JP6668149B2 - 窒素含有炭素多孔体の製造方法 - Google Patents

窒素含有炭素多孔体の製造方法 Download PDF

Info

Publication number
JP6668149B2
JP6668149B2 JP2016077473A JP2016077473A JP6668149B2 JP 6668149 B2 JP6668149 B2 JP 6668149B2 JP 2016077473 A JP2016077473 A JP 2016077473A JP 2016077473 A JP2016077473 A JP 2016077473A JP 6668149 B2 JP6668149 B2 JP 6668149B2
Authority
JP
Japan
Prior art keywords
nitrogen
ammonia
containing carbon
furnace
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016077473A
Other languages
English (en)
Other versions
JP2017186207A (ja
Inventor
晃司 野村
晃司 野村
健生 市原
健生 市原
恵未 塩崎
恵未 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2016077473A priority Critical patent/JP6668149B2/ja
Publication of JP2017186207A publication Critical patent/JP2017186207A/ja
Application granted granted Critical
Publication of JP6668149B2 publication Critical patent/JP6668149B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、窒素含有炭素多孔体の製造方法に関する。
固体高分子形燃料電池は、発電効率が高い、出力密度が高い、急速な起動停止が可能である、小型軽量化が可能である、といった利点を持ち、携帯用電源、移動用電源、及び小型定置用発電機等への適用が期待されている。
固体高分子形燃料電池では、その正極で起こる酸素還元反応を促進するために、一般に白金又は白金合金が触媒として用いられるが、白金の資源量が極めて少なく、また、白金は高価であるために実用化への大きな障壁となっている。そこで、白金等の貴金属を必要としない燃料電池用電極触媒として、遷移金属と窒素とを含有することによって酸素還元活性を発現した炭素材料(以下、「炭素触媒」ともいう。)が注目を集めている。
炭素触媒は、炭素原料、窒素原料及び遷移金属原料を複合化した前駆体を、熱処理することによって製造されるが、そのままでは酸素還元活性が低いため、アンモニアによる賦活処理を施されることがある。
例えば、特許文献1においては、有機高分子材料と金属元素とを含む前駆体(該前駆体中の金属元素量は0.1〜20質量%)に対して、非酸化雰囲気での触媒化処理の後、アンモニアガス雰囲気下での熱処理を650℃〜1500℃、0.1〜4hrで実施することが記載されている。
また、特許文献2においては、炭素原料、窒素原料及び遷移金属原料を複合化した前駆体に対して、不活性ガス雰囲気下での熱処理と、アンモニア含有ガス雰囲気下での熱処理とを行い、アンモニアによる熱処理を400℃〜1500℃、5分〜5時間で実施することが記載されている。
特開2011−230099号公報 特開2014−201463号公報
しかしながら、上述の従来の技術において、炭素触媒のアンモニア含有ガス雰囲気下での熱処理条件は、温度及び時間が規定されているだけである。本発明者は、炭素触媒の量産を目的として熱処理装置を大型化した場合に、上記条件の範囲内であっても賦活が十分ではなかったり、その反対に過度であったり、不安定になったりしやすくなり、その結果、酸素還元活性に更に改善の余地があることを見出した。
そこで、本発明は上記事情に鑑みてなされたものであり、装置が大型化した場合であっても、高い酸素還元活性を有する窒素含有炭素多孔体を製造できる方法を提供することを目的とする。
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、アンモニア雰囲気下での熱処理工程における炉内温度と、炉内材料や構造によって変化し得るアンモニアの分解率が、酸素還元活性の改善に本質的な役割を果たしていることを見出した。そこで、上記炉内温度とアンモニア分解率を所定の範囲に特定して熱処理を行うことで、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、下記のとおりである。
[1]炭素原料、窒素原料及び遷移金属原料を含む前駆体を、不活性ガス雰囲気下又は減圧下で熱処理して窒素含有炭素材料を得る熱処理第一工程と、該窒素含有炭素材料を炉内においてアンモニア含有ガス雰囲気下で熱処理して窒素含有炭素多孔体を得る熱処理第二工程とを有する窒素含有炭素多孔体の製造方法において、前記熱処理第二工程における炉内環境は、下記(A)、(B)及び(C)の条件を全て満たすものである、窒素含有炭素多孔体の製造方法であって、
(A)前記炉内の温度が800℃以上1100℃以下、
(B)前記炉の出口におけるアンモニア分解率f2が5%以上、
(C)前記炉内に前記窒素含有炭素材料が存在しない場合の前記炉の出口におけるアンモニア分解率f1が80%以下
前記アンモニア分解率f1から算出したアンモニア分解速度をk1、前記アンモニア分解率f2から算出したアンモニア分解速度をk2(ここで、k1及びk2の単位は互いに同一である。)とした場合の、下記式(1)により算出されるk2とk1の比率k2/k1が1.1以上である、製造方法。
k2/k1=(ln(1/(1−(f2/100))))/(ln(1/(1−(f1/100)))) (1)
]前記熱処理第二工程における前記アンモニア含有ガスが不活性ガスを含む、[1]に記載の窒素含有炭素多孔体の製造方法。
]前記炉内において、800℃以上で前記アンモニア含有ガスが接触する部分の材質に、石英、アルミナ、及びセラミックからなる群より選択される少なくとも1種の材料を用いる、[1]又は[2]に記載の窒素含有炭素多孔体の製造方法。
]前記炉内において、800℃以上で前記アンモニア含有ガスが接触する部分の材質に、950℃での一次反応式で計算したアンモニアガスの分解活性が石英の3倍以下となる材料を用いる、[1]又は[2]に記載の窒素含有炭素多孔体の製造方法。
]前記炉内において、前記800℃以上でアンモニア含有ガスが接触する部分が、前記アンモニア含有ガスの供給管である、[]又は[]に記載の窒素含有炭素多孔体の製造方法。
]前記炉の容量が14L以上である、[1]〜[]のいずれか1つに記載の窒素含有炭素多孔体の製造方法。
本発明によれば、装置が大型化した場合であっても、高い酸素還元活性を有する窒素含有炭素多孔体の製造方法を提供することができる。
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
〔窒素含有炭素多孔体〕
本実施形態に係る窒素含有炭素多孔体は、電子線マイクロアナライザによって得られる窒素原子(N)と炭素原子(C)の原子比(N/C)が0.005〜0.3であることが好ましい。また、窒素含有炭素多孔体は、電子線マイクロアナライザによって得られる遷移金属原子(M)と炭素原子(C)との原子比(M/C)が0.0001〜0.05であることが好ましい。さらに、窒素含有炭素多孔体は、BET法により求められる比表面積が400m2/g以上であることが好ましい。
〔原子比(N/C)〕
本実施形態の窒素含有炭素多孔体において、電子線マイクロアナライザによって得られる窒素原子と炭素原子の原子比(N/C)は、0.005〜0.3であることが好ましく、0.01〜0.2であることがより好ましく、0.02〜0.15であることが更に好ましい。原子比(N/C)が上記範囲内であることにより、酸素還元活性がより高くなる。
〔原子比(M/C)〕
また、本実施形態の窒素含有炭素多孔体において、電子線マイクロアナライザによって得られる遷移金属原子と炭素原子との原子比(M/C)は、0.0001〜0.05であることが好ましく、0.001〜0.04であることがより好ましく、0.005〜0.03であることが更に好ましい。原子比(M/C)が上記範囲内であることにより、酸素還元活性がより高くなる。
本実施形態に係る窒素含有炭素多孔体は、窒素原子及び遷移金属原子を含むことによって酸素還元活性を発現する一方、窒素や遷移金属の含有量を所定量以下にすることによって、酸素還元活性の低下を抑制することができる。したがって、上記のように、窒素原子及び遷移金属原子の含有量には、好ましい範囲がある。
窒素原子と炭素原子の原子比(N/C)、及び遷移金属原子と炭素原子の原子比(M/C)は、電子線マイクロアナライザによって求めることができる。「電子線マイクロアナライザ」とは、試料に電子線を照射したときに発生する特性X線を波長分散型X線分光器で分離し、試料中に含まれる元素の同定及び定量を行う装置である。原子比の具体的な測定方法としては、実施例に記載の方法を用いることができる。
遷移金属原子としては、特に限定されないが、例えば、Fe、Co、Ni、Cu、Mn、及びCrからなる群より選ばれる1種以上であることが好ましく、Fe、Co、及びCuからなる群より選ばれる1種以上であることがより好ましく、Fe、及び/又はCoであることがさらに好ましい。このような遷移金属を用いることにより、窒素含有炭素多孔体の酸素還元活性がより向上する傾向にある。
〔BET比表面積〕
本実施形態の窒素含有炭素多孔体において、BET法により求められる比表面積は、400m2/g以上であることが好ましく、500m2/g以上であることがより好ましく、600m2/g以上であることが更に好ましい。また、BET比表面積の上限は特に制限されないが、3000m2/g以下であることが好ましい。BET比表面積が上記範囲内であることにより、酸素還元活性がより高くなる。なお、本実施形態に係る窒素含有炭素材料の比表面積は、JIS Z8830「気体吸着による粉体(固体)の比表面積測定方法」に従って測定することができる。
(平均粒子径)
本実施形態に係る窒素含有炭素多孔体の平均粒子径は、1nm以上100μm以下であることが好ましく、5nm以上10μm以下であることがより好ましく、10nm以上1μm以下であることがさらに好ましい。窒素含有炭素多孔体を電極として用いる場合、電極としての性能を効率的に発揮するためには、その平均粒子径(体積基準のメディアン径:50%D)を適切に調整することが好ましい。平均粒子径が100μm以下であることにより、電極の比活性がより向上する傾向にある。また、平均粒子径が1nm以上であることにより、粒子同士が密に凝集し物質輸送が阻害されることが抑制される傾向にある。物質輸送が阻害されるとは、例えば、固体高分子形燃料電池の正極触媒として用いる場合、酸素分子が活性点に供給され難くなることなどが挙げられる。平均粒子径は、レーザー回折・散乱法、動的光散乱法、画像イメージング法、重力沈降法等の公知の方法により測定することができる。
平均粒子径及びBET比表面積の調整方法は、特に限定されず、後述する前駆体調製工程において平均粒子径及びBET比表面積を制御してもよいし、後述する熱処理第一工程後の窒素含有炭素材料、又は熱処理第二工程後の窒素含有炭素多孔体を粉砕して、それらを調整してもよい。前駆体調製工程において平均粒子径及びBET比表面積を制御する場合は、例えば、炭素原料、窒素原料及び遷移金属原料を含む溶液をスプレードライヤーにて造粒する方法や、重合によって微粒子を得る方法を用いることができる。また、粉砕の方法としては、特に限定されないが、例えば、前駆体、窒素含有炭素材料、又は窒素含有炭素多孔体を、ボールミル、ビーズミル、ジェットミル等にて粉砕する方法が挙げられる。
〔窒素含有炭素多孔体の製造方法〕
本実施形態に係る窒素含有炭素多孔体の製造方法は、炭素原料、窒素原料及び遷移金属原料を含む前駆体を熱処理する熱処理工程を有する。前駆体に更に炭素材料を加えてもよい。該炭素材料としては、例えば、ケッチェンブラックが挙げられる。黒鉛化度の高い炭素材料を加えることで、窒素含有炭素多孔体の接触面積を増加させることができ、また、炭素原料の炭化過程で炭素材料が核となり、窒素含有炭素多孔体の黒鉛化度を高めることができる。
(前駆体)
本実施形態の窒素含有炭素多孔体の製造方法は、熱処理工程に先立って、炭素原料、窒素原料及び遷移金属原料を含む前駆体を調製する工程(以下、「前駆体調製工程」ともいう。)を有してもよい。前駆体は、炭素原料、窒素原料及び遷移金属原料が複合化されたものであることが好ましい。前駆体は、必要に応じて他の成分も含むことができる。他の成分としては、特に限定されないが、例えば、ホウ素及び/又はリンを含有する化合物が挙げられる。ここで、「複合化」とは、炭素原料、窒素原料及び遷移金属原料が物理的に混合している状態であってもよいし、炭素原料、窒素原料及び遷移金属原料が化学結合を形成している状態であってもよい。
(炭素原料)
炭素原料は炭素化したときに炭化物が得られる材料である。炭素原料としては、例えば、ポリアニリン、ポリビニルピリジン、ポリイミド、メラミン樹脂、フェノール樹脂、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、芳香族ポリアミド、及びポリビニルピロリドンが挙げられる。このなかでも、熱処理工程における炭化のしやすさの観点から、芳香族基又は複素環基を有する樹脂が好ましく、フェノール樹脂がより好ましい。炭素原料は、1種を単独で又は2種以上を組み合わせて用いられる。
(窒素原料)
窒素原料は窒素を含む有機化合物である。窒素原料としては、例えば、アズルミン酸、ジアミノマレオニトリル、ポリアニリン、ポリビニルピリジン、メラミン樹脂、ポリアミド、ポリビニルピロリドン、及びポリアクリロニトリルが挙げられる。このなかでも、好ましくはアズルミン酸及びジアミノマレオニトリルである。窒素原料は、1種を単独で又は2種以上を組み合わせて用いられる。
(遷移金属原料)
遷移金属原料としては、特に限定されないが、例えば、遷移金属の塩化物、臭化物、ヨウ化物、硝酸化物、硫酸化物、リン酸化物、酢酸化物、及びシアン化物が挙げられる。このなかでも、遷移金属原料としては、水や低級アルコールなどの極性溶媒に溶解するものが好ましい。また、遷移金属としては、特に限定されないが、例えば、Fe、Co、Ni、Cu、Mn及びCrからなる群より選ばれる1種以上であることが好ましく、Fe、Co及びCuからなる群より選ばれる1種以上であることがより好ましく、Fe及び/又はCoであることがさらに好ましい。このような遷移金属を用いることにより、窒素含有炭素材料の酸素還元活性がより向上する傾向にある。
窒素原料、炭素原料及び遷移金属原料の複合化の方法としては、特に限定されないが、例えば、極性溶媒中、好ましくは水及び/又は低級アルコール中に、窒素原料、炭素原料及び遷移金属原料を溶解させ、溶媒を蒸発乾固する方法が好ましい。
溶解方法としては、特に限定されないが、例えば、1種の溶媒に全ての原料を溶解させてもよいが、それぞれ異なる溶媒に原料を溶解させた後に混合してもよい。
蒸発乾固の方法としては、特に限定されないが、例えば、ロータリーエバポレーター等を用いて減圧下で溶媒を除去してもよいし、スプレードライヤー等を用いて溶媒を揮発させてもよい。このなかでも、均一な複合状態を維持する観点及び造粒の観点から、スプレードライヤーを用いる方法が好ましい。
前駆体における遷移金属原子の濃度は、0.01質量%〜10質量%であることが好ましく、0.05質量%〜5質量%であることがより好ましく、0.1質量%〜3質量%であることがさらに好ましい。また、炭素原料及び窒素原料の種類によって、熱処理工程によって得られる窒素含有炭素多孔体中の窒素含有量が大きく異なるため、窒素含有炭素多孔体における原子比(N/C)が上記範囲になるよう炭素原料と窒素原料の比率を調整することが好ましい。窒素含有炭素多孔体における原子比(N/C)は、例えば、原子比(N/C)の高い窒素原料を用いること、及び/又は、前駆体中の窒素原料の比率を高めることにより、大きな値を示すように制御することができる。一方、窒素含有炭素多孔体における原子比(N/C)は、原子比(N/C)の低い窒素原料を用いること、及び/又は、前駆体中の窒素原料の比率を低下させることにより、小さな値を示すように制御することができる。
窒素含有炭素多孔体の原子比(M/C)は、前駆体中の原子比(M/C)を高めることにより、大きな値を示すように制御することができ、前駆体中の原子比(M/C)を低下させることにより、小さな値を示すように制御することができる。
本実施形態に係る窒素含有炭素多孔体の製造方法は、上記に限定されず、他にも様々な窒素原料、炭素原料、及び遷移金属原料の組み合わせを用いることができる。
〔アズルミン酸を前駆体に用いる場合〕
アズルミン酸とは、主として青酸を重合して得られる重合物の総称であり、窒素を含む有機高分子である。アズルミン酸の詳細な化学構造は同定されていないが、Angew.Chem.72巻、p379−384(1960年)や、真空科学、16巻、p64−72(1969年)などの文献においては、下記式(5)で表される構造が代表的な構造だと推定されている。
Figure 0006668149
アズルミン酸と遷移金属原料とを複合化させる方法は、特に限定されないが、例えば、アズルミン酸を溶媒に溶解させて遷移金属原料を添加する方法、及び、アズルミン酸の重合中に遷移金属錯体を共存させる方法が挙げられる。アズルミン酸は様々な溶媒に対して溶解性が乏しい物質であるので、より均一に複合化させる観点から、アズルミン酸の重合中に遷移金属錯体と共存させることが好ましい。
アズルミン酸の重合方法としては、特に限定されないが、例えば、液化青酸や青酸水溶液を加熱する方法、液化青酸や青酸水溶液を長時間放置する方法、液化青酸や青酸水溶液に塩基を添加する方法、液化青酸や青酸水溶液に光を照射する方法、液化青酸や青酸水溶液に高エネルギーの放射をする方法、液化青酸や青酸水溶液の存在下で種々の放電を行う方法、及び、シアン化カリウム水溶液を電気分解する方法が挙げられる。アズルミン酸と遷移金属錯体を複合化する観点から、青酸水溶液に水溶性の遷移金属錯体及び塩基を添加して重合する方法が好ましい。
アズルミン酸の重合中に共存させる遷移金属錯体は、水への溶解しやすさの観点から、遷移金属の塩化物、臭化物、ヨウ化物、硝酸化物、硫酸化物、リン酸化物、酢酸化物、及びシアン化物が好ましい。また、重合の際に添加する塩基としては、特に限定されないが、例えば、アンモニア、アミン、アルカリ金属の水酸化物;アルカリ土類金属の水酸化物;及び金属アルコキシドを用いることができる。このなかでも、不要な金属が混入しないアンモニア及びアミンを用いることが好ましい。
青酸水溶液に水溶性の遷移金属錯体及び塩基を添加して重合すると、遷移金属を含有したアズルミン酸が褐色の粒子として析出する。その後、蒸発乾固若しくは濾過によって溶媒を除去することにより、遷移金属錯体が均一に分散したアズルミン酸が得られる。
本実施形態の窒素含有炭素多孔体の製造方法において、熱処理工程は、不活性ガス雰囲気下で熱処理する熱処理第一工程と、アンモニア含有ガス雰囲気下で熱処理する熱処理第二工程とを有することが好ましい。このような熱処理工程を有することで、酸素還元活性により優れる窒素含有炭素多孔体が得られる傾向にある。また、熱処理工程の条件によって、窒素含有炭素材料や窒素含有多孔体の原子比(N/C)及び(M/C)は変化する。熱処理工程における熱処理の温度を高温にする及び/又は熱処理の時間を長くすることにより、原子比(N/C)を小さくしたり、原子比(M/C)を大きくしたりすることができる。また、熱処理の温度を低温にする及び/又は熱処理の時間を短くすることにより、原子比(N/C)を大きくしたり、原子比(M/C)を小さくしたりすることができる。
〔熱処理第一工程〕
熱処理第一工程では、前駆体調製工程で得られた前駆体を不活性ガス雰囲気下又は減圧下で熱処理して、窒素含有炭素材料を得る。上記不活性ガスとしては、特に限定されないが、例えば、窒素及び希ガスが挙げられる。減圧の圧力としては、標準大気圧よりも低い圧力であればよいが、具体的には、1/10気圧以下であると好ましい。不活性ガス下又は減圧下で前駆体を熱処理すると、前駆体が炭素化して窒素含有炭素材料が得られる。その熱処理の際の温度が、600〜1100℃であることが好ましく、700〜1000℃であることがより好ましく、800〜950℃であることがさらに好ましい。熱処理時間は5分〜50時間であることが好ましく、10分〜20時間であることがより好ましく、さらに好ましくは20分〜10時間である。このような条件で熱処理第一工程を実施することにより、窒素含有炭素多孔体の酸素還元活性がより向上する傾向にある。
[熱処理第二工程]
熱処理第二工程では、窒素含有炭素材料を、炉内(加熱炉内)においてアンモニア含有ガス雰囲気下で熱処理して、窒素含有炭素多孔体を得る。熱処理第二工程における炉内環境は、下記(A)、(B)及び(C)の条件を全て満たすものである。
(A)前記炉内の温度が800℃以上1100℃以下、
(B)炉の出口におけるアンモニア分解率f2が5%以上、
(C)炉内に窒素含有炭素材料が存在しない場合の炉の出口におけるアンモニア分解率f1が80%以下。
アンモニア含有ガスとしては、特に限定されないが、例えば、アンモニアのみ、又はアンモニアを窒素、Ar、He及び希ガスのような不活性ガスで希釈したガスを用いることが好ましい。熱処理第二工程における炉内の温度は、600〜1100℃であることが好ましく、700〜1100℃であることがより好ましく、さらに好ましくは800〜1100℃である。また、熱処理の時間は5分〜5時間であることが好ましく、10分〜3時間であることがより好ましく、さらに好ましくは15分〜2時間であり、最も好ましくは20分〜1時間である。炉内の温度、及び熱処理の時間が上記範囲内であることにより、酸素還元活性により優れる窒素含有炭素材料が得られる傾向にある。
アンモニア含有ガスに含まれるアンモニアが窒素含有炭素材料に接触する前に分解してしまうと、賦活の効果が小さくなる。この賦活の効果が小さくなるのを防止する観点から、本実施形態の窒素含有炭素多孔体の製造方法では、アンモニア分解率について、上記(B)及び(C)のような所定の条件を満たすことが肝要である。
〔アンモニア分解率〕
ここで、アンモニア分解率について説明する。アンモニア分解率は、炉に流入したアンモニアのうち、分解したアンモニアの割合を示すものである。アンモニア分解率は、アンモニア含有ガス雰囲気下で加熱する炉(本明細書において、単に「炉」ともいう。)が管状炉の場合、炉の出口において、窒素含有炭素材料の設置位置直後の位置から、さらにアンモニアを分解させないよう石英製の管でガスの一部を採取、冷却して分析する。炉が箱型炉の場合、炉におけるガスの排出口に石英管を接続してガスの一部を採取、冷却して分析する。アンモニア分解率の算出方法としては下記の方法が挙げられる。すなわち、炉の出口におけるアンモニア量を、後述の実施例に記載の方法により求めて、アンモニア分解率を後述の実施例に記載の方法により算出する。これに代えて、アンモニア量を上記のようにして求めると共に、ガスクロマトグラフなどにより、上記のようにして採取したガス(種々のガス成分の混合ガス)から、各ガス成分を分離した後、TCDで各ガス成分の量を検出し、アンモニアの分解ガスである窒素量及び水素量を求めてもよい。この場合、これらアンモニア量、窒素量及び水素量から、アンモニア分解率を算出する。ただし、アンモニア量の分析方法としては、上述の中和滴定法の他に、吸光光度法、ガスクロマトグラフ法、赤外線吸収法、溶液導電率法、イオン電極法などを用いてもよい。
まず、上記(B)の条件では、熱処理第二工程において、炉内に窒素含有炭素材料が存在する状態での、炉の出口におけるアンモニア分解率f2が5%以上である。これにより、アンモニアが窒素含有炭素材料とより十分に相互作用し、窒素含有炭素多孔体の収率をより高めることができる。同様の観点から、アンモニア分解率f2は、10%以上であることが好ましく、15%以上であることがより好ましい。アンモニア分解率f2の上限は特に限定されず、例えば、100%が上限であってもよい。
また、上記(C)の条件では、窒素含有炭素材料が炉内に存在しない以外は熱処理第二工程と同様の炉内環境にした場合の、炉の出口におけるアンモニア分解率f1が80%以下であり、好ましくは50%以下、より好ましくは20%以下、更に好ましくは10%以下である。この(C)の条件を満たすように炉内環境を設定し、その条件で窒素含有炭素材料に対して熱処理を施すと、窒素含有炭素材料との接触前におけるアンモニアの分解によりアンモニアと窒素含有炭素材料との接触が少なくなる、ということを防止することができる。
熱処理第二工程において用いる炉にガス排出口が複数存在する場合、少なくとも1ヶ所のガス排出口に関して、上述のアンモニア分解率f1及びf2が上記数値範囲内にあればよいが、本発明による作用効果をより有効かつ確実に奏する観点から、全排出口に関して、上述のアンモニア分解率f1及びf2が上記数値範囲内にあることが好ましい。
アンモニアは窒素含有炭素材料に接触して分解することで賦活効果が向上するため、窒素含有炭素材料にアンモニアが効率良く接触する必要がある。そのため、窒素含有炭素材料が存在する系でのアンモニア分解率f2が高くなるよう、アンモニア含有ガスの供給方法、窒素含有炭素材料の配置、熱処理中の窒素含有炭素材料の移動などを工夫する必要がある。例えば、窒素含有炭素材料を浅い皿上に載置した上で管状炉内に配置し、そこにアンモニア含有ガスを押し出し流で供給する。また、内部に直方体や立方体の空間を有する炉や、直径が5cm以上の管状炉の中に窒素含有炭素材料を配置する場合、炉の内壁や底部に直接接するようにして配置してもよい。あるいは、石英、セラミック若しくはアルミナなどの900℃以上の温度でもアンモニアを分解し難い素材で作製した皿などの容器に窒素含有炭素材料を載置して、それを炉内に配置してもよい。その場合、窒素含有炭素材料を載置した容器を、更に炉内に設けた棚などに多段で配置してもよい。
窒素含有炭素材料に対してアンモニア含有ガスの存在下で熱処理を施すのに際し、炉材、皿、棚、アンモニア含有ガスの供給管、排ガスの排気管、熱電対カバーなど、アンモニア含有ガスに接触する物品や部材の全てが、石英、セラミック、及びアルミナなどの900℃以上の温度でもアンモニアを分解し難い材質からなるものであることが好ましい。特に、800℃以上でアンモニア含有ガスが接触する部分の材質に、石英、アルミナ及びセラミックからなる群より選択される少なくとも1種の材料を用いることが好ましい。また、上記と同様の観点から、アンモニア含有ガスと接触する部分の材質に、950℃での一次反応式で計算したアンモニアガスの分解活性が石英の3倍以下となる材料を用いることも好ましい。特に、金属などアンモニアを分解しやすい不純物が少ない、石英及びアルミナが好ましい。また、同様の観点から、800℃以上でアンモニア含有ガスが接触する部分の材質にそのような材料を用いることがより好ましい。800℃以上でアンモニア含有ガスが接触する部分としては、特に限定されないが、例えば、アンモニア含有ガスの供給管が挙げられる。
工業的に窒素含有炭素材料をアンモニアで多量に賦活するため、炉内の体積に対する炉壁によるアンモニアの分解を少なくする観点から、熱処理第二工程に用いる炉の容量は、14L以上であると好ましく、25L以上であると更に好ましく、100L以上であると特に好ましい。
アンモニア含有ガスは、炉に一ヶ所から供給されてもよい、すなわち、炉に接続するアンモニア含有ガスの供給管は1つであってもよい。ただし、窒素含有炭素材料に一層効率よく接触させるため、複数のアンモニア含有ガスの供給管を炉に接続することが好ましい。熱処理第二工程において、アンモニア含有ガスの供給管が500℃以上になる場合、石英、セラミック、アルミナなど900℃以上の温度でもアンモニアを分解し難い材質からなることが好ましい、アンモニア含有ガスの供給管は、不純物の少ない石英製のアンモニア供給管であることがより好ましい。
熱処理第二工程におけるアンモニア分解率f2はより高くすることが好ましい。具体的には、一次反応式により、アンモニア分解率f1(%)から算出したアンモニア分解速度をk1、アンモニア分解率f2(%)から算出したアンモニア分解速度をk2とした場合の、下記式(1)により算出されるk2とk1の比率k2/k1が、1.1以上であると好ましく、より好ましくは1.5以上、さらに好ましくは2.0以上、特に好ましくは3.0以上である。
k2/k1=(ln(1/(1−(f2/100))))/(ln(1/(1−(f1/100)))) (1)
なお、アンモニア分解速度k1、アンモニア分解速度k2は、それぞれ下記式(1a)及び(1b)により求められる。
k1=(1/t)×ln(1/(1−(f1/100))) (1a)
k2=(1/t)×ln(1/(1−(f2/100))) (1b)
ここで、tは炉内の温度が、昇温の際の最高温度より50℃低い温度の時点から、降温の際の最高温度より50℃低い温度の時点までの時間を示す。
比率k2/k1を上記数値範囲にすることにより、アンモニアの窒素含有炭素材料との高い相互作用と、アンモニアが窒素含有炭素材料に接触する前に分解することの抑制とのバランスをより良好にすることができる。窒素含有炭素材料へのアンモニアの接触前にアンモニアの熱分解をより抑制するため、熱処理第二工程において用いるアンモニア含有ガスは、窒素、アルゴン及びヘリウムなどの不活性ガスでアンモニアを希釈したガスであってもよい。比率k2/k1を上記の数値範囲内に調整するには、例えば、窒素含有炭素材料が存在しない状態での焼成炉でのアンモニア分解率を、アンモニア分解に不活性又は活性の小さい石英、アルミナなどの材料を使用したり、焼成炉内で窒素含有炭素材料とアンモニアガスの接触効率を高めたりすることで制御すればよい。
熱処理第二工程において、アンモニア含有ガス雰囲気下での熱処理により、窒素含有炭素材料を賦活するのに用いる炉としては特に限定されない、管状炉、箱型炉のような、熱処理の対象物(焼成物)である窒素含有炭素材料を固定して焼成する形式の炉であってもよい。あるいは、連続炉、ロータリーキルンのように、焼成物である窒素含有炭素材料を移動若しくは回転させながら焼成する形式の炉であってもよい。また、炉の加熱方式の点から、電気ヒーター又はマイクロ波により加熱する炉であってもよく、ガス燃焼炉又はオイル燃焼炉であってもよい。
熱処理第二工程において、アンモニア含有ガス雰囲気下で窒素含有炭素材料を熱処理することにより、得られる窒素含有炭素多孔体のBET比表面積が増大する。また、アンモニア含有ガス中のアンモニア濃度を高める、アンモニア含有ガス雰囲気下での熱処理の温度を高温にする、アンモニア含有ガス雰囲気下での熱処理時間を長くする、窒素含有炭素材料へのアンモニアの接触効率を向上させる、及び/又は、窒素含有炭素材料にアンモニア含有ガスが接触する前後の分解率差(すなわち、比率k2/k1)を大きくすることにより、BET比表面積を大きくすることができる。また、アンモニア含有ガス中のアンモニア濃度を低下させる、アンモニア含有ガス雰囲気下での熱処理の温度を低温にする、アンモニア含有ガス雰囲気下での熱処理時間を短くする、窒素含有炭素材料へのアンモニアの接触効率を低下させる、及び/又は、窒素含有炭素材料にアンモニア含有ガスが接触する前後の分解率差を小さくすることにより、BET比表面積を小さくすることができる。
[遷移金属除去工程]
本実施形態の窒素含有炭素多孔体の製造方法は、不活性ガス雰囲気下での熱処理第一工程の前、アンモニア含有ガス雰囲気下での熱処理第二工程の後、及びそれらの熱処理工程の間の少なくともいずれかに、塩酸や硫酸等を用いて、前駆体、窒素含有炭素材料及び窒素含有炭素多孔体の少なくともいずれか(以下、この段落において、単に「前駆体等」という。)に含まれる遷移金属原子の一部を除去する遷移金属除去工程を有してもよい。
〔用途〕
本実施形態に係る窒素含有炭素多孔体は、燃料電池用電極などに好適に用いることができる。窒素含有炭素多孔体を含む燃料電池用電極は、高い酸素還元性を有する。窒素含有炭素多孔体を用いて、酸素還元電極、あるいは燃料電池などを得る方法は、従来知られている酸素還元触媒からの酸素還元電極、燃料電池等の製造方法において、酸素還元触媒を窒素含有炭素多孔体に代えればよい。そのような製造方法は特に限定されず、一般的な固体高分子形燃料電池の作製方法であってもよい(例えば、特開2007−207662号公報参照)。
以下に実施例等を挙げて本実施形態をさらに詳細に説明するが、これらは例示的なものであり、本発明は以下の実施例に限定されるものではない。当業者は、以下に示す実施例に様々な変更を加えて本発明として実施することができ、かかる変更は本発明の範囲に包含される。
実施例における分析方法は以下のとおりとした。
<分析方法>
(電気化学測定)
実施例及び比較例で用いた、電極作製法及び回転電極法によるリニアスイープボルタンメトリーの測定方法(日厚計測製の回転リングディスク電極装置「RRDE−1」を使用。)を以下に示す。
まず、バイアル瓶に、実施例又は比較例で作製した窒素含有炭素多孔体5mgを秤取し、そこに、ガラスビーズをスパチュラで1杯、5質量%ナフィオン(商品名)分散液(シグマアルドリッチジャパン製)を50μL、並びにイオン交換水及びエタノールをそれぞれ150μLずつ添加し、それらの混合物に20分間超音波を照射してスラリーを作製した。このスラリーを4μL秤取し、回転電極のガラス状炭素(面積:0.2828cm2)に塗布し、飽和水蒸気下で乾燥した。乾燥後の回転電極を作用極とし、可逆水素電極(RHE)を参照極として、炭素電極を対極とした。0.5M硫酸を電解液とし、その電解液に酸素を30分間バブリングした後、掃引速度5mV/s、回転速度1500rpmで1.1Vから0Vまで掃引して電気化学測定を行った。
(平均粒子径測定)
粒子径は日機装株式会社製の粒度分布測定装置(型番:MT3300)で測定し、平均粒子径として体積平均粒子径を採用した。
(アンモニア量分析)
炉の出口ガス1リットルを注射器にて採取し、0.2規定の硫酸水溶液300ccに吸収させ、0.01規定の水酸化ナトリウム水溶液で滴定し、pH7になるよう中和し、消費した硫酸量からアンモニア量を求めた。なお、アンモニア分解率f2及びアンモニア分解速度k2を求めるためのアンモニア量は、以下のようにして求めた平均値を採用した。すなわち、アンモニア含有ガス雰囲気下での熱処理の時間を、昇温の際の最高温度より50℃低い温度の時点から、降温の際の最高温度より50℃低い温度の時点までの時間とし、その熱処理の時間(10割)に対して、熱処理開始から3〜4割経過した時点、5〜6割経過した時点、7〜8割経過した時点で、炉の出口ガスをそれぞれ採取し、それらのガスを分析して求めたアンモニア量の相加平均の値を、平均値として求めた。一方、アンモニア分解率f1及びアンモニア分解速度k1を求める場合、炉の出口ガスにおいて、アンモニア分解率の変化が少ない。そこで、炉内をアンモニア含有ガスで置換し、炉内温度が安定してから10分経過した時点、処理時間の中間時点、及び降温開始5分前の時点の合計3回でガスを採取して求めたアンモニア量の平均値を用いた。
(アンモニア分解速度の算出)
上記のアンモニア量から、アンモニア分解率(アンモニア分解率f1及びf2)を下記式に基づいて算出した。
アンモニア分解率%=((A−B)/(1.5A×0.01B+A))×100
ここで、炉に供給するアンモニア含有ガスにおけるアンモニアの濃度をAモル%、炉の出口のガスにおけるアンモニアの濃度をBモル%とする。また、アンモニア分解速度k1及びk2は、アンモニア分解率f1及びf2、並びにt(炉内の温度が、昇温の際の最高温度より50℃低い温度の時点から、降温の際の最高温度より50℃低い温度の時点までの時間)から、上記式(1a)、(1b)より求めた。
[実施例1]
<前駆体調製工程>
0.5Lのナス型フラスコにジアミノマレオニトリル(東京化成社製)2.0g、フェノール樹脂(群栄化学工業製、製品名「レジトップPSK−2320」)4.0g、塩化鉄(II)0.041g及びメタノール200gを加え、室温で12時間撹拌した。その後、50℃の水浴中にて、ロータリーエバポレーターを用いて溶媒を除去し、真空乾燥機にて80℃で2時間乾燥させた。乾燥後の固形物をメノウ乳鉢で粉砕し、粉末状の前駆体5.5gを得た。
<熱処理第一工程>
前駆体調製工程で得られた前駆体3gを、幅25mm、深さ10mm、長さ70mmの石英ボートに載置し、石英ボートごと、富士理化学工業株式会社販売の東ソー・クォーツ社製透明石英ガラス管#43を使用した内径45mm、長さ600mmの石英製管状炉に収容した。そして、その管状炉において、1.2NL/minの窒素ガス流通下、600℃で5時間の熱処理を施した。窒素ガスは、上記石英製管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から100mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物を、直径10mmφの窒化炭素製ボールを収容した遊星型ボールミル(フリッチュ製、製品名「Pulverisette−7」を使用)内に投入し、90分間乾式粉砕した。粉砕された炭化物を、目開き106μmの篩に通過させた後、水/エタノール=1/1(体積比)混合液と直径0.5mmφのジルコニア製ボールとを収容した遊星型ボールミル内に投入して、90分間湿式粉砕し、平均粒子径0.35μmに調整した。
湿式粉砕後の炭化物1.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥して、窒素含有炭素材料を得た。
<アンモニア分解率f1の測定>
窒素含有炭素材料を炉内に収容しない他は下記に示すアンモニア分解率f2の測定と同様の炉内環境にして、アンモニア量を測定して、アンモニア分解率f1(「CAC無NH3分解率」ともいう。)を算出した。なお、実施例1以外の実施例・比較例においても、それぞれのアンモニア分解率f2の測定と同様の炉内環境にして、アンモニア量を測定して、アンモニア分解率f1を算出した。
<熱処理第二工程>
乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し、上記と同じ管状炉に収容し、0.1NL/minのアンモニアガス流通下、800℃で1時間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
なお、石英ボートの両端と中央の3か所の温度を直径1.6mmの白金ロジウム熱電対3本で測定し、その相加平均値を管状炉内の温度として用い、熱電対は、ガスが直接熱電対に触れないように、外径4mm、内径2mmの石英管で被覆した(以下、実施例2、3及び6〜8、並びに比較例1〜6において同様)。
冷却後の炭化物0.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
<アンモニア分解率f2の測定>
上記の熱処理第二工程において、ガスの流通方向の石英ボート直後の位置から、石英管を介して炉内のガスの一部を採取し、アンモニア量を測定して、アンモニア分解率f2(「CAC有NH3分解率」ともいう。)を算出した(以下、実施例2、3及び6〜8、並びに比較例1〜6において同様)。
[実施例2]
実施例1と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。次に、上述のようにしてアンモニア分解率f1を測定した。次いで、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し上記と同じ管状炉に収容し、5NL/minのアンモニアガス流通下、1000℃で24分間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.4gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[実施例3]
実施例1と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。次に、上述のようにしてアンモニア分解率f1を測定した。次いで、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し、上記と同じ管状炉に収容し、2.5NL/minのアンモニアガス流通下、1100℃で12分間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.4gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[実施例4]
実施例1と同様の方法で得た前駆体3gを、熱処理第一工程において、幅26mm、深さ14mm、長さ90mmの高アルミナセラミックス磁器燃焼ボート(形式997−CB−3B)に載置し、高アルミナセラミックス磁器燃焼ボートごと、株式会社ヒートテック社製のアルミナ炉心管(型番:SSA−S、内径42mm、長さ600mm)からなる管状炉に収容した。そして、その管状炉において、1.2NL/minの窒素ガス流通下、600℃で5時間の熱処理を施した。窒素ガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から100mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物を、実施例1と同様にして、乾式粉砕、湿式粉砕し、平均粒子径0.35μmに調整した。湿式粉砕後の炭化物1.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥して、窒素含有炭素材料を得た。
上述のようにしてアンモニア分解率f1を測定した後、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを、幅26mm、深さ14mm、長さ90mmの高アルミナセラミックス磁器燃焼ボート(形式997−CB−3B)に載置し、高アルミナセラミックス磁器燃焼ボードごと、株式会社ヒートテック社製のアルミナ炉心管(型番:SSA−S、内径42mm、長さ600mm)からなる管状炉に収容した。そして、その管状炉において、6NL/minのアンモニアガス流通下、900℃で36分間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
なお、高アルミナセラミックス磁器燃焼ボートの両端と中央の3か所の温度を直径1.6mmの白金ロジウム熱電対3本で測定し、その相加平均値を管状炉内の温度として用い、熱電対は、アンモニアガスが直接熱電対に触れないように、外径4mm、内径2mmの石英管で被覆した(以下、実施例5及び9において同様)。
冷却後の炭化物0.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
<アンモニア分解率f2の測定>
上記の熱処理第二工程において、ガスの流通方向の高アルミナセラミックス磁器燃焼ボート直後の位置から、石英管を介して炉内のガスの一部を採取し、アンモニア量を測定して、アンモニア分解率f2を算出した(以下、実施例5及び9において同様)。
[実施例5]
<熱処理工程>
実施例4と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。上述のようにしてアンモニア分解率f1を測定した後、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを、幅26mm、深さ40mm、長さ90mmの高アルミナセラミックス磁器燃焼ボート(形式997−CB−3B)に載置し、高アルミナセラミックス磁器燃焼ボードごと、株式会社ヒートテック社製のアルミナ炉心管(型番:SSA−S、内径42mm、長さ600mm)からなる管状炉に収容した。そして、その管状炉において、6NL/minのアンモニアガス流通下、900℃で36分間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[実施例6]
実施例1と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。次に、上述のようにしてアンモニア分解率f1を測定した。次いで、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し上記と同じ管状炉に収容し、10NL/minのアンモニアガスと窒素ガスとの混合ガス(アンモニアガス/窒素ガス=1/1(体積比))流通下、1000℃で24分間の熱処理を施した。混合ガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.4gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[実施例7]
実施例1と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。次に、上述のようにしてアンモニア分解率f1を測定した。次いで、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し上記と同じ管状炉に収容し、10NL/minのアンモニアガスとアルゴンガスとの混合ガス(アンモニアガス/アルゴンガス=1/1(体積比))流通下、1000℃で24分間の熱処理を施した。混合ガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.4gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[実施例8]
実施例1と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。次に、上述のようにしてアンモニア分解率f1を測定した。次いで、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し上記と同じ管状炉に収容し、10NL/minのアンモニアガスとヘリウムガスとの混合ガス(アンモニアガス/ヘリウムガス=1/1(体積比))流通下、1000℃で24分間の熱処理を施した。混合ガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.4gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[実施例9]
<熱処理工程>
実施例4と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。上述のようにしてアンモニア分解率f1を測定した後、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを、幅26mm、深さ14mm、長さ90mmの高アルミナセラミックス磁器燃焼ボート(形式997−CB−3B)に載置し、高アルミナセラミックス磁器燃焼ボードごと、株式会社ニッカトー製のセラミックスチューブ(HB番号11、内径42mm、長さ600mm)からなる管状炉に収容した。そして、その管状炉において、6NL/minのアンモニアガス流通下、950℃で24分間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[実施例10]
前駆体調製工程において、5Lのナス型フラスコにジアミノマレオニトリル(東京化成社製)20g、フェノール樹脂(群栄化学工業製、製品名「レジトップPSK−2320」)40g、塩化鉄(II)0.41g及びメタノール2kgを加え、室温で12時間撹拌した。その後、50℃の水浴中にて、ロータリーエバポレーターを用いて溶媒を除去し、真空乾燥機にて80℃で2時間乾燥させた。乾燥後の固形物をメノウ乳鉢で粉砕し、粉末状の前駆体56gを得た。
次に、熱処理第一工程において、前駆体50gを、深さ25mm、内径145mmのムライト製平底MM印蒸発皿(品番:FB−6)に載置し、蒸発皿ごと、株式会社モトヤマ製の電気炉(型番:NHM2035、炉内容量:14L、炉心管:透明石英管)に収容した。そして、その電気炉において、25NL/minの窒素ガス流通下、600℃で5時間の熱処理を施した。窒素ガスは、上記電気炉の側壁から挿入した外径12mm、内径8mmの石英製管であって、その供給口が、上記側壁から10mm内側に位置した石英製管から上記供給口を経由して、電気炉内に供給した。
冷却後の炭化物を、実施例1と同様にして、乾式粉砕、湿式粉砕し、平均粒子径0.35μmに調整した。湿式粉砕後の炭化物1.5gを、36質量%の濃塩酸500mL中に入れ、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥して、窒素含有炭素材料を得た。
上述のようにしてアンモニア分解率f1を測定した後、熱処理第二工程において、乾燥後の窒素含有炭素材料20gを、深さ25mm、内径145mmのムライト製平底MM印蒸発皿(品番:FB−6)に載置し、株式会社モトヤマ製の電気炉(型番:NHM2035、炉内容量:14L、炉心管:透明石英管)に収容した。そして、その電気炉において、25NL/minのアンモニアガス流通下、900℃で36分間の熱処理を施した。アンモニアガスは、上記電気炉の側壁から挿入した外径12mm、内径8mmの石英製管であって、その供給口が、上記側壁から10mm内側に位置した石英製管から上記供給口を経由して、電気炉内に供給した。
冷却後の炭化物11g中の1.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
<アンモニア分解率f2の測定>
上記の熱処理第二工程において、ガスの流通方向の蒸発皿直後の位置から、石英管を介して炉内のガスの一部を採取し、アンモニア量を測定して、アンモニア分解率f2を算出した。
[実施例11]
前駆体調製工程において、50Lの容器にジアミノマレオニトリル(東京化成社製)220g、フェノール樹脂(群栄化学工業製、製品名「レジトップPSK−2320」)440g、塩化鉄(II)4.51g及びメタノール22kgを加え、室温で12時間撹拌した。その後、50℃の水浴中にて、ロータリーエバポレーターを用いて溶媒を除去し、真空乾燥機にて80℃で2時間乾燥させた。乾燥後の固形物をメノウ乳鉢で粉砕し、粉末状の前駆体644gを得た。
次に、内寸法20cm×15cm、深さ2.5cmの石英製四角皿の四隅に、直径6mmの石英柱を配置し、その石英柱の上に上記と同じ石英製四角皿を、下側の四角皿の上端と上側の四角皿の底面との間隔が4cmになるように配置した。同様にして、その石英製四角皿の上方に同じ石英製四角皿を更に配置して、3段皿を準備した。熱処理第一工程において、前駆体600gを、その3段皿のそれぞれの石英製四角皿に載置し、株式会社モトヤマ製の電気炉(型番:NHM2025、炉内容量:10L、炉心管:透明石英管)に収容した。そして、25NL/minの窒素ガス流通下、600℃で5時間の熱処理を施した。窒素ガスは、上記電気炉の側壁から挿入した外径12mm、内径8mmの石英製管であって、その供給口が、上記側壁から10mm内側に位置した石英製管から上記供給口を経由して、電気炉内に供給した。
冷却後の炭化物を、実施例1と同様にして、乾式粉砕、湿式粉砕し、平均粒子径0.35μmに調整した。湿式粉砕後の炭化物1.5gを、36質量%の濃塩酸500mL中に入れ、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥して、窒素含有炭素材料を得た。
上述のようにしてアンモニア分解率f1を測定した後、熱処理第二工程において、乾燥後の窒素含有炭素材料300gを、上記と同様の3段皿のそれぞれの石英製四角皿に載置し、株式会社モトヤマ製の電気炉(型番:NHM2025、炉内容量:10L、炉心管:透明石英管)に収容した。そして、その電気炉において、25NL/minのアンモニアガス流通下、900℃で36分間の熱処理を施した。アンモニアガスは、上記電気炉の側壁から挿入した外径12mm、内径8mmの石英製管であって、その供給口が、上記側壁から10mm内側に位置した石英製管から上記供給口を経由して、電気炉内に供給した。
冷却後の炭化物153g中の1.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
<アンモニア分解率f2の測定>
上記の熱処理第二工程において、ガスの流通方向の四角皿直後の位置から、石英管を介して炉内のガスの一部を採取し、アンモニア量を測定して、アンモニア分解率f2を算出した(以下、実施例12及び比較例7において同様)。
[実施例12]
実施例11と同様にして前駆体600gを得た。次に、内寸法30cm×15cm、深さ2.5cmの石英製四角皿の四隅に、直径6mmの石英柱を配置し、その石英柱の上に上記と同じ石英製四角皿を、下側の四角皿の上端と上側の四角皿の底面との間隔が4cmになるように配置した。同様にして、その石英製四角皿の上方に同じ石英製四角皿を更に配置して、3段皿を準備した。熱処理第一工程において、前駆体600gを、その3段皿のそれぞれの石英製四角皿に載置し、株式会社モトヤマ製の電気炉(型番:NHM2035、炉内容量:14L、炉心管:透明石英管)に収容した。そして、25NL/minの窒素ガス流通下、600℃で5時間の熱処理を施した。窒素ガスは、上記電気炉の側壁から挿入した外径12mm、内径8mmの石英製管であって、その供給口が、上記側壁から10mm内側に位置した石英製管から上記供給口を経由して、電気炉内に供給した。
冷却後の炭化物を、実施例1と同様にして、乾式粉砕、湿式粉砕し、平均粒子径0.35μmに調整した。湿式粉砕後の炭化物1.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥して、窒素含有炭素材料を得た。
上述のようにしてアンモニア分解率f1を測定した後、熱処理第二工程において、乾燥後の窒素含有炭素材料300gを、上記と同様の3段皿のそれぞれの石英製四角皿に載置し、株式会社モトヤマ製の電気炉(型番:NHM2035、炉内容量:14L、炉心管:透明石英管)に収容した。そして、その電気炉において、25NL/minのアンモニアガス流通下、900℃で36分間の熱処理を施した。アンモニアガスは、上記電気炉の側壁から挿入した外径12mm、内径8mmの石英製管であって、その供給口が、上記側壁から10mm内側に位置した石英製管から上記供給口を経由して、電気炉内に供給した。
冷却後の炭化物149g中の1.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[実施例13]
実施例11と同様の方法で得た前駆体600gを、熱処理第一工程において、容量25Lのインコネル(登録商標)製試料ケース内に配置し、試料ケースごと、高砂工業株式会社製バッチ式ロータリーキルン内に収容した、そして、そのロータリーキルンを2rpmで回転させながら、25NL/minの窒素ガス流通下、600℃で5時間の熱処理を施した。窒素ガスは、上記ロータリーキルンの端面から挿入した外径12mm、内径8mmの石英製管であって、その供給口が、上記端面から10mm内側に位置した石英製管から上記供給口を経由して、ロータリーキルン内に供給した。
冷却後の炭化物を、実施例1と同様にして、乾式粉砕、湿式粉砕し、平均粒子径0.35μmに調整した。湿式粉砕後の炭化物1.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥して、窒素含有炭素材料を得た。
上述のようにしてアンモニア分解率f1を測定した後、熱処理第二工程において、乾燥後の窒素含有炭素材料300gを、容量25Lのインコネル(登録商標)製試料ケース内に配置し、試料ケースごと、高砂工業株式会社製バッチ式ロータリーキルン内に収容した。そして、そのロータリーキルンを2rpmで回転させながら、25NL/minのアンモニアガス流通下、900℃で36分間の熱処理を施した。アンモニアガスは、上記ロータリーキルンの端面から挿入した外径12mm、内径8mmの石英製管であって、その供給口が、上記側壁から10mm内側に位置した石英製管から上記供給口を経由して、ロータリーキルン内に供給した。
冷却後の炭化物146g中の1.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
<アンモニア分解率f2の測定>
上記の熱処理第二工程において、ガスの流通方向の試料ケース直後の位置から、石英管を介して炉内のガスの一部を採取し、アンモニア量を測定して、アンモニア分解率f2を算出した。
[比較例1]
実施例1と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。次に、上述のようにしてアンモニア分解率f1を測定した。次いで、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し上記と同じ管状炉に収容し、0.3NL/minのアンモニアガス流通下、1100℃で24分間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.5gを、36質量%の濃塩酸500mL中に入れ、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[比較例2]
実施例1と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。次に、上述のようにしてアンモニア分解率f1を測定した。次いで、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し上記と同じ管状炉に収容し、0.1NL/minのアンモニアガス流通下、750℃で1時間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[比較例3]
実施例1と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。次に、上述のようにしてアンモニア分解率f1を測定した。次いで、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し上記と同じ管状炉に収容し、0.1NL/minのアンモニアガス流通下、1150℃で12分間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.4gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[比較例4]
窒素ガスを、石英製管状炉の端面から挿入した外径8mm、内径6mmのSUS316製配管であって、その供給口が、上記端面から100mm内側に位置したSUS316製配管から上記供給口を経由して、管状炉内に供給した他は、実施例1と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。次に、上述のようにしてアンモニア分解率f1を測定した。次いで、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し上記と同じ管状炉に収容し、2.5NL/minのアンモニアガス流通下、1100℃で12分間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmのSUS316製配管であって、その供給口が、上記端面から150mm内側に位置したSUS316製配管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.4gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[比較例5]
実施例1と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。次に、上述のようにしてアンモニア分解率f1を測定した。次いで、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し、SUS316TP−SC−BAの2インチチューブ(内径45mm、長さ600mm)からなる管状炉に収容し、5NL/minのアンモニアガス流通下、900℃で36分間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[比較例6]
実施例1と同様にして前駆体調製工程及び熱処理第一工程を経て、窒素含有炭素材料を得た。次に、上述のようにしてアンモニア分解率f1を測定した。次いで、熱処理第二工程において、乾燥後の窒素含有炭素材料1gを幅15mm、深さ10mm、長さ70mmの石英ボートに載置し、SUS316TP−SC−BAの2インチチューブ(内径45mm、長さ600mm)からなる管状炉に収容し、5NL/minのアンモニアガス流通下、950℃で36分間の熱処理を施した。アンモニアガスは、上記管状炉の端面から挿入した外径8mm、内径6mmの石英製管であって、その供給口が、上記端面から150mm内側に位置した石英製管から上記供給口を経由して、管状炉内に供給した。
冷却後の炭化物0.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
[比較例7]
実施例11と同様にして前駆体600gを得た。次に、内寸法30cm×15cm、深さ2.5cmの石英製四角皿の四隅に、直径6mmの石英柱を配置し、その石英柱の上に上記と同じ石英製四角皿を、下側の四角皿の上端と上側の四角皿の底面との間隔が4cmになるように配置した。同様にして、その石英製四角皿の上方に同じ石英製四角皿を更に配置して、3段皿を準備した。熱処理第一工程において、前駆体600gを、その3段皿のそれぞれの石英製四角皿に載置し、株式会社モトヤマ製の電気炉(型番:NHM2035、炉内容量:14L、炉心管:透明石英管)に収容した。そして、25NL/minの窒素ガス流通下、600℃で5時間の熱処理を施した。窒素ガスは、上記電気炉の側壁から挿入した外径12mm、内径8mmの石英製管であって、その供給口が、上記側壁から10mm内側に位置した石英製管から上記供給口を経由して、電気炉内に供給した。
冷却後の炭化物を、実施例1と同様にして、乾式粉砕、湿式粉砕し、平均粒子径0.35μmに調整した。湿式粉砕後の炭化物1.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥して、窒素含有炭素材料を得た。
上述のようにしてアンモニア分解率f1を測定した後、熱処理第二工程において、乾燥後の窒素含有炭素材料300gを、上記と同様の3段皿のそれぞれの石英製四角皿に載置し、株式会社モトヤマ製の電気炉(型番:NHM2035、炉内容量:14L、炉心管:透明石英管)に収容した。そして、その電気炉において、5NL/minのアンモニアガス流通下、1000℃で24分間の熱処理を施した。アンモニアガスは、上記電気炉の側壁から挿入した外径12mm、内径8mmの石英製管であって、その供給口が、上記側壁から10mm内側に位置した石英製管から上記供給口を経由して、電気炉内に供給した。
冷却後の炭化物149g中の1.5gを、36質量%の濃塩酸500mL中に投入し、常温で4時間撹拌し、炭化物表面の鉄を溶解除去した。これをメンブレンフィルターで濾過し、イオン交換水で洗浄した後、80℃において真空乾燥し、窒素含有炭素多孔体を得た。得られた窒素含有炭素多孔体について、電気化学測定を実施した。結果を表1に示す。
Figure 0006668149
表1に示す結果から、実施例1〜13は、酸素還元活性が高く、比較例1〜7は、酸素還元活性が低いことがわかった。
本発明の製造方法により得られた窒素含有炭素多孔体は、燃料電池用電極の触媒として産業上の利用可能性を有する。

Claims (6)

  1. 炭素原料、窒素原料及び遷移金属原料を含む前駆体を、不活性ガス雰囲気下又は減圧下で熱処理して窒素含有炭素材料を得る熱処理第一工程と、該窒素含有炭素材料を炉内においてアンモニア含有ガス雰囲気下で熱処理して窒素含有炭素多孔体を得る熱処理第二工程とを有する窒素含有炭素多孔体の製造方法において、
    前記熱処理第二工程における炉内環境は、下記(A)、(B)及び(C)の条件を全て満たすものである、窒素含有炭素多孔体の製造方法であって、
    (A)前記炉内の温度が800℃以上1100℃以下、
    (B)前記炉の出口におけるアンモニア分解率f2が5%以上、
    (C)前記炉内に前記窒素含有炭素材料が存在しない場合の前記炉の出口におけるアンモニア分解率f1が80%以下
    前記アンモニア分解率f1から算出したアンモニア分解速度をk1、前記アンモニア分解率f2から算出したアンモニア分解速度をk2(ここで、k1及びk2の単位は互いに同一である。)とした場合の、下記式(1)により算出されるk2とk1の比率k2/k1が1.1以上である、製造方法。
    k2/k1=(ln(1/(1−(f2/100))))/(ln(1/(1−(f1/100)))) (1)
  2. 前記熱処理第二工程における前記アンモニア含有ガスが不活性ガスを含む、請求項1に記載の窒素含有炭素多孔体の製造方法。
  3. 前記炉内において、800℃以上で前記アンモニア含有ガスが接触する部分の材質に、石英、アルミナ、及びセラミックからなる群より選択される少なくとも1種の材料を用いる、請求項1又は2に記載の窒素含有炭素多孔体の製造方法。
  4. 前記炉内において、800℃以上で前記アンモニア含有ガスが接触する部分の材質に、950℃での一次反応式で計算したアンモニアガスの分解活性が石英の3倍以下となる材料を用いる、請求項1又は2に記載の窒素含有炭素多孔体の製造方法。
  5. 前記炉内において、前記800℃以上でアンモニア含有ガスが接触する部分が、前記アンモニア含有ガスの供給管である、請求項3又は4に記載の窒素含有炭素多孔体の製造方法。
  6. 前記炉の容量が14L以上である、請求項1〜のいずれか1項に記載の窒素含有炭素多孔体の製造方法。
JP2016077473A 2016-04-07 2016-04-07 窒素含有炭素多孔体の製造方法 Expired - Fee Related JP6668149B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016077473A JP6668149B2 (ja) 2016-04-07 2016-04-07 窒素含有炭素多孔体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016077473A JP6668149B2 (ja) 2016-04-07 2016-04-07 窒素含有炭素多孔体の製造方法

Publications (2)

Publication Number Publication Date
JP2017186207A JP2017186207A (ja) 2017-10-12
JP6668149B2 true JP6668149B2 (ja) 2020-03-18

Family

ID=60045320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016077473A Expired - Fee Related JP6668149B2 (ja) 2016-04-07 2016-04-07 窒素含有炭素多孔体の製造方法

Country Status (1)

Country Link
JP (1) JP6668149B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102610881B1 (ko) * 2021-09-02 2023-12-07 재단법인 한국탄소산업진흥원 산소 관능기가 제어된 다공성 탄소 및 이의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725196B2 (ja) * 1995-03-01 2005-12-07 日本エンバイロケミカルズ株式会社 窒素含有分子篩活性炭、その製造方法及び用途
JP5301266B2 (ja) * 2008-12-26 2013-09-25 旭化成ケミカルズ株式会社 アズルミン酸炭化物及びその製造方法
JP5777449B2 (ja) * 2011-08-26 2015-09-09 旭化成ケミカルズ株式会社 窒素含有炭素材料、その製造方法及び燃料電池用電極
JP5893305B2 (ja) * 2011-09-09 2016-03-23 国立大学法人東京工業大学 固体高分子形燃料電池用電極触媒およびその製造方法
JP6257910B2 (ja) * 2013-04-02 2018-01-10 旭化成株式会社 窒素含有炭素材料及びその製造方法、並びに燃料電池用電極
JP6243253B2 (ja) * 2014-02-21 2017-12-06 旭化成株式会社 窒素含有炭素材料及びその製造方法、並びに燃料電池用電極
JP6320078B2 (ja) * 2014-02-21 2018-05-09 旭化成株式会社 窒素含有炭素材料及びその製造方法、並びに燃料電池用電極

Also Published As

Publication number Publication date
JP2017186207A (ja) 2017-10-12

Similar Documents

Publication Publication Date Title
Kang et al. A simple synthesis method for nano-metal catalyst supported on mesoporous carbon: the solution plasma process
Yu et al. A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity
JP5331011B2 (ja) 触媒用担体、触媒およびその製造方法
Zhang et al. An efficient symmetric electrolyzer based on bifunctional perovskite catalyst for ammonia electrolysis
JP6198930B2 (ja) 窒素含有炭素材料及びその製造方法、並びに、スラリー、インク、及び燃料電池用電極
Wu et al. Space-confined pyrolysis for the fabrication of Fe/N/C nanoparticles as a high performance oxygen reduction reaction electrocatalyst
JP6257910B2 (ja) 窒素含有炭素材料及びその製造方法、並びに燃料電池用電極
CN110639593A (zh) 一种硼、氮掺杂碳多孔纳米管包覆铂合金纳米颗粒材料催化剂及其制备方法和应用
JP6684049B2 (ja) 窒素含有炭素材料及びその製造方法、並びに燃料電池用電極
CN103084194A (zh) 一种碳化钨/石墨烯纳米复合材料及制备方法
Zhang et al. Simple synthesis of bimetallic alloyed Pd–Au nanochain networks supported on reduced graphene oxide for enhanced oxygen reduction reaction
Feng et al. The oxygen reduction reaction of two electron transfer of nitrogen-doped carbon in the electro-Fenton system
Koyuturk et al. A simple decagram-scale synthesis of an atomically dispersed, hierarchically porous Fe–N–C catalyst for acidic ORR
Liao et al. Electrocatalyst derived from abundant biomass and its excellent activity for in situ H2O2 production
Kim et al. Electrochemical catalytic activity for oxygen reduction reaction of nitrogen-doped carbon nanofibers
JP6668149B2 (ja) 窒素含有炭素多孔体の製造方法
JP6320078B2 (ja) 窒素含有炭素材料及びその製造方法、並びに燃料電池用電極
Zhang et al. Nitrogen reduction utilizing solvated electrons produced by thermal excitation of trapped electrons in reduced titanium oxide
Han et al. Highly utilized active sites on Pt@ Cu/C for ethanol electrocatalytic oxidation in alkali metal hydroxide solutions
Karuppusamy et al. Scheelite type barium tungstate nanoparticles decorated on graphitic carbon nitride nanocomposite for the detection of diphenylamine in apple juice
Liu et al. Enhanced visible light photocatalytic water-splitting activity over LaVO 4/gC 3 N 4 with oxygen defects
Luo et al. Relay Catalysis of Fe and Co with Multi‐Active Sites for Specialized Division of Labor in Electrocatalytic Nitrate Reduction Reaction
Su et al. Investigation of the durability of a poly-p-phenylenediamine/carbon black composite for the oxygen reduction reaction
Pang et al. Unique Sillén-structured multimetal high entropy oxyhalide PbxCd1-xBiO2Br with enhanced photocatalytic activity
JP6243253B2 (ja) 窒素含有炭素材料及びその製造方法、並びに燃料電池用電極

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200226

R150 Certificate of patent or registration of utility model

Ref document number: 6668149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees