US3819396A - Dilactone chromogenic compounds, preparation thereof, and pressure-sensitive copy systems employing same - Google Patents

Dilactone chromogenic compounds, preparation thereof, and pressure-sensitive copy systems employing same Download PDF

Info

Publication number
US3819396A
US3819396A US00329293A US32929373A US3819396A US 3819396 A US3819396 A US 3819396A US 00329293 A US00329293 A US 00329293A US 32929373 A US32929373 A US 32929373A US 3819396 A US3819396 A US 3819396A
Authority
US
United States
Prior art keywords
bis
spiroxanthyl
pyromellitide
pressure
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00329293A
Inventor
D Vincent
C Chang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Champion International Corp
Original Assignee
Champion International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Champion International Corp filed Critical Champion International Corp
Priority to US00329293A priority Critical patent/US3819396A/en
Priority to US05/430,142 priority patent/US3954803A/en
Priority to CA191,643A priority patent/CA1022561A/en
Priority to FR7403682A priority patent/FR2216278A1/fr
Priority to DE19742405243 priority patent/DE2405243A1/en
Priority to NL7401504A priority patent/NL7401504A/xx
Priority to GB1869076A priority patent/GB1458413A/en
Priority to GB533874A priority patent/GB1458411A/en
Application granted granted Critical
Publication of US3819396A publication Critical patent/US3819396A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/124Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
    • B41M5/132Chemical colour-forming components; Additives or binders therefor
    • B41M5/136Organic colour formers, e.g. leuco dyes
    • B41M5/145Organic colour formers, e.g. leuco dyes with a lactone or lactam ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/06Hydroxy derivatives of triarylmethanes in which at least one OH group is bound to an aryl nucleus and their ethers or esters
    • C09B11/08Phthaleins; Phenolphthaleins; Fluorescein

