JP6675243B2 - Charge control circuit - Google Patents

Charge control circuit Download PDF

Info

Publication number
JP6675243B2
JP6675243B2 JP2016056447A JP2016056447A JP6675243B2 JP 6675243 B2 JP6675243 B2 JP 6675243B2 JP 2016056447 A JP2016056447 A JP 2016056447A JP 2016056447 A JP2016056447 A JP 2016056447A JP 6675243 B2 JP6675243 B2 JP 6675243B2
Authority
JP
Japan
Prior art keywords
potential
power supply
supply line
voltage
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016056447A
Other languages
Japanese (ja)
Other versions
JP2017175688A (en
Inventor
羽田 正二
正二 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2016056447A priority Critical patent/JP6675243B2/en
Priority to PCT/JP2017/010309 priority patent/WO2017164023A1/en
Publication of JP2017175688A publication Critical patent/JP2017175688A/en
Application granted granted Critical
Publication of JP6675243B2 publication Critical patent/JP6675243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、充電池(バッテリー)の充電を制御する充電制御回路に関する。   The present invention relates to a charge control circuit that controls charging of a rechargeable battery (battery).

充電池は、満充電状態となるまで充電された場合であっても、その後、自然放電によってその残量が徐々に減少していく。そこで、充電池では、充電池が満充電状態になるまで行われる急速充電の他に、充電池が満充電状態であるときに自然放電による充電池の残量の減少を補うために行うトリクル充電が行われる。
ここで、トリクル充電は、急速充電に比べて少ない充電電流で充電池を充電するものである。トリクル充電は、充電池に供給する電流量そのものを少なくしたり、電流供給期間と電流供給休止期間を所定の比率で有するパルス電流であって電流供給期間の電流値が一定であるパルス電流を充電電流とすることにより平均の電流量を少なくしたりする。
特許文献1は、トリクル充電を行う充電回路を開示する。
Even if the rechargeable battery is charged until it is fully charged, the remaining amount gradually decreases by natural discharge thereafter. Therefore, in the rechargeable battery, in addition to the rapid charge performed until the rechargeable battery is fully charged, the trickle charge performed to compensate for the decrease in the remaining amount of the rechargeable battery due to spontaneous discharge when the rechargeable battery is fully charged. Is performed.
Here, trickle charging is to charge a rechargeable battery with a smaller charging current than quick charging. Trickle charging reduces the amount of current supplied to the rechargeable battery itself, or charges a pulse current having a predetermined ratio between the current supply period and the current supply suspension period and a constant current value during the current supply period. By using current, the average current amount is reduced.
Patent Literature 1 discloses a charging circuit that performs trickle charging.

充電池の自然放電量は充電池の残量によって変動する。その自然放電量は、充電池が満充電状態のとき最も多く、残量が少なくなるにつれて徐々に減少していく。
そこで、特許文献1に記載の充電回路は、充電池の満充電状態における自然放電量よりも少なく、かつ、充電池において最も少なくなる自然放電量よりも多い電流でトリクル充電を行う。
The amount of spontaneous discharge of the rechargeable battery varies depending on the remaining amount of the rechargeable battery. The spontaneous discharge amount is largest when the rechargeable battery is fully charged, and gradually decreases as the remaining amount decreases.
Therefore, the charging circuit described in Patent Literature 1 performs trickle charging with a current smaller than the amount of spontaneous discharge in the fully charged state of the rechargeable battery and larger than the amount of spontaneous discharge in the rechargeable battery that is minimized.

また、充電池の自然放電量は、使用時の温度によって異なり、温度が高くなるほどその自然放電量は多くなる。
そこで、特許文献1に記載の充電回路は、充電池の使用時の温度を測定し、その温度に応じた充電電流でトリクル充電を行う。
Further, the amount of spontaneous discharge of the rechargeable battery differs depending on the temperature at the time of use.
Therefore, the charging circuit described in Patent Literature 1 measures the temperature during use of the rechargeable battery and performs trickle charging with a charging current corresponding to the temperature.

更に、充電池は、経年変化によってその自然放電量が変化する。
そこで、特許文献1に記載の充電回路は、充電池の電圧が満充電状態における電圧の90%以下である場合、または充電地の残量が満充電状態における残量の95%以下である場合はその充電池を急速充電する。
Further, the amount of spontaneous discharge of a rechargeable battery changes over time.
Therefore, the charging circuit described in Patent Literature 1 has a case where the voltage of the rechargeable battery is 90% or less of the voltage in the fully charged state, or the case where the remaining amount of the charged place is 95% or less of the remaining amount in the fully charged state. Quickly charges its rechargeable battery.

特開2007−259633号公報JP 2007-259633 A

特許文献1に記載の充電回路では、パルス電流をトリクル充電の充電電流とする場合、タイマ等により電流供給期間と電流供給休止期間を計測し、電流供給期間にのみ電流を流さなければならない。
また、その充電回路では、充電池の使用時の温度を測定し、その温度に応じてトリクル充電の充電電流を設定しなければならない。
更に、その充電回路では、経年変化等のために設定した充電電流によるトリクル充電では充電地を満充電状態に戻せなくなった場合、急速充電を行わなければならない、
In the charging circuit described in Patent Document 1, when the pulse current is used as the charging current for trickle charging, the current supply period and the current supply suspension period must be measured by a timer or the like, and the current must be supplied only during the current supply period.
In addition, the charging circuit must measure the temperature during use of the rechargeable battery, and set the charging current for trickle charging according to the temperature.
Furthermore, in the charging circuit, if the charging ground cannot be returned to a fully charged state by trickle charging with a charging current set due to aging or the like, rapid charging must be performed.

本発明の目的は、簡易な制御でトリクル充電することができる充電制御回路を提供することである。   An object of the present invention is to provide a charge control circuit that can perform trickle charging with simple control.

