JP6678125B2 - 破壊靭性試験方法 - Google Patents

破壊靭性試験方法 Download PDF

Info

Publication number
JP6678125B2
JP6678125B2 JP2017071922A JP2017071922A JP6678125B2 JP 6678125 B2 JP6678125 B2 JP 6678125B2 JP 2017071922 A JP2017071922 A JP 2017071922A JP 2017071922 A JP2017071922 A JP 2017071922A JP 6678125 B2 JP6678125 B2 JP 6678125B2
Authority
JP
Japan
Prior art keywords
fracture toughness
load
test
dynamic
static
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017071922A
Other languages
English (en)
Other versions
JP2018173356A (ja
Inventor
正人 押切
正人 押切
賢太郎 吉本
賢太郎 吉本
毅 村上
毅 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017071922A priority Critical patent/JP6678125B2/ja
Publication of JP2018173356A publication Critical patent/JP2018173356A/ja
Application granted granted Critical
Publication of JP6678125B2 publication Critical patent/JP6678125B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本開示は、例えば原子炉圧力容器などの大型構造物における構造材の破壊靭性を評価するための破壊靭性試験方法に関する。
一般に板厚が大きくなると共に靱性が低下することが知られており、原子炉圧力容器など大型構造物における構造材では、降伏強度を超える荷重負荷による塑性変形が主体の延性破壊だけでなく、降伏強度以下の荷重であっても生じうる脆性破壊に対しても十分な耐性を有することが求められる。このような構造材の材料試験として破壊靭性試験が知られている。
破壊靭性試験では、切欠き部を有する試験片を用いて、単調増加荷重を与えたときに、荷重に対する切り欠き部の開口変位の関係が評価される。破壊靭性を評価するためのパラメータとしては、破壊時の荷重や開口変位等であるが、構造物を評価する際にはこれらのパラメータ自体は試験片の仕様に依存するため使用できず、き裂先端近傍の応力・ひずみ場の強さを表す応力拡大係数が破壊靭性値として用いられる。
破壊靭性試験では静的試験と動的試験とがあるが、実用上、需要が多いのは静的試験である。静的試験では、構造材の仕様に応じて、Klc試験、CTOD試験及びJlc試験に分類され(これらの静的試験の詳細は各試験法の規格や解説書を参照されたい)、それぞれに適した試験片が用いられる。特許文献1には、この種の破壊靭性試験の一例として、金属材料の破壊靭性値を測定する方法であって、測定対象の金属材料から微小平板を切り出して試験片とし、試験片における荷重および試験片の変位から不安定破壊発生までのひずみエネルギーからマスターカーブに当てはめることにより、破壊靭性値を求めることが開示されている。
特開2007−155540号公報
破壊靭性試験では、一般的に試験結果にばらつきが存在するため、多くの試験片を用意し、試験結果を統計的に評価する必要がある。近年、特許文献1のようなマスターカーブ法を採用することで、以前に比べて試験を少なく抑えることができるようになってきているが、十分な精度を得るためには、依然として、ある程度の試験数を確保することが必要とされている。
この種の破壊靭性試験の適用分野として、例えば原子炉圧力容器などの大型構造物がある。原子炉圧力容器では、内部に収容された炉心から照射される中性子によって、容器壁面の脆化が進行するため、このような脆化進行を監視するために、原子炉圧力容器の内部に試験片を収容した試験片カプセルを同封し、定期点検等の実施時に取り出して、シャルピー衝撃試験や破壊靭性試験等(総称して監視試験という)を実施する。
