JP6675125B2 - pH-dependent fluorescent compound - Google Patents

pH-dependent fluorescent compound Download PDF

Info

Publication number
JP6675125B2
JP6675125B2 JP2016068416A JP2016068416A JP6675125B2 JP 6675125 B2 JP6675125 B2 JP 6675125B2 JP 2016068416 A JP2016068416 A JP 2016068416A JP 2016068416 A JP2016068416 A JP 2016068416A JP 6675125 B2 JP6675125 B2 JP 6675125B2
Authority
JP
Japan
Prior art keywords
compound
fluorescence
hydrogen atom
solution
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016068416A
Other languages
Japanese (ja)
Other versions
JP2016193897A (en
Inventor
柴田 孝之
孝之 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Publication of JP2016193897A publication Critical patent/JP2016193897A/en
Application granted granted Critical
Publication of JP6675125B2 publication Critical patent/JP6675125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Description

本発明は、pH依存的に蛍光を発する化合物およびその前駆体化合物に関する。   The present invention relates to a compound that emits fluorescence in a pH-dependent manner and a precursor compound thereof.

蛍光色素は、感度が良く取り扱いが安全なことから、放射性物質を用いる従来のトレーサー技術に替わる手法として、基礎研究から臨床検査まで広く利用されている。これまでに数多くの蛍光色素が発見されてきたが、これらはその機能から「Always ON」型(特許文献1)と「ON/OFF Switch」型(非特許文献1)の2種に大別される。
Always ON型は、環境の変化に影響され難く常に一定の蛍光を常に発する色素で、核酸・タンパク質・抗体・低分子リガンドなどの標的分子を認識するプローブへ標識することで、標的分子の追跡を可能にする。一方、非特異的結合を起こしたプローブや標的に結合しない遊離型プローブも蛍光を発するため、バックグラウンドシグナルが高くなりやすく、大量投与が必要なin vivoでの使用は制限される。
ON/OFF Switch型は、標的分子の濃度勾配によって発光と消光が調節される色素で、代表的なものとしてHイオン(pH)やCa2+イオンなどのイオン濃度に感受性の色素が挙げられる。しかし、これらの色素は測定対象の濃度に閾値が存在し、閾値以上と以下で発光/消光が調節されるため、通常の生体成分の様に基準濃度範囲が存在する標的分子の測定はできない。β−ガラクトシダーゼをはじめとする酵素を対象とした色素もこの型に当てはまるが、蛍光の発光/消光が非可逆性であるため利用が制限される。
Fluorescent dyes are widely used from basic research to clinical examination as an alternative to conventional tracer technology using radioactive substances because of their high sensitivity and safe handling. Many fluorescent dyes have been discovered so far, but these are roughly classified into two types based on their functions: an “Always ON” type (Patent Document 1) and an “ON / OFF Switch” type (Non-Patent Document 1). You.
Always ON type is a dye that is hardly affected by environmental changes and always emits constant fluorescence. By labeling probes that recognize target molecules such as nucleic acids, proteins, antibodies, and small molecule ligands, tracking of target molecules can be performed. to enable. On the other hand, a probe that has caused non-specific binding or a free probe that does not bind to a target also emits fluorescence, so that the background signal is likely to be high, and its use in vivo requiring a large amount of administration is limited.
The ON / OFF Switch type is a dye whose light emission and quenching are regulated by the concentration gradient of a target molecule, and a typical example is a dye sensitive to ion concentration such as H + ion (pH) and Ca 2+ ion. However, these dyes have a threshold in the concentration of the measurement target, and light emission / quenching is adjusted above and below the threshold. Therefore, it is impossible to measure a target molecule having a reference concentration range like a normal biological component. Dyes targeting enzymes such as β-galactosidase also fall into this category, but their use is limited due to their irreversible fluorescence emission / quenching.

また、最近の研究では、がん細胞は正常細胞と比較して酸性であることが分かってきている。これは、がん細胞の代謝が正常細胞より異常に速く、ATPの産生能の向上、Hポンプの発現量の増加と機能更新などに起因すると考えられている。すなわち、通常の細胞や血液のpHである7.4付近と、上半身の中心に位置し大容量を占める胃のpHである1.5〜1.0付近で蛍光を与えず、がん細胞の弱酸性領域でのみ蛍光を発するという、極めて特異な性質を提供する蛍光色素が望まれている。 Also, recent studies have shown that cancer cells are more acidic than normal cells. This is thought to be due to abnormally faster metabolism of cancer cells than normal cells, improvement in ATP production ability, increase in expression of H + pumps and renewal of functions. That is, it does not give fluorescence at around pH 7.4, which is the pH of normal cells and blood, and around 1.5 to 1.0, which is the pH of the stomach occupying the center of the upper body and occupying a large volume. There is a demand for a fluorescent dye that provides an extremely unique property of emitting fluorescence only in a weakly acidic region.

特開2012−219258号公報JP 2012-219258 A

Angew.Chem.Int.Ed.2014,53,6085−6089Angew. Chem. Int. Ed. 2014, 53, 6085-6089

本願発明は、pH依存的に蛍光を発する化合物およびその前駆体化合物を提供することを目的とする。   An object of the present invention is to provide a compound that emits fluorescence in a pH-dependent manner and a precursor compound thereof.

本発明者は上記課題を解決するために鋭意検討した結果、特定のpH領域でのみ強い蛍光を発する化合物およびその前駆体化合物を発見し、本発明を完成するに至った。即ち、本発明は以下の通りである。
[1]式(I’):
As a result of intensive studies to solve the above problems, the present inventors have found a compound that emits strong fluorescence only in a specific pH range and a precursor compound thereof, and have completed the present invention. That is, the present invention is as follows.
[1] Formula (I ′):

(式中、Rは、水素原子またはアシル基を示し、RおよびRは、それぞれ独立して、水素原子、アミノ基またはカルボキシル基を示す。)
で表される化合物(以下、化合物(I’)と略記することがある。);
[2]Rが水素原子である、[1]に記載の化合物;
[3]Rがアセチルである、[1]に記載の化合物;
[4]RおよびRがともに水素原子である、[1]〜[3]のいずれか1項に記載の化合物;
[5]Rがアミノ基であり、かつRが水素原子である、[1]〜[3]のいずれか1項に記載の化合物;
[6]Rがカルボキシル基であり、かつRが水素原子である、[1]〜[3]のいずれか1項に記載の化合物。
(In the formula, R represents a hydrogen atom or an acyl group, and R 1 and R 2 each independently represent a hydrogen atom, an amino group, or a carboxyl group.)
(Hereinafter may be abbreviated as compound (I '));
[2] the compound of [1], wherein R is a hydrogen atom;
[3] the compound of [1], wherein R is acetyl;
[4] the compound of any one of [1] to [3], wherein R 1 and R 2 are both hydrogen atoms;
[5] The compound according to any one of [1] to [3], wherein R 1 is an amino group and R 2 is a hydrogen atom;
[6] The compound according to any one of [1] to [3], wherein R 1 is a carboxyl group and R 2 is a hydrogen atom.

また、本発明は、以下に関する。
[1A]式(I):
Further, the present invention relates to the following.
[1A] Formula (I):

(式中、Rは、水素原子またはアシル基を示す。)
で表される化合物(以下、化合物(I)と略記することがある。);
[2A]Rが水素原子である、[1A]に記載の化合物;
[3A]Rがアセチルである、[1A]に記載の化合物。
(In the formula, R represents a hydrogen atom or an acyl group.)
(Hereinafter may be abbreviated as compound (I));
[2A] the compound of [1A], wherein R is a hydrogen atom;
[3A] The compound of [1A], wherein R is acetyl.

本発明の化合物は、測定対象の濃度が特定領域内にある場合のみ蛍光を発する、第3の型と言える蛍光化合物およびその前駆体化合物として有用である。測定対象はpH(Hイオン)であり、本発明の化合物を水に溶解させると、pH 14の強塩基性〜pH 7の中性にかけて蛍光を発しないが、pHを6以下に下げると徐々に蛍光を発し、pH 4前後で最大の蛍光を与える(なお、アミノ基を導入した場合、最大蛍光強度を与えるpHは中性領域(6.5〜7.0)にシフトする。)。pHを更に下げると蛍光は徐々に減少し、pHが2以下になると溶液は無蛍光となる。さらに、本発明の化合物は、弱酸性領域で活性化され、細胞や組織における弱酸性領域と中性領域とを、又は弱酸性領域と強酸性領域とを区別する技術に応用が可能であると考えられる。 The compound of the present invention is useful as a fluorescent compound which can be said to be a third type and a precursor compound thereof, which emits fluorescence only when the concentration of the measurement object is within a specific region. The measurement target is pH (H + ion). When the compound of the present invention is dissolved in water, no fluorescence is emitted in the range of strong basicity of pH 14 to neutrality of pH 7, but when the pH is lowered to 6 or less, the pH gradually decreases. And gives maximum fluorescence at around pH 4 (when an amino group is introduced, the pH giving the maximum fluorescence intensity shifts to a neutral region (6.5 to 7.0)). When the pH is further lowered, the fluorescence gradually decreases, and when the pH becomes 2 or less, the solution becomes non-fluorescent. Furthermore, the compound of the present invention is activated in a weakly acidic region, and can be applied to a technique for distinguishing between a weakly acidic region and a neutral region in a cell or tissue, or a weakly acidic region and a strongly acidic region. Conceivable.

実施例1で得られた化合物(I)(R=水素原子)の2μM溶液(溶媒:pH 1のデータは0.1M塩酸、pH 2.0〜pH 12.0までのpH 0.5刻みのデータは25mMリン酸緩衝液、pH 14のデータは1M水酸化ナトリウム水溶液)に315nmの励起光を照射し、発せられた蛍光をデジタルカメラで撮影した結果を示す。2 μM solution of compound (I) (R = hydrogen atom) obtained in Example 1 (solvent: data of pH 1 is 0.1 M hydrochloric acid, pH 0.5 to pH 12.0 in increments of 0.5) The data shows the results obtained by irradiating a 25 mM phosphate buffer, pH 14 data with a 1 M aqueous sodium hydroxide solution) with 315 nm excitation light, and photographing the emitted fluorescence with a digital camera. 実施例1で得られた化合物(I)(R=水素原子)の1μM溶液(溶媒:pH 1のデータは0.1M塩酸、pH 2.0、2.5、7.0、7.5、8.0、9.0、10.0およびpH 12.0のデータは25mMリン酸緩衝液、pH 3.0〜pH 6.5のpH 0.1刻みのデータは50mMフタル酸緩衝液、pH 14のデータは1M水酸化ナトリウム水溶液)の、励起波長488nmおよび蛍光波長528nmにおける、pH変化に伴う蛍光強度を示す。1 μM solution of compound (I) (R = hydrogen atom) obtained in Example 1 (solvent: data of pH 1 is 0.1 M hydrochloric acid, pH 2.0, 2.5, 7.0, 7.5, The data at 8.0, 9.0, 10.0 and pH 12.0 are 25 mM phosphate buffer, and the data at pH 0.1 from pH 3.0 to pH 6.5 are 50 mM phthalate buffer, pH 0.1. Data No. 14 shows the fluorescence intensity of a 1 M aqueous sodium hydroxide solution) at an excitation wavelength of 488 nm and a fluorescence wavelength of 528 nm with a change in pH. 実施例1で得られた化合物(I)(R=水素原子)の1μM溶液(溶媒:50mMフタル酸緩衝液)のpH 4.5での励起・蛍光スペクトルを示す。1 shows an excitation / fluorescence spectrum of a 1 μM solution (solvent: 50 mM phthalate buffer) of compound (I) (R = hydrogen atom) obtained in Example 1 at pH 4.5. 実施例1で得られた化合物(I)(R=水素原子)の1μM溶液(溶媒:50mMフタル酸緩衝液)のpHと蛍光強度とのグラフを示す。FIG. 2 shows a graph of pH and fluorescence intensity of a 1 μM solution (solvent: 50 mM phthalate buffer) of compound (I) (R = hydrogen atom) obtained in Example 1. FIG. 実施例2で得られた化合物(I)(R=アセチル)の分子構造を示すORTEP図である。FIG. 2 is an ORTEP diagram showing the molecular structure of compound (I) (R = acetyl) obtained in Example 2. 実施例2で得られた化合物(I)(R=アセチル)を用いた細胞染色を蛍光顕微鏡で観察した結果を示す。The result of observing the cell staining using the compound (I) (R = acetyl) obtained in Example 2 with a fluorescence microscope is shown. 実施例2で得られた化合物(I)(R=アセチル)、Hoechst 33342およびAcidifluor Orangeを用いた細胞の多重染色を共焦点レーザー蛍光顕微鏡で観察した結果を示す。The result of observing the multiple staining of the cell using the compound (I) (R = acetyl) obtained in Example 2, Hoechst 33342 and Acidifluor Orange by a confocal laser fluorescence microscope is shown. 実施例2で得られた化合物(I)(R=アセチル)およびAcidifluor Orangeを用いた細胞の二重染色を倒立型蛍光顕微鏡で観察した結果を示す。The result of observing the double staining of the cells using the compound (I) (R = acetyl) obtained in Example 2 and Acidifluor Orange using an inverted fluorescence microscope is shown. 実施例3で得られた化合物(I’)(R=水素原子、R=アミノ基、R=水素原子)の塩酸塩の5μM溶液(溶媒:pH 1のデータは0.1M塩酸、pH 2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5および12.0のデータは25mMリン酸緩衝液、pH 14のデータは0.1M水酸化ナトリウム水溶液)の、励起波長484nmおよび蛍光波長534nmにおける、pH変化に伴う蛍光強度を示す。5 μM solution of the hydrochloride salt of the compound (I ′) (R = hydrogen atom, R 1 = amino group, R 2 = hydrogen atom) obtained in Example 3 (data of a solvent: pH 1 is 0.1 M hydrochloric acid, pH 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8. The data at 0, 8.5, 9.0, 9.5 and 12.0 are 25 mM phosphate buffer, and the data at pH 14 is 0.1 M aqueous sodium hydroxide solution) at an excitation wavelength of 484 nm and an emission wavelength of 534 nm. 4 shows the fluorescence intensity accompanying a pH change. 実施例4で得られた化合物(I’)(R=水素原子、R=カルボキシル基、R=水素原子)の1μM溶液(溶媒:pH 1のデータは0.1M塩酸、pH 2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、8.0、9.0、10.0、11.0および12.0のデータは25mMリン酸緩衝液、pH 14のデータは0.1M水酸化ナトリウム水溶液)の、励起波長488nmおよび蛍光波長528nmにおける、pH変化に伴う蛍光強度を示す。1 μM solution of compound (I ′) (R = hydrogen atom, R 1 = carboxyl group, R 2 = hydrogen atom) obtained in Example 4 (solvent: pH 1, data is 0.1 M hydrochloric acid, pH 2.0 , 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10 0.0, 11.0 and 12.0 are 25 mM phosphate buffer, pH 14 data is 0.1 M aqueous sodium hydroxide solution). Show.

以下、本発明の実施の形態について詳細に説明する。
本発明の化合物は、式(I’):
Hereinafter, embodiments of the present invention will be described in detail.
The compound of the present invention has the formula (I ′):

(式中、Rは、水素原子またはアシル基を示し、RおよびRは、それぞれ独立して、水素原子、アミノ基またはカルボキシル基を示す。)
で表される。
また、本発明の化合物は、式(I):
(In the formula, R represents a hydrogen atom or an acyl group, and R 1 and R 2 each independently represent a hydrogen atom, an amino group, or a carboxyl group.)
It is represented by
Also, the compound of the present invention has the formula (I):

(式中、Rは、水素原子またはアシル基を示す。)
で表される。
Rで示される「アシル基」としては、C1−6アルキル−カルボニル基(例、アセチル、プロパノイル、ブタノイル、2−メチルプロパノイル、ペンタノイル、3−メチルブタノイル、2−メチルブタノイル、2,2−ジメチルプロパノイル、ヘキサノイル、ヘプタノイル)、C6−14アリール−カルボニル基(例、ベンゾイル、1−ナフトイル、2−ナフトイル)、C7−16アラルキル−カルボニル基(例、フェニルアセチル、フェニルプロピオニル)などが挙げられ、C1−6アルキル−カルボニル基(例、アセチル、プロパノイル、ブタノイル、2−メチルプロパノイル、ペンタノイル、3−メチルブタノイル、2−メチルブタノイル、2,2−ジメチルプロパノイル、ヘキサノイル、ヘプタノイル)が好ましく、アセチルがより好ましい。
Rとしては、水素原子またはC1−6アルキル−カルボニル基(例、アセチル、プロパノイル、ブタノイル、2−メチルプロパノイル、ペンタノイル、3−メチルブタノイル、2−メチルブタノイル、2,2−ジメチルプロパノイル、ヘキサノイル、ヘプタノイル)が好ましく、水素原子またはアセチルがより好ましい。
およびRとしては、RおよびRがともに水素原子である態様、Rがアミノ基であり、かつRが水素原子である態様、およびRがカルボキシル基であり、かつRが水素原子である態様が好ましい。
(In the formula, R represents a hydrogen atom or an acyl group.)
It is represented by
Examples of the “acyl group” represented by R include a C 1-6 alkyl-carbonyl group (eg, acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 3-methylbutanoyl, 2-methylbutanoyl, 2-dimethylpropanoyl, hexanoyl, heptanoyl), C 6-14 aryl-carbonyl group (eg, benzoyl, 1-naphthoyl, 2-naphthoyl), C 7-16 aralkyl-carbonyl group (eg, phenylacetyl, phenylpropionyl) And C 1-6 alkyl-carbonyl groups (eg, acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 3-methylbutanoyl, 2-methylbutanoyl, 2,2-dimethylpropanoyl, Hexanoyl and heptanoyl) are preferable, and acetyl is more preferable. Is more preferable.
R represents a hydrogen atom or a C 1-6 alkyl-carbonyl group (eg, acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 3-methylbutanoyl, 2-methylbutanoyl, 2,2-dimethylpropanoyl) Noyl, hexanoyl, heptanoyl) are preferable, and a hydrogen atom or acetyl is more preferable.
As R 1 and R 2 , an embodiment in which R 1 and R 2 are both hydrogen atoms, an embodiment in which R 1 is an amino group and R 2 is a hydrogen atom, and an embodiment in which R 1 is a carboxyl group and R 1 An embodiment in which 2 is a hydrogen atom is preferred.

次に、本発明の化合物の製造方法について説明する。
本発明の化合物(I’)は、出発原料として化合物(1’)
Next, a method for producing the compound of the present invention will be described.
The compound (I ′) of the present invention is obtained by using the compound (1 ′) as a starting material.

(式中、RおよびRは上記で定義した通りである。)
を用い、以下で説明する本発明の化合物(I)の製造方法またはこれに準ずる方法と同様にして、もしくは実施例に記載の方法で製造することができる。
(Wherein R 1 and R 2 are as defined above)
Can be produced in the same manner as in the method for producing the compound (I) of the present invention described below or a method analogous thereto, or by the method described in Examples.

なお、Rおよび/またはRがアミノ基である化合物(I’)は、アミノ基が当該分野で公知の保護基で保護された化合物(1’)を用い、得られたアミノ基が保護された化合物(I’)を自体公知の方法により脱保護することにより、あるいは、化合物(1’)の前駆体としてRおよび/またはRがニトロ基である化合物を用い、得られたRおよび/またはRがニトロ基である化合物(I’)を自体公知の方法により還元することにより、製造することもできる。 The compound (I ′) in which R 1 and / or R 2 is an amino group is a compound (1 ′) in which the amino group is protected by a protective group known in the art, and the obtained amino group is protected. The compound (I ′) obtained by deprotecting the compound (I ′) by a method known per se or using a compound in which R 1 and / or R 2 is a nitro group as a precursor of the compound (1 ′), by 1 and / or R 2 is reduced by a method known per se a compound that is a nitro group (I '), it can also be produced.

また、本発明の化合物(I)は、以下のスキームに示す方法またはこれに準ずる方法もしくは実施例に記載の方法で製造することができる。   In addition, compound (I) of the present invention can be produced by the method shown in the following scheme, a method analogous thereto, or a method described in Examples.

(工程1)
1,2,3,4−ベンゼンテトラカルボン酸(メロファン酸)(1)を、必要に応じて反応に不活性な溶媒中、あるいは粉末の状態で加熱処理し、酸無水物(2)を得る工程である。
1,2,3,4−ベンゼンテトラカルボン酸(メロファン酸)(1)は市販品にて入手でき、また、自体公知の方法またはこれらに準じた方法に従って製造することもできる。
該「溶媒」としては、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2−ジメトキシエタンなどのエーテル類、ベンゼン、トルエン、シクロヘキサン、ヘキサンなどの炭化水素類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1−メチル−2−ピロリドンなどのアミド類、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタンなどのハロゲン化炭化水素類、アセトニトリル、プロピオニトリルなどのニトリル類、ジメチルスルホキシドなどのスルホキシド類、ピリジン、ルチジン、キノリンなどの含窒素芳香族炭化水素類、無水酢酸などの酸無水物、および水などの溶媒またはこれらの混合溶媒などが好ましい。
反応温度は、溶媒の種類によって異なるが、通常、0〜180℃、好ましくは140〜150℃であり、反応時間は、通常、1〜48時間、好ましくは6〜24時間である。
(Step 1)
1,2,3,4-benzenetetracarboxylic acid (mellophanic acid) (1) is heated, if necessary, in a solvent inert to the reaction or in a powder state to obtain an acid anhydride (2). It is a process.
1,2,3,4-benzenetetracarboxylic acid (mellophanic acid) (1) is available as a commercial product, and can also be produced according to a method known per se or a method analogous thereto.
Examples of the "solvent" include ethers such as diethyl ether, tetrahydrofuran, dioxane and 1,2-dimethoxyethane, hydrocarbons such as benzene, toluene, cyclohexane and hexane, N, N-dimethylformamide, N, N Amides such as -dimethylacetamide and 1-methyl-2-pyrrolidone; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride and 1,2-dichloroethane; nitriles such as acetonitrile and propionitrile; dimethylsulfoxide and the like Sulfoxides, nitrogen-containing aromatic hydrocarbons such as pyridine, lutidine, and quinoline, acid anhydrides such as acetic anhydride, and solvents such as water or a mixed solvent thereof are preferable.
The reaction temperature varies depending on the type of the solvent, but is generally 0 to 180 ° C, preferably 140 to 150 ° C, and the reaction time is generally 1 to 48 hours, preferably 6 to 24 hours.

(工程2)
酸無水物(2)とレゾルシノール(3)とを酸存在下、必要に応じて反応に不活性な溶媒中、反応させ、化合物(I)(R=水素原子)を得る工程である。
レゾルシノール(3)の使用量は、酸無水物(2)に対し、通常2〜8当量、好ましくは3〜5当量である。
該「酸」としては、例えば、鉱酸類(塩酸、臭化水素酸、硫酸など)、カルボン酸類(酢酸、トリフルオロ酢酸、トリクロロ酢酸など)、スルホン酸類(メタンスルホン酸、トルエンスルホン酸など)、ルイス酸(塩化アルミニウム、塩化スズ、臭化亜鉛など)などが用いられ、必要に応じ2種類以上を混合しても良い。
該「酸」の使用量は、酸無水物(2)に対し、通常4〜800当量、好ましくは40〜80当量であり、溶媒として用いることもできる。
該「溶媒」としては、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2−ジメトキシエタンなどのエーテル類、ベンゼン、トルエン、シクロヘキサン、ヘキサンなどの炭化水素類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1−メチル−2−ピロリドンなどのアミド類、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタンなどのハロゲン化炭化水素類、アセトニトリル、プロピオニトリルなどのニトリル類、ジメチルスルホキシドなどのスルホキシド類、ピリジン、ルチジン、キノリンなどの含窒素芳香族炭化水素類および水などの溶媒またはこれらの混合溶媒などが好ましい。
反応温度は、酸や溶媒の種類によって異なるが、通常、0〜120℃、好ましくは80〜100℃であり、反応時間は、通常、1〜120時間、好ましくは24〜72時間である。
(Step 2)
This is a step of reacting the acid anhydride (2) with the resorcinol (3) in the presence of an acid, if necessary, in a solvent inert to the reaction to obtain a compound (I) (R = hydrogen atom).
The amount of resorcinol (3) to be used is generally 2 to 8 equivalents, preferably 3 to 5 equivalents, relative to acid anhydride (2).
Examples of the “acid” include mineral acids (hydrochloric acid, hydrobromic acid, sulfuric acid, etc.), carboxylic acids (acetic acid, trifluoroacetic acid, trichloroacetic acid, etc.), sulfonic acids (methanesulfonic acid, toluenesulfonic acid, etc.), A Lewis acid (aluminum chloride, tin chloride, zinc bromide, etc.) is used, and two or more kinds may be mixed as necessary.
The amount of the “acid” to be used is generally 4-800 equivalents, preferably 40-80 equivalents, relative to the acid anhydride (2), and can be used as a solvent.
Examples of the "solvent" include ethers such as diethyl ether, tetrahydrofuran, dioxane and 1,2-dimethoxyethane, hydrocarbons such as benzene, toluene, cyclohexane and hexane, N, N-dimethylformamide, N, N Amides such as -dimethylacetamide and 1-methyl-2-pyrrolidone; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride and 1,2-dichloroethane; nitriles such as acetonitrile and propionitrile; dimethylsulfoxide and the like Sulfoxides, nitrogen-containing aromatic hydrocarbons such as pyridine, lutidine and quinoline, and solvents such as water, or a mixed solvent thereof are preferred.
The reaction temperature varies depending on the type of the acid and the solvent, but is usually 0 to 120 ° C, preferably 80 to 100 ° C, and the reaction time is usually 1 to 120 hours, preferably 24 to 72 hours.

(工程3)
化合物(I)(R=水素原子)の水酸基を、必要に応じて反応に不活性な溶媒中、アシル化剤を用いてアシル化し、化合物(I)(R=アシル基)を得る工程である。
該「アシル化剤」としては、例えば、カルボン酸ハロゲン化物、カルボン酸無水物などが用いられる。
該「アシル化剤」の使用量は、化合物(I)(R=水素原子)に対し、通常4〜800当量、好ましくは4〜40当量であり、溶媒として用いることもできる。
該「溶媒」としては、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2−ジメトキシエタンなどのエーテル類、ベンゼン、トルエン、シクロヘキサン、ヘキサンなどの炭化水素類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1−メチル−2−ピロリドンなどのアミド類、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタンなどのハロゲン化炭化水素類、アセトニトリル、プロピオニトリルなどのニトリル類、ジメチルスルホキシドなどのスルホキシド類、ピリジン、ルチジン、キノリンなどの含窒素芳香族炭化水素類および水などの溶媒またはこれらの混合溶媒などが好ましい。
反応温度は、アシル化剤や溶媒の種類によって異なるが、通常、0〜180℃、好ましくは20〜140℃であり、反応時間は、通常、1〜24時間、好ましくは1〜3時間である。
(Step 3)
In this step, the hydroxyl group of compound (I) (R = hydrogen atom) is acylated using an acylating agent in a solvent inert to the reaction, if necessary, to obtain compound (I) (R = acyl group). .
As the "acylating agent", for example, carboxylic acid halides, carboxylic anhydrides and the like are used.
The amount of the "acylating agent" to be used is generally 4 to 800 equivalents, preferably 4 to 40 equivalents, relative to compound (I) (R = hydrogen atom), and can be used as a solvent.
Examples of the "solvent" include ethers such as diethyl ether, tetrahydrofuran, dioxane and 1,2-dimethoxyethane, hydrocarbons such as benzene, toluene, cyclohexane and hexane, N, N-dimethylformamide, N, N Amides such as -dimethylacetamide and 1-methyl-2-pyrrolidone; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride and 1,2-dichloroethane; nitriles such as acetonitrile and propionitrile; dimethylsulfoxide and the like Sulfoxides, nitrogen-containing aromatic hydrocarbons such as pyridine, lutidine and quinoline, and solvents such as water, or a mixed solvent thereof are preferred.
The reaction temperature varies depending on the type of the acylating agent and the solvent, but is usually 0 to 180 ° C, preferably 20 to 140 ° C, and the reaction time is usually 1 to 24 hours, preferably 1 to 3 hours. .

本発明の化合物(I’)および(I)(R=水素原子)は、弱酸性領域(pH 3.0〜6.5)でのみ強い蛍光を発し、強酸性領域(pH 1.0〜2.5)および中性〜強塩基性領域(pH 7.0〜14.0)では微弱な蛍光しか発しない。
また、本発明の化合物(I’)および(I)(R=アシル基)は、化合物(I’)および(I)(R=水素原子)の前駆体化合物であり、それ自体は蛍光を発せず、脱アシル化されて化合物(I’)および(I)(R=水素原子)に変換されることにより、上記のように弱酸性領域でのみ強い蛍光を発するようになる。
The compounds (I ′) and (I) (R = hydrogen atom) of the present invention emit strong fluorescence only in a weakly acidic region (pH 3.0 to 6.5), and strongly acidic region (pH 1.0 to 2). .5) and in the neutral to strongly basic region (pH 7.0 to 14.0), only weak fluorescence is emitted.
The compounds (I ′) and (I) (R = acyl group) of the present invention are precursor compounds of the compounds (I ′) and (I) (R = hydrogen atom), and themselves emit fluorescence. Instead, the compound is deacylated and converted into the compounds (I ′) and (I) (R = hydrogen atom), thereby emitting strong fluorescence only in the weakly acidic region as described above.

本発明の化合物(I’)および(I)(R=水素原子)は、その水酸基をアシル化することによって、すなわち、化合物(I’)および(I)(R=アシル基)に変換することによって、脂溶性が向上し、細胞膜を透過して細胞内に取り込まれ易くなる。細胞内に取り込まれた化合物(I’)および(I)(R=アシル基)は、細胞質に存在する酵素(エステラーゼ)によって脱アシル化されて化合物(I’)および(I)(R=水素原子)に変換され、弱酸性領域で強い蛍光を発する。   Compounds (I ′) and (I) (R = hydrogen atom) of the present invention can be converted into compounds (I ′) and (I) (R = acyl group) by acylating the hydroxyl group. Thereby, the lipophilicity is improved, and it is easy to permeate the cell membrane and be taken into the cells. Compounds (I ′) and (I) (R = acyl group) taken up into cells are deacylated by an enzyme (esterase) present in the cytoplasm, and compounds (I ′) and (I) (R = hydrogen) Atom), and emits strong fluorescence in a weakly acidic region.

以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
なお、各種測定には、以下の測定機器を用いた。
超伝導核磁気共鳴装置 Varian製 UNITYplus500
質量分析装置 JEOL製 JMS−700
高輝度X線単結晶構造解析装置 RIGAKU製 Varimax Saturn/1200S
紫外可視分光光度計 JASCO製 V−630BIO
分光蛍光光度計 JASCO製 FP−8200
倒立型蛍光顕微鏡 Leica製 DM IRB
共焦点レーザー顕微鏡 Carl Zeiss製 LSM710
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the examples.
The following measuring instruments were used for various measurements.
Superconducting nuclear magnetic resonance apparatus Varian UNITYplus500
Mass spectrometer JMS-700 manufactured by JEOL
High Brightness X-ray Single Crystal Structure Analyzer Varimax Saturn / 1200S manufactured by RIGAKU
UV-Visible Spectrophotometer JASCO V-630BIO
Spectrofluorimeter JASCO FP-8200
Inverted fluorescence microscope Leica DM IRB
Confocal Laser Microscope LSM710 manufactured by Carl Zeiss

実施例1
(1)化合物(I)(R=水素原子)の合成
メロファン酸4.2gをテトラヒドロフラン100mLに溶解し、氷浴につけながら減圧下溶媒を留去した。得られた粉末を140℃にて24時間加熱した。減圧下室温に戻した後、レゾルシノール7.3gとメタンスルホン酸66mLを加え、80℃で3日間撹拌した。反応液を室温に戻した後、氷冷した水700mLに撹拌しながら徐々に加えた。析出した固体をろ取し、水で洗浄後、凍結乾燥して濃赤色粉末12.4gを得た。この粉末を少量のメタノールに懸濁させ、撹拌しながら加熱還流した。室温に戻して粉末をろ取した後、得られた粉末を更にメタノールで再結晶し、目的化合物7.2g(収率74%)を橙色粉末として得た。以下合成した化合物(I)(R=水素原子)の分析結果を示す。
1H-NMR (500 MHz, DMSO-d6) δ 8.34 (d, 1H, J = 8.1 Hz), 7.63 (d, 1H, J = 8.1 Hz), 6.82 (d, 2H, J = 8.6 Hz), 6.695 (d, 2H, J = 2.4 Hz), 6.687 (d, 2H, J = 2.4 Hz), 6.59 (dd, 2H, J = 2.4, 8.6 Hz), 6.57 (dd, 2H, J = 2.4, 8.6 Hz), 6.43 (d, 2H, J = 8.6 Hz); 13C-NMR (126 MHz, DMSO-d6) δ 167.3, 164.5, 160.0, 159.7, 152.0, 151.9, 149.7, 132.0, 128.8, 128.6, 127.0, 121.2, 112.9, 112.6, 108.6, 102.5, 102.3; FAB-HRMS (m/z) calcd for C34H19O10: 587.0973; found: 587.0981 [M+H]+
Example 1
(1) Synthesis of Compound (I) (R = hydrogen atom) 4.2 g of melophanoic acid was dissolved in 100 mL of tetrahydrofuran, and the solvent was distilled off under reduced pressure while keeping in an ice bath. The obtained powder was heated at 140 ° C. for 24 hours. After returning to room temperature under reduced pressure, 7.3 g of resorcinol and 66 mL of methanesulfonic acid were added, and the mixture was stirred at 80 ° C. for 3 days. After the temperature of the reaction solution was returned to room temperature, it was gradually added to 700 mL of ice-cooled water while stirring. The precipitated solid was collected by filtration, washed with water, and freeze-dried to obtain 12.4 g of a dark red powder. This powder was suspended in a small amount of methanol and heated under reflux with stirring. After returning to room temperature and collecting the powder by filtration, the obtained powder was further recrystallized from methanol to obtain 7.2 g (yield 74%) of the target compound as an orange powder. The analysis results of the synthesized compound (I) (R = hydrogen atom) are shown below.
1 H-NMR (500 MHz, DMSO-d6) δ 8.34 (d, 1H, J = 8.1 Hz), 7.63 (d, 1H, J = 8.1 Hz), 6.82 (d, 2H, J = 8.6 Hz), 6.695 (d, 2H, J = 2.4 Hz), 6.687 (d, 2H, J = 2.4 Hz), 6.59 (dd, 2H, J = 2.4, 8.6 Hz), 6.57 (dd, 2H, J = 2.4, 8.6 Hz) , 6.43 (d, 2H, J = 8.6 Hz); 13 C-NMR (126 MHz, DMSO-d6) δ 167.3, 164.5, 160.0, 159.7, 152.0, 151.9, 149.7, 132.0, 128.8, 128.6, 127.0, 121.2, 112.9, 112.6, 108.6, 102.5, 102.3; FAB-HRMS (m / z) calcd for C 34 H 19 O 10 : 587.0973; found: 587.0981 [M + H] +

(2)蛍光特性
上記(1)で得られた化合物(I)の蛍光特性を評価した。
化合物(I)の2μM溶液(溶媒:pH 1のデータは0.1M塩酸、pH 2.0〜pH 12.0までのpH 0.5刻みのデータは25mMリン酸緩衝液、pH 14のデータは1M水酸化ナトリウム水溶液)に315nmの励起光を照射し、発せられた蛍光をデジタルカメラで撮影した。その結果を図1に示す。図1から、強酸性領域および中性〜強塩基性領域では蛍光を発せず、弱酸性領域でのみ蛍光を発したことが分かる。
また、化合物(I)の1μM溶液(溶媒:pH 1のデータは0.1M塩酸、pH 2.0、2.5、7.0、7.5、8.0、9.0、10.0およびpH 12.0のデータは25mMリン酸緩衝液、pH 3.0〜pH 6.5のpH 0.1刻みのデータは50mMフタル酸緩衝液、pH 14のデータは1M水酸化ナトリウム水溶液)について、励起波長488nmおよび蛍光波長528nmにおける、pH変化に伴う蛍光強度を図2に示す。図2から、最大蛍光強度はpH 4.2〜4.5で得られたことが分かる。
また、化合物(I)の1μM溶液(溶媒:50mMフタル酸緩衝液)のpH 4.5での励起・蛍光スペクトルを図3に示す。図3から、吸収極大は460nmおよび484nmであることが分かる。これらの吸収極大がArレーザーの励起光(458nmおよび488nm)にほぼ一致することから、化合物(I)は、レーザー蛍光顕微鏡を用いた細胞・組織の蛍光観察に最適であると考えられる。
さらに、化合物(I)の1μM溶液(溶媒:50mMフタル酸緩衝液)のpHと蛍光強度とのグラフを図4に示す。図4から、pH 4.5〜6.0の間で、pH変化と蛍光強度との間に良好な直線関係が得られたことが分かる。このことから、化合物(I)は、細胞内pHセンサーとして応用可能であると考えられる。
(2) Fluorescent Property The fluorescent property of the compound (I) obtained in the above (1) was evaluated.
2 μM solution of compound (I) (solvent: data of pH 1 is 0.1 M hydrochloric acid, data from pH 2.0 to pH 12.0 in increments of 0.5 is 25 mM phosphate buffer, data of pH 14 is (1M aqueous sodium hydroxide solution) was irradiated with 315 nm excitation light, and the emitted fluorescence was photographed with a digital camera. The result is shown in FIG. From FIG. 1, it can be seen that no fluorescence was emitted in the strongly acidic region and the neutral to strongly basic region, and fluorescence was emitted only in the weakly acidic region.
In addition, a 1 μM solution of compound (I) (solvent: data of pH 1 is 0.1 M hydrochloric acid, pH 2.0, 2.5, 7.0, 7.5, 8.0, 9.0, 10.0 And data at pH 12.0 are for 25 mM phosphate buffer, data for pH 3.0 to pH 6.5 in 0.1 increments are for 50 mM phthalate buffer, and data for pH 14 are for 1 M aqueous sodium hydroxide. FIG. 2 shows the fluorescence intensity accompanying the pH change at the excitation wavelength of 488 nm and the fluorescence wavelength of 528 nm. FIG. 2 shows that the maximum fluorescence intensity was obtained at pH 4.2 to 4.5.
FIG. 3 shows an excitation / fluorescence spectrum of a 1 μM solution of the compound (I) (solvent: 50 mM phthalate buffer) at pH 4.5. FIG. 3 shows that the absorption maxima are 460 nm and 484 nm. Since these absorption maxima almost coincide with the excitation light (458 nm and 488 nm) of the Ar laser, the compound (I) is considered to be optimal for fluorescence observation of cells and tissues using a laser fluorescence microscope.
Further, FIG. 4 shows a graph of the pH and the fluorescence intensity of a 1 μM solution of the compound (I) (solvent: 50 mM phthalate buffer). FIG. 4 shows that a good linear relationship was obtained between the pH change and the fluorescence intensity between pH 4.5 and 6.0. From this, it is considered that compound (I) can be applied as an intracellular pH sensor.

実施例2
(1)化合物(I)(R=アセチル)の合成
化合物(I)(R=水素)1.17gと無水酢酸8mLの混合物を100℃で20時間撹拌した。反応液を室温に戻した後、ジクロロメタン50mLと飽和炭酸水素ナトリウム水溶液200mLの混合液に激しく撹拌しながら注いだ。ガスの発生が消失した時点で分液ロートに移し、水層を除去した後、有機層を水で2回、飽和食塩水で1回洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/酢酸エチル=195/5〜95/5)にて精製した。目的物が含まれるフラクションを回収し、減圧下溶媒を少量まで留去し、酢酸エチルを加えて氷冷した。析出した粉末をろ取し、氷冷した酢酸エチルで洗浄し、減圧乾燥して目的化合物1.14g(収率76%)を白色粉末として得た。以下合成した化合物(I)(R=アセチル)の分析結果を示す。
1H-NMR (400 MHz, DMSO-d6) δ 8.48 (d, 1H, J = 8.1 Hz), 7.91 (d, 1H, J = 8.1 Hz), 7.32 (d, 2H, J = 2.4 Hz), 7.31 (d, 2H, J = 2.4 Hz), 7.24 (d, 2H, J = 8.7 Hz), 6.99 (dd, 2H, J = 2.4, 8.7 Hz), 6.97 (dd, 2H, J = 2.4, 8.7 Hz), 6.79 (d, 2H, J = 8.7 Hz), 2.29 (s, 6H), 2.28 (s, 6H); 13C-NMR (126 MHz, DMSO-d6) δ 168.7, 166.8, 164.3, 158.4, 152.4, 152.2, 151.0, 150.8, 149.0, 132.9, 129.0, 128.8, 127.7, 120.7, 118.8, 118.3, 115.0, 114.8, 110.7, 110.3, 82.8, 81.1, 20.9, 20.8; FAB-HRMS (m/z) calcd for C42H27O14: 755.1395; found: 755.1400 [M+H]+
Example 2
(1) Synthesis of compound (I) (R = acetyl) A mixture of 1.17 g of compound (I) (R = hydrogen) and 8 mL of acetic anhydride was stirred at 100 ° C. for 20 hours. After the temperature of the reaction solution was returned to room temperature, it was poured into a mixed solution of 50 mL of dichloromethane and 200 mL of a saturated aqueous solution of sodium hydrogen carbonate with vigorous stirring. When the generation of gas disappeared, the solution was transferred to a separating funnel, and after removing the aqueous layer, the organic layer was washed twice with water and once with saturated saline. The obtained organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography (dichloromethane / ethyl acetate = 195/5 to 95/5). The fraction containing the target compound was collected, the solvent was distilled off to a small amount under reduced pressure, ethyl acetate was added, and the mixture was cooled with ice. The precipitated powder was collected by filtration, washed with ice-cooled ethyl acetate, and dried under reduced pressure to obtain 1.14 g (yield 76%) of the target compound as a white powder. The analysis results of the synthesized compound (I) (R = acetyl) are shown below.
1 H-NMR (400 MHz, DMSO-d6) δ 8.48 (d, 1H, J = 8.1 Hz), 7.91 (d, 1H, J = 8.1 Hz), 7.32 (d, 2H, J = 2.4 Hz), 7.31 (d, 2H, J = 2.4 Hz), 7.24 (d, 2H, J = 8.7 Hz), 6.99 (dd, 2H, J = 2.4, 8.7 Hz), 6.97 (dd, 2H, J = 2.4, 8.7 Hz) , 6.79 (d, 2H, J = 8.7 Hz), 2.29 (s, 6H), 2.28 (s, 6H); 13 C-NMR (126 MHz, DMSO-d6) δ 168.7, 166.8, 164.3, 158.4, 152.4, 152.2, 151.0, 150.8, 149.0, 132.9, 129.0, 128.8, 127.7, 120.7, 118.8, 118.3, 115.0, 114.8, 110.7, 110.3, 82.8, 81.1, 20.9, 20.8; FAB-HRMS (m / z) calcd for C 42 H 27 O 14 : 755.1395; found: 755.1400 [M + H] +

(2)分子構造
上記(1)で得られた化合物(I)(R=アセチル)の分子構造を、単結晶X線構造解析により決定した。化合物(I)(R=アセチル)・CHCOの結晶学的データ、回折X線強度測定データおよび精密構造解析データを表1〜3に示す。
(2) Molecular Structure The molecular structure of the compound (I) (R = acetyl) obtained in the above (1) was determined by single crystal X-ray structure analysis. Tables 1 to 3 show crystallographic data, diffraction X-ray intensity measurement data, and precise structural analysis data of the compound (I) (R = acetyl) .CH 3 CO 2 C 2 H 5 .

また、化合物(I)(R=アセチル)の分子構造を、図5のORTEP図に示す。図5から、2つのキサンテン骨格の結合位置がメタ位であることが分かる。   The molecular structure of compound (I) (R = acetyl) is shown in the ORTEP diagram of FIG. FIG. 5 shows that the bonding position of the two xanthene skeletons is at the meta position.

(3)細胞染色
上記(1)で得られた化合物(I)(R=アセチル)を用いて細胞染色を行った。
細胞培養用ディッシュ(直径35mm)にHeLa細胞を播種し、89%(v/v)ダルベッコ改変イーグル培地と10%(v/v)ウシ胎児血清と1%(v/v)ペニシリン−ストレプトマイシン−アムホテリシンB混合溶液から構成される細胞培養用培地(以下、細胞培養液)2mL中にて、5%CO雰囲気下37℃で3〜4日間培養した。サブコンフレント状態のHeLa細胞をリン酸緩衝生理食塩水で洗浄した後、5μMの化合物(I)(R=アセチル)を含む2mLの細胞培養液を添加し、5%CO雰囲気下37℃で24時間培養した後、倒立型蛍光顕微鏡でブルーフィルターを用いて観察した。
染色した細胞を蛍光顕微鏡で観察した結果を図6に示す。細胞膜を透過した化合物(I)(R=アセチル)は、細胞質に存在するエステラーゼによって脱アセチル化され、化合物(I)(R=水素原子)に変換される。pHが中性(〜7.4)である細胞質中では蛍光が観察されず、酸性オルガネラであるリソソーム(pH 5前後)中でのみ、強い蛍光が観察された。
また、上記(1)で得られた化合物(I)(R=アセチル)を用いて細胞の多重染色を行った。
ガラスボトムディッシュ(直径35mm)にHeLa細胞を播種し、細胞培養液2mL中にて、5%CO雰囲気下37℃で3〜4日間培養した。サブコンフレント状態のHeLa細胞をリン酸緩衝生理食塩水で洗浄した後、1μMの化合物(I)(R=アセチル)、1μMのHoechst 33342および1μMのAcidifluor Orangeを含む2mLの細胞培養液を添加し、5%CO雰囲気下37℃で24時間培養した後、共焦点レーザー顕微鏡を用いてアルゴンレーザー(405nm、488nmおよび543nm)で励起して観察した。
細胞核を青色に染色するHoechst 33342(1μMジメチルスルホキシド溶液)、リソソームをオレンジ色に染色するAcidifluor Orange(1μM水溶液)および化合物(I)(R=アセチル)(1μMジメチルスルホキシド溶液)をHela細胞に添加して、37℃で24時間培養した後、共焦点レーザー蛍光顕微鏡(波長405nm、488nmおよび543nm)で観察した。その結果を図7に示す。図7から、化合物(I)(R=アセチル)は、リソソーム中で強い蛍光を発し、細胞の多重染色に応用可能であることが分かる。
また、上記(1)で得られた化合物(I)(R=アセチル)を用いて強酸性条件下での細胞染色を行った。
ガラスボトムディッシュ(直径35mm)にHeLa細胞を播種し、細胞培養液2mL中にて、5%CO雰囲気下37℃で3〜4日間培養した。サブコンフレント状態のHeLa細胞をリン酸緩衝生理食塩水で洗浄した後、25μMの化合物(I)(R=アセチル)および5μMのAcidifluor Orangeを含む2mLの細胞培養液を添加し、5%CO雰囲気下37℃で24時間培養した。倒立型蛍光顕微鏡でブルーフィルターおよびグリーンフィルターを用いて画像を取得した後、1mLの0.2M塩酸をガラスボトムディッシュに添加し、直ちにブルーフィルターおよびグリーンフィルターを用いて観察した。
その結果を図8に示す。図8から、化合物(I)(R=アセチル)は、強酸の影響でHeLa細胞がディッシュから剥離し始めているものの、細胞中のリソソーム由来の蛍光は維持されており、強酸性条件下でも細胞染色が可能であることが示された。一方、Acidifluor Orangeは、中性付近からpH 3付近まで蛍光強度が増加しpH 3以下で最大蛍光を保つという一般的な酸感受性色素としての性質を示すことから、強酸性条件下では細胞培養液に溶解した色素が発光し細胞が観察できない。
(3) Cell staining Cell staining was performed using the compound (I) (R = acetyl) obtained in the above (1).
HeLa cells were seeded on a cell culture dish (35 mm diameter), and 89% (v / v) Dulbecco's modified Eagle medium, 10% (v / v) fetal bovine serum, and 1% (v / v) penicillin-streptomycin-amphotericin The cells were cultured for 3 to 4 days at 37 ° C. in a 5% CO 2 atmosphere in 2 mL of a cell culture medium (hereinafter referred to as a cell culture solution) composed of the B mixed solution. After washing the subconfluent HeLa cells with a phosphate buffered saline, 2 mL of a cell culture solution containing 5 μM of the compound (I) (R = acetyl) is added, and the cells are incubated at 37 ° C. in a 5% CO 2 atmosphere. After culturing for 24 hours, the cells were observed with an inverted fluorescence microscope using a blue filter.
FIG. 6 shows the results of observing the stained cells with a fluorescence microscope. Compound (I) (R = acetyl) that has permeated the cell membrane is deacetylated by esterase present in the cytoplasm, and is converted to compound (I) (R = hydrogen atom). No fluorescence was observed in the cytoplasm where the pH was neutral (〜7.4), and strong fluorescence was observed only in the lysosome (around pH 5), which is an acidic organelle.
In addition, multiple staining of cells was performed using the compound (I) (R = acetyl) obtained in the above (1).
HeLa cells were seeded on a glass bottom dish (35 mm in diameter), and cultured in 2 mL of a cell culture solution at 37 ° C. in a 5% CO 2 atmosphere for 3 to 4 days. After washing the subconfluent HeLa cells with phosphate buffered saline, 2 mL of a cell culture solution containing 1 μM of compound (I) (R = acetyl), 1 μM of Hoechst 33342, and 1 μM of Acidifluor Orange is added. After culturing at 37 ° C. for 24 hours in a 5% CO 2 atmosphere, the cells were observed by exciting with an argon laser (405 nm, 488 nm and 543 nm) using a confocal laser microscope.
Hoechst 33342 (1 μM dimethyl sulfoxide solution) that stains the cell nucleus blue, Acidifluor Orange (1 μM aqueous solution) that stains lysosomes orange, and compound (I) (R = acetyl) (1 μM dimethyl sulfoxide solution) were added to Hela cells. After culturing at 37 ° C. for 24 hours, the cells were observed with a confocal laser fluorescence microscope (wavelengths: 405 nm, 488 nm and 543 nm). FIG. 7 shows the result. From FIG. 7, it can be seen that compound (I) (R = acetyl) emits strong fluorescence in lysosomes and is applicable to multiple staining of cells.
In addition, cell staining was performed under strongly acidic conditions using the compound (I) (R = acetyl) obtained in the above (1).
HeLa cells were seeded on a glass bottom dish (35 mm in diameter), and cultured in 2 mL of a cell culture solution at 37 ° C. in a 5% CO 2 atmosphere for 3 to 4 days. After washing the subconfluent HeLa cells with phosphate buffered saline, 2 mL of a cell culture solution containing 25 μM of compound (I) (R = acetyl) and 5 μM of Acidifluor Orange was added, and 5% CO 2 was added. The cells were cultured at 37 ° C. for 24 hours in an atmosphere. After acquiring an image with an inverted fluorescence microscope using a blue filter and a green filter, 1 mL of 0.2 M hydrochloric acid was added to the glass bottom dish, and immediately observed using the blue filter and the green filter.
FIG. 8 shows the result. As shown in FIG. 8, the compound (I) (R = acetyl), although HeLa cells began to detach from the dish under the influence of a strong acid, maintained fluorescence derived from lysosomes in the cells, and stained cells even under strongly acidic conditions. Has been shown to be possible. On the other hand, Acidifluor Orange exhibits a property as a general acid-sensitive dye in which the fluorescence intensity increases from around neutral to around pH 3 and maintains the maximum fluorescence at pH 3 or less. The dye dissolved in the cell emits light and cells cannot be observed.

実施例3
(1)化合物(I’)(R=水素原子、R=アミノ基、R=水素原子)の塩酸塩の合成
(A)1,4−ジメチル−7−オキサビシクロ[2,2,1]ヘプタ−5−エン−2,3−ジカルボン酸無水物(1)の合成:
Example 3
(1) Synthesis of hydrochloride of compound (I ′) (R = hydrogen atom, R 1 = amino group, R 2 = hydrogen atom) (A) 1,4-dimethyl-7-oxabicyclo [2,2,1 Synthesis of hepta-5-ene-2,3-dicarboxylic anhydride (1):

2,5−ジメチルフラン(12.7g)のジエチルエーテル(13mL)溶液に、攪拌しながら無水マレイン酸(12.9g)を窒素雰囲気下で加えた。無水マレイン酸が完全に溶解した後、反応液をさらに3時間攪拌した。反応液を氷浴で冷却し、析出した沈殿物をろ取し、氷冷したジエチルエーテルで洗浄し、真空乾燥して、目的化合物1を白色〜薄黄色の針状結晶(15.3g、収率66%)として得た。   To a solution of 2,5-dimethylfuran (12.7 g) in diethyl ether (13 mL), maleic anhydride (12.9 g) was added with stirring under a nitrogen atmosphere. After the maleic anhydride was completely dissolved, the reaction solution was further stirred for 3 hours. The reaction solution was cooled in an ice bath, and the deposited precipitate was collected by filtration, washed with ice-cooled diethyl ether, and dried in vacuo to give the target compound 1 as white to pale yellow needle crystals (15.3 g, yield 66%).

(B)3,6−ジメチルフタル酸無水物(2)の合成:   (B) Synthesis of 3,6-dimethylphthalic anhydride (2):

氷冷した濃硫酸(56.4ml)に、濃硫酸の温度が10℃を超えないように、化合物1(15.3g)を少量ずつ攪拌しながら溶解させた。化合物1を完全に添加し終えた後、反応液をさらに2時間氷冷下で攪拌した。反応液を300gの氷に注ぎ、析出した沈殿物をろ取し、氷冷した水で洗浄し、凍結乾燥して、目的化合物2を薄黄色の粉末(7.7g、収率33%)として得た。   Compound 1 (15.3 g) was dissolved little by little in ice-cooled concentrated sulfuric acid (56.4 ml) such that the temperature of concentrated sulfuric acid did not exceed 10 ° C. After complete addition of Compound 1, the reaction solution was further stirred under ice cooling for 2 hours. The reaction solution was poured into 300 g of ice, and the deposited precipitate was collected by filtration, washed with ice-cooled water, and lyophilized to give Target Compound 2 as a pale yellow powder (7.7 g, yield 33%). Obtained.

(C)3,6−ジメチル−4−ニトロフタル酸無水物(3)の合成:   (C) Synthesis of 3,6-dimethyl-4-nitrophthalic anhydride (3):

氷冷した化合物2(7.7g)の濃硫酸(40mL)溶液に、濃硫酸の温度が10℃を超えないように、発煙硝酸(7.4mL)を滴下した。反応液を150gの氷に注ぎ、析出した沈殿物をろ取し、氷冷した水で洗浄し、凍結乾燥して、目的化合物3を薄黄色の粉末(8.6g、収率89%)として得た。
1H-NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 2.85 (s, 3H), 2.79 (s, 3H)
FAB-HRMS (m/z): calcd for C10H8NO5: 222.0397; found: 222.0402 [M+H]+
Fuming nitric acid (7.4 mL) was added dropwise to an ice-cooled solution of Compound 2 (7.7 g) in concentrated sulfuric acid (40 mL) such that the temperature of concentrated sulfuric acid did not exceed 10 ° C. The reaction solution was poured into 150 g of ice, and the deposited precipitate was collected by filtration, washed with ice-cooled water, and lyophilized to give the target compound 3 as a pale yellow powder (8.6 g, yield 89%). Obtained.
1 H-NMR (400 MHz, CDCl 3 ) δ 8.06 (s, 1H), 2.85 (s, 3H), 2.79 (s, 3H)
FAB-HRMS (m / z): calcd for C 10 H 8 NO 5 : 222.0397; found: 222.0402 [M + H] +

(D)ニトロメロファン酸(4)の合成:   (D) Synthesis of nitromellophanic acid (4):

過マンガン酸カリウム(66.9g)の水(250mL)溶液を80℃に加温し、撹拌しながら化合物3を少量ずつ添加し、80℃にて反応を継続した。1日後、過マンガン酸カリウム(11.2g)を添加し、水を全量が400mLとなるまで追加し、80℃にて反応を継続した。1日後、さらに過マンガン酸カリウム(11.2g)を添加し、水を全量が400mLとなるまで追加し、80℃にて反応を継続した。反応開始から3日後、反応液を冷却し、メタノール(20mL)を添加して3時間撹拌した。析出した黒色沈殿をろ去し、ろ液に発泡が止まるまで濃塩酸を添加し、1時間加熱還流した。水を減圧下留去した後、凍結乾燥した。残渣を100mLの酢酸と共に加熱還流し、熱いうちに上清を注意深く分離した。この抽出操作を3回繰り返した。上清を合わせて減圧下溶媒を留去し、真空乾燥した後、残渣を50mLのテトラヒドロフランで2回抽出した。抽出液を合わせて減圧下溶媒を留去し、真空乾燥した。残渣にジクロロメタンを加え、懸濁液を室温で1日撹拌し、沈殿物をろ取し、ジクロロメタンで洗浄し、真空乾燥して、目的化合物4を白色粉末(10.2g、収率48%)として得た。
1H-NMR (400 MHz, DMSO-d6) δ 8.46 (s)
FAB-HRMS (m/z): calcd for C10H4NO10: 297.9841; found: 297.9839 [M-H]-
A solution of potassium permanganate (66.9 g) in water (250 mL) was heated to 80 ° C., and compound 3 was added little by little with stirring, and the reaction was continued at 80 ° C. One day later, potassium permanganate (11.2 g) was added, water was added until the total amount became 400 mL, and the reaction was continued at 80 ° C. One day later, potassium permanganate (11.2 g) was further added, water was added until the total amount became 400 mL, and the reaction was continued at 80 ° C. Three days after the start of the reaction, the reaction solution was cooled, methanol (20 mL) was added, and the mixture was stirred for 3 hours. The precipitated black precipitate was removed by filtration, concentrated hydrochloric acid was added to the filtrate until foaming stopped, and the mixture was heated under reflux for 1 hour. After water was distilled off under reduced pressure, it was freeze-dried. The residue was heated to reflux with 100 mL of acetic acid and the supernatant was carefully separated while hot. This extraction operation was repeated three times. The supernatant was combined, the solvent was distilled off under reduced pressure, and the residue was extracted with 50 mL of tetrahydrofuran twice after vacuum drying. The extracts were combined, the solvent was distilled off under reduced pressure, and the residue was dried under vacuum. Dichloromethane was added to the residue, the suspension was stirred at room temperature for 1 day, the precipitate was collected by filtration, washed with dichloromethane, and dried in vacuo to give the target compound 4 as a white powder (10.2 g, yield 48%). As obtained.
1 H-NMR (400 MHz, DMSO-d6) δ 8.46 (s)
FAB-HRMS (m / z): calcd for C 10 H 4 NO 10 : 297.9841; found: 297.9839 [MH] -

(E)化合物6の合成:   (E) Synthesis of compound 6:

メタンスルホン酸(26mL)に化合物4(3.0g)とレゾルシノール(4.4g)を加え、90℃にて2日間撹拌した。反応液を250mLの冷水に注ぎ、生じた沈殿をろ取し、冷水で洗浄し、凍結乾燥して、化合物5の粗生成物をオレンジ色粉末(1.74g)として得た。これを無水酢酸(20mL)と共に1日加熱還流した。反応液の溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィーにて2回精製し(1回目;ジクロロメタン/酢酸エチル=98/2→95/5、2回目;ジクロロメタン/酢酸エチル=98/2→96/4)、目的化合物6を薄黄色の粉末(1.71g、収率21%)として得た。
1H-NMR (400 MHz, DMSO-d6) δ 9.23 (s, 1H), 7.41 (d, J = 8.8 Hz, 2H), 7.34 (d, J = 2.4 Hz, 2H), 7.31 (d, J = 2.4 Hz, 2H), 7.02 (dd, J = 2.4, 8.8 Hz, 2H), 6.95 (dd, J = 2.4, 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 2.29 (s, 6H), 2.27 (s, 6H)
FAB-HRMS (m/z): calcd for C42H26NO16: 800.1246; found: 800.1242 [M+H]+
Compound 4 (3.0 g) and resorcinol (4.4 g) were added to methanesulfonic acid (26 mL), and the mixture was stirred at 90 ° C. for 2 days. The reaction solution was poured into 250 mL of cold water, and the resulting precipitate was collected by filtration, washed with cold water, and freeze-dried to obtain a crude product of Compound 5 as an orange powder (1.74 g). This was heated to reflux with acetic anhydride (20 mL) for 1 day. After evaporating the solvent of the reaction solution under reduced pressure, the residue was purified twice by silica gel column chromatography (first time: dichloromethane / ethyl acetate = 98/2 → 95/5, second time; dichloromethane / ethyl acetate = 98) / 2 → 96/4) to obtain the target compound 6 as a pale yellow powder (1.71 g, yield: 21%).
1 H-NMR (400 MHz, DMSO-d6) δ 9.23 (s, 1H), 7.41 (d, J = 8.8 Hz, 2H), 7.34 (d, J = 2.4 Hz, 2H), 7.31 (d, J = 2.4 Hz, 2H), 7.02 (dd, J = 2.4, 8.8 Hz, 2H), 6.95 (dd, J = 2.4, 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 2.29 (s, 6H), 2.27 (s, 6H)
FAB-HRMS (m / z): calcd for C 42 H 26 NO 16 : 800.1246; found: 800.1242 [M + H] +

(F)化合物5の合成:   (F) Synthesis of compound 5:

化合物6(568mg)のメタノール(14mL)懸濁液に1M水酸化ナトリウム水溶液(14mL)を添加し、50℃にて1日撹拌した。反応液のメタノール分画のみをエバポレーターにて留去し、残りの溶液に5M塩酸を添加した。生じた沈殿物を氷冷してろ取し、氷冷した水で洗浄し、凍結乾燥して、目的化合物5をオレンジ色粉末(440mg、収率98%)として得た。
1H-NMR (400 MHz, DMSO-d6) δ 10.19 (s, 2H), 10.18 (s, 2H), 9.03 (s, 1H), 6.99 (d, J = 8.8 Hz, 2H), 6.69 (d, J = 2.4 Hz, 2H), 6.67 (s, 2H), 6.57 (dd, J = 2.4, 8.8 Hz, 2H), 6.49 (s, 4H)
FAB-HRMS (m/z): calcd for C34H18NO12: 632.0824; found: 632.0814 [M+H]+
To a suspension of compound 6 (568 mg) in methanol (14 mL) was added a 1 M aqueous sodium hydroxide solution (14 mL), and the mixture was stirred at 50 ° C for 1 day. Only the methanol fraction of the reaction solution was distilled off using an evaporator, and 5M hydrochloric acid was added to the remaining solution. The resulting precipitate was collected on ice and collected by filtration, washed with ice-cooled water, and lyophilized to give the target compound 5 as an orange powder (440 mg, yield 98%).
1 H-NMR (400 MHz, DMSO-d6) δ 10.19 (s, 2H), 10.18 (s, 2H), 9.03 (s, 1H), 6.99 (d, J = 8.8 Hz, 2H), 6.69 (d, J = 2.4 Hz, 2H), 6.67 (s, 2H), 6.57 (dd, J = 2.4, 8.8 Hz, 2H), 6.49 (s, 4H)
FAB-HRMS (m / z): calcd for C 34 H 18 NO 12 : 632.0824; found: 632.0814 [M + H] +

(G)化合物7の塩酸塩の合成:   (G) Synthesis of hydrochloride salt of compound 7:

硫化ナトリウム9水和物(2.0g)の水(30mL)溶液に化合物5(950mg)、水硫化ナトリウム(841mg)を順に添加し、全ての試薬が溶解するまで室温にて撹拌し、その後100℃にて1日撹拌した。水硫化ナトリウム(120mg)を追加し、100℃にて更に1日撹拌した。反応液に5M塩酸を添加し、3時間加熱還流した。反応液の溶媒を減圧下留去し、凍結乾燥した。残渣に少量のメタノールを加え撹拌しながら氷冷し、不溶物をろ去し、更に不溶物を冷メタノールで洗浄した。ろ液を合わせ、減圧下溶媒を留去し、真空乾燥し、目的化合物7の塩酸塩を濃赤色粉末(1.0g、定量的)として得た。
1H-NMR (400 MHz, DMSO-d6) δ 7.46 (s, 1H), 6.86 (d, J = 8.3 Hz, 2H), 6.75 (bs, 2H), 6.69 (bs, 2H), 6.62 (bs, 6H)
FAB-HRMS (m/z): calcd for C34H20NO10: 602.1082; found: 602.1092 [M+H]+
Compound 5 (950 mg) and sodium hydrosulfide (841 mg) were sequentially added to a solution of sodium sulfide 9-hydrate (2.0 g) in water (30 mL), and the mixture was stirred at room temperature until all the reagents were dissolved. Stirred at C for 1 day. Sodium hydrosulfide (120 mg) was added, and the mixture was further stirred at 100 ° C. for one day. 5 M hydrochloric acid was added to the reaction solution, and the mixture was heated under reflux for 3 hours. The solvent of the reaction solution was distilled off under reduced pressure and freeze-dried. A small amount of methanol was added to the residue, the mixture was cooled with ice while stirring, the insolubles were removed by filtration, and the insolubles were further washed with cold methanol. The filtrates were combined, the solvent was distilled off under reduced pressure, and the residue was dried under vacuum to obtain the hydrochloride of the target compound 7 as a dark red powder (1.0 g, quantitative).
1 H-NMR (400 MHz, DMSO-d6) δ 7.46 (s, 1H), 6.86 (d, J = 8.3 Hz, 2H), 6.75 (bs, 2H), 6.69 (bs, 2H), 6.62 (bs, 6H)
FAB-HRMS (m / z): calcd for C 34 H 20 NO 10 : 602.1082; found: 602.1092 [M + H] +

(2)蛍光特性
上記(1)で得られた化合物(I’)の蛍光特性を評価した。
化合物(I’)の塩酸塩の5μM溶液(溶媒:pH 1のデータは0.1M塩酸、pH 2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5および12.0のデータは25mMリン酸緩衝液、pH 14のデータは0.1M水酸化ナトリウム水溶液)について、励起波長484nmおよび蛍光波長534nmにおける、pH変化に伴う蛍光強度を図9に示す。図9から、最大蛍光強度はpH 6.5〜7.0で得られたことが分かる。
(2) Fluorescent Property The fluorescent property of the compound (I ′) obtained in the above (1) was evaluated.
5 μM solution of the hydrochloride salt of compound (I ′) (solvent: data of pH 1 is 0.1 M hydrochloric acid, pH 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5 The data of 0.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5 and 12.0 are 25 mM phosphate buffer. FIG. 9 shows the fluorescence intensity associated with a pH change at an excitation wavelength of 484 nm and a fluorescence wavelength of 534 nm for 0.1M sodium hydroxide aqueous solution (data of pH 14). FIG. 9 shows that the maximum fluorescence intensity was obtained at pH 6.5 to 7.0.

実施例4
(1)化合物(I’)(R=水素原子、R=カルボキシル基、R=水素原子)の合成
(A)化合物2’の合成:
Example 4
(1) Synthesis of compound (I ′) (R = hydrogen atom, R 1 = carboxyl group, R 2 = hydrogen atom) (A) Synthesis of compound 2 ′:

ベンゼンペンタカルボン酸(894mg)をテトラヒドロフランに懸濁させ、超音波にて粉末を粉砕した後に、減圧下溶媒を留去した。得られた粉末を140℃にて24時間加熱した。減圧下室温に戻した後、レゾルシノール(1.32g)とメタンスルホン酸(10mL)を加え、90℃で2日間撹拌した。反応液を室温に戻した後、氷冷した水(100mL)に撹拌しながら徐々に加えた。析出した固体をろ取し、水で洗浄後、凍結乾燥して濃赤色粉末(1.88g)を得た。これを無水酢酸(14mL)と共に1日加熱還流した。反応液の溶媒を減圧下留去した後、シリカゲルカラムクロマトグラフィーにて3回精製し(1回目および2回目;ジクロロメタン/メタノール=95/5→93/7→90/10、3回目;酢酸エチル/メタノール=100/0→95/5→90/10)、目的化合物2’を薄黄色粉末(1.6g、収率67%)として得た。
1H-NMR (400 MHz, DMSO-d6) δ 8.81 (s, 1H), 7.29 (s, 2H), 7.26 (d, J=8.3 Hz, 2H), 7.14 (s, 2H), 6.98 (d, J=8.3 Hz, 2H), 6.81 (d, J=8.3 Hz, 2H), 6.61 (d, J=8.3 Hz, 2H), 2.29 (s, 6H), 2.26 (s, 6H)
FAB-HRMS (m/z): calcd for C43H27O16: 799.1294; found: 799.1302 [M+H]+
Benzenepentacarboxylic acid (894 mg) was suspended in tetrahydrofuran, and the powder was pulverized by ultrasonic waves, and then the solvent was distilled off under reduced pressure. The obtained powder was heated at 140 ° C. for 24 hours. After returning to room temperature under reduced pressure, resorcinol (1.32 g) and methanesulfonic acid (10 mL) were added, and the mixture was stirred at 90 ° C. for 2 days. After returning the reaction solution to room temperature, it was gradually added to ice-cooled water (100 mL) with stirring. The precipitated solid was collected by filtration, washed with water, and freeze-dried to obtain a dark red powder (1.88 g). This was heated to reflux with acetic anhydride (14 mL) for 1 day. After evaporating the solvent of the reaction solution under reduced pressure, the residue was purified three times by silica gel column chromatography (first and second times; dichloromethane / methanol = 95/5 → 93/7 → 90/10, third time; ethyl acetate). / Methanol = 100/0 → 95/5 → 90/10) to obtain the target compound 2 ′ as a pale yellow powder (1.6 g, yield 67%).
1 H-NMR (400 MHz, DMSO-d6) δ 8.81 (s, 1H), 7.29 (s, 2H), 7.26 (d, J = 8.3 Hz, 2H), 7.14 (s, 2H), 6.98 (d, J = 8.3 Hz, 2H), 6.81 (d, J = 8.3 Hz, 2H), 6.61 (d, J = 8.3 Hz, 2H), 2.29 (s, 6H), 2.26 (s, 6H)
FAB-HRMS (m / z): calcd for C 43 H 27 O 16 : 799.1294; found: 799.1302 [M + H] +

(B)化合物1’の合成:   (B) Synthesis of compound 1 ':

化合物2’(800mg)のメタノール(4mL)懸濁液に5M水酸化ナトリウム水溶液(4mL)を添加し、50℃にて1日撹拌した。反応液のメタノール分画のみをエバポレーターにて留去し、残りの溶液に5M塩酸を添加した。生じた沈殿物を氷冷してろ取し、氷冷した水で洗浄し凍結乾燥した。この粉末を少量のメタノールに懸濁させ、撹拌しながら加熱還流した。室温に戻して粉末をろ取した後、得られた粉末を少量の5M水酸化ナトリウム水溶液に溶解し、5M塩酸を添加した。生じた沈殿物を氷冷してろ取し、氷冷した水で洗浄し凍結乾燥して目的化合物1’を橙色粉末(518mg、収率79%)として得た。
1H-NMR (400 MHz, DMSO-d6) δ 10.18 (bs, 4H), 8.66 (s, 1H), 6.62 (bs, 6H), 6.49 (bs, 6H)
FAB-HRMS (m/z): calcd for C35H19O12: 631.0871; found: 631.0891 [M+H]+
To a suspension of compound 2 ′ (800 mg) in methanol (4 mL) was added a 5 M aqueous sodium hydroxide solution (4 mL), and the mixture was stirred at 50 ° C. for 1 day. Only the methanol fraction of the reaction solution was distilled off using an evaporator, and 5M hydrochloric acid was added to the remaining solution. The resulting precipitate was collected on ice and collected by filtration, washed with ice-cooled water and freeze-dried. This powder was suspended in a small amount of methanol and heated under reflux with stirring. After returning to room temperature and collecting the powder by filtration, the obtained powder was dissolved in a small amount of a 5M aqueous sodium hydroxide solution, and 5M hydrochloric acid was added. The resulting precipitate was collected by filtration with ice cooling, washed with ice-cooled water, and lyophilized to give the target compound 1 ′ as an orange powder (518 mg, yield 79%).
1 H-NMR (400 MHz, DMSO-d6) δ 10.18 (bs, 4H), 8.66 (s, 1H), 6.62 (bs, 6H), 6.49 (bs, 6H)
FAB-HRMS (m / z): calcd for C 35 H 19 O 12 : 631.0871; found: 631.0891 [M + H] +

(2)蛍光特性
上記(1)で得られた化合物(I’)の蛍光特性を評価した。
化合物(I’)の1μM溶液(溶媒:pH 1のデータは0.1M塩酸、pH 2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、8.0、9.0、10.0、11.0および12.0のデータは25mMリン酸緩衝液、pH 14のデータは0.1M水酸化ナトリウム水溶液)について、励起波長488nmおよび蛍光波長528nmにおける、pH変化に伴う蛍光強度を図10に示す。図10から、最大蛍光強度はpH 4.5で得られたことが分かる。
(2) Fluorescent Property The fluorescent property of the compound (I ′) obtained in the above (1) was evaluated.
1 μM solution of compound (I ′) (solvent: pH 1 was 0.1 M hydrochloric acid, pH 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, The data for 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10.0, 11.0 and 12.0 are 25 mM phosphate buffer and the data for pH 14 are 0. FIG. 10 shows the fluorescence intensity associated with a pH change at an excitation wavelength of 488 nm and a fluorescence wavelength of 528 nm for a .1M sodium hydroxide aqueous solution. FIG. 10 shows that the maximum fluorescence intensity was obtained at pH 4.5.

本発明の化合物は、特定のpH領域でのみ強い蛍光を発する化合物およびその前駆体化合物として有用である。   The compound of the present invention is useful as a compound that emits strong fluorescence only in a specific pH range and a precursor compound thereof.

Claims (6)

式(I’):
(式中、Rは、水素原子またはアシル基を示し、RおよびRは、それぞれ独立して、水素原子、アミノ基またはカルボキシル基を示す。)
で表される化合物。
Formula (I ′):
(In the formula, R represents a hydrogen atom or an acyl group, and R 1 and R 2 each independently represent a hydrogen atom, an amino group, or a carboxyl group.)
A compound represented by the formula:
Rが水素原子である、請求項1に記載の化合物。   The compound according to claim 1, wherein R is a hydrogen atom. Rがアセチルである、請求項1に記載の化合物。   2. The compound according to claim 1, wherein R is acetyl. およびRがともに水素原子である、請求項1〜3のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 3, wherein R 1 and R 2 are both hydrogen atoms. がアミノ基であり、かつRが水素原子である、請求項1〜3のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 3, wherein R 1 is an amino group and R 2 is a hydrogen atom. がカルボキシル基であり、かつRが水素原子である、請求項1〜3のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 3, wherein R 1 is a carboxyl group and R 2 is a hydrogen atom.
JP2016068416A 2015-03-31 2016-03-30 pH-dependent fluorescent compound Active JP6675125B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070516 2015-03-31
JP2015070516 2015-03-31

Publications (2)

Publication Number Publication Date
JP2016193897A JP2016193897A (en) 2016-11-17
JP6675125B2 true JP6675125B2 (en) 2020-04-01

Family

ID=57322601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016068416A Active JP6675125B2 (en) 2015-03-31 2016-03-30 pH-dependent fluorescent compound

Country Status (1)

Country Link
JP (1) JP6675125B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564205A1 (en) 2018-04-30 2019-11-06 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Diels-alder ring-opening process
CN115989285A (en) * 2020-08-27 2023-04-18 Dic株式会社 Method for producing phthalocyanine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819396A (en) * 1973-02-05 1974-06-25 Champion Int Corp Dilactone chromogenic compounds, preparation thereof, and pressure-sensitive copy systems employing same
JP2012219258A (en) * 2011-04-14 2012-11-12 Kyoto Prefectural Public Univ Corp Near-infrared fluorescent pigment, diagnostic imaging material, and diagnostic imaging method

Also Published As

Publication number Publication date
JP2016193897A (en) 2016-11-17

Similar Documents

Publication Publication Date Title
JP7227741B2 (en) Carboxy X rhodamine analog
JP6351511B2 (en) Synthesis of asymmetric Si rhodamine and rhodol
JP4373608B2 (en) Reagent for singlet oxygen measurement
US9182350B2 (en) Naphthalene-based two-photon fluorescent probes, preparation method and use thereof
Tong et al. A NIR rhodamine fluorescent chemodosimeter specific for glutathione: Knoevenagel condensation, detection of intracellular glutathione and living cell imaging
CN112159396A (en) Near-infrared fluorescent molecular probe for detecting gamma-glutamyl transpeptidase, and preparation method and application thereof
Hou et al. An anthracenecarboximide fluorescent probe for in vitro and in vivo ratiometric imaging of endogenous alpha-l-fucosidase for hepatocellular carcinoma diagnosis
Bao et al. NIR absorbing DICPO derivatives applied to wide range of pH and detection of glutathione in tumor
JP6675125B2 (en) pH-dependent fluorescent compound
Wang et al. Coumarin-based turn-on fluorescence probes for highly selective detection of Pi in cell culture and Caenorhabditis elegans
CN103382189A (en) Cyanine compound and preparation method and application thereof
JP2015205870A (en) Novel glucose derivative, and cell imaging method and imaging agent using the same
CN111410652A (en) Preparation of mitochondrion targeted near-infrared fluorescent probe with aggregation-induced emission effect
WO2014142320A1 (en) Novel compound, and reagent for detecting lipid droplets and/or adipose tissue containing said compound
US12055546B2 (en) Fluorescent probe for detecting carboxypeptidase activity
JP2009014369A (en) Fluorescence reagent for labeling biomolecule
Zhang et al. A high-sensitivity fluorescent probe with a self-immolative spacer for real-time ratiometric detection and imaging of alkaline phosphatase activity
JP7204728B2 (en) Serum stable procoelenterazine analogues
EP4103652A1 (en) Fluorescent rhodamine dyes with enhanced cell permeability
Cui et al. A dihydronaphthalene based fluorescence probe for sensitive detection of cysteine and its application in bioimaging
JP5686385B2 (en) Methods for fluorescently labeling proteins
US7109043B2 (en) Fluorescent probe for magnesium ion determination
KR101792214B1 (en) Dye compounds and preparation method thereof
EP3127899B1 (en) Rapid method for measuring cytotoxicity in non-ri system
JP2014132001A (en) Novel cell penetration type fluorescent dye

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200303

R150 Certificate of patent or registration of utility model

Ref document number: 6675125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250