formation of coating film)
The coating material prepared as described above was applied onto the Zn-based alloy plating layer so that the formed coating film had an average thickness of 5 μm, and was baked to cure. The baking was performed at a heating rate of about 20 ° C./sec and a steel plate temperature of about 200 ° C. until the paint was completely cured.

塗膜中の防錆剤の平均濃度に対する、Zn系合金めっき層と塗膜との界面から10nm離れた位置における塗膜中の防錆剤の濃度の比は、塗料のpHを適宜変更することで、調整した。   The ratio of the concentration of the rust inhibitor in the coating film at the position 10 nm away from the interface between the Zn-based alloy plating layer and the coating film with respect to the average concentration of the rust inhibitor in the coating film should be changed appropriately. I adjusted it.

得られた塗膜から、TEM−EDSを用いて元素分析することにより塗膜中の防錆剤の平均濃度(質量%);及びその平均濃度に対するZn系合金めっき層と塗膜との界面から10nm離れた位置における塗膜中の防錆剤の濃度の比を決定した。このように決定した値を表1に示した。また、塗膜中に含まれる防錆剤及び光輝顔料の種類を表1に示した。なお、塗膜中に2種類の防錆剤が含まれる場合は、2つの防錆剤の平均濃度の合計が表中に記載の平均濃度に対応し、各防錆剤が塗膜中に等量で存在している。光輝顔料についても同様である。   From the obtained coating film, the average concentration (mass%) of the rust preventive agent in the coating film was analyzed by elemental analysis using TEM-EDS; and from the interface between the Zn-based alloy plating layer and the coating film with respect to the average concentration. The ratio of the concentration of the rust preventive agent in the coating film at the position 10 nm apart was determined. The values thus determined are shown in Table 1. Table 1 shows the types of rust preventive agents and bright pigments contained in the coating film. When two kinds of rust preventive agents are contained in the coating film, the sum of the average concentrations of the two rust preventive agents corresponds to the average concentration shown in the table, and each rust preventive agent is contained in the coating film. Present in quantity. The same applies to bright pigments.

<表面処理鋼板の試料の評価>
上記のように表面処理鋼板の試料を作成し、表1に示したような各試料について以下のように耐食性、輝度、加工密着性及び貯蔵安定性の評価試験を行った。
<Evaluation of sample of surface-treated steel sheet>
Samples of the surface-treated steel sheet were prepared as described above, and each sample as shown in Table 1 was evaluated for corrosion resistance, brightness, work adhesion and storage stability as follows.

(耐食性の評価試験)
それぞれの試料について、実使用の模擬であるエリクセン試験(JIS Z2247:2006)に準ずる加工(7mm押し出し)により試験用の0.6mmの供試材を得て、その供試材に対して、耐食性の評価試験として塩水噴霧試験(JASO M609−91法に準拠)を行った。この塩水噴霧試験は、(1)塩水噴霧2時間(5%NaCl、35℃);(2)乾燥4時間(60℃);及び(3)湿潤2時間(50℃、湿度95%以上)を1サイクルとして合計120サイクル(合計960時間)実施した。端面からの腐食を防ぐため、各試料の端面はテープによりシールして試験した。
(Corrosion resistance evaluation test)
For each sample, a 0.6 mm test material for testing was obtained by processing (7 mm extrusion) according to the Erichsen test (JIS Z2247: 2006), which is a simulation of actual use, and corrosion resistance was obtained for the test material. A salt spray test (based on the JASO M609-91 method) was performed as an evaluation test of. In this salt spray test, (1) salt spray 2 hours (5% NaCl, 35 ° C); (2) drying 4 hours (60 ° C); and (3) wet 2 hours (50 ° C, humidity 95% or more). A total of 120 cycles (total 960 hours) were performed as one cycle. In order to prevent corrosion from the end face, the end face of each sample was sealed with tape and tested.