上記目的を達成するために、本発明の充電制御回路は、
充電池を充電する充電電流を制御する充電制御回路であって、
前記充電池の一方の端子に接続され、第1の電位が印加される第1の電源ラインと、
第2の電位が印加される第2の電源ラインと、
前記充電池の他方の端子に接続され、前記充電池により中間電位となる中間ラインと、
充電信号の出力中に前記第1の電源ラインの第1の電位と前記中間ラインの中間電位との電位差である電圧が上昇して所定の上限電圧に達したときに当該充電信号から遮断信号に切り換え、当該遮断信号の出力中に前記第1の電源ラインの第1の電位と前記中間ラインの中間電位との電位差である電圧が下降して所定の下限電圧に達したときに当該遮断信号から前記充電信号に切り換える制御部と、
前記中間ラインと前記第2の電源ラインの間に配設されており、前記充電信号が入力されているときに前記充電電流を流し、前記遮断信号が入力されているときに前記充電電流を止めるスイッチ部と、
を備え、
前記上限電圧は、前記充電池が満充電状態であるときに当該充電池から出力される満充電電圧より所定の電圧だけ高く、
前記下限電圧は、前記満充電電圧より所定の電圧だけ低い、ことを特徴とする。
In order to achieve the above object, a charge control circuit of the present invention comprises:
A charge control circuit that controls a charge current for charging a rechargeable battery,
A first power supply line connected to one terminal of the rechargeable battery and to which a first potential is applied;
A second power supply line to which a second potential is applied;
An intermediate line connected to the other terminal of the rechargeable battery and having an intermediate potential by the rechargeable battery;
During the output of the charging signal, when the voltage, which is the potential difference between the first potential of the first power supply line and the intermediate potential of the intermediate line, rises and reaches a predetermined upper limit voltage, the charge signal is switched to a cutoff signal. Switching, when the voltage, which is the potential difference between the first potential of the first power supply line and the intermediate potential of the intermediate line, drops during the output of the shutoff signal and reaches a predetermined lower limit voltage, A control unit that switches to the charging signal;
The charging current is supplied between the intermediate line and the second power supply line when the charging signal is input, and is stopped when the cutoff signal is input. Switch part,
Bei to give a,
The upper limit voltage is higher than a full charge voltage output from the rechargeable battery by a predetermined voltage when the rechargeable battery is in a fully charged state,
The lower limit voltage is lower than the full charge voltage by a predetermined voltage .

好ましくは、本発明の充電制御回路は、
第3の電源ラインと、
前記第1の電源ラインから供給される第1の電位と前記中間ラインから供給される中間電位とによって動作し、前記中間電位との電位差が一定である第3の電位を前記第3の電源ラインに出力する定電圧生成部と、
を備え、
前記制御部が、
前記第1の電源ラインと前記中間ラインに接続され、前記第1の電位と前記中間電位に基づいて比較電位を生成し、当該比較電位を出力する比較電位生成部と、
前記第3の電源ラインと前記中間ラインに接続され、前記第3の電位と前記中間電位に基づいて基準電位を生成し、当該基準電位を出力する基準電位生成部と、
前記第3の電源ラインから供給される第3の電位と前記中間ラインから供給される中間電位とによって動作し、前記比較電位と前記基準電位との比較に基づいて前記充電信号に相当するレベルの電位または前記遮断信号に相当するレベルの電位を出力するコンパレータと、
一端と他端がそれぞれ前記コンパレータの出力端と非反転入力端に接続され、前記コンパレータから出力される前記充電信号に相当するレベルの電位および前記遮断信号に相当するレベルの電位にヒステリシスを付与するヒステリシス用抵抗と、
を備える、
ことを特徴とする。
Preferably, the charge control circuit of the present invention
A third power line,
The third power supply operates by a first potential supplied from the first power supply line and an intermediate potential supplied from the intermediate line, and changes a third potential having a constant potential difference from the intermediate potential to the third power supply line. A constant voltage generator for outputting the
With
The control unit includes:
A comparison potential generation unit that is connected to the first power supply line and the intermediate line, generates a comparison potential based on the first potential and the intermediate potential, and outputs the comparison potential;
A reference potential generator connected to the third power supply line and the intermediate line, for generating a reference potential based on the third potential and the intermediate potential, and outputting the reference potential;
It operates by a third potential supplied from the third power supply line and an intermediate potential supplied from the intermediate line, and has a level corresponding to the charging signal based on a comparison between the comparison potential and the reference potential. A comparator that outputs a potential or a potential of a level corresponding to the cutoff signal;
One end and the other end are connected to an output terminal and a non-inverting input terminal of the comparator, respectively, and provide hysteresis to a potential of a level corresponding to the charging signal and a potential of a level corresponding to the cutoff signal output from the comparator. A hysteresis resistor,
Comprising,
It is characterized by the following.

好ましくは、本発明の充電制御回路は、
前記スイッチ部が、
前記充電信号に相当するレベルの電位が入力するとき充電電位を出力し、前記遮断信号に相当するレベルの電位が入力するとき遮断電位を出力する電位変換部と、
一端が前記中間ラインに接続された抵抗と、
電流路の一端が前記第2の電源ラインに接続され、当該電流路の他端が前記抵抗の他端に接続され、制御端が前記電位変換部の出力端に接続されており、当該制御端に前記充電電位が入力されるときに当該電流路を導通させ、当該制御端に前記遮断電位が入力されるときに当該電流路を遮断する半導体素子と、
を備える、
ことを特徴とする。
Preferably, the charge control circuit of the present invention
The switch unit is
A potential converter that outputs a charging potential when a potential of a level corresponding to the charging signal is input, and outputs a blocking potential when a potential of a level corresponding to the blocking signal is input,
A resistor having one end connected to the intermediate line;
One end of a current path is connected to the second power supply line, the other end of the current path is connected to the other end of the resistor, and the control end is connected to the output end of the potential conversion unit. A semiconductor element that conducts the current path when the charging potential is input to the control terminal and cuts off the current path when the cutoff potential is input to the control terminal;
Comprising,
It is characterized by the following.