しかしながら、原子炉圧力容器の内部は炉心構造物が密に収容されており、試験片を収容する試験片カプセルが設置可能なスペースには厳しい制約がある。そのため、試験片カプセル内に収容する試験片数を十分に多く確保することが難しい。特に静的試験であるKlc試験、CTOD試験及びJlc試験で要求される試験片(CT試験片や曲げ試験片)は比較的サイズが大きく、十分な数を確保することが難しいため、代わりに、比較的サイズの小さいシャルピー衝撃試験片が多く格納されている。
本発明の少なくとも一実施形態は上述の事情に鑑みなされたものであり、サイズの小さな試験片を使用し、少ないサンプル数で精度よく破壊靭性を評価可能な破壊靭性試験方法を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る破壊靭性試験方法は上記課題を解決するために、片側に切欠き部を有する試験片を用いて原子炉圧力容器に使用される材料の破壊靭性を評価するための破壊靭性試験方法であって、計装化シャルピー衝撃試験機を用いて、前記試験片について変位−荷重特性を取得するステップと、前記変位−荷重特性に基づいて動的破壊靭性値を算出するステップと、前記動的破壊靭性値を動的破壊靭性マスターカーブに当てはめることにより動的参照温度を算出するステップと、前記動的参照温度を静的参照温度に換算するステップと、前記静的参照温度に基づいて静的破壊靭性マスターカーブを算出するステップと、前記静的破壊靭性マスターカーブに基づいて静的破壊靭性値を求めるステップと、を備える。
上記(1)の方法によれば、動的試験であるシャルピー衝動試験において試験片の変位−荷重特性を取得し、動的破壊靭性値を求める。そして、得られた動的破壊靭性値をマスターカーブに当てはめることにより動的参照温度を算出する。動的参照温度は静的参照温度に換算された後、静的靭性値を規定する静的破壊靭性曲線を求めるために用いられる。このように求められた静的破壊靭性曲線に基づいて静的破壊靭性値が求められる。このようにして、動的試験であるシャルピー衝撃試験による測定結果に基づいて、従来、静的試験によって得られていた静的破壊靭性値を評価できる。
(2)幾つかの実施形態では上記(1)の方法において、前記動的破壊靭性値は、前記変位−荷重特性に基づいて特定される脆性破壊時荷重に基づいて算出される弾性成分と、前記変位−荷重特性のき裂発生荷重から脆性破壊時荷重に至るまでの積分値に基づいて算出される塑性成分との和として算出される。
上記(2)の方法によれば、マスターカーブに当てはめるための動的破壊靭性値は、変位−荷重特性に基づいて算出される弾性成分と塑性成分とを加えることによって、簡易に算出できる。
(3)幾つかの実施形態では上記(2)の方法において、前記き裂発生荷重は、前記変位−荷重特性に基づいて特定される降伏時衝撃荷重Fgy、最大衝撃荷重Fm及び係数κ(0≦κ≦1)を用いて、次式
Fint=κ×(Fgy+Fm)
により算出される。
上記(3)の方法によれば、動的破壊靭性値のうち塑性成分を算出する際に用いられるき裂発生荷重を、試験片の仕様に応じて決定される係数κに基づいて算出できる。
(4)幾つかの実施形態では上記(1)から(3)のいずれか一方法において、前記動的参照温度に基づいて、前記試験片の負荷速度及び参照温度の関係を規定する特性関数を算出し、前記特性関数に静的試験の負荷速度を入力することにより前記静的参照温度を算出する。
上記(4)の方法によれば、動的参照温度を静的参照温度に換算することで、動的試験の結果に基づいて静的試験の結果を推定できる。
(5)幾つかの実施形態では上記(1)から(4)のいずれか一方法において、前記試験片は、前記原子炉圧力容器内に配設されたカプセルに収容されるシャルピー衝撃試験片である。
上記(5)の方法によれば、シャルピー衝撃試験に用いられる比較的小型な試験片を用いることで、原子炉圧力容器内の制約が厳しいスペースに対応できる。
本発明の少なくとも一実施形態によれば、サイズの小さな試験片を使用し、少ないサンプル数で精度よく破壊靭性を評価可能な破壊靭性試験方法を提供できる。
本発明の少なくとも一実施形態に係る破壊靭性試験方法に用いられる試験片が配置される原子炉圧力容器を概略的に示す断面図である。 図1の原子炉圧力容器内に試験片を収容した試験片カプセルを設置した状態を示す要部断面図である。 図2の試験片カプセルに収容される試験片を示す模式図である。 シャルピー衝撃試験の実施後の試験片の破断面図である。 本発明の少なくとも一実施形態に係る破壊靭性試験方法を工程毎に示すフローチャートである。 図5のステップS2で取得した変位−荷重特性の一例である。 動的破壊靭性マスターカーブを示すグラフである。 負荷速度と参照温度との関係を示すグラフである。 試験片が受ける荷重の時間履歴の計測例を示すグラフである。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は本発明の少なくとも一実施形態に係る破壊靭性試験方法に用いられる試験片が配置される原子炉圧力容器を概略的に示す断面図であり、図2は図1の原子炉圧力容器内に試験片を収容した試験片カプセルを設置した状態を示す要部断面図である。
原子炉圧力容器1は、図1に示されるように、有底円筒状に形成された容器本体2と該容器本体2の上方開口部に着脱自在に取付けられる蓋体3を備えた構造物である。容器本体2の側壁上部には、冷却材入口ノズル4及び冷却材出口ノズル5が設けられている。また、容器本体2の内部には、上方開口部に近い棚部から円筒形の炉心槽6が支持され、該炉心槽6と容器本体2との間にはダウンカマー7が画成されている。
炉心槽6の下部には、下部炉心支持板8及び下部炉心板9が水平に設けられている。炉心槽6は下部炉心支持板8の位置で容器本体2から水平方向に支持されている。下部炉心板9の上方には、多数の燃料集合体(不図示)が互いに隣接して配設され、炉心10を形成している。燃料集合体の上端は、上部炉心板11によって押さえられており、その上方には上部プレナム12が形成されている。この上部プレナム12は、炉心槽6のノズルフランジを介して冷却材出口ノズル5へ連通している。
尚、容器本体2の底部は、半球殻状の鏡板13として形成されており、該鏡板13と下部炉心支持板8との間は、下部プレナム14となっている。
このような構造の原子炉圧力容器1における冷却材Cの流れを説明すると、まず、冷却材Cは冷却材ポンプ(不図示)によって配管を流れ、冷却材入口ノズル4を通って内部のダウンカマー7へ流入する。そして、冷却材Cは、矢印に示すようにダウンカマー7内を流下すると共に、下部プレナム14内で反転し、下部炉心支持板8と下部炉心板9を貫流して炉心10内に入る。炉心10内では、冷却材Cが燃料集合体の燃料棒の外側をこれに沿って上向きに流れながら、核反応熱を吸収して昇温する。その後、冷却材Cは炉心10内を上昇し、上部プレナム12に至った後、冷却材Cは水平方向に向きを変え、蒸気発生器へ向けて冷却材出口ノズル5から流出する。
原子炉圧力容器1内には、図2に示されるように、密封された長尺の試験片カプセル15が配設されている。試験片カプセル15内には、原子炉圧力容器1に使用される材料の中性子による劣化状態を経年的に監視し、脆化量の評価を行うのに用いる試験片16が複数列にわたって封入されている。これによって、試験片16が原子炉圧力容器1と同一の環境下に置かれるようになっている(厳密には、試験片16は原子炉圧力容器1の内壁より内側に配置されるため、原子炉圧力容器1より厳しい環境下に置かれる)。
図3は図2の試験片カプセル15に収容される試験片16を示す模式図である。試験片16はシャルピー衝撃試験片であり、長さLのB×W角棒状の試験片本体16aの片側側面の中央に、深さtの45度V字溝(Vノッチ)からなる切欠き部23が設けられている。(尚、監視試験の際に用いられる試験片の寸法は長さ53.7mmの10mm×10mm棒状で切欠き深さ2mmものである。)
試験片16は計装化シャルピー衝撃試験機(不図示)のアンビル部に取り付けられ、該保持された試験片16に対して、不図示のハンマーを切欠き部23が設けられていない背面側から衝突させることにより試験片16を破断させ、シャルピー衝撃試験を実施する。計装化シャルピー試験機は、試験時に、吸収エネルギー値とともに荷重、変位、時間等の力学的パラメータを計測可能であり、これらの計測結果は電気的信号として外部の計算機等に出力可能に構成されている。
尚、計装化シャルピー衝撃試験機で実施される試験の詳細については、「JIS B7755(金属用シャルピー振り子式衝撃試験−計装化装置)」に準ずることとし、ここでは詳述を省略する。