耐食性の評価は、塩水噴霧試験960時間後の試料の表面(平面部)を光学顕微鏡で観察し、錆発生面積率Zを決定することで行った。具体的には、まず、試料の表面をスキャナーで読み込んだ。その後、画像編集ソフトを用いて錆が発生している領域を選択し、錆発生面積率を求めた。この手順を5つの試料に対して行い、錆発生面積率の平均として「錆発生面積率Z」を決定した。このように各試料で決定した「錆発生面積率Z」を基に、以下のように8段階で各試料の評点を決定した。評点4以上を耐食性の合格点とした。
評点8:Z=0%
評点7:0%<Z≦5%
評点6:5%<Z≦10%
評点5:10%<Z≦20%
評点4:20%<Z≦30%
評点3:30%<Z≦40%
評点2:40%<Z≦50%
評点1:50%<Z
The corrosion resistance was evaluated by observing the surface (planar portion) of the sample after 960 hours of the salt spray test with an optical microscope and determining the rust generation area ratio Z. Specifically, first, the surface of the sample was read by a scanner. Then, the area in which rust was generated was selected using image editing software, and the rust generation area ratio was calculated. This procedure was performed on five samples, and the "rust generation area ratio Z" was determined as the average of the rust generation area ratios. Based on the "rust generation area ratio Z" thus determined for each sample, the rating of each sample was determined in the following eight stages. A score of 4 or more was taken as a passing score for corrosion resistance.
Rating 8: Z = 0%
Rating 7: 0% <Z ≦ 5%
Score 6: 5% <Z ≤ 10%
Rating 5: 10% <Z ≦ 20%
Rating 4: 20% <Z ≤ 30%
Score 3: 30% <Z ≤ 40%
Rating 2: 40% <Z ≤ 50%
Rating 1: 50% <Z

(輝度の評価試験)
それぞれの試料について、無作為に抽出した10人の試験者に試料の表面を目視で観察させ、以下のように「輝度レベル」を1点から5点で評価させた。
1点:金属外観が全く確認されない又は金属外観がわずかに確認される
2点:金属外観が確認されるが、正面から観察して外観ムラが容易に確認される
3点:金属外観が確認されるが、正面から観察して外観ムラがわずかに確認される
4点:金属外観が全体に確認されるが、斜めから観察して外観ムラがわずかに観察される
5点:金属外観が全体に確認される
(Brightness evaluation test)
For each sample, 10 randomly selected testers visually observed the surface of the sample and evaluated the “brightness level” from 1 to 5 as follows.
1 point: Metal appearance is not confirmed at all or slight metal appearance is observed 2 points: Metal appearance is confirmed, but uneven appearance is easily confirmed by observing from the front 3 points: Metal appearance is confirmed However, slight unevenness in appearance is confirmed when observed from the front. 4 points: Metal appearance is confirmed overall, but slight unevenness is observed when observed obliquely 5 points: Metal appearance is entirely observed It is confirmed

輝度については、上記の試験者10人の「輝度レベル」の合計点に従い、以下のように8段階で各試料の評点を決定した。評点4以上を輝度の合格点とした。
評点8:40<合計点
評点7:35<合計点≦40
評点6:30<合計点≦35
評点5:25<合計点≦30
評点4:20<合計点≦25
評点3:15<合計点≦20
評点2:10<合計点≦15
評点1:合計点=10
Regarding the brightness, according to the total score of the “brightness level” of the above-mentioned 10 testers, the rating of each sample was determined in the following 8 stages. A rating of 4 or more was taken as a pass point for luminance.
Score 8:40 <total score Score 7:35 <total score ≤ 40
Rating 6:30 <total score ≤ 35
Rating score 5:25 <total score ≤ 30
Score 4:20 <Total score <25
Rating 3:15 <total score ≤ 20
Rating 2:10 <total score ≤ 15
Score 1: Total score = 10