Definitions

  • ABSTRACT A substantially colorless dilactone chromogenic material having the structural formula [4 June 25, 1974 and wherein R represents an alkyl group, an aryl group, an aralkyl group, an acyl group or an aroyl group; and X represents a hydrogen atom, a halogen atom, an
  • the dilactone compounds are produced from precursor compounds that are formed by reacting pyromellitic dianhydride with a resorcinol having at least the fourth or the sixth position unsubstituted, in the presence of a dehydrating agent to form xanthyl derivatives of isophthalic and terephthalic acid. These precursors are then further reacted to form the dilactones.
  • the dilactones are used in pressure-sensitive copy systems comprising a support bearing microcapsules containing the dilactones, alone, or in combination with other chromogenic materials.
  • This invention relates to chromogenic compounds, precursors for such compounds, the production of such compounds and to the use of such compounds in pressure-sensitive record material. More particularly, this invention relates to substantially colorless, dilactone chromogenic compounds which are converted to a yellow color when placed in reactive contact with Lewis acid materials, such as in a pressure-sensitive copy systern.
  • chromogenic compounds have been proposed for use in such marking systems.
  • Previously proposed chromogenic compounds include, for example, the rhodamine dilactones.
  • Certain difficulties are experienced with particular dilactones that have been previously suggested.
  • certain of the rhodamine dilactones have a tendency towards premature opening of the lacetone rings causing premature coloration by moisture, for example, present in the atmosphere.
  • moisture for example, present in the atmosphere.
  • water sensitivity prevents a successful utilization of the chromogenic compounds in copy systems where the compounds must remain substantially colorless until the microcapsules containing the chromogenic materials are ruptured.
  • substantially colorless, chromogenic compounds having the structural formula R represents an alkyl group, an aryl group, an aralkyl group, an acyl group or an aroyl group;
  • X represents a hydrogen atom, a halogen atom, an
  • alkyl group or a nitro group.
  • the colorless dilactones of the present invention can be converted to yellow colored markings upon reaction with Lewis acid materials.
  • the dilactone compounds of the present invention are essentially insoluble in water, and thus may be easily encapsulated by dispersing the chromogenic substance in an oily solvent and suspending the resultant material in the form of microscopic droplets in an oil-in-water emulsion without premature coloration of the dye intermediate.
  • the present chromogenic compounds are encapsulated, they are insensitive to moisture present in the atmosphere and thus may be stored until use without premature coloration.
  • dilactones of the present invention may be added to conventional blue imaging systems which contain, for example, Crystal Violet Lactone and Benzoyl Leuco Methylene Blue and thus provide improved blue images that are readily reproducible by xerographic processes. Still further, black images may be. formed by combining the present dilactones with other chromogenic materials as will be hereinafter illustrated.
  • the dilactone compounds of the present invention have the structural formulae (1) and (ll) wherein:
  • R represents a lower alkyl group containing from one to four carbon atoms, e.g. methyl, ethyl, propyl, butyl, an aryl group, e.g. phenyl, tolyl, etc., an aralkyl group, e.g. benzyl, phenethyl, etc., a lower acyl group, e.g. acetyl, butyryl, etc. or an aroyl group, e.g. benzoyl, etc., and
  • X represents a hydrogen atom, a chlorine or bromine atom, an alkyl group containing from one to 20 carbon atoms, e.g. methyl, propyl, dodecane, eicosane, or a nitro group.
  • Examples of such compounds include:
  • dilactone precursor compounds are produced by reacting pyromellitic dianhydride with a resorcinol, which has at least the fourth or sixth position unsubstituted, in the presence of a dehydrating agent to form xanthyl derivatives of isophthalic and terephthalic acid as folcinol, 4-n-propyl resorcinol, S-n-pentyl resorcinol, 4-ndodecyl resorcinol, 4-chloro resorcinol and the like.
  • a dehydrating agent to form xanthyl derivatives of isophthalic and terephthalic acid as folcinol, 4-n-propyl resorcinol, S-n-pentyl resorcinol, 4-ndodecyl resorcinol, 4-chloro resorcinol and the like.
  • Suitable dehydrating agents include, for example, anhydrous zinc chloride, boron trichloride etherate, and the like.
  • the formation of the xanthyl derivatives of isophthalic and terephthalic acid as shown above, may be conducted under any suitable conditions. For example, this reaction takes place readily at elevated temperatures of between about 180 and about 250C. without solvents for a period of time between about 1 and about 5 hours.
  • the reaction can also be carried out in a solvent in which both of the reactants are either soluble or are at least partially soluble.
  • the solvents Preferably, the solvents have boiling points within the range of 100 to 175C, permitting the reaction to be carried out under reflux conditions.
  • Suitable solvents include toluene, xylene, and the like, which solvents are well-known to those skilled in the art.
  • the dilactone precursors may be converted to the dilactone chromogenic compounds by various techniques. According to a further aspect to the invention,
  • the alkylation of the hydroxyl groups in the foregoing reactions involves the substitution of an alkyl group, an aryl group or an aralkyl group for the hydrogen of each hydroxyl group.
  • Such alkylation may be readily accomplished using a suitable alkylating agent, such as, for example, a dialkyl sulfate, e.g., dimethyl sulfate, diethyl sulfate, etc. diazomethane, benzyl or phenyl halides, such as benzyl chloride or monobromobenzene, etc.
  • the alkylated products are then saponified followed by acidifcation to form the desired cis and trans dilactone chromogenic compounds.
  • the dilactone precursors i.e., the xanthenyl derivatives of isophthalic and terephthalic acid can be reacted with a suitable esterifying agent to form esterified dilactones.
  • the precursors may be reacted with a suitable acylation agent, such as acetic anhydride, butyric anhydride, acetyl chloride, benzoylchloride, benzoic anhydride, or the like.
  • acetic anhydride such as acetic anhydride, butyric anhydride, acetyl chloride, benzoylchloride, benzoic anhydride, or the like.
  • the dilactone compounds are employed in pressure-sensitive copy systems.
  • the dilactone chromogenic compounds are incorporated into minute oily droplets and encapsulated by any suitable process, such as those described in US. Pat. Nos. 3,418,250 and 3,418,565, which patents are hereby incorporated by reference.
  • the microcapsules may be coated onto or incorporated into a web or substrate, such as paper, and utilized in any type of pressure-sensitive copy system whereby the microcapsules are ruptured under localized pressure to release the dilactones for contact with an acidic co-reactant to provide a colored image.
  • the microcapsule-bearing substrate may comprise a single sheet, wherein the microcapsules containing the dilactone and the acidic coreactant, such as a suitable Lewis acid are coated onto a single substrate.
  • the microcapsules containing the dilactones of the present invention may be coated onto or incorporated into a substrate which is used in combination with another sheet or substrate which contains the acidic coreactant.
  • This system is normally referred to as a transfer system and the rupture of the microcapsules results in a transfer of the dilactone chromogen from the microcapsule-coated sheet to an acid-coated sheet upon which a colored mark is provided.
  • the colorless dilactones of the present invention may be utilized in any pressure-sensitive system where they are isolated from an acidic coreactant prior to the formation of the desired colored marking. Any of the well-known acidic materials including bentonite, kaolin, acidic clays, talc, aluminum silicate, calcium citrate, metal oxides, metal chlorides, or the like may be utilized as the acidic coreactant for the present dilactones.
  • the dilactones of the present invention provide a yellow color upon contact with a Lewis acid material.
  • the dilactones may be used in combination with other colorless chromogenic compounds.
  • the present dilactones may be used to improve a conventional blue imaging system, such as those comprising Crystal Violet Lactone and Benzoyl Leuco Methylene Blue.
  • the addition of the present dilactones to such systems improve the xeroxability of the resulting images.
  • the dilactones of the present invention may be combined with still other colorless chromogenic compounds to provide black images having improved xerographic reproduction qualities.
  • any suitable amount of the dilactone chromogenic compounds of the present invention may be employed in the formation of microcapsules for use in pressuresensitive systems.
  • between about 0.2 and about 2.0 parts by weight of the dilactone may be employed for each 100 parts by weight of the oily material which forms the core of the microcapsule.
  • Larger amounts of the dilactone may be utilized, if desired. However, large amounts are normally not necessary since the greater quantities do not provide a correspondingly greater intensity of color and, of course, the use of such larger amounts is economically undesirable.
  • the resultant image has been found to be better reproducible by normally blue insensitive copying methods, such as the xerographic methods now in use. This can be accomplished without materially modifying the visible blue color of the resultant image.
  • blue imaging dye substances such as Crystal Violet Lactone and Benzoyl Leuco Methylene Blue, or the like
  • the resultant image has been found to be better reproducible by normally blue insensitive copying methods, such as the xerographic methods now in use. This can be accomplished without materially modifying the visible blue color of the resultant image.
  • additional amounts of the present lactone chromogenic materials may be added to give a greenish hue to the resultant colored image.
  • EXAMPLE 1 A mixture of 13.1 grams of pyromellitic dianhydride, 26.4 grams of resorcinol, and 18 grams of boron trifluoride etherate in 300 milliliters of dry xylene is refluxed for 3 hours. Near the end of the reflux, a brownish insoluble mass is formed and collected by filtration. Recrystallization from acetone-water in the ratio of 1:5 yields 20.8 grams of xanthyl derivatives of isophthalic acid and terephthalic acid.
  • the product is a mixture of dimethyl 4,6-bis[9'- (3',6',9-trimethoxy)xanthyl]isophthalate and dimethyl 2,5-[9'-(3',6,9'-trimethoxy)xanthyllterephthalate.
  • esters are further hydrolyzed with a 20 percent methanolic potassium hydroxide solution at refluxing temperature for 2 hours at a pH greater than 13.
  • the solution is then cooled, neutralized with acetic acid, and extracted with toluene.
  • An almost colorless solid is obtained after the removal of the toluene.
  • Successive recrystallizations from acetone result in the separation of two isomeric color-formers.
  • EXAMPLE 2 The procedure described in Example 1 is repeated, except that resorcinol is replaced by an equivalent amount of a substituted resorcinol.
  • 2-methyl resorcinol is utilized to form trans 3,7-bis[4,5-dimethyl- 9 3',6'-dimethoxy-9'-spiroxanthyl]pyromellitide and cis 3,5-bis[4',5'-dimethyl-3',6-dimethoxy-9'-spiroxanthyl]pyromellitide, while 4 chlororesorcinol is employed to form trans 3,7-bis[2',7'-dichloro-3',6-
  • EXAMPLE 3 The benzyloxy derivative is formed by following the procedure of Example 1, except that instead of using dimethyl sulfate, an equivalent amount of benzyl chloride in aqueous sodium hydroxide is added to the hydroxy acid precursor solution. The cis and trans bis[ 3',- 6-dibenzyloxy-9-spiroxanthyl] pyromellitides are formed.
  • EXAMPLE 4 EXAMPLE 5 The procedure of Example 4 is repeated with the exception that butyric anhydride is used instead of acetic anhydride. Recrystallization from benzene-petroleum ether yields 5.5 grams of cis 3,5-bis[3',6'-dibutyroxy- 9'-spiroxanthyl] pyromellitide and its trans isomer having a melting point of 295C.
  • Example 6 The procedure of Example 4 is followed with the exception that 100 milliliters of benzoyl chloride are substituted for the acetic anhydride. The mixture is heated at a temperature of 140-l45C. for a period of 3 hours; About 50 milliliters of benzoyl chloride are removed under reduced pressure. Petroleum ether is added to the cooled residue to precipitate out the prodnot and dissolve the unreacted benzoyl chloride. The resulting insoluble material is boiled in water for minutes and then recrystallized from acetone yielding 63 grams of cis 3,5-bis[3',6-dibenzoxy-9'- spiroxanthyl] pyromellitide and its trans isomer having a melting point of 319323C.
  • EXAMPLE 7 Following the general microencapsulation procedure described in U.S. Pat. No. 3,418,656, microcapsules are prepared containing the dilactone color chromogenic compounds prepared in Example 1, above. Thus, an oily mixture is formed containing one part by weight of each isomeric dilactone formed in Example 1, 51 parts of coconut oil and 34 parts of a partially hydroge nated terphenyl (specific gravity 1.005, flash point 345F. and pour point 28C. commercially available from Monsanto Chemical Company as HB40). The oily mixture is emulsified in 500 parts of a 6 percent by weight aqueous solution of methyl cellulose.
  • the emulsion is maintained under continuous agi- 10 tation and 20 parts by weight of a B-stage ureaformaldehyde resin are added to the emulsion.
  • the resulting amicrocapsules are then coated onto a sheet of paper.
  • the coated paper is then brought into contact with an acidic clay-coated sheet, and localized pressure is applied with the stylus of a typewriter to rupture the capsules and release the dilactones for reaction with the clay-coated sheet. A yellow mark instantly develops on the clay-coated sheet.
  • EXAMPLE 8 lsomeric mixtures of the chromogenic compound formed in Examples 2 and 3 are microencapsulated and coated onto sheets of paper in the manner described in Example 7.
  • a yellow mark instantly develops on each of the claycoated sheets.
  • EXAMPLE 9 The procedure of Example 7 is repeated, with the exception that instead of utilizing the dilactone chromogenic compounds, alone, mixtures of 2.1 parts of Crystal Violet Lactone and 1.8 parts of Benzoyl Leuco Methylene Blue are combined with 0.3 part of a mixture of trans 3,7-bis[3',6'-dimethoxy-9'-spiroxanthyl]- pyromellitide and cis 3,5-bis[3',6'-dimethoxy-9- spiroxanthyl]pyromellitide.
  • a blue colored image develops on the clay-coated paper upon rupture of the microcapsules, and the resulting image is readily duplicated by a xerographic copying machine.
  • Example 10 The procedure of Example 7 isfollowed, while utilizing a mixture of chromogenic compounds including 1.2 parts by weight of a mixture of trans 3,7-bis[3',6'- dimethoxy-9'-spiroxanthyl]pyromellitide and cis 3,5- bis[ 3 ',6 -dimethoxy-9 '-spiroxanthyl ]pyromellitide, 0.02 part by weight of 7,7-bis(3-diethylaminofluoran), 0.8 part by weight of 7,7'-isopropylidene-bis(3- diethylaminofiuoran), 1.3 parts by weight of Crystal Violet Lactone, and 0.6 part by weight of Benzoyl Leuco Methylene Blue.
  • a mixture of chromogenic compounds including 1.2 parts by weight of a mixture of trans 3,7-bis[3',6'- dimethoxy-9'-spiroxanthyl]pyromellitide and cis 3,5- bis[ 3 ',
  • a black image which is capable of being xerographically reproduced, is immediately formed on the claycoated paper upon rupture of the capsules by the application of localized pressure using a typewriter stylus.
  • the resulting image has good reproducibility using a Xerox duplicating machine.
  • a pressure-sensitive copy system comprising a substrate bearing pressure-rupturable microcapsules, said microcapsules containing at least one chromogenic compound having the formula ⁇ C/ II R (I) and R0 0R X x 3 -Qc; 1 Q O 0 X X F 11/ m u 6 115 G2 wherein R represents a lower alkyl group, an aryl group, an aralkyl group, an acyl group or an aroyl group; and
  • X represents a hydrogen atom, a halogen atom, an
  • alkyl group or a nitro group.
  • R represents a lower alkyl group, an aryl group, a benzyl group, a lower acyl group or a benzoyl group
  • X represents a hydrogen atom, a chlorine atom, a
  • bromine atom an alkyl group or a nitro group.
  • microcapsules also contain at least one blue imaging chromogenic compound.
  • microcapsules also contain Crystal Violet Lactone and Benzoyl Leuco Methylene Blue.
  • microcapsules additionally contain 7,7- bis(3-diethylaminofluoran) and 7,7'-isopropylidenebis( 3-diethylaminofluoran).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Color Printing (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

WHEREIN R represents an alkyl group, an aryl group, an aralkyl group, an acyl group or an aroyl group; and X represents a hydrogen atom, a halogen atom, an alkyl group or a nitro group. The dilactone compounds are produced from precursor compounds that are formed by reacting pyromellitic dianhydride with a resorcinol having at least the fourth or the sixth position unsubstituted, in the presence of a dehydrating agent to form xanthyl derivatives of isophthalic and terephthalic acid. These precursors are then further reacted to form the dilactones. The dilactones are used in pressure-sensitive copy systems comprising a support bearing microcapsules containing the dilactones, alone, or in combination with other chromogenic materials.

AND

A substantially colorless dilactone chromogenic material having the structural formula

Description

United States Patent [19] Vincent et a1.
[ DILACTONE CHROMOGENIC COMPOUNDS, PREPARATION THEREOF, AND PRESSURE-SENSITIVE COPY SYSTEMS EMPLOYING SAME [75] Inventors: David N. Vincent, Glenview; Cheng Hsiung Chang, Chicago, both of I11. [73] Assignee: Champion International Corporation, New York, NY.
[22] Filed: Feb. 5, 1973 [21]. Appl. No.: 329,293
[52] 11.8. C1 117/36.2, 117/368, 260/335, 260/3433 [51] Int. Cl. B4lc 1/06 [58] Field of Search 260/335, 343.3; 117/362, 117/368 [56] References Cited UNITED STATES PATENTS 643,37 1 2/ l 900 Brack 260/3 36 2,844,596 7/1958 Wheeler et a1. 260/3433 2,912,440 11/1959 Wheeler et al. 260/3433 3,244,548 4/ 1 966 Sullivan l 1 7/ 36.2 3,418,250 12/1968 Vassiliades 117/36.2 X 3,418,656 12/1968 Vassiliades 117/362 X 3 ,663 ,5 7 1 5/ 1 972 Kimura et a1. 260/3 3 5 Primary Examiner-Thomas J. Herbert, Jr. Attorney, Agent, or Firm-Roylance, Abrams, Berdo & Kaul [5 7] ABSTRACT A substantially colorless dilactone chromogenic material having the structural formula [4 June 25, 1974 and wherein R represents an alkyl group, an aryl group, an aralkyl group, an acyl group or an aroyl group; and X represents a hydrogen atom, a halogen atom, an
alkyl group or a nitro group. The dilactone compounds are produced from precursor compounds that are formed by reacting pyromellitic dianhydride with a resorcinol having at least the fourth or the sixth position unsubstituted, in the presence of a dehydrating agent to form xanthyl derivatives of isophthalic and terephthalic acid. These precursors are then further reacted to form the dilactones. The dilactones are used in pressure-sensitive copy systems comprising a support bearing microcapsules containing the dilactones, alone, or in combination with other chromogenic materials.
12 Claims, No Drawings DILACTONE CHROMOGENIC COMPOUNDS, PREPARATION THEREOF, AND PRESSURE-SENSITIVE COPY SYSTEMS EMPLOYING SAME This invention relates to chromogenic compounds, precursors for such compounds, the production of such compounds and to the use of such compounds in pressure-sensitive record material. More particularly, this invention relates to substantially colorless, dilactone chromogenic compounds which are converted to a yellow color when placed in reactive contact with Lewis acid materials, such as in a pressure-sensitive copy systern.
Numerous marking systems have been suggested which improve localized contact between a chromogenic compound and a color-developing substance in areas where a colored marking is desired. Pressuresensitive mark-forming systems are described, for example, in US. Pat. Nos. 3,4l8,656 and 3,418,250 to A.E. Vassiliades. These patents describe a marking system wherein a substantially colorless chromogenic substance is incorporated in minute oil droplets which are disposed within and thus form the core of pressurerupturable microcapsules. The microcapsules are coated onto a substrate which may be utilized adjacent a receiving sheet that is coated with an acidic material, such as a Lewis acid-treated clay. Upon application of localized pressure, the microcapsules are ruptured and the colorless chromogenic substance is released and reacts with the electron acceptor to provide a distinctive mark.
Various chromogenic compounds have been proposed for use in such marking systems. Previously proposed chromogenic compounds include, for example, the rhodamine dilactones. Certain difficulties are experienced with particular dilactones that have been previously suggested. For example, certain of the rhodamine dilactones have a tendency towards premature opening of the lacetone rings causing premature coloration by moisture, for example, present in the atmosphere. Thus, such water sensitivity prevents a successful utilization of the chromogenic compounds in copy systems where the compounds must remain substantially colorless until the microcapsules containing the chromogenic materials are ruptured.
In accordance with the present invention, there is provided substantially colorless, chromogenic compounds having the structural formula R represents an alkyl group, an aryl group, an aralkyl group, an acyl group or an aroyl group; and
X represents a hydrogen atom, a halogen atom, an
alkyl group or a nitro group.
The colorless dilactones of the present invention can be converted to yellow colored markings upon reaction with Lewis acid materials. Significantly, the dilactone compounds of the present invention are essentially insoluble in water, and thus may be easily encapsulated by dispersing the chromogenic substance in an oily solvent and suspending the resultant material in the form of microscopic droplets in an oil-in-water emulsion without premature coloration of the dye intermediate. In addition, once the present chromogenic compounds are encapsulated, they are insensitive to moisture present in the atmosphere and thus may be stored until use without premature coloration. Moreover, dilactones of the present invention may be added to conventional blue imaging systems which contain, for example, Crystal Violet Lactone and Benzoyl Leuco Methylene Blue and thus provide improved blue images that are readily reproducible by xerographic processes. Still further, black images may be. formed by combining the present dilactones with other chromogenic materials as will be hereinafter illustrated.
Preferably, the dilactone compounds of the present invention have the structural formulae (1) and (ll) wherein:
R represents a lower alkyl group containing from one to four carbon atoms, e.g. methyl, ethyl, propyl, butyl, an aryl group, e.g. phenyl, tolyl, etc., an aralkyl group, e.g. benzyl, phenethyl, etc., a lower acyl group, e.g. acetyl, butyryl, etc. or an aroyl group, e.g. benzoyl, etc., and
X represents a hydrogen atom, a chlorine or bromine atom, an alkyl group containing from one to 20 carbon atoms, e.g. methyl, propyl, dodecane, eicosane, or a nitro group.
Examples of such compounds include:
trans 3 ,7-bis[ 3 ,6-dimethoxy-9 '-spiroxanthyl pyromellitide,
cis 3,5-bis[3,6'-dimethoxy-9'-spiroxanthy1lpyromellitide,
trans 3 ,7-bis[ 4' ,5 -dimethyl-3 ,6-dimethoxy-9 spiroxanthyl] pyromellitide,
cis 3,5-bis[4,5'-dimethyl-3,6,-dimethoxy-9- spiroxanthyl] pyromellitide,
trans 3,7-bis[2',7'-dichloro-3,6'-dimethoxy-9'- spiroxanthyl] pyromellitide,
cis 3,5-bis[2,7'-dichloro-3,6-dimethoxy-9'- spiroxanthyl] pyromellitide,
cis 3,5-bis[3',6'-diacetoxy-9'-spiroxanthyllpyromellitide,
trans 3,7-bis[3,6'-diacetoxy-9'-spiroxanthyl]- pyromellitide,
cis 3,5-bis[3,6'-dibutyroxy-9'-spiroxanthyl]- pyromellitide,
trans 3,7-bis[3,6'-dibutyroxy-9'-spiroxanthyl]- pyromellitide,
cis 3,5-bis[3,6-dibenzyloxy-9-spiroxanthyl]- pyromellitide,
trans 3,7-bis[3,6-dibenzyloxy-9'-spiroxanthyl]- pyromellitide,
trans 3 ,7-bis[ 3 ',6'-dibenzoxy-9 -spiroxanthyl pyromellitide,
cis 3,5-bis[3,6-dibenzoxy-9-spiroxanthyl]pyromellitide, and the like.
According to another aspect of the present invention, dilactone precursor compounds are produced by reacting pyromellitic dianhydride with a resorcinol, which has at least the fourth or sixth position unsubstituted, in the presence of a dehydrating agent to form xanthyl derivatives of isophthalic and terephthalic acid as folcinol, 4-n-propyl resorcinol, S-n-pentyl resorcinol, 4-ndodecyl resorcinol, 4-chloro resorcinol and the like.
Suitable dehydrating agents include, for example, anhydrous zinc chloride, boron trichloride etherate, and the like. The formation of the xanthyl derivatives of isophthalic and terephthalic acid as shown above, may be conducted under any suitable conditions. For example, this reaction takes place readily at elevated temperatures of between about 180 and about 250C. without solvents for a period of time between about 1 and about 5 hours.
The reaction can also be carried out in a solvent in which both of the reactants are either soluble or are at least partially soluble. Preferably, the solvents have boiling points within the range of 100 to 175C, permitting the reaction to be carried out under reflux conditions. Suitable solvents include toluene, xylene, and the like, which solvents are well-known to those skilled in the art.
The dilactone precursors may be converted to the dilactone chromogenic compounds by various techniques. According to a further aspect to the invention,
trans HO X the hydroxyl groups contained in each precursor molecule can be alkylated by any standard alkylation procedure as shown by the following reaction for the cis and trans isomers:
ER 0 0R no 0 HO X The alkylation of the hydroxyl groups in the foregoing reactions involves the substitution of an alkyl group, an aryl group or an aralkyl group for the hydrogen of each hydroxyl group. Such alkylation may be readily accomplished using a suitable alkylating agent, such as, for example, a dialkyl sulfate, e.g., dimethyl sulfate, diethyl sulfate, etc. diazomethane, benzyl or phenyl halides, such as benzyl chloride or monobromobenzene, etc. The alkylated products are then saponified followed by acidifcation to form the desired cis and trans dilactone chromogenic compounds.
alkylation Alternatively, the dilactone precursors, i.e., the xanthenyl derivatives of isophthalic and terephthalic acid can be reacted with a suitable esterifying agent to form esterified dilactones. Thus, the precursors may be reacted with a suitable acylation agent, such as acetic anhydride, butyric anhydride, acetyl chloride, benzoylchloride, benzoic anhydride, or the like. For example, employing acetic anhydride as the acylation agent, the
following reaction takes place, for the cis isomer under reflux conditions According to still another aspect of the present invention, the dilactone compounds are employed in pressure-sensitive copy systems. Thus, the dilactone chromogenic compounds are incorporated into minute oily droplets and encapsulated by any suitable process, such as those described in US. Pat. Nos. 3,418,250 and 3,418,565, which patents are hereby incorporated by reference. The microcapsules may be coated onto or incorporated into a web or substrate, such as paper, and utilized in any type of pressure-sensitive copy system whereby the microcapsules are ruptured under localized pressure to release the dilactones for contact with an acidic co-reactant to provide a colored image. Thus, the microcapsule-bearing substrate may comprise a single sheet, wherein the microcapsules containing the dilactone and the acidic coreactant, such as a suitable Lewis acid are coated onto a single substrate. Such system is usually referred to as a self-contained" or autogenous system, since the colorless chromogenic material and the acid co-reactant are present on the same substrate. Alternatively, the microcapsules containing the dilactones of the present invention may be coated onto or incorporated into a substrate which is used in combination with another sheet or substrate which contains the acidic coreactant. This system is normally referred to as a transfer system and the rupture of the microcapsules results in a transfer of the dilactone chromogen from the microcapsule-coated sheet to an acid-coated sheet upon which a colored mark is provided. The colorless dilactones of the present invention may be utilized in any pressure-sensitive system where they are isolated from an acidic coreactant prior to the formation of the desired colored marking. Any of the well-known acidic materials including bentonite, kaolin, acidic clays, talc, aluminum silicate, calcium citrate, metal oxides, metal chlorides, or the like may be utilized as the acidic coreactant for the present dilactones.
As previously mentioned, the dilactones of the present invention provide a yellow color upon contact with a Lewis acid material. However, the dilactones may be used in combination with other colorless chromogenic compounds. Thus, for example, the present dilactones may be used to improve a conventional blue imaging system, such as those comprising Crystal Violet Lactone and Benzoyl Leuco Methylene Blue. The addition of the present dilactones to such systems improve the xeroxability of the resulting images. Similarly, the dilactones of the present invention may be combined with still other colorless chromogenic compounds to provide black images having improved xerographic reproduction qualities.
Any suitable amount of the dilactone chromogenic compounds of the present invention may be employed in the formation of microcapsules for use in pressuresensitive systems. For example, between about 0.2 and about 2.0 parts by weight of the dilactone may be employed for each 100 parts by weight of the oily material which forms the core of the microcapsule. Preferably, between about 0.6 and about 1.5 parts by weight of the dilactone per 100 parts by weight of the oily core material may be suitably employed. Larger amounts of the dilactone may be utilized, if desired. However, large amounts are normally not necessary since the greater quantities do not provide a correspondingly greater intensity of color and, of course, the use of such larger amounts is economically undesirable. As previously indicated, when the dilactones are combined with blue imaging dye substances, such as Crystal Violet Lactone and Benzoyl Leuco Methylene Blue, or the like, the resultant image has been found to be better reproducible by normally blue insensitive copying methods, such as the xerographic methods now in use. This can be accomplished without materially modifying the visible blue color of the resultant image. Thus, when dilactones of the present invention are combined with other chromogenic materials, it is preferred to use between about 0.1 and about 0.8 parts by weight of the dilactone with about 1.5 to about 3.5 parts by weight of the blue image dye substance, all based upon 100 parts by weight of the oily material which will form the core of the microcapsules. If desired, additional amounts of the present lactone chromogenic materials may be added to give a greenish hue to the resultant colored image.
The invention will be further illustrated by the following examples. The percentages are by weight unless otherwise specified.
EXAMPLE 1 A mixture of 13.1 grams of pyromellitic dianhydride, 26.4 grams of resorcinol, and 18 grams of boron trifluoride etherate in 300 milliliters of dry xylene is refluxed for 3 hours. Near the end of the reflux, a brownish insoluble mass is formed and collected by filtration. Recrystallization from acetone-water in the ratio of 1:5 yields 20.8 grams of xanthyl derivatives of isophthalic acid and terephthalic acid.
Twenty grams of anhydrous sodium carbonate are added to a solution of 20 grams of the formed acids in 400 milliliters of anhydrous acetone. The mixture is brought to boiling and 40 grams of dimethyl sulfate are added slowly. During the two hours reflux, a 20 percent methanolic potassium hydroxide solution is used to keep the solution at pH 8. The solution is cooled, filtered, and neutralized with acetic acid. Upon the addition of water, a lightly yellowish precipitate is obtained. The infrared spectrum of the dried sample shows no hydroxyl groups.
The product is a mixture of dimethyl 4,6-bis[9'- (3',6',9-trimethoxy)xanthyl]isophthalate and dimethyl 2,5-[9'-(3',6,9'-trimethoxy)xanthyllterephthalate.
The esters are further hydrolyzed with a 20 percent methanolic potassium hydroxide solution at refluxing temperature for 2 hours at a pH greater than 13. The solution is then cooled, neutralized with acetic acid, and extracted with toluene. An almost colorless solid is obtained after the removal of the toluene. Successive recrystallizations from acetone result in the separation of two isomeric color-formers. From the precipitate, there isobtained 5.8 grams of trans 3,7-bis[3',6- dimethoxy-9-spiroxanthyl]pyromellitide, having a melting point of 362C, and an absorptive maximum in percent acetic acid at 441 mu. From the mother 'Iiqiibi,4.0 grams of cis 3,5-bis[3',6'-dimethoxy-9'- spiroxanthyl]pyromellitide are obtained having an absorptive maximum in 95 percent acetic acid at 442 my. and a melting point of 320C.
EXAMPLE 2 The procedure described in Example 1 is repeated, except that resorcinol is replaced by an equivalent amount of a substituted resorcinol. Thus, 2-methyl resorcinol is utilized to form trans 3,7-bis[4,5-dimethyl- 9 3',6'-dimethoxy-9'-spiroxanthyl]pyromellitide and cis 3,5-bis[4',5'-dimethyl-3',6-dimethoxy-9'-spiroxanthyl]pyromellitide, while 4 chlororesorcinol is employed to form trans 3,7-bis[2',7'-dichloro-3',6-
'dimethoxy-9-spiroxanthyl]pyromellitide and cis 3,5-
bis[2',7'-dichloro-3,6'-dimethoxy-9'-spiroxanthyl]- pyromellitide.
EXAMPLE 3 The benzyloxy derivative is formed by following the procedure of Example 1, except that instead of using dimethyl sulfate, an equivalent amount of benzyl chloride in aqueous sodium hydroxide is added to the hydroxy acid precursor solution. The cis and trans bis[ 3',- 6-dibenzyloxy-9-spiroxanthyl] pyromellitides are formed.
EXAMPLE 4 EXAMPLE 5 The procedure of Example 4 is repeated with the exception that butyric anhydride is used instead of acetic anhydride. Recrystallization from benzene-petroleum ether yields 5.5 grams of cis 3,5-bis[3',6'-dibutyroxy- 9'-spiroxanthyl] pyromellitide and its trans isomer having a melting point of 295C.
EXAMPLE 6 The procedure of Example 4 is followed with the exception that 100 milliliters of benzoyl chloride are substituted for the acetic anhydride. The mixture is heated at a temperature of 140-l45C. for a period of 3 hours; About 50 milliliters of benzoyl chloride are removed under reduced pressure. Petroleum ether is added to the cooled residue to precipitate out the prodnot and dissolve the unreacted benzoyl chloride. The resulting insoluble material is boiled in water for minutes and then recrystallized from acetone yielding 63 grams of cis 3,5-bis[3',6-dibenzoxy-9'- spiroxanthyl] pyromellitide and its trans isomer having a melting point of 319323C.
EXAMPLE 7 Following the general microencapsulation procedure described in U.S. Pat. No. 3,418,656, microcapsules are prepared containing the dilactone color chromogenic compounds prepared in Example 1, above. Thus, an oily mixture is formed containing one part by weight of each isomeric dilactone formed in Example 1, 51 parts of coconut oil and 34 parts of a partially hydroge nated terphenyl (specific gravity 1.005, flash point 345F. and pour point 28C. commercially available from Monsanto Chemical Company as HB40). The oily mixture is emulsified in 500 parts of a 6 percent by weight aqueous solution of methyl cellulose. The emulsion is maintained under continuous agi- 10 tation and 20 parts by weight of a B-stage ureaformaldehyde resin are added to the emulsion. The resulting amicrocapsules are then coated onto a sheet of paper.
The coated paper is then brought into contact with an acidic clay-coated sheet, and localized pressure is applied with the stylus of a typewriter to rupture the capsules and release the dilactones for reaction with the clay-coated sheet. A yellow mark instantly develops on the clay-coated sheet.
EXAMPLE 8 lsomeric mixtures of the chromogenic compound formed in Examples 2 and 3 are microencapsulated and coated onto sheets of paper in the manner described in Example 7. When each of the coated papers is brought into contact with a clay-coated sheet, respectively, and localized pressure applied by means of a typewriter, a yellow mark instantly develops on each of the claycoated sheets.
EXAMPLE 9 The procedure of Example 7 is repeated, with the exception that instead of utilizing the dilactone chromogenic compounds, alone, mixtures of 2.1 parts of Crystal Violet Lactone and 1.8 parts of Benzoyl Leuco Methylene Blue are combined with 0.3 part of a mixture of trans 3,7-bis[3',6'-dimethoxy-9'-spiroxanthyl]- pyromellitide and cis 3,5-bis[3',6'-dimethoxy-9- spiroxanthyl]pyromellitide.
A blue colored image develops on the clay-coated paper upon rupture of the microcapsules, and the resulting image is readily duplicated by a xerographic copying machine.
EXAMPLE 10 The procedure of Example 7 isfollowed, while utilizing a mixture of chromogenic compounds including 1.2 parts by weight of a mixture of trans 3,7-bis[3',6'- dimethoxy-9'-spiroxanthyl]pyromellitide and cis 3,5- bis[ 3 ',6 -dimethoxy-9 '-spiroxanthyl ]pyromellitide, 0.02 part by weight of 7,7-bis(3-diethylaminofluoran), 0.8 part by weight of 7,7'-isopropylidene-bis(3- diethylaminofiuoran), 1.3 parts by weight of Crystal Violet Lactone, and 0.6 part by weight of Benzoyl Leuco Methylene Blue.
The preparation of the bisfluorans is disclosed in copending U.S. Patent application Ser. No. 329,294, filed Feb. 5, 1973 entitled Bisfluoran Chromogenic Compounds, Preparation Thereof, and Pressure-Sensitive Copy Systems Employing Same.
A black image, which is capable of being xerographically reproduced, is immediately formed on the claycoated paper upon rupture of the capsules by the application of localized pressure using a typewriter stylus. The resulting image has good reproducibility using a Xerox duplicating machine.
This invention has been described in considerable detail with particular reference to preferred embodiments, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention as described in the appended claims.
What is claimed is:
l. A pressure-sensitive copy system comprising a substrate bearing pressure-rupturable microcapsules, said microcapsules containing at least one chromogenic compound having the formula \C/ II R (I) and R0 0R X x 3 -Qc; 1 Q O 0 X X F 11/ m u 6 115 G2 wherein R represents a lower alkyl group, an aryl group, an aralkyl group, an acyl group or an aroyl group; and
X represents a hydrogen atom, a halogen atom, an
alkyl group or a nitro group.
2. The pressure-sensitive copy system of claim 1 wherein,
R represents a lower alkyl group, an aryl group, a benzyl group, a lower acyl group or a benzoyl group; and
X represents a hydrogen atom, a chlorine atom, a
bromine atom, an alkyl group or a nitro group.
3. The pressure-sensitive copy system of claim 1 wherein R is methyl and X is hydrogen, said compounds being trans 3,7-bis[3',6-dimethoxy-9- spiroxanthyl]pyromellitide and cis 3,5-bis[3,6- dimethoxy-9'-spiroxanthyl]pyromellitide.
4. The pressure-sensitive copy system of claim 1 wherein R is methyl and X is methyl, said compounds being trans 3,7-bis[4',5-dimethyl 3',6'-dimethoxy-9- 12 spiroxanthyl]pyrome1litide and cis 3,5-bis[4',5'- dimethyl-3',6-dimethoxy-9'-spiroxanthyl]pyrome1litide.
5. The pressure-sensitive copy system of claim 1 wherein R is methyl and X is chlorine, said compounds being trans 3,7-bis[2,7'-dichloro-3,6'-dimethoxy-9'- spiroxanthyl]pyromellitide and cis 3,5-bis[2,7'- dichloro-3 ,6 -dimethoxy-9'-spiroxanthyl ]pyromellitide.
6. The pressure-sensitive copy system of claim 1 wherein R is benzyl and X is hydrogen, said compounds being trans 3,7-bis[ 3,6'-dibenzyloxy-9'-spiroxanthyl]- pyromellitide and cis 3,5-bis[3',6'-dibenzyloxy-9'- spiroxanthyl]pyromel1itide.
7. The pressure-sensitive copy system of claim 1 wherein R is acetyl and X is hydrogen, said compounds being trans 3 ,7-bis[ 3 ,6' -diacetoxy-9 '-spiroxanthyl] pyromellitide and cis 3,5-bis[3',6'-diacetoxy-9'- spiroxanthyl]pyromellitide.
8. The pressure-sensitive copy system of claim 1 wherein R is butyryl and X is hydrogen, said cornpounds being trans 3,7-bis[3,6'-dibutyroxy-9'- spiroxanthyl]pyromellitide and cis 3,5-bis[3,6- dibutyroxy-9-spiroxanthyl]pyromellitide.
9. The pressure-sensitive copy system of claim 1 wherein R is benzoyland X is hydrogen, said compounds being trans 3,7-bis[3',6-dibenzoxy-9'- spiroxanthyl]pyromellitide and cis 3,5-bis[3,6'- dibenzoxy-9-spiroxanthyl]pyromellitide.
10. The pressure-sensitive copy system of claim 1 wherein said microcapsules also contain at least one blue imaging chromogenic compound.
11. The pressure-sensitive copy system of claim 1 wherein said microcapsules also contain Crystal Violet Lactone and Benzoyl Leuco Methylene Blue.
12. The pressure-sensitive copy system of claim 11 wherein said microcapsules additionally contain 7,7- bis(3-diethylaminofluoran) and 7,7'-isopropylidenebis( 3-diethylaminofluoran).

Claims (11)

  1. 2. The pressure-sensitive copy system of claim 1 wherein, R represents a lower alkyl group, an aryl group, a benzyl group, a lower acyl group or a benzoyl group; and X represents a hydrogen atom, a chlorine atom, a bromine atom, an alkyl group or a nitro group.
  2. 3. The pressure-sensitive copy system of claim 1 wherein R is methyl and X is hydrogen, said compounds being trans 3,7-bis(3'', 6''-dimethoxy-9''-spiroxanthyl)pyromellitide and cis 3,5-bis(3'',6''-dimethoxy-9''-spiroxanthyl)pyromellitide.
  3. 4. The pressure-sensitive copy system of claim 1 wherein R is methyl and X is methyl, said compounds being trans 3,7-bis(4'',5''-dimethyl-3'',6''-dimethoxy-9''-spiroxanthyl)pyromellitide and cis 3, 5-bis(4'',5''-dimethyl-3'',6''-dimethoxy-9''-spiroxanthyl)pyromellitide.
  4. 5. The pressure-sensitive copy system of claim 1 wherein R is methyl and X is chlorine, said compounds being trans 3,7-bis(2, 7''-dichloro-3'',6''-dimethoxy-9''-spiroxanthyl)pyromellitide and cis 3,5-bis(2'',7''-dichloro-3'',6''-dimethoxy-9''-spiroxanthyl)pyromellitide.
  5. 6. The pressure-sensitive copy system of claim 1 wherein R is benzyl and X is hydrogen, said compounds being trans 3,7-bis(3'', 6''-dibenzyloxy-9''-spiroxanthyl)pyromellitide and cis 3,5-bis(3'', 6''-dibenzyloxy-9''-spiroxanthyl)pyromellitide.
  6. 7. The pressure-sensitive copy system of claim 1 wherein R is acetyl and X is hydrogen, said compounds being trans 3,7-bis(3'', 6''-diacetoxy-9''-spiroxanthyl)pyromellitide and cis 3,5-bis(3'',6''-diacetoxy-9''-spiroxanthyl)pyromellitide.
  7. 8. The pressure-sensitive copy system of claim 1 wherein R is butyryl and X is hydrogen, said compounds being trans 3,7-bis(3'', 6''-dibutyroxy-9''-spiroxanthyl)pyromellitide and cis 3,5-bis(3'', 6''-dibutyroxy-9''-spiroxanthyl)pyromellitide.
  8. 9. The pressure-sensitive copy system of claim 1 wherein R is benzoyl and X is hydrogen, said compounds being trans 3,7-bis(3'', 6''-dibenzoxy-9''-spiroxanthyl)pyromellitide and cis 3,5-bis(3'',6''-dibenzoxy-9''-spiroxanthyl)pyromellitide.
  9. 10. The pressure-sensitive copy system of claim 1 wherein said microcapsules also contain at least one blue imaging chromogenic compound.
  10. 11. The pressure-sensitive copy system of claim 1 wherein said microcapsules also contain Crystal Violet Lactone and Benzoyl Leuco Methylene Blue.
  11. 12. The pressure-sensitive copy system of claim 11 wherein said microcapsules additionally contain 7,7''-bis(3-diethylaminofluoran) and 7,7''-isopropylidene-bis(3-diethylaminofluoran).
US00329293A 1973-02-05 1973-02-05 Dilactone chromogenic compounds, preparation thereof, and pressure-sensitive copy systems employing same Expired - Lifetime US3819396A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00329293A US3819396A (en) 1973-02-05 1973-02-05 Dilactone chromogenic compounds, preparation thereof, and pressure-sensitive copy systems employing same
US05/430,142 US3954803A (en) 1973-02-05 1974-01-02 Dilactone chromogenic compounds and preparation thereof
FR7403682A FR2216278A1 (en) 1973-02-05 1974-02-04
DE19742405243 DE2405243A1 (en) 1973-02-05 1974-02-04 CHROMOGENIC DILACTONE COMPOUNDS, METHOD FOR MANUFACTURING AND USING them
CA191,643A CA1022561A (en) 1973-02-05 1974-02-04 Dilactone chromogenic compounds, preparation thereof, and pressure-sensitive copy systems employing same
NL7401504A NL7401504A (en) 1973-02-05 1974-02-04
GB1869076A GB1458413A (en) 1973-02-05 1974-02-05 Xanthyl derivatives of isophthalic and terephthalic acids
GB533874A GB1458411A (en) 1973-02-05 1974-02-05 Dilactone chromogenic compounds preparation thereof and pressure-sensitive copy systems employing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00329293A US3819396A (en) 1973-02-05 1973-02-05 Dilactone chromogenic compounds, preparation thereof, and pressure-sensitive copy systems employing same
US05/430,142 US3954803A (en) 1973-02-05 1974-01-02 Dilactone chromogenic compounds and preparation thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/430,142 Division US3954803A (en) 1973-02-05 1974-01-02 Dilactone chromogenic compounds and preparation thereof

Publications (1)

Publication Number Publication Date
US3819396A true US3819396A (en) 1974-06-25

Family

ID=26986726

Family Applications (2)

Application Number Title Priority Date Filing Date
US00329293A Expired - Lifetime US3819396A (en) 1973-02-05 1973-02-05 Dilactone chromogenic compounds, preparation thereof, and pressure-sensitive copy systems employing same
US05/430,142 Expired - Lifetime US3954803A (en) 1973-02-05 1974-01-02 Dilactone chromogenic compounds and preparation thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US05/430,142 Expired - Lifetime US3954803A (en) 1973-02-05 1974-01-02 Dilactone chromogenic compounds and preparation thereof

Country Status (6)

Country Link
US (2) US3819396A (en)
CA (1) CA1022561A (en)
DE (1) DE2405243A1 (en)
FR (1) FR2216278A1 (en)
GB (2) GB1458411A (en)
NL (1) NL7401504A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303719A (en) * 1980-07-29 1981-12-01 Vassiliades Anthony E Chromogenic copy system
US4372583A (en) * 1980-07-29 1983-02-08 Vassiliades Anthony E Chromogenic copy system and method
US5707924A (en) * 1995-11-07 1998-01-13 Larry F. Vaughn Method for printing
US5942464A (en) * 1995-11-07 1999-08-24 Larry F. Vaughn Method and apparatus for printing
US6680205B1 (en) 2000-04-26 2004-01-20 Battelle Memorial Instittue Solvent-activated color forming compositions
US6689619B2 (en) 2000-04-26 2004-02-10 Battelle Memorial Institute Solvent-activated color-forming compositions

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846502A (en) * 1986-06-24 1989-07-11 Wallace Computer Services, Inc. Tamper evident document and use thereof
EP0373104B1 (en) * 1988-11-17 1994-07-13 Ciba-Geigy Ag Etherified fluorescein compounds
US5395138A (en) * 1993-06-14 1995-03-07 Wallace Computer Services, Inc. Security document verification system with pressure-rupturable microcapsules
US5431452A (en) * 1993-08-23 1995-07-11 Wallace Computer Services, Inc. Hidden entry system and image-developing device therefor
US6162485A (en) * 1998-05-07 2000-12-19 Wallace Computers Services, Inc. Fingerprinting system and method
US20070197383A1 (en) * 2005-03-31 2007-08-23 Luna Innovations Incorporated Method for Detecting Damage
US7682578B2 (en) * 2005-11-07 2010-03-23 Geo2 Technologies, Inc. Device for catalytically reducing exhaust
US20080187255A1 (en) * 2007-02-01 2008-08-07 Honeywell International Inc. Collapsible flood storage system
JP6675125B2 (en) * 2015-03-31 2020-04-01 国立大学法人群馬大学 pH-dependent fluorescent compound

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US643371A (en) * 1899-11-28 1900-02-13 Basle Chemical Works Red rhodamin dye.
US2844596A (en) * 1956-07-05 1958-07-22 Dow Chemical Co Diphthalides
US2912440A (en) * 1958-08-06 1959-11-10 Dow Chemical Co 3,3'-imino-and 3, 3'-substituted iminodiphthalides
US3244548A (en) * 1961-08-31 1966-04-05 Burroughs Corp Manifold sheets coated with lactone and related chromogenous compounds and reactive phenolics and method of marking
US3418656A (en) * 1965-10-23 1968-12-24 Us Plywood Champ Papers Inc Microcapsules, process for their formation and transfer sheet record material coated therewith
US3418250A (en) * 1965-10-23 1968-12-24 Us Plywood Champ Papers Inc Microcapsules, process for their formation and transfer sheet record material coated therewith
US3663571A (en) * 1969-06-27 1972-05-16 Fuji Photo Film Co Ltd Lactone compound and process for preparation thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE116057C (en) *
GB189503497A (en) * 1895-02-18 1895-12-21 Henry Edward Newton The Manufacture or Production of Naphthafluorescëine.
US656426A (en) * 1899-12-06 1900-08-21 Farbwerke Vormals Meister Lucius & Bruening Rhodolalkyletherester.
GB190228638A (en) * 1902-12-27 1903-03-05 Oswald Silberrad Condensation-products Manufactured from Mellitic or Pyromellitic Acids and Derivatives of the Condensation Products.
US3244549A (en) * 1961-08-31 1966-04-05 Burroughs Corp Manifold sheets coated with lactone and related chromogenous compounds and reactive phenolics and method of marking

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US643371A (en) * 1899-11-28 1900-02-13 Basle Chemical Works Red rhodamin dye.
US2844596A (en) * 1956-07-05 1958-07-22 Dow Chemical Co Diphthalides
US2912440A (en) * 1958-08-06 1959-11-10 Dow Chemical Co 3,3'-imino-and 3, 3'-substituted iminodiphthalides
US3244548A (en) * 1961-08-31 1966-04-05 Burroughs Corp Manifold sheets coated with lactone and related chromogenous compounds and reactive phenolics and method of marking
US3418656A (en) * 1965-10-23 1968-12-24 Us Plywood Champ Papers Inc Microcapsules, process for their formation and transfer sheet record material coated therewith
US3418250A (en) * 1965-10-23 1968-12-24 Us Plywood Champ Papers Inc Microcapsules, process for their formation and transfer sheet record material coated therewith
US3663571A (en) * 1969-06-27 1972-05-16 Fuji Photo Film Co Ltd Lactone compound and process for preparation thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303719A (en) * 1980-07-29 1981-12-01 Vassiliades Anthony E Chromogenic copy system
US4372583A (en) * 1980-07-29 1983-02-08 Vassiliades Anthony E Chromogenic copy system and method
US5707924A (en) * 1995-11-07 1998-01-13 Larry F. Vaughn Method for printing
US5830823A (en) * 1995-11-07 1998-11-03 Larry F. Vaughn Method for printing
US5942464A (en) * 1995-11-07 1999-08-24 Larry F. Vaughn Method and apparatus for printing
US6680205B1 (en) 2000-04-26 2004-01-20 Battelle Memorial Instittue Solvent-activated color forming compositions
US6689619B2 (en) 2000-04-26 2004-02-10 Battelle Memorial Institute Solvent-activated color-forming compositions
US20040029289A1 (en) * 2000-04-26 2004-02-12 Elhard Joel D. Solvent-activated color forming compositions

Also Published As

Publication number Publication date
NL7401504A (en) 1974-08-07
GB1458411A (en) 1976-12-15
CA1022561A (en) 1977-12-13
FR2216278A1 (en) 1974-08-30
US3954803A (en) 1976-05-04
GB1458413A (en) 1976-12-15
DE2405243A1 (en) 1974-08-08

Similar Documents

Publication Publication Date Title
US3819396A (en) Dilactone chromogenic compounds, preparation thereof, and pressure-sensitive copy systems employing same
US4104437A (en) Pressure-sensitive copy system including ureido fluoran chromogenic compounds
US4590498A (en) Chromogenic recording materials
US4349218A (en) Copying material employing fluoran color formers
US3929831A (en) Heterocyclic substituted fluorans
EP0112710B1 (en) Fluoran derivatives
US3821010A (en) Bisfluoran chromogenic compounds,preparation thereof,and pressure-sensitive copy systems employing same
EP0089752B1 (en) Fluoran derivatives, process for their preparation and their use in recording systems
US4668790A (en) Chromogenic dihydrofuropyridinones
GB2025940A (en) Colour developer compositions for use in recording materias
US4007195A (en) Heterocyclic substituted fluorans
JPH0826025B2 (en) Ring-substituted 4-azaphthalide
US4295663A (en) 3-Indolyl-3-bis-amino-phenyl-phthalide compounds
EP0155593A2 (en) Fluoran compounds and recording sheets containing them
US4613879A (en) Chromogenic recording materials
JPS598302B2 (en) Fukusokanshikichikanlactonekagobutsunoseihou
CA1083576A (en) Chromenoindole compounds
US4316036A (en) Benzopyranothiazoles
FI68069C (en) TRYCK- ELLER VAERMEKAENSLIGT UPPTECKNINGSMATERIAL
JPS6112952B2 (en)
US4642357A (en) Chromogenic recording materials
US3974175A (en) Nitro-chromeno pyrazole compounds their manufacture and use
US4721702A (en) Pressure-sensitive recording material
US3985936A (en) Pressure-sensitive and/or heat sensitive copying or recording material
US4187193A (en) Micro-capsules containing ureido fluoran chromogenic compounds