図4はシャルピー衝撃試験の実施後の試験片16の破断面図である。試験片16の破断面は、吸収エネルギーが大きく塑性変形を伴う延性破壊が生じた延性破壊領域18と、吸収エネルギーが小さく塑性変形の破壊への寄与が小さい脆性破壊が生じた脆性破壊領域20とを含む。破断面における延性破壊領域18と脆性破壊領域20との割合は、試験温度に依存し、一般的に、遷移温度DBTT以上では主に延性破壊領域18が生じ、遷移温度DBTT未満では主に脆性破壊領域20が生じる。
本発明の少なくとも一実施形態に係る破壊靭性試験方法では、以下に説明するように、このような計装化シャルピー衝動試験機を用いた動的特性の測定結果を利用して、静的な破壊靭性を精度よく評価することができる。図5は本発明の少なくとも一実施形態に係る破壊靭性試験方法を工程毎に示すフローチャートである。
まず、上述のように計装化シャルピー試験機を用いて試験片16に対してシャルピー衝撃試験を実施し(ステップS1)、変位−荷重特性を取得する(ステップS2)。ここで図6は図5のステップS2で取得した変位−荷重特性の一例であり、計装化シャルピー試験機のハンマーが試験片16に接触し始める時点から、ハンマーの変位に対して試験片16が受ける荷重の推移を示している。ハンマーの変位が増加すると、まず弾性変形領域(F<gy)では、変位に対して荷重が略線形に変化する。そして更にハンマーの変位が増加して塑性変形領域(Fgy≦F<Fui)になると、変位に対して荷重が非線形に変化し、塑性変形が生じる。そして更にハンマーが変位して荷重が脆性破壊発生時荷重Fuiに達すると、試験片16は脆性破壊し、破断する。
続いてステップS2で取得した変位−荷重特性に基づいて動的破壊靭性値KJdを算出する(ステップS3)。ここで動的破壊靭性値KJdは、J積分の弾性成分Je及び塑性成分Jpを用いて次式
KJd={E(Je+Jp)/(1−v)}0.5 (1)
により求められる。ここで、Eはヤング率であり、vはポアソン比である。すなわち動的破壊靭性値は、J積分の弾性成分Jeと塑性成分Jpとの和として算出される。
弾性成分Jeは、ステップS2で取得した変位−荷重特性から特定される脆性破壊発生時荷重Fuiに基づいて次式(詳細は「JEAC4216(電気技術規定原子力編フェライト鋼の破壊靭性参照温度T0決定のための試験方法)」等参照)
Ke=[Fui・S/(B×W1.5)]f(a/W)・・・ (2)
Je=(1−v)Ke/E・・・ (3)
により求められる(脆性破壊発生時荷重Fuiは、図4を参照して上述したように、脆性破壊を生じる荷重として求められ、長さaは図4に示される試験片16の破断面を測定することにより得られる)。尚、Bは試験片のき裂伝播する方向と垂直な方向の厚さであり、Wは試験片のき裂伝播する方向の厚さを示している。
一方、塑性成分Jpは、図6の変位−荷重特性に示されるハッチング領域Rの面積を評価することにより算出される。ハッチング領域Rは、境界R1及びR2で規定される。境界R1は、弾性変形領域における傾き(上述したように弾性変形領域では、荷重−変位特性は略線形に振舞う)に平行であり、且つ、き裂発生荷重Fintを通過する線分として規定される。境界R2は、弾性変形領域における傾き(上述したように弾性変形領域では、荷重−変位特性は略線形に振舞う)に平行であり、且つ、脆性破壊発生時荷重Fuiを通過する線分として規定される。
尚、き裂発生荷重Fintは、試験片16にき裂が生じ始める荷重であり、次式
Fint=κ×(Fgy+Fm) (4)
により規定される。ここでFgyは降伏時衝撃荷重であり、Fmは最大衝撃荷重であり、κは任意の係数(0≦κ≦1)である。図6では、一例としてκ=1/2の場合が示されている。
このようにしてJ積分の弾性成分Je及び塑性成分Jpが算出されると、上記(1)式に代入することにより、動的破壊靭性値KJdが求められる。
続いて、動的破壊靭性値KJdを動的破壊靭性マスターカーブに当てはめることにより、動的参照温度T0dを算出する(ステップS4)。動的破壊靭性マスターカーブは動的破壊靭性の中央値の温度依存性を規定する特性曲線であり、その形状は構造材の種類によらず不変である。具体的には、動的破壊靭性マスターカーブは動的破壊靭性値KJd及び測定温度Tを変数とする関数であり、動的参照温度T0dを用いて次式