好ましくは、本発明の充電制御回路は、
前記第1の電源ラインに印加される第1の電位が、前記第2の電源ラインに印加される第2の電位よりも高く、
前記半導体素子が、NMOSトランジスタであり、
前記コンパレータの非反転入力端と反転入力端とにそれぞれ前記基準電位と前記比較電位が入力される、
ことを特徴とする。
Preferably, the charge control circuit of the present invention
A first potential applied to the first power supply line is higher than a second potential applied to the second power supply line;
The semiconductor element is an NMOS transistor;
The reference potential and the comparison potential are input to a non-inverting input terminal and an inverting input terminal of the comparator, respectively.
It is characterized by the following.

本発明によれば、簡易な制御でトリクル充電することができる。   According to the present invention, trickle charging can be performed with simple control.

本発明の実施形態に係る充電制御回路の構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a configuration of a charge control circuit according to the embodiment of the present invention. 充電池の電圧と充電電流の変化の一例を示す図である。図2(A)は、充電池の電圧の変化の一例を示す。図2(B)は、充電池の電流の変化の一例を示す。It is a figure showing an example of change of voltage and charge current of a rechargeable battery. FIG. 2A illustrates an example of a change in voltage of the rechargeable battery. FIG. 2B illustrates an example of a change in the current of the rechargeable battery.

以下、本発明の実施形態に係る充電制御回路について図面を参照しながら詳細に説明する。なお、実施形態を説明する全図において、共通の構成要素には同一の符号を付し、繰り返しの説明を省略する。   Hereinafter, a charge control circuit according to an embodiment of the present invention will be described in detail with reference to the drawings. In all the drawings describing the embodiments, common components are denoted by the same reference numerals, and repeated description is omitted.

図1は、本発明の実施形態に係る充電制御回路10の構成の一例を示す。
充電制御回路10は、充電電流を充電池BATに流したり、止めたりする。充電制御回路10は、第1の電源ラインである電源ラインL1と、第2の電源ラインである電源ラインL2と、第3の電源ラインである電源ラインL3と、中間ラインLmと、平滑用コンデンサC10と、定電圧生成部20と、制御部30と、スイッチ部40とを有する。
電源ラインL1は、端子T1と端子T3に接続されている。電源ラインL2は、端子T2に接続されている。中間ラインLmは、端子T4に接続されている。
端子T1と端子T2には、外部の直流電源が接続される。端子T1には、第1の電位である電位V1が印加される。端子T2には、第2の電位である電位V2が印加される。電位V1と電位V2は例えばそれぞれ380Vと0Vである。電位V1と電位V2は例えばそれぞれ190Vと−190Vであってもよい。または、電位V1と電位V2は例えばそれぞれ30Vと0Vであってもよい。
FIG. 1 shows an example of a configuration of a charge control circuit 10 according to an embodiment of the present invention.
The charge control circuit 10 sends or stops charging current to the rechargeable battery BAT. The charge control circuit 10 includes a power supply line L1, which is a first power supply line, a power supply line L2, which is a second power supply line, a power supply line L3, which is a third power supply line, an intermediate line Lm, and a smoothing capacitor. C10, a constant voltage generation unit 20, a control unit 30, and a switch unit 40.
The power line L1 is connected to the terminals T1 and T3. The power line L2 is connected to the terminal T2. The intermediate line Lm is connected to the terminal T4.
An external DC power supply is connected to the terminals T1 and T2. A potential V1, which is a first potential, is applied to the terminal T1. A potential V2 which is a second potential is applied to the terminal T2. The potential V1 and the potential V2 are, for example, 380 V and 0 V, respectively. The potential V1 and the potential V2 may be, for example, 190 V and -190 V, respectively. Alternatively, the potential V1 and the potential V2 may be, for example, 30 V and 0 V, respectively.

端子T3と端子T4には、それぞれ充電池BATの一方の端子(例えばプラス端子)と他方の端子(例えばマイナス端子)が接続される。電位V1と電位V2が例えばそれぞれ380Vと0Vである場合や190Vと−190Vである場合、充電制御回路10は例えば満充電電圧が300Vである充電池BATを充電することができる。また、電位V1と電位V2が例えばそれぞれ30Vと0Vである場合、充電制御回路10は例えば満充電電圧が24Vである充電池BATを充電することができる。なお、満充電電圧とは、充電池BATが満充電状態であるときに充電池BATから出力される電圧をいう。
中間ラインLmの電位は、電源ラインL1の電位V1よりも充電池BATの出力する電圧だけ低い中間電位Vmとなる。
One terminal (for example, a positive terminal) and the other terminal (for example, a negative terminal) of the rechargeable battery BAT are connected to the terminal T3 and the terminal T4, respectively. When the potential V1 and the potential V2 are, for example, 380 V and 0 V, respectively, or 190 V and -190 V, the charge control circuit 10 can charge the rechargeable battery BAT having a full charge voltage of 300 V, for example. When the potentials V1 and V2 are, for example, 30 V and 0 V, respectively, the charge control circuit 10 can charge the rechargeable battery BAT having a full charge voltage of 24 V, for example. Note that the full charge voltage refers to a voltage output from the rechargeable battery BAT when the rechargeable battery BAT is in a fully charged state.
The potential of the intermediate line Lm becomes the intermediate potential Vm lower than the potential V1 of the power supply line L1 by the voltage output from the rechargeable battery BAT.

平滑用コンデンサC10の一方の端子と他方の端子は、電源ラインL1と中間ラインLmにそれぞれ接続されている。平滑用コンデンサC10は、充電池BATに印加される電圧の変動を平滑化する。
定電圧生成部20は、電源ラインL1と中間ラインLmから供給される電圧(電位V1と中間電位Vmの電位差)によって動作し、第3の電位である電位V3を電源ラインL3に出力する。定電圧生成部20の出力、すなわち電位V3と中間電位Vmとの電位差は、一定であって安定している。一例として、外部直流電源から端子T1と端子T2に供給される電圧が30Vであり、充電池BATの満充電電圧が24Vであるとき、電位V3と中間電位Vmとの電位差は20Vである。定電圧生成部20の構成は周知であって本発明の範囲外であるため、その説明は省略する。
One terminal and the other terminal of the smoothing capacitor C10 are connected to the power line L1 and the intermediate line Lm, respectively. The smoothing capacitor C10 smoothes fluctuations in the voltage applied to the rechargeable battery BAT.
The constant voltage generation unit 20 operates by the voltage (the potential difference between the potential V1 and the intermediate potential Vm) supplied from the power supply line L1 and the intermediate line Lm, and outputs the third potential V3 to the power supply line L3. The output of the constant voltage generator 20, that is, the potential difference between the potential V3 and the intermediate potential Vm is constant and stable. As an example, when the voltage supplied to the terminals T1 and T2 from the external DC power supply is 30V, and the full charge voltage of the rechargeable battery BAT is 24V, the potential difference between the potential V3 and the intermediate potential Vm is 20V. Since the configuration of the constant voltage generation unit 20 is well known and is outside the scope of the present invention, a description thereof will be omitted.

制御部30は、充電信号と遮断信号を出力する。
中間ラインLmと電源ラインL2の間には、スイッチ部40が配設されている。スイッチ部40は、充電信号が入力されているときに充電電流を流し、遮断信号が入力されているときに充電電流を止める。充電電流が流れているときに充電池BATは充電され、充電電流が流れていないときに充電池BATは自然放電する。
The control unit 30 outputs a charge signal and a cutoff signal.
A switch unit 40 is provided between the intermediate line Lm and the power line L2. The switch section 40 supplies a charging current when a charging signal is input, and stops the charging current when a cutoff signal is input. When the charging current is flowing, the rechargeable battery BAT is charged, and when the charging current is not flowing, the rechargeable battery BAT is spontaneously discharged.

図2は、充電池BATの電圧と充電電流の変化の一例を示す。
電源ラインL1の電位V1と中間ラインLmの中間電位Vmとの電位差は、充電池BATの一方の端子(例えばプラス端子)と他方の端子(例えばマイナス端子)の間の電圧(以下、充電池BATの電圧という。)である。
図2(A)に示すように、制御部30は、充電信号の出力中に充電池BATの電圧が上昇して所定の上限電圧に達したとき、充電信号から遮断信号に切り換える。一方、制御部30は、遮断信号の出力中に充電池BATの電圧が下降して所定の下限電圧に達したとき、遮断信号から充電信号に切り換える。
FIG. 2 shows an example of changes in the voltage and the charging current of the rechargeable battery BAT.
The potential difference between the potential V1 of the power supply line L1 and the intermediate potential Vm of the intermediate line Lm is determined by the voltage between one terminal (for example, a positive terminal) and the other terminal (for example, a negative terminal) of the rechargeable battery BAT (hereinafter, rechargeable battery BAT). Voltage).
As shown in FIG. 2A, when the voltage of rechargeable battery BAT increases during the output of the charging signal and reaches a predetermined upper limit voltage, control unit 30 switches from the charging signal to the cutoff signal. On the other hand, when the voltage of the rechargeable battery BAT decreases during the output of the cutoff signal and reaches a predetermined lower limit voltage, the control unit 30 switches from the cutoff signal to the charging signal.

ここで、充電池BATは満充電状態であるとき、満充電電圧を出力する。充電池BATを満充電する場合、上限電圧は満充電電圧より所定の電圧だけ高く、下限電圧は満充電電圧より所定の電圧だけ低く設定される。この場合、例えば、充電池BATが複数のセルが直列に接続された鉛蓄電池であるとき、上限電圧はセル1個当たり2.25Vであり、下限電圧はセル1個当たり2.20Vである。
ただし、充電池BATを満充電する必要がない場合には、上限電圧を満充電電圧より低く設定してもよい。
Here, when the rechargeable battery BAT is in a fully charged state, it outputs a fully charged voltage. When the rechargeable battery BAT is fully charged, the upper limit voltage is set higher than the full charge voltage by a predetermined voltage, and the lower limit voltage is set lower than the full charge voltage by a predetermined voltage. In this case, for example, when the rechargeable battery BAT is a lead storage battery in which a plurality of cells are connected in series, the upper limit voltage is 2.25 V per cell, and the lower limit voltage is 2.20 V per cell.
However, when it is not necessary to fully charge the rechargeable battery BAT, the upper limit voltage may be set lower than the full charge voltage.

図2(B)に示すように、スイッチ部40は、充電信号が入力されているときに充電電流を流す。充電池BATはこの充電電流により充電される。このとき、スイッチ部40は、中間ラインの中間電位Vmと電源ラインL2の電位V2との電位差に相当する電圧を生じる。
一方、スイッチ部40は、遮断信号が入力されているときに中間ラインLmと電源ラインL2を電気的に切り離して充電電流を止める。このとき、充電池BATは自然放電する。
As shown in FIG. 2B, the switch section 40 allows a charging current to flow when a charging signal is input. The rechargeable battery BAT is charged by this charging current. At this time, the switch unit 40 generates a voltage corresponding to a potential difference between the intermediate potential Vm of the intermediate line and the potential V2 of the power supply line L2.
On the other hand, the switch unit 40 electrically disconnects the intermediate line Lm and the power supply line L2 when the cutoff signal is input, and stops the charging current. At this time, the rechargeable battery BAT discharges spontaneously.