(加工密着性の評価試験)
上述したように、実使用の模擬であるエリクセン試験(JIS Z2247:2006)に準ずる加工(7mm押し出し)により試験用の0.6mmの供試材を得た。その供試材に対して、幅24mmのセロハン粘着テープ(ニチバン社製セロテープ:登録商標)を塗膜に密着させた後、45度の角度で急激に引き剥がした。剥離した塗膜面積から、剥離面積率Z’を求め、以下の基準で評価した。
評点5:0%(剥離なし)<Z’≦5%
評点4:5%<Z’≦10%
評点3:10%<Z’≦30%
評点2:30%<Z’≦50%
評点1:50%<Z’
(Processing adhesion evaluation test)
As described above, a 0.6 mm test material for testing was obtained by processing (7 mm extrusion) according to the Erichsen test (JIS Z2247: 2006), which is a simulation of actual use. A cellophane adhesive tape having a width of 24 mm (Cellotape manufactured by Nichiban Co., Ltd.) was adhered to the test material on the coating film, and then rapidly peeled off at an angle of 45 degrees. The peeled area ratio Z ′ was obtained from the peeled coating film area and evaluated according to the following criteria.
Rating 5: 0% (no peeling) <Z '≦ 5%
Rating 4: 5% <Z '≤ 10%
Rating 3: 10% <Z '≤ 30%
Rating 2: 30% <Z '≦ 50%
Score 1: 50% <Z '

(貯蔵安定性の評価試験)
表1に記載のpHで調製した塗料100gを25℃に維持し、Zn−11%Al−3%Mg合金めっき鋼板を浸漬した。浸漬して60分経過した後の塗料を目視で観察し、浸漬前(塗料調製時)と浸漬後の塗料の状態に応じて以下のように各試料の貯蔵安定性の評点を決定した。評点3以上を貯蔵安定性の合格点とした。
評点5:鋼板浸漬の前後で塗料に変化が認められない
評点4:鋼板浸漬の前後で塗料に変色又は粘度増大のいずれかが認められる
評点3:鋼板浸漬の前後で塗料に変色及び粘度増大の両方が認められる
評点2:鋼板浸漬後に塗料が固化(ゲル化)
評点1:浸漬前(塗料調製時)に固化(ゲル化)
(Evaluation test for storage stability)
100 g of the coating material prepared at the pH shown in Table 1 was maintained at 25 ° C, and a Zn-11% Al-3% Mg alloy plated steel sheet was immersed therein. The paint after 60 minutes of immersion was visually observed, and the storage stability score of each sample was determined as follows according to the state of the paint before immersion (during paint preparation) and after immersion. A score of 3 or more was regarded as a passing score for storage stability.
Rating 5: No change in paint before or after immersion in steel plate Rating 4: Discoloration or increased viscosity in paint before or after immersion in steel plate Score 3: Change in paint or increase in viscosity before or after immersion in steel plate Both are recognized. Rating 2: The coating solidifies (gels) after the steel plate is dipped.
Rating 1: Solidification (gelation) before immersion (during paint preparation)

表面処理鋼板の試料について、上記のように耐食性、輝度、加工密着性及び貯蔵安定性の評価試験を行い、それぞれの評点を決定した。得られた結果を表1に示す。   The samples of the surface-treated steel sheet were evaluated for corrosion resistance, brightness, work adhesion and storage stability as described above, and their respective scores were determined. Table 1 shows the obtained results.