Kjd=30+70exp[0.019(T+T0d)] (5)
で表される。図7は動的破壊靭性マスターカーブを示すグラフであり、試験片16の測定温度Tと、ステップS3で算出した動的破壊靭性値KJdに対応する計測点がプロットされている。ステップS4では、(5)式に対して、試験片16の測定温度Tと、ステップS3で算出した動的破壊靭性値KJdを基にワイブル統計に従う処理をすることで(詳細はJEAC4216等を参照)、動的参照温度T0dが求められる。
続いてステップS4で算出された動的参照温度T0dを、静的参照温度T0sに換算する(ステップS5)。ここで本願発明者の知見によれば、負荷速度dK/dtと参照温度T0との関係は、係数β及びγを用いて次式
T0=β・dK/dt+γ (6)
で表される。尚、係数βは構造材の種類により不変であり、経験則から得られる固定値である。
図8は負荷速度dK/dtと参照温度T0との関係を示すグラフであり、ステップS1で実施されたシャルピー衝撃試験の結果が、計測点としてプロットされている。計測点は、シャルピー衝撃試験で試験片16に実際に生じる負荷速度dK/dtに対応しており、計測点における負荷速度dK/dt及びステップS5で算出された動的参照温度T0dを(6)式に代入することで、係数γが決定される。このように負荷速度dK/dtと参照温度T0との関係が求められると、図8に示されるように、静的特性に対応する比較的小さな負荷速度に対応する静的参照温度T0sが求められる。
尚、計測点における負荷速度dK/dtは、センサ等によって直接計測することで取得してもよいが、計測が困難な場合には、例えば試験片16に荷重の時間履歴から算出される初期の荷重速度dF/dtを用いて算出されてもよい。図9は試験片16が受ける荷重の時間履歴の計測例を示すグラフである。図9に示されるように、試験片16が受ける荷重Fは試験開始から荷重Fが降伏時衝撃荷重Fgyに到達するまでの初期タイミングにおいて、略線形的に立ち上がる振る舞いを示す。初期の荷重速度dF/dtとは、このような荷重の時間履歴において降伏時衝撃荷重Fgyに到達するまでの直線的な荷重変化の傾きのことを示す。
荷重の時間履歴から得られたdF/dtを(2)式のFuiとして代入することにより、dK/dtは次式
dK/dt=[(dF/dt)・S/(B×W1.5)]f(a/W)・・・(7)
により得られる。
続いてステップS5で求めた静的参照温度T0sを(5)式に代入することより得られる次式
Kjc=30+70exp[0.019(T+T0s)] (8)
により静的破壊靭性マスターカーブが得られ、静的破壊靭性が推定される(ステップS6)。
以上説明したように上記実施形態によれば、動的試験であるシャルピー衝動試験に用いられるシャルピー試験片を用いて得られる変位−荷重特性から動的破壊靭性値を求める。そして動的破壊靭性値からマスターカーブ法により得られる動的参照温度を静的参照温度に変換することで、静的破壊靭性曲線が推定できる。このようにして、動的試験であるシャルピー衝撃試験による測定結果に基づいて、従来、静的試験によって得られていた静的破壊靭性値を評価できる。
シャルピー試験片は、静的試験であるKlc試験、CTOD試験及びJlc試験で要求される試験片(CT試験片や曲げ試験片)に比べてサイズが小さいため、試験片カプセルに十分なサンプル数を確保できる。特にシャルピー試験片はCT試験片のように、試験片本体に予き裂を形成する必要もないため、作業負担・コストが少なく済む。
更に上述のように、本方法では少なくとも一回のシャルピー試験の測定結果に基づいて静的破壊靭性特性を推定できるため、少ないサンプル数で良好な精度が得られる。このようにして、サイズの小さな試験片を使用し、少ないサンプル数で精度よく破壊靭性を評価可能な破壊靭性試験方法が提供できる。
本発明の少なくとも一実施形態は、例えば原子炉圧力容器などの大型構造物における構造材の破壊靭性を評価するための破壊靭性試験方法に利用可能である。
1 原子炉圧力容器
2 容器本体
3 蓋体
4 冷却材入口ノズル
5 冷却材出口ノズル
6 炉心槽
7 ダウンカマー
8 下部炉心支持板
9 下部炉心板
10 炉心
11 上部炉心板
12 上部プレナム
13 鏡板
14 下部プレナム
15 試験片カプセル
16 試験片
18 延性破壊領域
20 脆性破壊領域
23 切欠き部

Claims (5)

  1. 片側に切欠き部を有する試験片を用いて原子炉圧力容器に使用される材料の破壊靭性を評価するための破壊靭性試験方法であって、
    計装化シャルピー衝撃試験機を用いて、前記試験片について変位−荷重特性を取得するステップと、
    前記変位−荷重特性に基づいて動的破壊靭性値を算出するステップと、
    前記動的破壊靭性値を動的破壊靭性マスターカーブに当てはめることにより動的参照温度を算出するステップと、
    前記動的参照温度を静的参照温度に換算するステップと、
    前記静的参照温度に基づいて静的破壊靭性マスターカーブを算出するステップと、
    前記静的破壊靭性マスターカーブに基づいて静的破壊靭性値を求めるステップと、
    を備える、破壊靭性試験方法。
  2. 前記動的破壊靭性値は、前記変位−荷重特性に基づいて特定される脆性破壊時荷重に基づいて算出される弾性成分と、前記変位−荷重特性のき裂発生荷重から脆性破壊時荷重に至るまでの積分値に基づいて算出される塑性成分との和として算出される、請求項1に記載の破壊靭性試験方法。
  3. 前記き裂発生荷重は、前記変位−荷重特性に基づいて特定される降伏時衝撃荷重Fgy、最大衝撃荷重Fm及び係数κ(0≦κ≦1)を用いて、次式
    Fint=κ×(Fgy+Fm)
    により算出される、請求項2に記載の破壊靭性試験方法。
  4. 前記動的参照温度に基づいて、前記試験片の負荷速度及び参照温度の関係を規定する特性関数を算出し、
    前記特性関数に静的試験の負荷速度を入力することにより前記静的参照温度を算出する、請求項1から3のいずれか一項に記載の破壊靭性試験方法。
  5. 前記試験片は、前記原子炉圧力容器内に配設されたカプセルに収容されるシャルピー衝撃試験片である、請求項1から4のいずれか一項に記載の破壊靭性試験方法。
JP2017071922A 2017-03-31 2017-03-31 破壊靭性試験方法 Active JP6678125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071922A JP6678125B2 (ja) 2017-03-31 2017-03-31 破壊靭性試験方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071922A JP6678125B2 (ja) 2017-03-31 2017-03-31 破壊靭性試験方法