図1に示すように、制御部30は、比較電位生成部31と、基準電位生成部32と、コンパレータ33と、ヒステリシス用抵抗R34とを有する。
比較電位生成部31は、電源ラインL1と中間ラインLmに接続される。比較電位生成部31は、抵抗R30と抵抗R31を有する。抵抗R30は、一端が中間ラインLmに接続されており、他端が抵抗R31の一端に接続されている。抵抗R31の他端は電源ラインL1に接続されている。比較電位生成部31は、抵抗R30と抵抗R31により電位V1と中間電位Vmとの電位差(電圧)電圧を分圧して電位V3と中間電位Vmの電位差の範囲(例えば、0V〜20Vの範囲)で比較電位を生成し、それを出力する。
As shown in FIG. 1, the control unit 30 includes a comparison potential generation unit 31, a reference potential generation unit 32, a comparator 33, and a hysteresis resistor R34.
The comparison potential generator 31 is connected to the power supply line L1 and the intermediate line Lm. The comparison potential generator 31 has a resistor R30 and a resistor R31. One end of the resistor R30 is connected to the intermediate line Lm, and the other end is connected to one end of the resistor R31. The other end of the resistor R31 is connected to the power supply line L1. The comparison potential generation unit 31 divides a potential difference (voltage) voltage between the potential V1 and the intermediate potential Vm by the resistors R30 and R31 so as to divide the potential difference between the potential V3 and the intermediate potential Vm (for example, in a range of 0 V to 20 V). Generate a comparison potential and output it.

基準電位生成部32は、電源ラインL3と中間ラインLmとに接続される。基準電位生成部32は、抵抗R32と抵抗R33を有する。抵抗R32は、一端が中間ラインLmに接続されており、他端が抵抗R33の一端に接続されている。抵抗R33の他端は電源ラインL3に接続されている。基準電位生成部32は、抵抗R32と抵抗R33により電位V3と中間電位Vmの電位差を分圧して基準電位を生成し、それを出力する。基準電位生成部32の出力、すなわち基準電位と中間電位Vmとの電位差は、一定であって安定している。
コンパレータ33は、電源ラインV3と中間ラインLmから供給される電圧(電位V3と中間電位Vmの電位差、例えば20V)によって動作する。コンパレータ33の反転入力端には比較電位生成部31の出力である比較電位が入力される。コンパレータ33の非反転入力端には基準電位生成部32の出力である基準電位が入力される。コンパレータ33の出力端と非反転入力端には、ヒステリシス用抵抗R34の一方の端子と他方の端子がそれぞれ接続されている。
The reference potential generator 32 is connected to the power supply line L3 and the intermediate line Lm. The reference potential generator 32 has a resistor R32 and a resistor R33. One end of the resistor R32 is connected to the intermediate line Lm, and the other end is connected to one end of the resistor R33. The other end of the resistor R33 is connected to the power supply line L3. The reference potential generator 32 generates a reference potential by dividing the potential difference between the potential V3 and the intermediate potential Vm by the resistors R32 and R33. The output of the reference potential generator 32, that is, the potential difference between the reference potential and the intermediate potential Vm is constant and stable.
The comparator 33 operates by a voltage (a potential difference between the potential V3 and the intermediate potential Vm, for example, 20 V) supplied from the power supply line V3 and the intermediate line Lm. The comparison potential which is the output of the comparison potential generation unit 31 is input to the inverting input terminal of the comparator 33. The reference potential, which is the output of the reference potential generation unit 32, is input to the non-inverting input terminal of the comparator 33. One terminal and the other terminal of the hysteresis resistor R34 are connected to the output terminal and the non-inverting input terminal of the comparator 33, respectively.

コンパレータ33は、比較電位と基準電位との比較に基づいて充電信号に相当するレベルの電位または遮断信号に相当するレベルの電位を出力する。このとき、ヒステリシス用抵抗R34は、これらの電位にヒステリシスを付与する。
このため、コンパレータ33は、基準電位より低かった比較電位が徐々に上がっていき、基準電位より所定の電位だけ高くなったとき(すなわち、充電池の電圧が徐々に上がっていき、上限電位に達したとき)に、その出力を充電信号に相当するレベルの電位から遮断信号に相当するレベルの電位に変える。また、コンパレータ33は、基準電位より高かった比較電位が徐々に下がっていき、基準電位より所定の電位だけ低くなったとき(すなわち、充電池の電圧が徐々に下がっていき、下限電位に達したとき)に、その出力を遮断信号に相当するレベルの電位から充電信号に相当するレベルの電位に変える。
The comparator 33 outputs a potential of a level corresponding to the charging signal or a potential of a level corresponding to the cutoff signal based on a comparison between the comparison potential and the reference potential. At this time, the hysteresis resistor R34 gives hysteresis to these potentials.
For this reason, the comparator 33 gradually increases the comparison potential lower than the reference potential and increases the reference potential by a predetermined potential (that is, the voltage of the rechargeable battery gradually increases to reach the upper limit potential). ), The output is changed from the potential of the level corresponding to the charging signal to the potential of the level corresponding to the cutoff signal. In addition, the comparator 33 gradually lowers the comparison potential higher than the reference potential and lowers the reference potential by a predetermined potential (that is, the voltage of the rechargeable battery gradually decreases to reach the lower limit potential). At that time, the output is changed from the potential of the level corresponding to the cutoff signal to the potential of the level corresponding to the charging signal.

スイッチ部40は、電位変換部41と、NMOSトランジスタ42と、抵抗R40とを有する。
電位変換部41は、充電信号に相当するレベルの電位が入力するとき充電電位を出力し、遮断信号に相当するレベルの電位が入力するとき遮断電位を出力する。電位変換部41は、PNPトランジスタQ40と,抵抗R41と、抵抗R42と、抵抗R43と、チェナーダイオードZ40とを有する。
PNPトランジスタQ40は、コンパレータ33が充電信号に相当するレベルの電位を出力するときにオンし、電位変換部41の出力を充電電位にする。このとき、抵抗R41と抵抗R42はPNPトランジスタQ40のエミッタからコレクタに流れる電流を制限する。そして、チェナーダイオードZ40は、NMOSトランジスタ42のゲートに過電圧がかかることを防止する。
一方、PNPトランジスタQ40は、コンパレータ33が遮断信号に相当するレベルの電位を出力するときにオフする。このとき、抵抗R43は、電位変換部41の出力を電源ラインL2の電位V2にクランプし、電位変換部41の出力を遮断電位にする。
The switch section 40 has a potential conversion section 41, an NMOS transistor 42, and a resistor R40.
The potential conversion unit 41 outputs a charging potential when a potential of a level corresponding to a charging signal is input, and outputs a blocking potential when a potential of a level corresponding to a blocking signal is input. The potential converter 41 has a PNP transistor Q40, a resistor R41, a resistor R42, a resistor R43, and a Zener diode Z40.
The PNP transistor Q40 turns on when the comparator 33 outputs a potential of a level corresponding to the charging signal, and sets the output of the potential conversion unit 41 to the charging potential. At this time, the resistors R41 and R42 limit the current flowing from the emitter to the collector of the PNP transistor Q40. Further, the zener diode Z40 prevents an overvoltage from being applied to the gate of the NMOS transistor.
On the other hand, the PNP transistor Q40 turns off when the comparator 33 outputs a potential of a level corresponding to the cutoff signal. At this time, the resistor R43 clamps the output of the potential conversion unit 41 to the potential V2 of the power supply line L2, and sets the output of the potential conversion unit 41 to the cutoff potential.

抵抗R40は、一端が中間ラインLmに接続されており、他端がNMOSトランジスタ42のドレインに接続されている。NMOSトランジスタ42は、ソースが電源ラインL2に接続され、ゲートが電位変換部41の出力端に接続されている。NMOSトランジスタ42は、ゲートに充電電位が入力されるときにソース−ドレイン間の電流路を導通させる。このとき、充電池BATに充電電流が流れ、充電池BATは充電される。抵抗R40は充電電流が流れ始めるときの突入電流を抑制する。また、抵抗R40とNMOSトランジスタ42のソース−ドレイン間抵抗とは、充電電流が流れることにより、中間ラインLmの中間電位Vmと電源ラインL2の電位V2との電位差に相当する電圧を生じる。一方、NMOSトランジスタ42は、ゲートに遮断電位が入力されるときにソース−ドレイン間の電流路を遮断し、電源ラインL2と中間ラインLmとを電気的に切り離す。   One end of the resistor R40 is connected to the intermediate line Lm, and the other end is connected to the drain of the NMOS transistor 42. The NMOS transistor 42 has a source connected to the power supply line L2 and a gate connected to the output terminal of the potential conversion unit 41. The NMOS transistor 42 conducts the current path between the source and the drain when the charging potential is input to the gate. At this time, a charging current flows through the rechargeable battery BAT, and the rechargeable battery BAT is charged. The resistor R40 suppresses the rush current when the charging current starts flowing. The resistance R40 and the resistance between the source and the drain of the NMOS transistor 42 generate a voltage corresponding to the potential difference between the intermediate potential Vm of the intermediate line Lm and the potential V2 of the power supply line L2 when the charging current flows. On the other hand, the NMOS transistor 42 cuts off the current path between the source and the drain when the cut-off potential is input to the gate, and electrically disconnects the power supply line L2 from the intermediate line Lm.

なお、上述した実施形態では、電源ラインL2にNMOSトランジスタ42と抵抗R40と中間ラインLmを接続する例を示したが、電源ラインL1にPMOSトランジスタと抵抗R40と中間ラインLmを接続する構成としてもよい。
ただし、この場合には、PMOSトランジスタの電流路(ソースードレイン間)を導通させるときには例えばゲートに電源ラインL1の電位より所定の電圧だけ低い電位を入力し、電流路を遮断するときにはゲートに電源ラインL1の電位と同一の電位を入力する。
また、この場合には、電源ラインL2が本発明の第1の電源ラインであり、電源ラインL1が本発明の第2の電源ラインである。
In the above-described embodiment, an example is described in which the NMOS transistor 42, the resistor R40, and the intermediate line Lm are connected to the power supply line L2. However, a configuration in which the PMOS transistor, the resistor R40, and the intermediate line Lm are connected to the power supply line L1 is also possible. Good.
However, in this case, when the current path (between the source and the drain) of the PMOS transistor is made conductive, for example, a potential lower than the potential of the power supply line L1 by a predetermined voltage is input to the gate. The same potential as the potential of the line L1 is input.
Further, in this case, the power supply line L2 is the first power supply line of the present invention, and the power supply line L1 is the second power supply line of the present invention.

また、上述した実施形態では、制御部30をコンパレータ33と複数の抵抗で構成する例を示したが、電源ラインL1の電位V1と中間ラインLmの中間電位Vmとの電位差(充電池BATの電圧)をA/D変換してディジタル信号に変換し、制御部30をDSP(Digital Signal Processor)とその制御プログラムで実現することもできる。   Further, in the above-described embodiment, an example in which the control unit 30 is configured by the comparator 33 and the plurality of resistors has been described. However, the potential difference between the potential V1 of the power supply line L1 and the intermediate potential Vm of the intermediate line Lm (the voltage of the rechargeable battery BAT). ) Is converted into a digital signal by A / D conversion, and the control unit 30 can be realized by a DSP (Digital Signal Processor) and its control program.

以上説明したように、本発明によれば、簡易な制御でトリクル充電することができる。本発明によれば、充電池BATの電圧は常に下限電圧と上限電圧の間にあるため、充電池BATが過充電や充電不足になることはない。
また、本発明によれば、電流供給期間と電流供給休止期間の計測は不要である。充電池BATが充電されてその電圧が下限電圧から上限電圧まで上昇する期間が電流供給期間となり、充電池BATが自然放電してその電圧が上限電圧から下限電圧まで下降する期間が電流停止期間となる。
また、本発明によれば、充電池の使用時の温度に応じてトリクル充電の平均電流値を設定することは不要である。
更に、本発明によれば、充電池BATの電圧は下限電圧より下に低下することはない。このため、経年変化等のためにトリクル充電に必要な電流値が変化しても急速充電が必要な状態に至ることはない。
As described above, according to the present invention, trickle charging can be performed with simple control. According to the present invention, since the voltage of the rechargeable battery BAT is always between the lower limit voltage and the upper limit voltage, the rechargeable battery BAT does not become overcharged or undercharged.
According to the present invention, it is not necessary to measure the current supply period and the current supply suspension period. A period during which the rechargeable battery BAT is charged and its voltage rises from the lower limit voltage to the upper limit voltage is a current supply period, and a period during which the rechargeable battery BAT naturally discharges and the voltage falls from the upper limit voltage to the lower limit voltage is a current stop period. Become.
Further, according to the present invention, it is not necessary to set the average current value of trickle charging according to the temperature at the time of use of the rechargeable battery.
Further, according to the present invention, the voltage of the rechargeable battery BAT does not drop below the lower limit voltage. For this reason, even if the current value required for trickle charging changes due to aging or the like, a state in which quick charging is required does not occur.