Figure 0006680412
Figure 0006680412

試料No.1及び2では、塗料のpHが高く、塗膜中の防錆剤の平均濃度に対する、Zn系合金めっき層と塗膜との界面から10nm離れた位置での防錆剤の濃度の比が1.5未満であったため、防錆剤の濃化が不十分となり、濃化領域がZn系合金めっき層を保護するバリア層として十分に機能せず、耐食性が不十分となった。また、試料No.22及び23では、塗料のpHが低く、塗膜中の防錆剤の平均濃度に対する、Zn系合金めっき層と塗膜との界面から10nm離れた位置での防錆剤の濃度の比が5.0超であったため、耐食性が不十分となった。これは、供試材を得るために加工した際に、防錆剤の濃化領域で塗膜が凝集破壊し、加工密着性が低下し、その結果、加工部での耐食性が劣化したためであると考えられる。試料No.24は、塗料のpHがアルカリ性であり、塗料調製時に塗料が固化し、塗膜を形成することができなかったため、耐食性、輝度及び加工密着性の評価を行えなかった。   Sample No. In Nos. 1 and 2, the pH of the coating was high, and the ratio of the concentration of the rust preventive agent at the position 10 nm away from the interface between the Zn-based alloy plating layer and the coat film was 1 with respect to the average concentration of the rust preventive agent in the coat film. Since it was less than 0.5, the concentration of the rust preventive agent was insufficient, the concentrated region did not function sufficiently as a barrier layer for protecting the Zn-based alloy plating layer, and the corrosion resistance was insufficient. In addition, the sample No. In Nos. 22 and 23, the pH of the coating was low, and the ratio of the concentration of the rust preventive agent at the position 10 nm away from the interface between the Zn-based alloy plating layer and the coat was 5 with respect to the average concentration of the rust preventive agent in the coat. Since it was more than 0.0, the corrosion resistance was insufficient. This is because, when processed to obtain the test material, the coating film cohesively fails in the concentrated region of the rust preventive agent, the processing adhesion is lowered, and as a result, the corrosion resistance in the processed portion is deteriorated. it is conceivable that. Sample No. In No. 24, the pH of the paint was alkaline, and the paint solidified during preparation of the paint, and a coating film could not be formed, and therefore corrosion resistance, brightness, and processing adhesion could not be evaluated.

一方で、試料No.3〜21、No.25〜36では、塗膜中の防錆剤の平均濃度に対する、Zn系合金めっき層と塗膜との界面から10nm離れた位置での防錆剤の濃度の比が1.5以上5.0以下であったため、優れた耐食性を有していた。特に、防錆剤としてP及びVのいずれか又は両方を含む試料では、より優れた耐食性を有していた。   On the other hand, sample No. 3-21, No. In Nos. 25 to 36, the ratio of the concentration of the rust preventive agent at the position 10 nm away from the interface between the Zn-based alloy plating layer and the coat film was 1.5 or more to 5.0 with respect to the average concentration of the rust preventive agent in the coat film. Since it was below, it had excellent corrosion resistance. In particular, the sample containing one or both of P and V as the rust preventive had better corrosion resistance.

そして、試料No.25を除くいずれの試料においても、塗膜中に光輝顔料を含んでいたため十分な輝度を有していた。さらに、光輝顔料がアルミニウム(Al)及び酸化物(SiO2、アルミナ、マイカ)のいずれか又は両方を含む試料では、より輝度が優れていた。特に、Al又はSiO2に加えて、塗膜中に高い輝度を有する金属Rh、Ti又はAgを塗膜中にさらに含む試料では、極めて高い輝度を有していた。Then, the sample No. All of the samples except 25 had sufficient brightness because the coating film contained the bright pigment. Further, in the sample in which the bright pigment contains one or both of aluminum (Al) and oxide (SiO 2 , alumina, mica), the brightness was more excellent. In particular, the sample further containing, in addition to Al or SiO 2 , metal Rh, Ti or Ag having high brightness in the coating film had extremely high brightness.

試料No.14〜17及びNo.35は、塗膜中の防錆剤の平均濃度を変更した試料である。いずれの試料も十分な耐食性を有していた。   Sample No. 14 to 17 and No. No. 35 is a sample in which the average concentration of the rust preventive agent in the coating film was changed. All samples had sufficient corrosion resistance.

本発明によれば、Zn系合金めっき層と塗膜との界面付近に防錆剤の濃化領域を有するため、高い耐食性を有する表面処理鋼板を提供できる。これにより、建材や家電用の製品に使用する鋼板として、十分な耐食性及び意匠性を提供することが可能となり、したがって、本発明は産業上の価値が極めて高い発明といえるものである。   According to the present invention, a surface-treated steel sheet having high corrosion resistance can be provided because it has a concentrated region of the rust inhibitor near the interface between the Zn-based alloy plating layer and the coating film. As a result, it becomes possible to provide sufficient corrosion resistance and designability as a steel sheet used for building materials and home appliances products, and therefore the present invention can be said to have extremely high industrial value.

Claims (7)

鋼板、前記鋼板の少なくとも片面に形成されたZn系合金めっき層、及び前記Zn系合金めっき層上に形成された防錆剤とバインダー樹脂とを含む塗膜を有し、
前記Zn系合金めっき層の化学組成が、質量%で、
Al:0.01〜60%、
Mg:0.001〜10%、及び
Si:0〜2%であり、
前記防錆剤が、P、V及びMgの少なくとも1種であり、
前記塗膜中のP、V及びMgの合計の平均濃度が、質量%で、3〜15%であり、
前記Zn系合金めっき層と前記塗膜との界面から10nm離れた位置における前記塗膜中の前記防錆剤の濃度が、前記塗膜中の前記防錆剤の平均濃度の1.5〜5.0倍であることを特徴とする、表面処理鋼板。
A steel sheet, a Zn-based alloy plating layer formed on at least one surface of the steel sheet, and a coating film containing a rust preventive agent and a binder resin formed on the Zn-based alloy plating layer,
The chemical composition of the Zn-based alloy plating layer is% by mass,
Al: 0.01-60%,
Mg: 0.001 to 10%, and Si: 0 to 2%,
The rust inhibitor is at least one of P, V and Mg,
The total average concentration of P, V and Mg in the coating film is 3 to 15% by mass,
The concentration of the rust-preventive agent in the coating film at a position 10 nm away from the interface between the Zn-based alloy plating layer and the coating film is 1.5 to 5 of the average concentration of the rust-preventing agent in the coating film. A surface-treated steel sheet characterized by being 0.0 times.
前記塗膜中のP、V及びMgの合計の平均濃度が、質量%で、〜15%であることを特徴とする、請求項1に記載の表面処理鋼板。 The surface-treated steel sheet according to claim 1, wherein the total average concentration of P, V and Mg in the coating film is 5 to 15% by mass. 前記塗膜が光輝顔料をさらに含み、前記光輝顔料が、アルミニウム及び酸化物の少なくとも1種を含むことを特徴とする、請求項1又は2に記載の表面処理鋼板。 The surface-treated steel sheet according to claim 1 or 2 , wherein the coating film further contains a bright pigment, and the bright pigment contains at least one of aluminum and an oxide. 前記酸化物が、アルミナ、シリカ、マイカ、ジルコニア、チタニア、ガラス、又は酸化亜鉛であることを特徴とする、請求項に記載の表面処理鋼板。 The surface treated steel sheet according to claim 3 , wherein the oxide is alumina, silica, mica, zirconia, titania, glass, or zinc oxide. 前記光輝顔料が、Rh、Cr、Ti、Ag、及びCuの少なくとも1種をさらに含むことを特徴とする、請求項又はに記載の表面処理鋼板。 The surface-treated steel sheet according to claim 3 or 4 , wherein the bright pigment further contains at least one of Rh, Cr, Ti, Ag, and Cu. 前記塗膜中の前記光輝顔料の平均濃度が、質量%で、5〜15%であることを特徴とする、請求項のいずれか1項に記載の表面処理鋼板。 The average concentration of the bright pigment in the coating film, by mass%, characterized in that 5 to 15%, the surface treated steel sheet according to any one of claims 3-5. 前記バインダー樹脂が、ポリエステル樹脂であることを特徴とする、請求項1〜6のいずれか1項に記載の表面処理鋼板。The surface-treated steel sheet according to any one of claims 1 to 6, wherein the binder resin is a polyester resin.
JP2019555039A 2018-05-25 2019-05-27 Surface treated steel plate Active JP6680412B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018100727 2018-05-25
JP2018100727 2018-05-25
PCT/JP2019/020945 WO2019225765A1 (en) 2018-05-25 2019-05-27 Surface-treated steel plate

Publications (2)

Publication Number Publication Date
JP6680412B1 true JP6680412B1 (en) 2020-04-15
JPWO2019225765A1 JPWO2019225765A1 (en) 2020-05-28

Family

ID=68616862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019555039A Active JP6680412B1 (en) 2018-05-25 2019-05-27 Surface treated steel plate

Country Status (5)

Country Link
JP (1) JP6680412B1 (en)
KR (1) KR102425853B1 (en)
CN (1) CN111683811B (en)
TW (1) TWI714101B (en)
WO (1) WO2019225765A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804081B (en) * 2021-12-02 2023-06-01 日商日本製鐵股份有限公司 Zn-based plated steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003118033A (en) * 2001-10-17 2003-04-23 Nisshin Steel Co Ltd Metal plate having hydrophilic lower layer coating film and coated metal plate
JP2004082120A (en) * 2000-02-22 2004-03-18 Nippon Paint Co Ltd Heat ray blocking plate
JP2005048200A (en) * 2003-07-29 2005-02-24 Jfe Steel Kk Surface-treated steel plate of excellent corrosion resistance and film appearance
JP2006159435A (en) * 2004-12-02 2006-06-22 Nippon Steel Corp Organic coated steel sheet excellent in edge creep resistance
WO2017164234A1 (en) * 2016-03-22 2017-09-28 新日鐵住金株式会社 Precoated metal plate

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214132B1 (en) * 1997-03-07 2001-04-10 Henkel Corporation Conditioning metal surfaces prior to phosphate conversion coating
JP3124266B2 (en) 1999-06-22 2001-01-15 新日本製鐵株式会社 Painted steel plate with excellent coating film adhesion and corrosion resistance of the processed part and low environmental load
JP2005015834A (en) 2003-06-25 2005-01-20 Nippon Steel Corp Highly corrosion-resistant coated steel sheet capable of being welded superior in corrosion resistance
JP4461866B2 (en) * 2004-03-24 2010-05-12 Jfeスチール株式会社 Hot-dip Zn-Al alloy-plated steel sheet excellent in corrosion resistance and bending workability and manufacturing method thereof
WO2009004684A1 (en) * 2007-06-29 2009-01-08 Nihon Parkerizing Co., Ltd. Aqueous fluid for surface treatment of zinc-plated steel sheets and zinc-plated steel sheets
JP4920625B2 (en) * 2008-04-07 2012-04-18 新日本製鐵株式会社 Surface-treated metal plate
NZ594317A (en) * 2009-01-16 2013-01-25 Hot-dip Zinc-Aluminium-Magnesium-Silicon-Chromium alloy-coated steel material
JP5499773B2 (en) * 2010-02-26 2014-05-21 Jfeスチール株式会社 Surface treatment liquid for galvanized steel sheet, galvanized steel sheet and method for producing the same
JP5168332B2 (en) * 2010-09-24 2013-03-21 Jfeスチール株式会社 Surface treatment liquid for galvanized steel sheet, galvanized steel sheet and method for producing the same
WO2012086494A1 (en) * 2010-12-22 2012-06-28 関西ペイント株式会社 Coating composition with excellent corrosion resistance
WO2013027827A1 (en) * 2011-08-24 2013-02-28 新日鐵住金株式会社 Surface-treated hot-dipped steel material
JP5835775B2 (en) 2012-03-21 2015-12-24 関西ペイント株式会社 Rust preventive coating composition for galvanized or zinc alloy plated steel sheet
EP2963152B1 (en) * 2013-02-28 2020-07-15 Nippon Steel Coated Sheet Corporation Steel sheet plated with aluminum-containing zinc and process for producing same
JP6080670B2 (en) 2013-04-22 2017-02-15 日本パーカライジング株式会社 Ground treatment composition for coated steel sheet, plated steel sheet subjected to ground treatment and method for producing the same, painted steel sheet and method for producing the same
MY160462A (en) 2013-11-20 2017-03-15 Nippon Steel & Sumitomo Metal Corp Zinc-plated steel sheet having superior blackening resistance and corrosion resistance and method for producing same
MY179848A (en) * 2013-11-29 2020-11-18 Nisshin Steel Co Ltd Method for treating surface of zinc-aluminum-magnesium alloy-plated steel sheet
KR101807985B1 (en) * 2014-03-28 2017-12-11 신닛테츠스미킨 카부시키카이샤 Plated steel plate containing quasicrystal
JP6260708B2 (en) * 2015-06-15 2018-01-17 Jfeスチール株式会社 Surface-treated galvanized steel sheet and method for producing the same
JP6087461B1 (en) * 2016-04-26 2017-03-01 日本ペイント・インダストリアルコ−ティングス株式会社 Surface treated steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082120A (en) * 2000-02-22 2004-03-18 Nippon Paint Co Ltd Heat ray blocking plate
JP2003118033A (en) * 2001-10-17 2003-04-23 Nisshin Steel Co Ltd Metal plate having hydrophilic lower layer coating film and coated metal plate
JP2005048200A (en) * 2003-07-29 2005-02-24 Jfe Steel Kk Surface-treated steel plate of excellent corrosion resistance and film appearance
JP2006159435A (en) * 2004-12-02 2006-06-22 Nippon Steel Corp Organic coated steel sheet excellent in edge creep resistance
WO2017164234A1 (en) * 2016-03-22 2017-09-28 新日鐵住金株式会社 Precoated metal plate

Also Published As

Publication number Publication date
CN111683811A (en) 2020-09-18
CN111683811B (en) 2022-06-14
KR102425853B1 (en) 2022-07-28
WO2019225765A1 (en) 2019-11-28
KR20200129122A (en) 2020-11-17
TW202003879A (en) 2020-01-16
JPWO2019225765A1 (en) 2020-05-28
TWI714101B (en) 2020-12-21

Similar Documents

Publication Publication Date Title
JP6658988B1 (en) Surface treated steel sheet
JP5075321B2 (en) Aqueous treatment agent for metal surface
KR20010080777A (en) Composition for metal surface treatment and surface treated metallic material
TWI550099B (en) Galvanized steel sheet containing aluminum and its manufacturing method
JPWO2009004684A1 (en) Aqueous surface treatment solution for galvanized steel sheet and galvanized steel sheet
KR20190076099A (en) Coating composition for hot dip galvanized steel sheet having excellent corrosion-resistance and blackening-resistance the surface treated hot dip galvanized steel sheet prepared by using the coating composition and method for preparing the surface treated hot dip galvanized steel sheet
JP6680412B1 (en) Surface treated steel plate
JP2014065951A (en) Non-chromium surface treatment agent for galvanized steel plate
JP7120322B2 (en) pre-coated steel plate
JP7243451B2 (en) Surface treated steel plate
JP2024505793A (en) Composition for surface treatment of steel plates, and steel plates using the same
JP4739822B2 (en) High corrosion resistance surface treated steel and painted steel
JP6296210B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
WO2024071191A1 (en) Precoated steel sheet
TW202421279A (en) Pre-coated steel plate
JP7460946B1 (en) surface treated steel plate
WO2024075833A1 (en) Surface-treated steel sheet
WO2023190971A1 (en) Surface-treated steel sheet
JP2005225052A (en) Precoated steel sheet excellent in edge corrosion resistance and its manufacturing method
WO2024071189A1 (en) Surface-treated steel sheet
JP6772943B2 (en) Painted steel plate
TW202421280A (en) Surface treated steel plate
WO2023190979A1 (en) Surface-treated steel plate and method for manufacturing component
JP2008189965A (en) Painted steel sheet
JPH07300683A (en) Chromating method excellent in low-temperature baking property

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191007

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191007

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6680412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157