Publications (2)

Publication Number Publication Date
JP2018173356A JP2018173356A (ja) 2018-11-08
JP6678125B2 true JP6678125B2 (ja) 2020-04-08

Family

ID=64107339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071922A Active JP6678125B2 (ja) 2017-03-31 2017-03-31 破壊靭性試験方法

Country Status (1)

Country Link
JP (1) JP6678125B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487142B (zh) * 2019-01-29 2023-05-23 吉林建筑大学 一种混凝土多孔砖墙体的动态断裂韧度的检测系统
CN110455662A (zh) * 2019-08-23 2019-11-15 合肥通用机械研究院有限公司 铁素体钢冲击功与断裂韧性经验关系式确定方法
CN110987706A (zh) * 2019-11-14 2020-04-10 合肥通用机械研究院有限公司 利用冲击功估算铁素体钢断裂韧性主曲线参考温度的方法
CN111751225A (zh) * 2020-06-11 2020-10-09 中国船舶重工集团公司第七二五研究所 一种低温大尺寸断裂韧性ctod试验方法及装置
CN112730078B (zh) * 2020-12-22 2023-08-18 哈电发电设备国家工程研究中心有限公司 核电厂承压主设备及化工机械承压设备断裂韧性分析方法
JP2024016559A (ja) * 2022-07-26 2024-02-07 三菱造船株式会社 タンクの靭性信頼性評価方法

Also Published As

Publication number Publication date
JP2018173356A (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6678125B2 (ja) 破壊靭性試験方法
Jayadevan et al. Fracture response of pipelines subjected to large plastic deformation under tension
JP5411020B2 (ja) 疲労限度特定システム、疲労破壊箇所特定方法および疲労限度特定方法
Mirone The dynamic effect of necking in Hopkinson bar tension tests
Hyde et al. Some considerations on specimen types for small sample creep tests
JP2012163420A (ja) 疲労限度特定システムおよび疲労限度特定方法
Kovshova et al. The influence of quasi-static loading regimes on the strength of vessels operating under pressure
Chandra et al. Fatigue crack growth of a corner crack in a square prismatic bar under combined cyclic torsion–tension loading
Milone et al. Evaluation of the influence of mean stress on the fatigue behavior of notched and smooth medium carbon steel components through an energetic local approach
Song et al. Effect of weld properties on the crush strength of the PWR spacer grid
Yang et al. Tensile plasticity of miniature specimens for a low alloy steel investigated by digital image correlation technique
JP4672616B2 (ja) 応力腐食割れ亀裂進展速度の評価方法
Zheng et al. A novel fatigue evaluation approach with direct steady cycle analysis (DSCA) based on the linear matching method (LMM)
Mayer et al. Compact crack arrest tests for the validation of a finite element material model of the reactor pressure vessel steel of the nuclear power plant kkg
Bolton et al. Towards a validated pipeline dent integrity assessment model
Lei et al. Finite element RCC-MR creep analysis of circumferentially cracked cylinders under combined residual stress and mechanical load
JP2009174886A (ja) 表面改質部に対する機械的特性評価方法
Clark Some problems in the application of fracture mechanics
JP2019082985A (ja) 非線形応力ひずみ解析装置、非線形応力ひずみ解析方法、及び非線形応力ひずみ解析プログラム
Mann et al. Analysis of Fatigue Crack Growth in Standard Endurance Test Specimens in Support of Total Life Approaches to Fatigue Assessment
Platts et al. Negative load ratio fatigue crack growth rate testing on austenitic stainless steel in a simulated primary water environment
Yan et al. Effect of crack front curvature on CMOD compliance and crack length evaluation for single-edge bend specimens
Samadian et al. Effects of flaw shape (idealization) on the interaction of co-planar surface flaws
Prakash et al. Localized fatigue response evaluation of weld regions through cyclic indentation studies
Rozhnov et al. Stress corrosion cracking of zirconium cladding tubes: I. Proximate local SCC testing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6678125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150