以上、本発明の実施形態について説明したが、設計上の都合やその他の要因によって必要となる様々な修正や組み合わせは、請求項に記載されている発明や発明の実施形態に記載されている具体例に対応する発明の範囲に含まれる。   As described above, the embodiments of the present invention have been described. However, various modifications and combinations necessary for the convenience of design and other factors may be applied to the specific embodiments described in the claims and the embodiments of the invention. Included in the scope of the invention corresponding to the example.

10…充電制御回路、20…定電圧生成部、30…制御部、31…比較電位生成部、32…基準電位生成部、33…コンパレータ、R30,R31,R32,R33…抵抗、R34…ヒステリシス用抵抗、40…スイッチ部、41…電位変換部、42…NMOSトランジスタ、Q40…PNPトランジスタ、R40,R41,R42,R43…抵抗、Z40…チェナーダイオード、L1,L2,L3…電源ライン、Lm…中間ライン、C10…平滑用コンデンサ、BAT…充電池 DESCRIPTION OF SYMBOLS 10 ... Charge control circuit, 20 ... Constant voltage generation part, 30 ... Control part, 31 ... Comparative potential generation part, 32 ... Reference potential generation part, 33 ... Comparator, R30, R31, R32, R33 ... Resistance, R34 ... Hysteresis Resistor, 40 switch section, 41 potential conversion section, 42 NMOS transistor, Q40 PNP transistor, R40, R41, R42, R43 ... resistor, Z40 ... Zener diode, L1, L2, L3 ... power supply line, Lm ... Intermediate line, C10: smoothing capacitor, BAT: rechargeable battery

Claims (4)

充電池を充電する充電電流を制御する充電制御回路であって、
前記充電池の一方の端子に接続され、第1の電位が印加される第1の電源ラインと、
第2の電位が印加される第2の電源ラインと、
前記充電池の他方の端子に接続され、前記充電池により中間電位となる中間ラインと、
充電信号の出力中に前記第1の電源ラインの第1の電位と前記中間ラインの中間電位との電位差である電圧が上昇して所定の上限電圧に達したときに当該充電信号から遮断信号に切り換え、当該遮断信号の出力中に前記第1の電源ラインの第1の電位と前記中間ラインの中間電位との電位差である電圧が下降して所定の下限電圧に達したときに当該遮断信号から前記充電信号に切り換える制御部と、
前記中間ラインと前記第2の電源ラインの間に配設されており、前記充電信号が入力されているときに前記充電電流を流し、前記遮断信号が入力されているときに前記充電電流を止めるスイッチ部と、
を備え、
前記上限電圧は、前記充電池が満充電状態であるときに当該充電池から出力される満充電電圧より所定の電圧だけ高く、
前記下限電圧は、前記満充電電圧より所定の電圧だけ低い、
ことを特徴とする充電制御回路。
A charge control circuit that controls a charge current for charging a rechargeable battery,
A first power supply line connected to one terminal of the rechargeable battery and to which a first potential is applied;
A second power supply line to which a second potential is applied;
An intermediate line connected to the other terminal of the rechargeable battery and having an intermediate potential by the rechargeable battery;
During the output of the charging signal, when the voltage, which is the potential difference between the first potential of the first power supply line and the intermediate potential of the intermediate line, rises and reaches a predetermined upper limit voltage, the charge signal is switched to a cutoff signal. Switching, when the voltage, which is the potential difference between the first potential of the first power supply line and the intermediate potential of the intermediate line, drops during the output of the shutoff signal and reaches a predetermined lower limit voltage, A control unit that switches to the charging signal;
The charging current is supplied between the intermediate line and the second power supply line when the charging signal is input, and is stopped when the cutoff signal is input. Switch part,
Bei to give a,
The upper limit voltage is higher than a full charge voltage output from the rechargeable battery by a predetermined voltage when the rechargeable battery is in a fully charged state,
The lower limit voltage is lower than the full charge voltage by a predetermined voltage,
A charge control circuit characterized in that:
第3の電源ラインと、
前記第1の電源ラインから供給される第1の電位と前記中間ラインから供給される中間電位とによって動作し、前記中間電位との電位差が一定である第3の電位を前記第3の電源ラインに出力する定電圧生成部と、
を備え、
前記制御部が、
前記第1の電源ラインと前記中間ラインに接続され、前記第1の電位と前記中間電位に基づいて比較電位を生成し、当該比較電位を出力する比較電位生成部と、
前記第3の電源ラインと前記中間ラインに接続され、前記第3の電位と前記中間電位に基づいて基準電位を生成し、当該基準電位を出力する基準電位生成部と、
前記第3の電源ラインから供給される第3の電位と前記中間ラインから供給される中間電位とによって動作し、前記比較電位と前記基準電位との比較に基づいて前記充電信号に相当するレベルの電位または前記遮断信号に相当するレベルの電位を出力するコンパレータと、
一端と他端がそれぞれ前記コンパレータの出力端と非反転入力端に接続され、前記コンパレータから出力される前記充電信号に相当するレベルの電位および前記遮断信号に相当するレベルの電位にヒステリシスを付与するヒステリシス用抵抗と、
を備える、
ことを特徴とする請求項1に記載の充電制御回路。
A third power line,
The third power supply operates by a first potential supplied from the first power supply line and an intermediate potential supplied from the intermediate line, and changes a third potential having a constant potential difference from the intermediate potential to the third power supply line. A constant voltage generator for outputting the
With
The control unit includes:
A comparison potential generation unit that is connected to the first power supply line and the intermediate line, generates a comparison potential based on the first potential and the intermediate potential, and outputs the comparison potential;
A reference potential generator connected to the third power supply line and the intermediate line, for generating a reference potential based on the third potential and the intermediate potential, and outputting the reference potential;
It operates by a third potential supplied from the third power supply line and an intermediate potential supplied from the intermediate line, and has a level corresponding to the charging signal based on a comparison between the comparison potential and the reference potential. A comparator that outputs a potential or a potential of a level corresponding to the cutoff signal;
One end and the other end are connected to an output terminal and a non-inverting input terminal of the comparator, respectively, and provide hysteresis to a potential of a level corresponding to the charging signal and a potential of a level corresponding to the cutoff signal output from the comparator. A hysteresis resistor,
Comprising,
The charge control circuit according to claim 1, wherein:
前記スイッチ部が、
前記充電信号に相当するレベルの電位が入力するとき充電電位を出力し、前記遮断信号に相当するレベルの電位が入力するとき遮断電位を出力する電位変換部と、
一端が前記中間ラインに接続された抵抗と、
電流路の一端が前記第2の電源ラインに接続され、当該電流路の他端が前記抵抗の他端に接続され、制御端が前記電位変換部の出力端に接続されており、当該制御端に前記充電電位が入力されるときに当該電流路を導通させ、当該制御端に前記遮断電位が入力されるときに当該電流路を遮断する半導体素子と、
を備える、
ことを特徴とする請求項に記載の充電制御回路。
The switch unit is
A potential converter that outputs a charging potential when a potential of a level corresponding to the charging signal is input, and outputs a blocking potential when a potential of a level corresponding to the blocking signal is input,
A resistor having one end connected to the intermediate line;
One end of a current path is connected to the second power supply line, the other end of the current path is connected to the other end of the resistor, and the control end is connected to the output end of the potential conversion unit. A semiconductor element that conducts the current path when the charging potential is input to the control terminal and cuts off the current path when the cutoff potential is input to the control terminal;
Comprising,
The charge control circuit according to claim 2 , wherein
前記第1の電源ラインに印加される第1の電位が、前記第2の電源ラインに印加される第2の電位よりも高く、
前記半導体素子が、NMOSトランジスタであり、
前記コンパレータの非反転入力端と反転入力端とにそれぞれ前記基準電位と前記比較電位が入力される、
ことを特徴とする請求項に記載の充電制御回路。
A first potential applied to the first power supply line is higher than a second potential applied to the second power supply line;
The semiconductor element is an NMOS transistor;
The reference potential and the comparison potential are input to a non-inverting input terminal and an inverting input terminal of the comparator, respectively.
4. The charge control circuit according to claim 3 , wherein:
JP2016056447A 2016-03-22 2016-03-22 Charge control circuit Expired - Fee Related JP6675243B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016056447A JP6675243B2 (en) 2016-03-22 2016-03-22 Charge control circuit
PCT/JP2017/010309 WO2017164023A1 (en) 2016-03-22 2017-03-15 Charge control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056447A JP6675243B2 (en) 2016-03-22 2016-03-22 Charge control circuit

Publications (2)

Publication Number Publication Date
JP2017175688A JP2017175688A (en) 2017-09-28
JP6675243B2 true JP6675243B2 (en) 2020-04-01

Family

ID=59900278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056447A Expired - Fee Related JP6675243B2 (en) 2016-03-22 2016-03-22 Charge control circuit

Country Status (2)

Country Link
JP (1) JP6675243B2 (en)
WO (1) WO2017164023A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11239680B2 (en) 2018-06-01 2022-02-01 Texas Instruments Incorporated Battery charger
JP7449787B2 (en) * 2020-06-18 2024-03-14 Fdk株式会社 Secondary battery charging device
JPWO2022049455A1 (en) * 2020-09-07 2022-03-10
JPWO2022064319A1 (en) 2020-09-22 2022-03-31

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228492A (en) * 2007-03-14 2008-09-25 Sanyo Electric Co Ltd Method for charging lithium ion secondary battery
JP5122214B2 (en) * 2007-08-08 2013-01-16 パナソニック株式会社 Battery pack, charging device, and charging system
CN101816092B (en) * 2007-10-05 2013-06-05 松下电器产业株式会社 Secondary cell charge control method and charge control circuit

Also Published As

Publication number Publication date
JP2017175688A (en) 2017-09-28
WO2017164023A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
US9509162B2 (en) Single-stage AC-to-DC switching converter that directly charges a battery requiring a multi-state charging profile
JP6675243B2 (en) Charge control circuit
JP6612201B2 (en) Power supply circuit and power supply device
JP6211916B2 (en) Switching regulator
JP5014699B2 (en) Electronic trip device with power supply circuit including boosting means and circuit breaker including such trip device
JP6393169B2 (en) DC-DC converter
JP6719332B2 (en) Charger
US9608521B2 (en) DC/DC converter activation stability control
KR20160011604A (en) Step-down circuit
KR101319284B1 (en) Dc-dc converter and power supply device
US9374007B2 (en) DC/DC converter
US20190339728A1 (en) Power supply circuit
JP6751679B2 (en) Charging device
US10411461B2 (en) Protection circuit for brushless DC motor, and control device
EP2696492B1 (en) High efficiency low-power power supply circuit
JP2010029009A (en) Power supply circuit and power supply system using the power supply circuit
TW201214933A (en) Converting controller
JP2005110366A (en) Drive circuit
JP2011091938A (en) Abnormality detecting circuit
JP2012090420A (en) Semiconductor switch and charging circuit
JP5641908B2 (en) Control circuit
JP4810132B2 (en) Delay circuit and ripple converter
JP2009100623A (en) Power supply circuit
JP2012175420A (en) Constant current circuit
JP2010183669A (en) Power supply apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200310

R150 Certificate of patent or registration of utility model

Ref document number: 6675243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees