JP6666176B2 - 気化性物質を系外排除できる水処理装置及び方法 - Google Patents

気化性物質を系外排除できる水処理装置及び方法 Download PDF

Info

Publication number
JP6666176B2
JP6666176B2 JP2016050633A JP2016050633A JP6666176B2 JP 6666176 B2 JP6666176 B2 JP 6666176B2 JP 2016050633 A JP2016050633 A JP 2016050633A JP 2016050633 A JP2016050633 A JP 2016050633A JP 6666176 B2 JP6666176 B2 JP 6666176B2
Authority
JP
Japan
Prior art keywords
water
treated
nose
tank
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016050633A
Other languages
English (en)
Other versions
JP2017164670A (ja
Inventor
伸夫 古野
伸夫 古野
Original Assignee
伸夫 古野
伸夫 古野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伸夫 古野, 伸夫 古野 filed Critical 伸夫 古野
Priority to JP2016050633A priority Critical patent/JP6666176B2/ja
Publication of JP2017164670A publication Critical patent/JP2017164670A/ja
Application granted granted Critical
Publication of JP6666176B2 publication Critical patent/JP6666176B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Physical Water Treatments (AREA)
  • Filtration Of Liquid (AREA)

Description

本発明は各種貯水槽、タンク、池、湖沼、河川など、あるいは各種の化学反応槽(特に分散、凝集等の界面化学反応などが行われる貯水域)(以下これらを合せて単に貯水槽または貯水域と言い、ここに貯留されている水を単に被処理水と言う)の表層部〜底層部に至る全長から選ばれる任意領域を対象とし、被処理水中の微細浮遊物(気化性物質を含む)、或いは沈降・堆積物への付着物などに由来して懸濁状態となっている被処理水を処理する為の装置と方法に関するものである。しかも貯水域における底層をも含めた全域に対して高い処理効果を発揮することができ、且つこの懸濁状態が気化性物質を含むことで懸濁度を高めている場合において、この気化性物質を系外に排除することによって、被処理水の清澄性を高度に高めることができる装置及び方法に関するものである。
本発明は上記した個々の独立した貯水域対策としての適用に限定されず、ダムを含む総合的な治山・治水設備、上・中・下水道のインフラ設備、諸産業、鉱工業、農業、水産養殖、水耕栽培、発酵醸造等における多様な貯水設備、化学反応槽への適用が期待される。
近年豊かな里山から豊穣の里海に至る水循環に関心が高まっており、長年に亘る膨大な水質検査事例が蓄積されているが、その多くは採取し易い表層水の検査を中心として論じられるに留まり、底層域を含む水辺全体の総合対策に寄与できるものは少ない。また水質の測定評価に際して気化性物質に着眼して清浄度を管理する事例に関しては一層少なく、そのため水質についての規制項目や規制目標を含めて、より積極的な管理・制御を展開するための技術的確立が強く求められている〔例えば、水環境の保全と再生 西田修三 生産と技術 第68巻第1号42(2016)「地域の水環境の保全と再生」参照〕。
身近な卓上の観賞魚水槽を例にとって説明する。水質の悪化が進んで、例えば透視度が低下したときにはこれを清浄化することが望まれる。そこで予め、或いはその時に及んでストレーナ、スクリーン、フィルターなどといった濾過手段を適用するのが一般的である。この場合従来から主として圧力濾過方式が採用されており、様々な浮遊物や濁質を濾過面で捕捉している。従って浮遊物や濁質による濾過面の目詰まりを生じるのが必至であり、目詰りの進行に伴って圧力損失による運転動力費が嵩み、濾過効率が低下する一方であるにもかかわらず、目先の対策に留まって根本的な代案が見出せていない。また目詰まりを解消する為の洗浄作業や損耗部材の補充が行われ、時には全量の水替え清掃を行う必要に遭遇する。
他方広大な公共の自然水域では、そもそも水域の全量を抜くことは至難であり、しかもプールの水替えや所謂“どぶ浚い”という作業は相当の長期間を置いて行われるのが関の山であり、前回作業と今回作業の間は汚染の進行に手をこまねいているのが実情である。その為“どぶ浚い”もしくは“カイボリ”と呼ばれる作業はイベント的意義に止まることが多い。しかもこの作業は大きな溜め池、湖沼、ダム湖、内海に対しては到底適用できない。またゲリラ豪雨に対応する主旨で都市の地下に設けられる巨大な地下水槽の場合は、流入土砂が堆積固化しないように速やかな“どぶ浚い”が求められ、その作業には膨大な費用が嵩むという問題がある。それにもかかわらず代案が示されていないのが現状である。
そのうえ各貯水域には表面積の広/狭、深さの大/小という個体差があり、或いは底部の凹凸乃至傾斜具合によって深層部の汚濁状況が複雑化し、特にヘドロと呼ばれる嫌気性泥液が堆積している深層〜底層に対する濾過分離手段の適用は、著しい目詰まりに遭遇し、濾過材の交換を頻繁に行わなければならないので実質的に不可能とされている。そのため汚水槽や汚濁池などの清浄化に際しては、濾過分離手段の設定位置は水面近傍の比較的清浄な水域に制限され、深層〜底層に及ぶことは勿論、場合によっては中間的な部分ですら、濾過分離の手段の適用に躊躇せざるを得ないというのが実情である。
かかる事情がある故に、清浄化はせいぜい表層近傍で進むのみであり、底層域は淀みが進んで嫌気性になってヘドロ化は進行するにまかせられて、底域の清浄化は期待し得べくもないとして放置されている。費用が潤沢で清浄化の要請が強い場合は、噴水装置や曝気装置、或いは各種の浄化装置がふんだんに設けられるが、設備の設置・維持費用が嵩むにもかかわらず、このような方式でも表層部の清浄化が進む程度に過ぎず、底質改善と全体の透視度の向上は期待できないと諦観されている。
此処で図面を用いて従来技術の概況を説明しておく。図1は左上からの矢印に添って供給される給水(例えば降雨や河川からの流入水等の被処理水)と採水がバランスすることによって一定の水位状態を維持することのできる貯水槽1である。水平状態の越流堰2からは、この水域の上澄水が排出され、貯水容量が一定の水域では、給水量が変動するのを受けて水位と水質が連動変化する。とは言え、管理基準や管理手順などの行き届いている工業施設においてはこの給排水量バランスが適切に調整されて水質が安定しているので格段の課題は顕在化しない。しかし天候の影響を受けやすい合流式下水処理場の沈降分離槽の場合について言うと、給水量が著しく減少する渇水期では前記越流水(または溢流水)の清浄度は比較的高めに推移するが、近年頻発する集中豪雨などによって想定外に大量の給水が起こる場合は、清浄化されていない汚濁状態のままで大量に放出され、濁質の漏えいは止むを得ないこととして黙認されているのが実情である。これらの不具合に鑑み、かつ、我国の公共上下水道技術装置が海外において割高との評価を受けて普及困難であることに鑑み、普及し易い合理的なシステムを提供することを検討した。
1973年施行の瀬戸内海環境保全臨時措置法では、いわゆる負荷の総量規制が行われた。そして下水処理施設が普及増強されるにつれて、放流水の水質浄化が進み、放流水における負荷総量はどんどん減少した。一見歓迎される事象ではあったが、栄養塩類の供給不足、という懸念を伴っていたところ、当該懸念通り、貧栄養化という弊害が顕在化し、水産業への悪影響が顕在化して積極的な対策が求められている〔例えば、平成26年度膜技術を活用した公害防止対策に関する調査報告(平成27年2月27日近畿経済産業局報告)参照〕。
近年に至り、瀬戸内海環境保全特別措置法が立法化され(2015年)、従来の水質規制という視点から、水質の管理・制御という視点への転換が求められるようになった。海域の貧栄養化と富栄養化という両極端現象の課題を解消するためには、下水処理の固液分離方法・装置の抜本的対策が強く求められている。
貯水槽から抜き出される水の水質を、越流法より良好に管理できる固液分離方式(高度処理)として期待されていた浸漬型固液分離手段(図1に示すような濾過分離装置3)を貯水槽1内に配置する技術が比較的小容量の貯水槽を対象にして広く実施されつつある。濾過分離装置3は、それ自体の保守・点検の容易性を勘案すれば貯水槽1の表層近傍に配置することが望まれるが、給水と排水のバランスが長期間に亘って保証されることが困難な貯水槽の場合、つまり時によっては表層近傍に配置した濾過分離装置3が水面下直下になる事態になることが予想される場合は、図1のように深層部に配置せざるを得ない。濾過分離装置3には濾過面4が設けられるところ、濾過効率を高めるために必須とされる高い圧力による濾過分離方式においては、目詰りが必至で、長い目で見たときの濾過効率の面では却ってマイナス面が多い。
この目詰り現象を軽減する趣旨で、図1に示す如く濾過面4を垂直配置にするのが一般的である。一方全く新たな視点から、コンパクトな設計の下で大きい濾過面積を確保できる中空糸膜を利用する膜分離生物化学反応(MBR)を利用する高度処理も展開されている。これらの技術革新に併せて、散気装置や自動洗浄装置等の自動制御面での工夫も施されているが、それら工夫の付加に応じて設備経費や運転経費が嵩み、近年では喫緊の課題として根本的な方式転換が求められるに至っている〔例えば、海域のヘルシープラン(海域の物質循環健全化計画)平成26年3月環境省、参照〕。
再び図1に戻って説明する。5は採水パイプ、6は流量調節バルブである。この下流側には図示しないポンプを設けて強制的な採水を行う場合、或いは同じく図示しない低水位の別の貯水槽を設けて両貯水槽の水が有する水頭圧差によって自然環境下に採水を行う場合がある。なお採水パイプ5は貯水槽内を垂直に立ち上げて表層を超えて採水を行うこともある。ここで「採水」パイプという表現を用いたのは、単に排出するというのではなく、貯水槽から水を取り出して積極的に使う、という状況をイメージしたことに依る。
貯水槽1内に描いた竜巻状の渦流はポンプによる吸引圧を受けて生じる水の流れをやや誇張的に描いたものであって、貯水槽1内に存在する可視的/非可視的の如何を問わない浮遊物や濁質成分などが、この局所的な流れに添って濾過面4に強く吸い込まれることで局所的な目詰まりを起こし、順次これが波及して濾過面全体を閉塞することが観察される。しかも図1のように濾過分離装置3を貯水槽1の底部に配置すると、底部の沈降濁質など(所謂ヘドロ層)による目詰まりも著しいので、長期安定運転が実質的に不可能である。
結局従来の濾過分離装置3は貯水槽などの中間層〜比較的表層近傍に配置すると共に、実体的には濾過面の表面に着脱自在に添設されてそれ自体が透水面を構成する分離手段(例えば布、網状シートなど)を取り出して付着物を掻き落して濁質を除去することでしか清浄化効果が得られていない。また当該配置位置よりも深い槽内の濁質が除去対象とされていないこととも相俟って、貯水槽1内の水の濁度改善効果は大きく期待し得べくもないというのが一般的であった。
そこで採水パイプ5からの採水を別の水域に誘導して何らかの浄化処理を施した上で貯水槽1に戻すようなシステムを組む場合もある。しかしこのようなシステムを採用する場合であっても、濁質を捕捉するための分離手段の清掃や交換は不可避の作業であり、上記したような布、網状シートなどの清掃・交換作業によって濁質の除去効果を得ている点では変わりがない。
図1では、貯水槽1の底域に生成した沈降濃縮泥層を機械的に排出するため、例えばスクリュー式排出機構7を設けるケースを示している。泥液層が淀んで嫌気性になり易く、ヘドロ化することが多い。この場合泥液が貯水槽内に舞い上がって著しい水質悪化を招き、貯水槽内の生物環境を却って悪化させるという問題があった。対症療法的な対策はなされているが、本質的と評価できるほどの対案の提示がみられない。
特開2014−138918号公報 特開2013−078746号公報 特開2012−223763号公報 特開2012−071307号公報 特開2012−45482号公報 特開2010−234331号公報 特開2011−108579号公報 特開2001−49460号公報 特開平11−047662号公報
特許文献1では、多段に設けたシックナー装置への凝集剤添加に工夫を凝らして施設の大型化が余儀なくされる技術である。
特許文献2では、膜ユニットの性能回復のための洗浄を効果的に行う技術が提案されている。しかしユニットの目詰まりを抜本的に解消するものではなく、却って複雑さを伴う点で電力使用の軽減に寄与しないと考えられる。
特許文献3は、浸漬型分離装置に複数個のカートリッジを使用するものであるが、目詰まりに至る時間が設置個数分に応じて短縮するメリットに止まり、且つ複雑な回路構成を必要とするので、電力使用量の軽減効果を得ることができないのではないか、との恐れがある。
特許文献4では、中空糸膜を使う場合における目詰まり防止のための散気装置を工夫する技術が示されているが、分離膜モジュールにおける中空糸膜の管径が数ミリと小さいため、送水の抵抗に基づく圧力損失に伴う電力消費への着眼は無く、中空糸膜利用の限界を露呈するものである。
特許文献5では、CODの低減を目指してオゾンガスの通気とその後処理という複雑な工程が提起されているが、CODを高める原因となる還元性気化物質を排除できるものではない点で、必らずしも合理的とは言い難い。
特許文献6では、目詰まり防止の為の簡単な構成が謳われているが、圧力濾過と目詰り現象の因果関係への配慮が足らず、目詰まりの解消にはならない。
特許文献7では、従来の平均的中空糸膜より太いもの、例えば管径3.6〜10mmという太い中空糸膜が実現できたとされているが、圧力濾過方式である点に変わりがなく、目詰りの根本的防止には寄与できない。
特許文献8では、リン酸塩化成処理で発生するスラッジ液の濃縮に限外濾過を用いることを特徴としているが、セットリングタンクの不備を補う、という域を出るものではない。
特許文献9は、沈降性スラッジを巻き込まないような上昇流路を設定したもので、考え方としての合理性は高いが、採水条件の定量的な設計が示されていない。
本発明はこのような状況を踏まえてなされたものであり、浮遊物や濁質による濾過面の目詰まりを実質的に防止し、そしてその目詰まり防止を濁質で充満している底域層(嫌気性の場合は所謂ヘドロ層)においても発揮させる能力を有するだけでなく、被処理水中の微細浮遊物に混在する気化性物質をも除去することで、対象とする水槽や池などの表層のみならず中深層〜深層〜底域層における清浄化希望箇所を任意に選ぶことができ、しかもそれぞれの対象箇所において長期に亘る効果的な濾過効果・透視性向上効果を継続して発揮できるような清浄化処理装置並びに処理方法を提供しようとするものである。
なお本発明の発明者は、先に特許第4495918号の技術を開発してフィルター部における目詰まり防止について一定の成果を得ているが、この成果を発現するメカニズムについて言及されず、特に底域水中に混在している気化性物質の除去については認識・着目するに至っておらず、従って貯水域全体の懸濁状況を改善する対策としては不備であった。またフィルター部の構成としては、濾過面積を大きくすると貯水槽内での占有面積が大きくなって取り扱い性が悪くなるという問題には対処できておらず、浄化ニーズの高い底域層に膜透過装置を設置するという技術には到達できていなかった。そのため前述したような現状貯水域の広範な多様性に対応できるほどの柔軟な構成を備えていなかった。そこで本発明では、底部に生じたヘドロ層由来の気化性物質にも着目しつつ多様・多彩な貯水域の全体を対象とする懸濁対策を図ることを重要目的の一つとした。
上記課題を解決した本発明に係る「気化性物質を系外排除できる水処理装置」とは、被処理水の水槽中に略垂直姿勢で浸漬される筒状外観を備えると共に少なくとも筒軸方向上端が封鎖され、かつ筒体外周には筒壁を通して筒体の外部から内腔への水の通過移動が自在であるような貫通路によって構成される透水面を備えた透水機構部を備えることを第1要素とし(従って以下では「透過装置」という)、
両端が解放されて略垂直姿勢で被処理水の水槽中に浸漬されるチューブを、その下方端側解放口を、前記筒体内腔部の任意高さ位置に臨ませるように配置して該内腔部に存在する被処理水を該チューブの下方端側解放口を通して該チューブ内に導入させると共に、該チューブの上方端側解放口を、被処理水の水槽の水面上へ突出させて、該チューブ内に前記下方端側解放口から浸入している被処理水を該上方端側解放口の内腔に至らせて大気圧に解放された状態の鼻〔以下鼻1という〕とすることを第2要素とし、
前記透水機構部は筒体の外周面に前記透水面を有すると共に筒軸方向に連結・解除自在に構成された筒状透水体を単位エレメントとし、被処理水の水槽状況に対応して該単位エレメントの連結数を最適化することにより、必要最適深度域をカバーし得る長さの透水機構部を形成して使用するものであり、且つ各単位エレメントにおける透水面は、可視大きさの水通過孔を筒壁貫通方向に備えて構成されることを第3要素とするものであり、
前記透水機構部の内腔に移動している被処理水および前記微細濁質(気化性物質を含む)は、該内腔を臨んで連結された採水パイプを経由して、採水ポンプの使用に基づく吸引力によるか、または前記被処理水の水槽の水位に基づく位置エネルギーによって抜き出されるように構成されている。
此処で可視/非可視の境界乃至区別は絶対的なものではなく、社会生活上或いは当該水槽の機能、形態、容量、面積などを総合的に考察して識別できるほどに見えるほどのものであるか否かによって、相対的に判断すれば良いものである。例えば所謂「ゴミ」として認知し得る大きさに属するものを「可視的」と称し、それより十分に小さいものを「非可視的」と称して区別し、この区別基準を考慮して前記透水面の水透過孔の大きさや形を選定すれば良い。従って水通過孔の大きさは、本発明装置を適用する貯水槽における「ゴミ」の実体を観察した上で、適切に判断すれば良いことである。
なお前記透水機構部の透水面の外周側に、定常的に用いる訳ではないが必要に応じて任意の織・編・網状分離手段を着脱自在に添設して使用することもできる。このようにすれば、比較的大きい可視的浮遊物や可視的濁質を織・編・網状分離手段で捕捉することが可能であり、他方非可視的微細濁質はこのように捕捉された状態の可視的浮遊物や可視的濁質に更に付加的に付着乃至吸着して捕捉されるので、このような捕捉状態にある浮遊物や濁質の全てを織・編・網状分離手段と共に系外に取り出して清掃することが極めて容易となる。
更には、前記採水パイプの配管行程に沿って、該採水パイプから上向き姿勢に分岐させた任意数の分岐パイプを被処理水の水面より高い位置の大気中に突出させて、該採水パイプ内を流れる被処理水の上面を大気圧に解放された鼻〔以下鼻2という〕とすることができる。
鼻1と鼻2の両方を備えた装置を使用する場合は、前記採水パイプから排出される被処理水を当該水槽の被処理水中に注入するように再供給する(本明細書では「返戻」と表現することもある)か、若しくは別途に設けられた別水系の被処理水槽(鼻1,2の両方を有するものでも良く、鼻1のみのものでも良い)の被処理水中に注入するように供給して、それら返戻または供給された槽中の被処理水に緩やかな旋回流を形成することで、該返戻または供給を受けた被処理水槽中の濁質成分や微細気化性物質を求心力によって中央方向に集合凝集させ、これを前記透水機構部に透水導入し、更に採水パイプを介して循環させた後、鼻2から系外に排出させることができる。
なお鼻2から系外に放出される気化性物質は、元々気泡としての存在を識別できる否かを問わず、ナノサイズからミクロンサイズに属する程の極めて微細で識別困難な物質はほぼ全て対象とする。この微細な物質が「水」という液相の中で気相を呈して存在するか、或いは分子サイズで溶解しているかを問わず、減圧あるいは温度上昇の環境下で気化性を示すと共に、ボイルシャルルの法則に従って、体積を大きく成長させることが期待されるのである。本発明はこれらの現象を利用して気化性物質を気化させて大気に放出せしめることに成功したものである。
前記鼻2から拡散排除される被処理水中の気化性物質はそのまま大気中へ放出してもよく、あるいは何らかの採集手段を用いて回収し、例えばアンモニアであればこれを化学工業的に利用することもできる。あるいは鼻2の管壁でヤニ状に凝固析出することもあるので、これを機械的に適宜除去すればよい。こうして気化性物質の排除を進めていけば、底域のヘドロ層が顕著に減少し、やがてヘドロ層が大きく減少する頃には、新たなヤニ析出がなくなる。
本発明の方法は処理の必要な貯水槽を個々に対象とする場合に留まらず、諸産業における総合的な処理システムとして展開することもできる。
例えば複数の水源水域(以下、下池ということがある)から水位の高い別の活用水域(以下、上池ということがある)に、前記採水ポンプを用いて排出される被処理水を揚水し、上池から下池には、本発明装置を用いて自然流下させるといった構成を採用して、下池と上池を相関連させるように本発明を実施すれば、複数の貯水槽を組み込んだ循環系を総合的に浄化処理することも可能となる。
被処理水の水槽中に浸漬される透水機構部を、複数の単位エレメント(個々に筒状外観を備えると共に各筒体には外部から内腔への水の通過移動が自在であるような貫通路を構成したもの)を筒軸方向に任意数連結できるように構成したので、透水機構部の軸方向長さを自在に設計・製作することが可能であり、従って一旦使用開始したものを、被処理水の汚濁状況や清浄化進行度合いなどに応じて途中で変更することにより被処理水の汚染状況や深度状況の変化に対応してその都度の必要最適深度域を最善にカバーし得ることになった。
例えば底部に厚いヘドロ層が生成している湖・沼・池・ダム湖などに対して、そしてそれが相当な深さを有するものであっても、任意深さの汚染度を状況判断して、その都度簡単に対応して貯水域の全域浄化を図ることができるようになった。本発明の上記装置は吸引圧が透水機構部の極所に集中しない構成(透水機構部の全域に均等・分散的にかかる構成)であるから、透水機構部がヘドロ層に挿入されても目詰まりを生じない。
そして両端が解放されて略垂直姿勢で被処理水の水槽中に浸漬されるチューブを、その下方端側解放口を該筒体内腔部の任意高さ位置を臨むように配置し、上方端側解放口を被処理水の水槽の水面上へ突出させることによって、該チューブ内に侵入している被処理水を大気圧に解放された状態(本明細書では上方端側解放口を上記の如く鼻1という)とし、透水機構部の濾過面内外に負荷される水圧差が大きく減少して、例えば図2に示す僅かな水頭差aとして現れる程度とし、この僅かな圧力が濾過面全体に均等にかかることで目詰まりの発生を大幅に緩和することができるのである。鼻1があることでポンプ圧による吸引力を緩和・平準化できて、浮遊ゴミを特定の部位に強く吸引することがなくなり、従って目詰まりしない。
なお処理水量と濾過面積の比で決まる線速度を上回る沈降速度を示す懸濁質は濾過面を通過できず、濾過面の表面側に集積もしくは底域に沈澱するだけであり、目詰まりを起こさない。その一方では、所定の分級作用を発揮することも確認できている。つまり沈降速度が検出される程度の粒子は真球と呼ぶには程遠いものであって、様々な物質の集合体であるが、ここではそれらの詳細に拘泥するものではなく、気体、並びに気泡の介在に注目して、それらの排除に努めた成果を示すことが可能となったのである。
なお各単位エレメントにおける透水面は、可視大きさの水通過孔を筒壁貫通方向に備えて構成されることで、可視的浮遊物(例えば落ち葉、藻類、木片、昆虫類、紙・布片・フィルム、その他の各種プラスチック製品など)或いは膜分離方式では目詰まりを生じる可能性のある小さい濁質(例えば綿ゴミや毛髪など)の透過を阻止しつつ、水や非可視的超微細濁質(例えば花粉、燃焼灰、各種の媒類、更には塵類といった大気汚染原因となるような浮遊粉塵の落下・着水物、さらには気化性物質など)は、該透水面を通して筒体の外部から内腔へ移動自在とするものである。
これによって従来の圧力濾過方式で問題となる目詰まり現象を回避でき、そして内腔に移動している水や非可視的超微細濁質は、該内腔を臨んで連結された採水パイプを経由して、ポンプの使用に基づく吸引力によるか、または前記被処理水の水槽の水位に基づく位置エネルギーによって抜き出されるように構成されるので、装置全体の構成が頗る簡素なものとなり、長期間に亘る取扱い及び運転管理が容易となる。
ところで前記したような可視的浮遊物或いは目詰まりを生じるような大きさの可視的濁質は、本発明の透水機構部の透水面を通過しないが、前記した採水ポンプや位置エネルギー差による吸引力を受け続けるので、透水面の前面に緩やかに捕捉された状態を呈し、その状態で保たれる。そこでこの状態の前記可視的浮遊物或いは可視的濁質を適宜拾い上げる(或いは何らかの道具を使って掬い上げる)ようにすれば、これら浮遊物や濁質に付着している非可視的微細濁質も一緒に拾い上げ或いは掬い上げによって系外に取り除くことが可能であり、このことによって被処理水の濁度が次第に改善されていくのである。
そしてこれらの効果が、複数段のエレメント形式構成であることによって、水槽内に浸漬される位置・部分の槽内到達深さをヘドロ堆積層中またはその近傍まで的確に延長させることができ、そのことによって、ヘドロ層近傍を含む任意深さにおいて浄化効果を享受することができる。よって重量や嵩の大きい懸濁物・沈降物についても、水槽内の深部において透水機構部を目詰まりさせない状態で透水面の前面で捕捉することができ、そしてこれを適宜系外に引き出すことになって、ヘドロ部分の汚濁状態を改質することができる。
それゆえ、上方端側解放口を採水ポンプや位置エネルギー差によって上記の被処理水槽から抜き出された水は汚濁度が改善されたものとなっており、この水槽の被処理水中に循環させるように返戻することも可能であり、或いはこれを更に別の水域に誘導して更なる浄化処理を施しても良く、若しくは該浄化処理後に再び元の被処理水槽に戻すことでも良い。従って浄化処理の対象となる被処理水の性状などを総合的に判断して種々の総合的水処理システムを組むことが可能となったのである。
なお前記した織・編・網状分離手段、例えば網状製品を透水機構部の透水面の前面に着脱自在に取付けておけば、この網状製品を適宜取り外して処理または処分することで、可視的浮遊物や可視的濁質も合せて除去することが一層容易となる。或いは本発明の特徴的構成である筒状単位エレメント方式透水体の連結状態を一時的に解除し、これらエレメントに付着している可視的浮遊物や可視的濁質を取り除いた上で改めて任意数連結して復元し、継続使用に付するということも可能である。ここでは網状製品を代表例として示したが、要は織成品、編成品、網組み品などと等価と認定できるような粗目組織を有するものであれば、適宜組合わせて使用することができる。
次に本発明においては、透水機構部の内腔を臨んで連結された前記採水パイプの配管行程に沿って、該採水パイプから上向き姿勢に分岐させた任意数の分岐パイプを被処理水の水槽の被処理水面より高い位置の大気中に突出させて、該採水パイプ内を流れる被処理水の上面を大気圧に解放させる鼻(本発明では鼻2と称す)を設けることができる。採水パイプの排水先は、水槽の被処理水中に返戻するように循環させる場合、或いは別の水域に誘導する場合のいずれでも良いが、前記透水機構部を通過してくる被処理水中には前記したような非可視的微細濁質(気化性物質を含む)が含まれており、これらの排除に適した構造・構成を採用することができる。
本発明者がこれを更に詳細に観察すると、清浄な環境の下で植物の光合成で発生する酸素の気泡が付着して浮遊する場合があること、日照で水温が上がるにつれて気泡が大きくなり、反対に気温が下がるにつれて気泡が小さくなることも分かった。またヘドロが存在する様な貯水槽に本発明装置を適用したときは、硫化水素、メタン、アンモニアといった気化性物質も除去できることが分かった。
これらの成分は気泡としては認識できないほどに微細なものであり、多くは非可視的微細濁質に吸着された状態で被処理水中にチンダル現象を生じる。これらが前記採水パイプを流れつつ一部が分岐パイプ(鼻2)から大気中に放散され、或いは鼻2の周縁部に付着する。そしてこの様な状況を経てチンダル現象が解消されることを見出した。このことで貯水槽内の水は極めてスッキリした清澄感を与えるに至る。なお上記付着物は適宜拭き取れば良く、或いは点火して燃焼させることでも取り除くことができる。
これに対し、本発明者の研究によれば、鼻2を用いない(従って鼻1のみを用いる)実施であって、且つ透水機構部・採水パイプを経て当該貯水槽に返戻する場合においても気化性物質を排除できることを確認しており、これによって透視度の向上効果を達成し得ている。もっとも透視できる深さ(透視度)が100cmを超える程までの高い透視度になったときでも、鼻2を用いたとき程のスッキリした清澄感を得るにはやや不充分で、チンダル現象を解消し得たと言うほどの効果は得られなかった。本発明における鼻2による効果の顕著性は後記実施例によって更に明らかにしていく。
他方、鼻2だけで鼻1が無い場合は、透水機構部をヘドロ層内に挿入すると目詰まりが起こって操作が継続できないので、チンダル現象の有無の論じるに至らず、鼻1の存在が欠かせないことは言うまでもない。
なお上記採水パイプを被処理水中に返戻する場合において、該パイプの先端を、被処理水中に大きく緩やかな旋回流を形成するような方向に設定すれば、被処理水中の非可視的微細濁質がその旋回流の求心力に巻き込まれて凝集し易くなり、この凝集状態で沈降分離堆積し、長期運転後には水底に安定層を形成する。そしてこれらが分離して再び巻き上がることのない清浄な水辺になる。
このことによって被処理水の汚濁度改善効果が一層著しいものとなり、チンダル現象の解消効果が見た目だけの効果でないことが分かる。従来の圧力濾過や吸着濾過では実現できなかったスッキリした清澄な水環境が、水の総入れ替えや浚渫作業なしに創出できた。こうして卓上の観賞水槽から湖沼、内海の大小を問わず、広く実施できる方法及び装置を提供できたのである。
従来の貯水槽における濾過概念を示す説明図。 本発明における濁質除去の基本構成−1(鼻1を設けた構成)の説明図。 本発明における濁質除去の基本構成−2(鼻1と鼻2の両方を設けた構成:以下同じ)の説明図。 基本構成−2の場合における運転制御の説明図であって、採水ポンプを停止した状態を示す。 基本構成−2の場合における運転制御の説明図であって、採水ポンプを低速運転している状態を示す。 基本構成−2の場合における運転制御の説明図であって、採水ポンプを高速運転している状態を示す。 基本構成−2の場合における貯水槽内の状況を示す縦断面説明図。 基本構成−2の場合における貯水槽内の状況を示す水平面説明図。 基本構成−1及び基本構成−2を駆使して地域の複数貯水槽を総合的に浄化するシステムの一例を示す説明図。 単位エレメントの実施例の説明図。
図2は本発明に係る浄化処理装置の代表的構成例を原理的に示す図である。なお図面としては、念のため、という趣旨で、既存の越流堰2をそのまま残しているが、本発明の実施における物質収支とは無関係であるから、以下の説明では特に触れることをしないが、天候の変動等といった非定常事態における流入量の過大、或いは何らかの事故などによる供給と排出のアンバランスに備える為には殊更排除するまでもないことである。
従って物質収支の面では、左上からの矢印に添って供給される給水量に見合った量の水(透水機構部である透過装置3を透過した非可視的微細濁質を含む水)は、専ら採水パイプ5経由で放出されることでバランスするように構成されている。なお放出先の全てを系外排出(貯水槽1の外への排出)とする場合もあるが、吸水量が少ない場合を考慮して、貯水槽1内に返戻する場合もある。具体的に言えば、採水パイプ5を分岐させて一方を系外へ、他方を貯水槽内に向け、これらをバルブ操作で調整することにより返戻量と排出量を制御するか、本発明装置を複数設けて一方を常時返戻方式、他方を間欠運転による適宜排出方式とすることもできる。返戻方式を採用する場合の好適実施態様やその効果については追って説明する。なお以下の説明において、透水面4を透過する前の被処理水と透過後の被処理水を区別して表現する必要がある場合には、前者を被処理水Aと称し、後者を被処理水Bと称することとする。
本図の貯水槽1でも底部にヘドロ10が形成されているが、本発明装置を使用した場合は好気状態で水の清浄化が進むことによってヘドロ10の無機質化が進むので(この点は追って詳細に説明する)、これを排出する目的で機械的にかき混ぜる(例えばスクリュー式排出機構の使用)ことがあったとしても、貯水槽中の全域へ向けてのヘドロ舞い上がり現象が著しく改善される。
本図では、採水ポンプ8の吸引側(採水ポンプ8の下側)に3つの単位エレメント9a、9b、9cが上下方向に連結されている。単位エレメントを包括的に言うときは「9」で代表する。これらの連結数nは本発明を限定するものではなく、貯水槽1の深さ、被処理水の濁度などに応じて分離・分級を定量的に行うのに最適の連結数nが決定される。採水パイプ5は採水ポンプ8の上側に接続したものを示したが、採水ポンプ8の構造・構成に応じて、水平方向に接続される場合もある。採水パイプの出側は貯水槽1内への返戻方向としても良く、或いは貯水槽1外へ向けても良い。
各単位エレメント9の内腔は、いずれも上下方向に解放され、従って連結状態で上下に連通した内腔を形成するが、最下端の単位エレメント9(図2では9c)には重石を兼ねた底板部材を取り付けることで貯水槽内での略垂直姿勢を安定的に確保することが望ましい。底板部材以外の固定手段、例えば貯水槽深さに見合った長さの支え棒を用いて各単位エレメントを支え棒に添える様に取付けて各単位エレメントの姿勢保持を図ることもできる。底板部材を用いない場合は最下端の単位エレメント9の底面が解放され、ときにはこの解放底面がヘドロ層に直接浸漬され、ヘドロが単位エレメントの内腔に侵入する場合もあるが、本発明では鼻1の存在による効果として、透水機構部の内腔部の吸引圧力が大気圧近傍に緩和され且つ均整化されているので、直ちにヘドロが透水機構部の内腔部に舞い上がってくることはなく、実用上の問題は全く生じない。このことは更に追って説明する。
各単位エレメント9の全体形状は円筒状のものが一般的であるが、多角筒状を採用することもでき、全く任意である。要はその外周面に、筒壁を通して筒体の外部から内腔への水の移動が自在であるような貫通路が構成される透水面4を備え得る構造である。
例えば図10は、高さ方向に細幅の縦リブ(縦格子)25を適宜間隔に設けてそれらの間を広幅の、例えば1〜10mm幅のスリット(貫通路)26としてこれを貫通路として形成したものである。これらの貫通路は縦向き、水平向き、螺旋状、格子状などの如何を問わない。以下では「スリット」の用語で代表する。
図2において、採水ポンプ8を稼働させると、貯水槽1内の被処理水Aは透水面4を通過して単位エレメント9の内腔に貫通移動し、更に採水ポンプ8に吸引され被処理水Bとして採水パイプ5経由で放出されていく。スリット幅より大きなゴミは通過できないことは当然として、従来の圧力濾過ではスリット(一般に分離膜と称されるほどに微細な多孔質膜のミクロサイズの連続気孔であることが多い)に食い込んで補足・吸着されることで目詰まりを引き起こし、エレメントの掃除または更新を余儀なくされていたことと比べて、実用上顕著な効果と言える。
つまり本発明ではミリサイズの粗大なスリットを用いるにもかかわらず、透水機構部の内腔部の吸引圧力が大気圧近傍に緩和され且つ均整化されているのでミクロンサイズの微粒子でも、その沈降速度vが1時間当たり僅か数cmであるから、粘土鉱物の真球換算径での数ミクロンより大きな粒子は吸入されず、目詰まりを起こすに至らない。つまり貯水槽中のゴミは、ミクロンサイズ、ミリサイズの如何を問わず多くは濾過面の前面に集まるのみであり、スリットを通過できない。後述するように、所定の沈降速度以下の浮遊物、非可視的微細濁質が選択的(分級効果)に水と共にスリットを通過して透水機構部の内腔部に吸い込まれる。
上記ではミリサイズの粒子は通過させず、ナノサイズに相当する非可視的微細濁質のみが水と共にスリットを通過すると述べたが、通過・不通過は個々の粒子乃至可視的微細濁質が示す水中での沈降速度と流入水の線速度の関係によって定められ、前者が後者より遅いときは、当該線速度差に基づく分級作用が発揮される。このようにスリット通過物の粒度を定量的に設計して設定できるのは鼻1の効果に基づくものである。
被処理水中に分散浮遊している粒子の形状が真球から著しく変異しているとき、例えば紙屑や雲母等の鱗片状のものである場合は、沈降方向に見て大きな平断面を示すことで沈降速度が小さくなる。そのため透水面4の役割は、このように大きな平断面を示すものを幾何学的に篩い分けることにあり、それ故、比較的大きい開孔面積からなる水通過孔(前記スリットなど)を筒壁貫通方向に備えたものを使用する。
水通過孔は貯水槽の「ゴミ」状況に見合った可視大きさの通路を備えているので、可視的浮遊物や可視的濁質の透過はほぼ確実に阻止することができ、水や非可視的微細濁質を含む被処理水Aは該透水面4を通して筒体の外部から内腔へ向けて移動自在とすることが可能である。そのため非可視的微細濁質の除去効果は十分に期待できる。
微細な濁質の除去は、透水面4を通して透水機構部の内腔部に入った被処理水Bを採水パイプ5経由で系外に放出することで進行するだけでなく、透水面4の前面で捕捉された可視的浮遊物や可視的濁質に吸着乃至付着することでも捕捉される。そしてこれら可視的浮遊物や可視的濁質を掬い上げなどの手段で取除くことに伴って並行的に除去されることは前記したとおりである。
単位エレメント9によって構成される透水機構部の内腔部には、前記したように被処理水Bが浸入しているが、本発明では上方端側解放口12を大気中に露出させたチューブ11を、その下方端側解放口13が該内腔部中の被処理水Bに向けて侵入するように配置されている。この接続に当たっては脱着自在の継手を用いることによって、水深が数十メートルに及ぶ多様な水域にも適切に対応可能である。このことによって、内腔部中の被処理水Bがチューブ11の鼻1を通して上方端側解放口12内と連通されて大気圧に曝されるので、内腔部中の被処理水Bの水圧は略全域に亘って大気圧に開放されることにより、パスカルの原理が働いてエレメント内の全てに均等で微少な圧力(例えば採水ポンプを作動させてエレメント内に負圧が生じたときの圧力)が働き、透水面の内外での均等な浸透が起こる。即ちチューブ11内の被処理水Aの水位は貯水槽1内の被処理水Aの水位より水頭差aに相当する高さ分だけ低下している。
試みにこの鼻1を閉じてこのような圧力状況を形成しないまま排水ポンプ8を稼働させてみると、排水ポンプ8の吸引側圧力(即ち透水機構部の内腔部圧力)と非吸引側圧力(透水機構部の外側)の差が顕著に大きくなることによって、透水機構部の外側に存在する被処理水Aは、もっとも流れやすい流路を、特に表層部側にその流路を求めて集中し、透水面を通過する水流が当該部分で集中して大きくなるので、被処理水A中の可視的浮遊物や可視的濁質が透水面4の一部分(特に表層部側)に強く引き寄せられてスリットに強固に食い込み、ここで捕捉されて透水面4が目詰り状況を呈する。
上記したように鼻1を設けておけば、透水面の前後における圧力差が高さ方向に均一且つ微小化されるので、前記可視的浮遊物や所定の沈降速度以上の濁質は透水面の全面に穏やかな(従って内部空間を多く残した非圧密状態での)集積状況を呈し、被処理水A中の水そのものや所定の沈降速度以下の濁質の通過を損なわないから、透水面の目詰り状態を伴わずに濁質成分の除去が可能となる。
ところで図2では貯水槽1の底部に沈降濃縮泥層、または嫌気性のヘドロ層10が形成され、最下端の単位エレメント9cがヘドロ層10の内奥まで埋設された場合を示している。図示の単位エレメント9cは底板が設けられている場合であるが、底板無しであっても本質的には差し支えない。このような埋設状態であっても、透水面4の内外圧力差が僅少で均等であるから、透水面4を通して透水機構部の内腔まで浸入するのはヘドロ層から浸みだした清水のみであってヘドロ自体ではない。内腔の減圧度が鼻1によって大気圧程度まで緩和されているので、仮に底板が設けられていないときであっても、底部の解放された単位エレメント9cを通してエレメント内へ舞い上がるようなことがなく、従って採水ポンプ8の吸引側に過大な負荷を与えることがなく、長期間に亘る継続運転に支障を生じない。
なお図2には示していないが、単位エレメント9a、9b、9cの外周に沿って、シート状の織物片、編物片、網片のいずれかを巻付けたり、或いは袋状に仕上げた織物、編物、網のいずれかを被せるように添設して使用することもできる。このようにすれば、可視的浮遊物や可視的濁質は織・編・網状分離手段の素材表面に、付着もしくは吸着されるので、単位エレメントにおけるスリットなどの目開きの大きさに依存せず捕捉される。被処理水A中の清水は可視的浮遊物や可視的濁質を伴わずに透水面4の貫通路を通して透水機構部の内腔まで浸入して被処理水Bとなり、採水ポンプ8、採水パイプ5を経由して排出される。或いは非可視的濁質は前記のように捕捉されている可視的浮遊物や可視的濁質の表面に付着乃至吸着して捕捉されるので、このような捕捉状態にある浮遊物や濁質の全てを織・編・網状の分離手段と共に系外に取り出すことが極めて容易となり、被処理水の清浄度を早期に高めることに資する。
図3は図2の構成に加えて、採水パイプ5の排水行程に添って、上向き姿勢に分岐させた任意数の分岐パイプ5a、5b、5cを、その上端側解放口が被処理水Aの水面より高い位置の大気中に突出するように設けた例である。このことにより採水パイプ5内を流れる被処理水Bの上面を数カ所で大気圧に解放させることができ、採水パイプ5と前記チューブ11が連通管状態となる。本明細書ではこれを鼻2と称するが、鼻2の数は1つでも構わない。なお採水パイプ5は被処理水A中に通し、その開口端を被処理水A中の解放させることが可能であることは既に述べた通りである。
鼻2の数が複数個であるときは、それぞれの鼻2内の水面は、図示する如く採水ポンプ8から見て遠位になるほど低くなるので、送り配管の径を適切に、例えば順次細くなるように設計することも可能である。上向き姿勢部を透明管で構成しておけば管壁を通して内部を透視できるので、汚れの進行をチェックして清掃・更新でき、保守・管理面で有利である。
チューブ11の内部は採水ポンプ8の吸引側圧力(負圧)の支配下にあり、採水パイプ5の内部は採水ポンプ8の排出側圧力(正圧)の支配下にあるので、図示する如く、チューブ11内の被処理水Aの水面と、分岐パイプ5a、5b、5c内の被処理水Bの水面を対比すると、後者の方が高くなり(採水パイプを被処理水A中に通す場合も同じ)、チューブ11内の水面と最初の分岐パイプ5a内の水面の差が採水ポンプ8の揚程となる。
視点を替えて述べると、チューブ11内の被処理水Bと分岐パイプ5a、5b、5c内の被処理水Bは水理学でいう「連通管」構成である。本発明図面ではポンプ駆動によって被処理水Aの水面より被処理水Bの水面が高くなるが、ポンプ駆動が停止すると水平に戻る。反対に被処理水Bの水域に給水されて被処理水Bの水位が高くなると電動ポンプは発電機となり、揚水ダム発電所の構成と同じような可逆的構成である。揚水ダム発電所の水路で起こるウオーターハンマー現象の防止策としてのサージタンクの必要性もこの連通管構成に寄与していると考える。
本発明にかかる鼻1+鼻2の構成では、採水パイプ5の内部を流れる被処理水Bは安定して層流状態に近づく。それ故、水中に溶け込んでいる気化性物質は水から分離して気泡になって浮上し易くなり、鼻2の水面から大気中へ放散されていく。鼻2が存在しないときは採水パイプ5内を通過する水が乱流状態で流れる。その場合は気化性物質が水の流れの中に巻き込まれて激しく水平方向(流れ方向)へ移動しながら移動することになるので、浮上方向への移動を促進するという状況が生まれない。本発明者が実験装置で確認したところによれば、分岐パイプ5a、5b、5cの管壁内には小さな塊が生成・付着し、これが悪臭を発生すること、これを例えばバーナーで炙ると簡単に燃焼除去できることなどを確認しており、これらからも気化性物質が分岐パイプ5a、5b、5cを通して上昇移動している、との結論を得た。
ところで世間で広く行われている水中での曝気、噴流、純酸素の通気などは、CODの低下を目的として行われる水中酸化反応の促進作業に相当し、これによって例えばアンモニア、アミン等の窒素化合物を水中で酸化すると、亜硝酸、硝酸、含窒素高分子化合物などを生成していわゆるスカム状になる不具合を生じる。その為従来の水処理ではこの対策に多大の工夫が凝らされてきたが、本発明方法では気化性物質を、直接大気に放出して適正処理もしくは資源化することができ、かかる観点からはスカムの抜本的対策になる方法と言える。
更に公共下水道処理施設のように大量の負荷を有する被処理水は窒素資源及び炭化水素資源としての利用可能性があり、また糖質資源の嫌気発酵の場合のメタンガスについても利用可能性があることを考えると、本発明装置を例えば発酵槽における適切な撹拌とガス分離に応用することで、ゼロエミッション社会の構築に役立つとの期待が持てる。
図4,図5,図6は、図3に示す本発明構成の装置を既存のシックナー装置に適用する場合を示し、採水パイプ5の排出先を樋14経由で系外方向とするように設定した例である。図4は採水ポンプを停止した状態、図5は採水ポンプを低速運転している状態、図6は採水ポンプを高速運転している状態を示す。単位エレメント9の連結数は貯水槽1の深さを考慮して必要十分且つ最適に設定する。例えば1000tタンクで深さ10mに及ぶ場合は、単位エレメントの濾過面の有効な高さが50mmとして、200個連結すれば良く、最適の個数を選択すればよい。
単位エレメントの最深部をヘドロ層10に深く浸漬させることが可能である点が本発明の重要な特徴であることは先に述べた。ヘドロ層からの浸出水と上層部からの採水とでは化学的に同じ水質ではないことは容易に理解されるところであるが、本発明では鼻1の存在によって、各単位エレメントを透過してくる水の流量、および流れの線速度が均一となるから、単位エレメントの深さによる影響を受けないような(即ち水深の大小にかかわらないような)環境下における物理特性としての線速度によって制御することができる。しかし化学的、特に生物化学的には水深の大小に応じて変異するので、実際の現場では微調整が必要であり、この調整の経過記録を研究すれば、これらの化学反応とその収支の解析に役立つので、言わば試験・研究設備としても有用である。
卓上の小型水槽で得られた本発明の試験結果が巨大施設でも再現され、水深因子についても工事可能な深度でパスカルの原理が働く。よって貯水槽1を地中深く設営して大容量のものとしてその底域から採水する場合についても、底域が淀まず安定した水質浄化を行うことが可能となった。つまり大きな溜め池、湖沼、ダム湖における水資源の貯留確保と共に、いたずらに堤防をかさ上げしてしまった現状河川(天井川状態の河川)の浚渫治水事業にも役立つ発明が提供されたのである。
運転制御に際しては、系外からの流入水量の変化に対応するように採水ポンプ8を停止⇔低速運転⇔高速運転(図4⇔図5⇔図6)で切り替えながら、樋14からの排水量を調節バルブ6によって少量⇔中量⇔多量と調節するものである。
図4では採水ポンプ8を停止しており、調節バルブ6を閉方向に調節しつつ排水量を少なめに制御している。こうしておけば、貯水槽1内の水位と調節バルブ6の水位との水頭差に見合った量の被処理水Aが貯水槽1を越流することなく樋14に入り(この量に見合った量の被処理水Aが透過装置3の透水面4を通してその内腔部に至り)、被処理水Bとして採水パイプ5⇒調節バルブ6⇒樋14に流れ、樋14から調節バルブ6を介して系外へ放出される。
給水量がゼロになれば調節バルブ6を完全封鎖し、装置全体を停止する。この時点ではチューブ11内の鼻1の水位と採水パイプ5の鼻2の水位は等しくなり、連通管構成であることが示される。つまり鼻1と鼻2がこの連通管構成を形成する上で必須である。従ってここで用いるポンプとしては、吸引圧力が脈動するピストン方式は却って不都合であり、簡単な構造の羽根車方式が望ましい。なおこれらの実施例において、採水パイプ5を分岐させること、採水パイプ5を複数設けること、それらに設けるバルブ6を複数個とすること、などは全て本発明の変形実施例となることは言うまでもない。
図5では給水量が回復してくる場合を示しており、採水ポンプ8を低速運転として調節バルブ6を少し開き、流入量に見合った量の被処理水Bを排出していく。チューブ11内の鼻1の水位と採水パイプ5の鼻2の水位を比べると後者が高くなり、その揚程に見合った量の被処理水Aが膜透過装置3の透水面4を通してその内腔部に至り、以下同様に採水パイプ5⇒調節バルブ6⇒樋14に流れ、樋14から調節バルブ6を介して系外へ放出される。
図6では給水量が十分回復して多量の水が貯水槽1に流入してくる場合を示しており、採水ポンプ8を高速運転に切り替えて調節バルブ6を更に開き、流入量に見合った量の被処理水Bを排出していく。チューブ11内の鼻1の水位と採水パイプ5の鼻2の水位を比べると後者がかなり高くなり、その揚程に見合った量の被処理水Aが透水面4を通して膜透過装置3の内腔部に至り、以下同様に採水パイプ5⇒調節バルブ6⇒樋14に流れ、樋14からバルブ6を介して系外へ放出される。いずれも連通管構成が必須である。
次に図7は採水パイプ5の放出端を貯水槽1内に設定した場合(被処理水Bを貯水槽1内に返戻する場合)における貯水槽1内の状況を縦断面的な概念で示す説明図であり、図8はこれを水平面的な概念で示す説明図である。採水パイプ5には排水行程に添って分岐パイプ5a、5b、5cを設けている。つまり排水流れ方向に沿って3つの鼻2を設けた実施例である。ここでは被処理水Bが放出端から被処理水A中に放出されるが、被処理水Aの上方から水面に向けて滝状に落下させられるのではなく、或いはせせらぎ状に流下させるのではなく、被処理水Bが被処理水Aの水中に、言わばホースを使って放出される様な状態となる。しかもそれが静かな放出であって、被処理水Bの動的な束流が被処理水Aの中へ穏やかに拡散して行く。この際図8に示すように、放出先を貯水槽1の対岸に対してやや斜め方向を向かわせ、水平面内で緩やかな旋回(図では右回り旋回)を描かせる。
放出先の方向が真正面の壁に垂直に向かう場合は、真正面の壁に当たった水が左右・上下方向へ向けて無作為に分散されていくだけなので、貯水槽1内の被処理水Aを単にかき混ぜるような状態となり、後続の排出水もそれによってかき乱され、貯水槽1内の水が複雑な無方向性乱流になる。このような無方向性乱流を貯水槽内に形成したときは、エネルギー損失が大きくなる。これに対し放出先を少しでも垂直から外すと壁面に当たった水は一定方向に集中するような反射流を形成し、これによって槽内では静かな旋回流(層流)が形成される。水域の大きさに見合ったポンプ出力配管を調整すればこのことは簡単に実施できる。このことは電気エネルギーを運動エネルギーに変換した電動ポンプを駆動力としたことに相当し、更にこの運動エネルギーを水の旋回流に置き換える訳で、このことによる清浄化効果は追って述べるように極めて高いものとなる。
従来汎用されていた方式、所謂滝や急流などを形成する方法、即ち水面から高く揚水して落下させる方法は、水音や激しい泡立ち状態を呈することで、その外観的印象から、水質浄化を期待してきたが、このような従来技術の反省に立って完成されたのが、本発明の言わば社会的位置でもある。
高所に汲み上げて滝状に落下させること、せせらぎとして流下させること、噴水として大気に噴霧すること、といった従来の汎用技術では、曝気効果によって大気中からの酸素供給を大きくすることが意図されてきたが、溶存酸素を更に積極的に増やすという視点に固執した従来法では、空気曝気より酸素濃度を一層高めた通気、更には酸素より酸化力の強いオゾンや過酸化水素の通気を行って被処理水のCOD(化学的要求酸素濃度)やBOD(生物的要求酸素濃度)の負荷低減を目指していた。これらに対して、発想を根本的に変え、より合理的な方法として被処理水中のこれらの負荷物質を水中で酸化するのではなく、簡単な仕組みで水の外に放出できることを提起する技術として提供されたのが本発明である。
ここで旋回流の形成に戻って説明すると、被処理水Bの放出によって形成される上記旋回流は被処理水Aの抵抗を受ける。つまり被処理水Aによるブレーキを受けつつ被処理水Bが被処理水Aによって希釈されるように(両者が緩やかに相互拡散するようにして)広がりつつ被処理水A中に円弧を描いて旋回流となる。この流れは被処理水A中に分散している濁質をその求心力によって抱き込むように集めるので、上記濁質は相互に接近して凝集状態を呈し、少しずつ成長しながら旋回流の中心に集まって更に成長して沈降し始める。こうして凝集沈降した濁質は、被処理水A中に分散している非可視的濁質を吸着する。従来の強い撹拌では舞い上がって沈降できない。
図7に示す小さな黒丸は濁質の凝集物を模式的に示すものである。そしてその側面に白丸で示す非可視的濁質が吸着された状態をM、濁質の凝集物の全周面に白丸で示す非可視的濁質を吸着している状態Nとしてそれぞれ示している。ここで濁質の凝集物を小さな黒丸で示し、非可視的濁質を大きい白丸で示したのは、後者がガス化して前者を伴いつつ分岐パイプ5a、5b、5cから放散されていく状況についての理解の便を考慮したものである。この状態で透過装置3に接近し、単位エレメント9に形成されている比較的大きい透水面4を通過する。こうして膜透過装置3の内腔部に入った被処理水Bは、更に採水ポンプ8の作用を受けて採水パイプ5に入り、分岐パイプ5a、5b、5cに至った後、鼻2としての作用を受けることで、上記白丸で示した気化性の非可視的濁質が大気中に放散されていく。上記黒丸で示した濁質の凝集物は分岐パイプ5a、5b、5cの管壁に付着して残留するので、適宜、燃焼、掻き取り、拭い取りなどの手段で除去する。
上記説明で述べた非可視的濁質に基づいて発生する気化性物質としては、硫化水素、亜硫酸、アンモニア、アミン、亜硝酸、硝酸等が挙げられる。本発明者がこのような気化性物質の放散に気付いたのは、貯水槽内で見られていたチンダル現象が、被処理液の浄化処理が進むにつれて、顕著に解消される状況と相関する事実を発見したことに依る。チンダル現象の解消効果は鼻1だけの場合(特に被処理水Bを系外に放出した場合)にも見られるが、鼻2を設けることによって一層顕著に解消することを見出している。
チンダル現象の解消が進むにつれてヘドロ層が次第にサラサラした状態となり、落ち葉等の有機物は順次分解消滅した。これを掻出したり、掬い出したりする作業においてヘドロ層の取り扱い性状が顕著に改善され、作業性の改善に著しく寄与することも確認できた。これらヘドロ層は、有機質成分がなくなると、高純度の粘土鉱物資源となり、単に廃棄物ではなく、新たな付加価値を得た物質としてその利用価値が高められる。
気化性物質を大気に放出することに関して、二次公害が懸念されかも知れないが、アンモニアやアミン類を水中曝気によって酸化し亜硝酸や硝酸を生成させることに伴う弊害よりも、むしろこれらが大気中で酸化された場合には、アンモニア合成の逆反応に従って、窒素ガスと水に分解されるので却って好都合である。例えば大阪湾における土砂採取後の大きな窪地に見られる酸欠状態の底域の改善対策として、深層に空気を送る曝気方式が行われているが、弊害が多く、その抜本対策として、本発明によって酸欠の原因物質を排除することのできる技術への発展を見込み得る状態が提示されたのである。
チンダル現象は暗がりであれば、懐中電灯によって誰でも簡単に調べられる。慣れてくると、日中観察でもスッキリした透明の水になるのと平行してチンダル現象が起こらないことを把握できた。こうして官能検査で十分掌握できるようになったから、水質管理における殊更に複雑な化学分析は確たる目的を有する場合に限って行えば十分である。
本発明装置を複数組み合わせた総合システムの一例を図9に例示する。図9は2つの貯水槽1X,1Yの間で被処理水の往復(循環)を行いながら、それぞれの槽内における処理効率を補完し合い、全体としての処理効率を向上させるための実施態様を説明するものである。図9中に示された記号の内、数字1〜12及びローマ小文字a,b,cは図1,2,3で説明したのと同旨の意味を示し、ローマ大文字X,Yは貯水槽1X,1Yに関連するものとして仕分けた。
図9では貯水槽1Xが高い位置、貯水槽1Yが低い位置にある場合のケースであるが、同一高さのケースでも実施できる。また2つの貯水槽1X,1Yの間の距離は遠くても近くても構わない。また更に2つの貯水槽1X,1Yは同一目的・同一構造・同一機能のものでも良いが、別々の目的・別々の構造・別々の機能のものでもよい。もちろん3つ以上の貯水槽を総合的に組み合わせて実施することも可能である。
貯水槽1Xは貯水槽1Yより高い位置に設けられており、図の左上から給水を受けつつ(調節バルブ6Xqを閉状態とする)、貯水槽1Xと貯水槽1Yの水位差を利用して(特別の排水ポンプを使用しないで)採水パイプ5Xを通して貯水槽1Yへ向けて被処理水Bを流し入れる。なお貯水槽1Xには、給水が過剰になった場合に備えて、その高い位置に安全路15を形成しておき、非常時には被処理水1Aを水位差によって貯水槽1Yに逃がすように構成されている。いずれの給水も、高所から低所に給水する場合、噴出先を対岸の垂直方向になるのを避けることで、位置エネルギーの集中的解放による乱流の形成を防ぐことができ、対岸に向けて斜め方向(上下・左右は問わない)に向ければ、給水を受ける側の貯水槽内には旋回流が形成される。要はその水槽の形状に合わせて工夫することが望ましい。
こうして貯水槽1Yには、貯水槽1Xからの被処理水B(時には安全路15経由で直接供給される被処理水A)が供給され(貯水槽1Yに導入されたこれら被処理水は、貯水槽1Yの透水機構部で浄化される前は被処理水Aと表現される)、そして貯水槽1Yの採水ポンプ8Y、単位エレメント9Yなどからなる透水機構部を通して浄化され(被処理水Bと表現される)、しかる後、採水パイプ5Y、流量調節バルブ6Yを経て貯水槽1Xに戻される。このようなシステムを組んで総合的な水処理を行うことにより被処理水の浄化が進行し、所期の目的に到達できた時点で(或いはその浄化進行状況を見ながら、随時)貯水槽1Xに設けることのできる間欠的放出専用パイプ5Xp、流量調節バルブ6Xq(これらは貯水槽1Yに設けることもできる)を経由して、綺麗になった浄化水として系外に排出することが可能となる。
図10は単位エレメント9a、9b、9cが上下方向に、例えばボルトを介して連結されている状態を示す説明図である。各単位エレメントの円筒状側壁には、高さ方向の縦リブ(縦格子)25が形成され、それらの間にスリット(貫通路)26が形成されているが、これら貫通路は縦方向スリットに限定されず、水平方向(円周方向)スリット、螺旋状スリットであっても良く、或いはこれに代えて、たとえばウェッジワイヤー製の格子によって精密な開き目を備えた網部材によって貫通路を形成してもよい。或いは円筒部材の壁面に丸孔や角穴を全面に配列したものなどであっても良い。また各エレメントの相互の連結手段も一切問われず、例えば爪形式の連結手段でも良い。
図10の採水ポンプ8は、図2と違って最下段の単位エレメント9cに結合された底板24上に設置され、該ポンプ8の上面に連結される採水パイプ5が、単位エレメント9c⇒9b⇒9a内を通して上方へ引き出されていくような構成を示している。
各単位エレメントの左方に示す3つの円盤状部品を、上から順に説明すると、23は最上方の単位エレメント9aの上面にボルト連結される蓋相当の円板であって、中央には採水パイプ5を上下方向に創通するための孔23’が形成され、周縁に沿って4つのボルト連結孔27が穿設されている。各フランジ22にも上記と同様のボルト連結孔が穿設され、中央部は被処理水が単位エレメント間を自由に移動できる空間部22’である。24は最下方の単位エレメント9cに取付けられた底板であり、採水ポンプ8をその上面に固定できるように構成されている。
図9に示した貯水槽1Yに設ける透水機構部には、「鼻1」の機能を果たすことのできるチューブ11Yを2本(必要により3本以上)設けているが、連通管構成に必須の1本を残して、2本目以降のチューブ11Yは何らかの処理薬剤(例えば凝集剤、分散剤、化学薬剤など)の投入口としてそれぞれの試薬ごとに専用の投入口として利用することもできる。なおこれらの薬剤を「鼻2」の役割を果たす分岐管5Xa,5Xb,5Xc,5Ya,Yb,5Ycなどから投入することも可能であるが、ポンプ8より前位の鼻1(ここでは複数のチューブ11ごとに設けられる幾つかの鼻1)にも受けるのが望ましく、様々な用途ごとに最適の形態を設計することが望まれる。様々な水槽、水域、ため池に給水する施設に適用するだけで、その水域の浄化が進展する。
本発明で使用する採水ポンプとしては、格別の限定を受けないが、本発明者が実験で用いたポンプとして、(有)プテイオ社、Tetra社、GEX社、(株)寺田ポンプ等の取扱いにかかる小型水中ポンプが例示され、それぞれ良好な運転状況並びに結果を示した。これらと同じ様式の大型ポンプにも当然応用できる。なお、各社の取扱いにかかるポンプは、それぞれにストレーナと濾材が付帯しているが、本発明の透水機構部を構成する透水面は、可視大きさの水通過孔を筒壁貫通方向に備え、この水通過孔を介して貯水槽内の被処理水を、可視的浮遊物や可視的濁質構成から分離して透過させようとするものであるから、これらストレーナや濾材は浄化原理が全く異なる本発明にとっては不要であり(圧力濾過では膜面の目詰りが必然となるから)、これら付属品は必ず取り除く。ただし濾過面の外側を同様の素材で着脱自在に覆うことを妨げないことは先に述べたとおりである。
なお(有)プテイオ社等の直流ポンプは、直流電圧の調整で流量調整できるので、例えば10V程度の低い電圧で駆動させれば屋外での使用においても安全である。なお渇水時用として自動停止向けのセンサーを取り付けることができる点でも便利である。何よりもソーラーパネルに直結で駆動できるという実績があり、小規模実験用として便利である。またポンプは圧力が一定となる羽根車方式が望ましく、本発明ではこれらの既製品を少し改造して使用できる。
本発明の実施例で用いた単位エレメント管の外径と高さを定めた上での設計例を次の表1に示すが、勿論これに限定しない。
Figure 0006666176
単位エレメントの径が小さいほど占有面積が小さくなるという優位性はあるが、毛管現象と透過水の輸送の際の粘性抵抗が大きくなる。この為の加圧が必要で、これが圧力濾過となっていると思われ、従来技術のままであれば、これが目詰まりの原因となっていたが、本発明ではこの問題は起こりにくい。実験での最適管径をおおよそ10〜60mmとした。被処理水の化学的特性に合わせて調整する上で便利な大きさであった。
図10に示した構成の単位エレメント〔φ60mm×h50mmの(有)プテイオ社製〕を利用し、数百段の連結に耐えて維持できるように、野菜収納ネットで覆うことによって保持した。小さな単位エレメントを多数(任意数)接合することで、多様なろ過面積を正確に設計できることができる。
単位エレメント(φ300mm×h300mmの東洋スクリーン(株)製)を利用し、(株)寺田ポンプ製の50Wの水中ポンプと組合わせた。そして貯水量40万トンの溜池での試運転した結果では、3年にわたって目詰まりすることなく、ポンプが損傷することなく揚水が継続でき、土木農業用水に便利な大きさである。
中間的な大きさとしては、三栄水栓(株)社の台所シンクの排水孔のゴミ取り網も重宝である。また(株)サナダ化成社のプラスチック製の網、各種厨房用の金網、竹籠も使用でき、身近な水辺と諸産業の化学反応槽に便利である。
次に単位エレメントの連結数の設計について説明する。透水面を面積S(m2)として示される単位エレメントを介して水量Q(m3/h)で処理するときの線速度v(m/h)=Q/Sでもって、処理水の水質を次式に従って決める。
2=400・v(本発明者が設定した式:ファインクレイの沈降式)、
例えばD=2μmのときは、v=1cm/h=24cm/日
D=20μmのときは、v=1m/h=24m/日
D=200μmのときは、v=100m/h(1.6m/分)
ここでD(μm)は、懸濁粒子を、真球に想定した精製粘土鉱物の直径を表す。
この式は、分離・分級・精製を濾過面の面積Sで調整するに際して、ろ過面積Sのエレメントの接続個数nでもって調整するための設計式である。
沈降速度を真球径に換算する式としてはストークスの沈降式を用いるのが基本である。沈降もしくは浮上する粒子の構成は単一物質ではなく、その比重、密度及び媒体粘度も媒質が純粋でないから、これらをやみくもに純物質とみなす仮定値を導入することで、実体とかけ離れることを危惧して到達した結果である。
媒質と媒体の境界は界面電気化学的に見て有限の厚みがあり、この厚みは多様に変化する。つまり濁質の大きさや粒度を求めるにあたりこの厚みをどのように捉えて表現するかは界面化学の永遠の技術課題であり、沈降速度法による粒度が測定法ごとに異なって当然である。画像解析で再現性の良いデータが得られるのは、試料調製の再現性が良いことを示していることに他ならないが、粒子の断面積が真球換算表示されることによって、実在もしない真球径換算値が独り歩きすると、尽きることのない徒労に終わることが多い。
本発明者によって提起されるファインクレイの沈降式を用いると、シックナー装置の液面上昇速度(処理水量を水面積で除した値)を前述のごとく数値的にきれいな換算定数で粒径換算でき、この式の元であるストークスの沈降式より実用的である。シックナーの水面面積に代えて単位エレメントの濾過面を考慮に入れ、且つこれを基にして単位エレメントの最適連結数(すなわち整数倍)を求めることが可能となったことが本発明の特徴である。極めて単純な操作であるが従来の粒度分布測定と本質的に異なる。所定粒度に相当する沈降速度以下の粒子や濁質を選択採取できる分級効果を発揮し、この粒子の詳細を本発明方法で分級精製した粒子として改めて解析することが望ましい。
分級機器としてデカンター(商品名)と呼ばれる遠心分離機が挙げられるが、沈降の加速のために遠心力が使われる越流方式であって、分級の分画に際してはファインクレイの分級式が役立つ。これはシックナー装置の設置占有場所の縮小効果であって、本発明の自然沈降に基づく方法・装置が合理的である。
本発明装置および本発明は固液分離の単位操作に関するもので、分級精製においては懸濁粒子や濁質の化学的性質を制御することが必須であり、濁質は本来の粒子にバラバラに分散した状態にしてそれぞれが本来の沈降速度を示す状態にすること、即ち分散あるいは邂逅することがまず必要である。
ファインクレイの式が示すように、沈降速度v=1cm/h以下の浮遊状態の微粒子の大きさは、粘土鉱物の真球換算粒径で2μmのもので、白濁状態でとなる。これより更に小さい0.2μm径の沈降速度は0.01cm/h、即ち、24cm/hと計算される。つまり1日の間に風の強弱があったりして24cmの変位があったり、太陽が上がって水温に上昇方向への変化があると、水中で舞い上がるので実質沈降し得ない。このレベルの粒子は濁りとして識別できないので透明に見えるが、チンダル現象として光路を遮る濁りを観察することができる。この粒子が単独ではなく、気泡を抱えることによって沈降できるようになることを提示できたことが本発明の特徴のひとつである。
いかなる手段であっても、浮遊させたものを浮遊状態で回収することはできないので、微細粒子を絡めて凝集させて見かけ上大きな粒子に成長させて沈降濃縮させ、媒質である水と分離することで始めて媒質が回収できる。従来では微粒子の界面電気化学的知見に基づいて凝集剤や化学薬品が用いられているが、従来のシックナー装置では沈降濃縮層と清水の境界層が崩れてしまい、濃縮泥が漏れ出ることが起こることを避けられなかった。しかし本発明方法ではこの漏えいが起こらない。したがって懸濁粒子の界面電気化学的制御手法を合理的、正確に設計でき、粒子の大きさのみならず粒子の本質的な分類が可能になる。
これによって鉱業における採掘可能な資源純度の幅が広がり、これまで利用できなかった低品位の鉱石の活用が可能になる。低品位の極みであって負の価値あるいは危険極まりない廃棄物質とされていたものであっても、それらの適正な分別技術として期待できる。
卓上小型水槽での実験結果が、巨大な自然水域に、諸産業の諸々の貯水槽、化学反応槽、また危険極まりない対象にも同じ原理を応用できて、それぞれの固有の課題が解明され解決される。
ここでは気化性物質として、還元性物質を取り上げたが、CODやBODという水質指標で検出される物質を対象としたものということができる。植物が光合成で二酸化炭素と水から炭水化物と酸素を生成して、酸素は気泡として水中に放出される。植物プランクトンの場合、この気泡がプランクトンに付着したままで浮遊して緑色の水になり、金魚の養殖池ではこれが健全な水とされる。この状態にするには植物の栄養素、肥料、例えば鶏糞、カリウム塩、リン酸塩も施肥されて、養殖に適した水辺が作られる。光合成に関与する気化性物質として、二酸化炭素と酸素が介在し、これらの気体の供給と脱離が光合成反応速度を支配するので、撹拌の適正化として、本発明の応用が展開されることを期待し、効果的な水耕栽培、灌漑用水の運用に役立つものと期待する。
本発明の装置及び方法は上記説明で明らかにしたように、単位エレメントを深さ方向に複数連結して透水機構部を構成しているが、被処理水の水槽の状況を十分に把握でき、繰り返し安定運転できる条件が確立したならば、透水機構部を深さ方向の一体型、即ち単位エレメント結合方式ではない一体型に設計変更して実施することも可能である。特に鼻1と鼻2を組合せて使用する構成の場合は、上記したような安定運転状態を早期に到達できるので、透水機構部の深さ方向一体型構造は、貯水槽への固定型設備として有用性が高くなることが理解されるであろう。
次に本発明装置を利用して屋外実験を行った事例について説明する。
実施例1.庭の池:鼻1の効果
水深0.9m、水面1×1.5mのコンクリート製。雨水が流入し、適宜越流により排出される構造からなる池の水の浄化実績を述べる。
図1示した貯水池は、当該地域の雨水が流入してその表層水が排出される構造で、17年に亘って庭木の下で放置されていた。落ち葉が入って、底域に約20cmのヘドロが堆積し、表層水も濁って底が透視できない。かき混ぜると泡立って悪臭が発生して環境不全である。この程度の大きさであれば全量排出による清掃は可能であるが、本実験では水を満たした状態のままとし、本発明方法での水質浄化処理を行うこととした。
まず在来の一般的方法として、市販の直流10W水中ポンプ〔(有)プテイオ社製。図10に示す仕様:品名EX〕を使用した。本品にはストレーナ及びスポンジフィルターが標準装備されており、これをそのまま用いた。なお単位エレメントは1個とし、池底に到達しないで水中に浮かばせる状態に設置した。これらの準備作業中に池底の落葉が掻き混ぜられ、池内にはヘドロ由来の汚泥が巻き上がって透視度が低下した。3日放置して貯水池の透視度が改善されるのを見計らって水中ポンプの電源を入れたところ、十数分間はポンプ音が正常に響いていたが、やがてストレーナ及びスポンジフィルターが、ヘドロ層に由来する汚泥によって閉塞して揚水できない状態となり、浄化は全く叶わなかった。水面を注意深く経過観察したところによれば、初めのうちは表層で渦流が生じて竜巻状態になりゴミが吸い込まれ、まずストレーナがピン・ポイントで閉塞される状況が観察され、やがてその閉塞状態がストレーナの高さ方向全体に広がり、全面的に閉塞した。
そこで上記単位エレメントから、内装されていたスポンジフィルターを取り除いてき、外側ストレーナユニットのみを新たな単位エレメントとし、ここにSMC社製の空気圧配管用機器のエルボユニオンを取り付けて、脱着自在の耐圧チューブを本件発明の「鼻1」として水面上までの長さに装着し、パスカルフィルターエレメントとした。
この実験では2つの単位エレメントを上下方向に連結し、最下端の単位エレメントをヘドロ層に挿入した。準備作業中にヘドロの舞上がりがあったが、今回は3日間の静置時間を持たず、即ち透視度0のまま、直ちにポンプをONとしたが、上記したような閉塞を招かず、継続して揚水できた。数日間は濁っていたが、1週間後には80cmの底域がヘドロ状態であることを透視・確認できた。これは在来法に比べて画期的成果である。
しかし水質検査を行ったところ、CODの数値では、飽和溶存酸素濃度DO値がこの時の水温25℃に相当する10ppm以下になることがなかった。透明度はかなり改善されたが、夜間に懐中電灯で照らすと、チンダル現象に由来する光路が見える濁水であり、この状態は3週間継続しても改善できなかった。
次にポンプの揚水量に対して濾過面積の大きいストレーナとして、東洋スクリーン(株)製のドラム型φ300のウェッジワイヤー製スクリーンを単位エレメントとして、やはり2つを上下方向に連結し、下側の単位エレメントを池の底に固定した。スクリーン内の内部空間を大気圧に開放させる手段「鼻1」相当の中空管を備えて、池内の循環を行った。
この結果は透視度の向上が迅速に進み、水質検査COD値は5ppm以下に改善され、まずは好ましい水辺環境が創出できた。大小さまざまな態様の貯水槽やため池に適用するにはストレーナの適正な大きさの設定と設置に手間がかかる。ここで用いた大型のストレーナは、治山・治水・土木用に好適であるが、個人の庭池のような小さな池、各種産業用の貯水槽、反応槽全般に適用するには高価かつ重くて現実的でない。
次に図10の単位エレメント(図10のボルト連結方式を爪連結方式に変更し、かつEXストレーナとスポンジフィルターを外したもの)を3段に連結して新たなストレーナとし、次いでこの一部にSMC社製の空気圧配管用機器エルボユニオンを取り付けて、脱着自在の耐圧チューブを本発明の「鼻1」として水面上に至らせ、パスカルフィルターエレメントとした。採水ポンプからの噴き出しを対岸に向けて若干斜め方向に設定し、噴出し水を池全体に旋回するように調整した。3日後にチェックすると底域が透視できるようになり、透視度は50cm以上になった。1週間後は透視度計の計測で100cm以上を示した。この効果を貯水域の規模の大小にかかわらず、単位エレメントの接続数の調整によって適正な濾過面積に調整できることが本発明の特徴である。
水深が10mに及ぶ公共上下水道の貯水槽等、水深が数十mに及ぶ湖沼ダム湖にあっても、このエレメントを多数連結しても同じ様に詰まらない原理が適用できる。多数の単位エレメントを安全確実に、外れないように保全できる構造に工夫することは言うまでもない。
実施例2.庭の池:鼻2の効果、チンダル現象の解消
実施例1によって透視度が改善された池であったが、夜間に懐中電灯で照らすと、池内に懐中電灯の光路が白く浮き上がり、チンダル現象がみられる程度であったことは上述した。
そこで図3に示すように、採水パイプ5に「鼻2」を付けて更なる運転を続けた。鼻2の臭いを嗅ぐと、硫化水素臭、アミン系の悪臭が感ぜられ、他方池内の清澄化の更なる改善が実感できた。鼻2の出口部に悪臭を発する析出物が出たので、管を更新し、逐次新しい鼻2とした。
採水ポンプからの噴き出し方向を左右に振り分けて調整し、池全体に緩やかな旋回流が維持された。鼻2からの悪臭は漸次減少し、上記したような析出物も減少し、殆どなくなった。夜間に懐中電灯で照らすと,底まで透視できて、且つ光路にチンダル現象がほとんど見られない水質が確認できた。この状態が盛夏を超えて半年以上維持されている。
比較例として、試みに鼻2を閉じて、水槽内の金魚への給餌を多くすると、チンダル現象が再発し、さらには昼間も濁りが出るようになった。改めて鼻2を開放復活させると、再び浄化が始まることで、鼻2の意義を再確認した。
実施例3.卓上の金魚飼育水槽で水を満たしたまま浄化
三十数匹の金魚を飼育している60リットルのガラス製の水槽であって、真夏を含む半年を経過して水抜き清掃が必要になっていた。槽の底部に沈降汚泥物が堆積している状態のまま、上記実施例に倣って2つの単位EXエレメントを連結し、鼻1と鼻2を設けた本発明装置を浸漬して、最下位の単位EXエレメントを底に到達させて飼育を継続した。格段の清掃もなく給餌を続けたが、2週間後には水槽内の透視度が改善され、夜間にガラス越しに懐中電灯を照らしても水槽内には光路が見られなくなっていた。
試みに鼻2を閉じると、数日後白濁して魚が見えなくなったが、再び鼻2を開けると透視度が改善された。また鼻1を閉じると、水槽の隅に泥が堆積してヘドロ化したが、鼻1を開けるとヘドロが消滅した。この間水の入れ替掃除することなく、魚が死ぬことも無かった。
実施例4.ホタル幼虫の飼育、ビオトープの通年維持
蛍の幼虫を飼育していた100リットルの水槽に実施例2と同じ構成の本発明装置を適用した。幼虫の餌になるカワニナを入れて、その餌として野菜を適宜与えた。水槽は濁ることなく、カワニナが繁殖し、ホタルの幼虫が成長した。この水槽のままではホタルが羽化できないので、羽化できる土手のある水辺に放流した。この結果から、本装置を蛍が羽化できる土手のある水辺に設置すれば蛍の自然繁殖が期待できることを確信した。因みに用いた水中ポンプは季節の変わり目3か月ごとに点検し、羽根等に付着した水垢を清掃しておくと、停止することがなかった。
実施例5.車庫上の池(2.5m高さ)と地上池の連結
図9の構成に従って、車庫の屋根上に設けた50リットルの角型水槽池と、φ30cm、高さ150cmのPVC製円筒水槽の地上池を連結して本発明方法を実施した。屋根上の角型水槽池からは樋を通して越流水が地上池に給水される。地上池からは10W直流ポンプを備えた本発明装置によって屋上池1に揚程2.5mで給水する。
降雨の無い日が続いて地上池の水がなくなると、水位センサーが働いてポンプが停止した。これによりポンプの損傷を防ぐことができた。水道栓を開いて給水が再開されると、地上池のポンプが駆動を回復した。屋上池の1つにクワイモの栽培ができた。直列に連結した別の池ではオニバスが自生し底域まで透視できる水辺が夏中維持できた。更に別の池に放流している金魚の飼育も順調であり、猛暑日も水温が35℃を超えることが無かった。季節の変わり目、3か月ごとにポンプとストレーナを清掃し、羽根車式のポンプは2年経過しても損耗しなかった。
試しに鼻1を塞ぐと、数日にして池水が濁るが、開放復帰すると清澄に戻った。また鼻2を塞ぐと、清澄度が損なわれ、夜間チンダル現象が観察されたが、鼻2を開放復帰するとスッキリした水辺に戻った。
このポンプで揚程2.5mまで揚水し、更にこれを中継して上方まで揚水する構成を採用すれば、幾らでも高いところの灌漑が可能になる。その為には大型ポンプを使うこともできる。小型ポンプで揚水し未使用の水が戻る循環システムを組んで、ここに本発明装置を使用すれば、COD負荷成分である気化物質も除かれるので、豊かな水循環が形成される。
空気曝気による弊害が活性酸素を悪役にして語られることがあるが、COD負荷成分の積極的排除が合理的なことが実証できた。また近年「脱気水」という概念の下、養鶏用水にこの「脱気水」を用いて「健康卵」を生産するという提案があるが、チンダル現象が起こらない清澄水は健康に適すると考えられるので、この提案にも、本発明方法を適用することが可能である。鶏に限らず人間の飲料水として、つまりは一般上水道水に高度の水が安価に供給できる道が開けた。
実施例6.ドブ貝の飼育実験
絶滅危惧種とされるドブ貝の飼育実験水槽について、従来の越流方式ではこの実験水槽内の底域が淀んでヘドロ化し、飼育を試みたドブ貝が全滅する、ということが経験されていた。そこで図9の構成を適用して、農業用ため池の水を供給し、かつ、この水槽の排水構造を従来の越流方式に代えて、本発明装置に変更した。ため池からは動植物プランクトン、無機塩を含む栄養豊かな水が実験水槽に供給されるが、水槽は淀まず、また底域がヘドロ化せず、ドブ貝が盛夏を超えて飼育できた。
実施例7.着色排水の浄化
図9の構成に従って、上池1Xとして60リットルの円筒型水槽、下池1Yとして同じ60リットルの円筒形水槽を連結した。水性絵具の洗浄排水を上池に給水した。洗浄着色水は一晩で着色水が底泥液となり、上方は比較的色の薄い水になった。翌日の作業で新たな洗浄着色排水を上池に給水した。底域からの比較的薄い着色水が採水パイプ5Xを経由して下池1Yに流下した。底泥液層を経由することで着色度は軽減されてほとんど透明な清水が下池に流下した。こうして下池が満杯になるとポンプを駆動して採水パイプ5Yを経由して上池に戻す。この結果放流しても許容できる清水が循環し、新たな給水がないときに採水パイプ6Xを経由して下池がほぼ空になるまで清水を放流した。この成績は各種の汚濁排水の処理でも好適に発揮されるであろうことを示唆している。
なお下池設置のポンプの下流のストレーナに通じる鼻1(12Y)からポリ塩化アルミニウム(PAC)10%液を滴下したところ、水槽内での撹拌が好適に行われたことを受けて、上池に供給されたときの凝集沈降が的確に観察された。沈降した泥液層から排出される水は著しく清澄で、下池の水はチンダル現象が見られなかった。簡単な構成で濁水を浄化できた。
因みに鼻1を塞ぐと、ポンプが損傷して継続運転ができなかった。他方鼻2を塞ぐと、清水にはなるがチンダル現象の解消には至らなかった。これらの実験から、従来であれば、温度変化に伴う微細気泡の安定化に依って生じていたチンダル現象が、濁質とPACとの反応が良好に行われることによって解消されたと理解することができる。
実施例8.実施例7の装置・構成による浄水場や岸壁への応用
公共浄水場では河川等から原水を採取後、沈砂池を経て浮遊、懸濁した状態のところへPAC等の凝集剤を添加して凝集沈澱させる。この上澄水が砂ろ過、オゾン処理、活性炭濾過等を経て市販の水道水になる。
浮遊した微粒子と凝集剤を化学反応させるためには撹拌が不可欠であるが、凝集体が撹拌力を受けて崩壊し浮遊し易い。浄水場のような巨大施設では、往々にして凝集剤が過剰になって、水道水に過剰のアルミニウムが漏洩する。つまり凝集物を沈降させた泥液層がしっかり凝集しているならば、凝集泥からの浸出水は清澄で、泥液が崩れない限り、泥液が漏洩しない。
反対に凝集不全で、粘土鉱物粒子、腐葉土フミン質、フミン酸はカチオン交換体としてアンモニア、アルカリ金属(Li、Na、K、Cs等)で分散が安定化して漏洩し易くなる。PACとの化学反応で凝集する際、揮発性の塩化水素が複製するが、本発明装置を用いると、鼻2の効果としてこれを系外に排除できて高度に清澄化され、チンダル現象が起こらない。
図10に示す仕様の品名EXストレーナ、φ60mm、接続部を含む高さ60mmを40個連結し長さ2mの中空管相当を5セット準備した。岸壁でこれらを更に接続して10mの中空管にした。これは中空糸カートリッジの5倍拡大を想定しての実験である。これらをすべて海水面以下に沈めて、岸壁足場まで2mと余裕を見て5mのビニールホースで岸壁まで導き、自動車用鉛蓄電池12Vを電源としてポンプを駆動し、10mに及ぶ広範囲から揚水できた。新鮮かつ清澄な水が揚水で気、釣り上げた鯵のイケスとして好適であった。なお必ずしも5セットが必要でなく、1セットでも十分清澄な海水を揚水でき、蓄電池容量がある限り一定流量の揚水ができた。
実施例9.下水の会所枡への応用
約40リットルの会所枡に直流10Wの本発明装置を設けた。チンダル現象の無い清澄水が蓄えられて、底域には清浄な砂礫が溜まり、これは土木資材に利用できた。
実施例10.土壌の分級
家庭菜園でも使用済の土壌の処分に困っている。そこで実施例7の装置・構成からなる本発明装置を用いて土嬢を水洗し、生じた濁水から、例えば沈降速度v=1cm/hに設定すると、粘土質の微細土壌が確実に分別できて、清浄な砂礫が槽の底に残り、園芸用に戻せた。採取した濁液は適宜凝集剤を用いて沈降濃縮、分離分別して粘土資源になった。
沈降速度v=1cm/h(2μm相当)以下に設定するにはストレーナを大きく、ポンプ採水量を小さくすれば、v=0.01cm/h(0.2μm相当)が可能で、実際にはEXストレーナ2個に対してEXTRA社の2Wのポンプを組み合わせると、濁水から清澄水が採取できた。更に出力の小さなポンプの開発提供に努める。
実施例11.金属エッチングの廃液処理
紙幣や切手の印刷、趣味として行われる銅版画などにおける、塩化第二鉄含有の腐食液には銅及び鉄の酸化物スラッジが増えて仕上がり不良になる。そこでこの腐食液をセットリングタンクにて一晩静置し、上澄水に試薬を補充して再利用されている。つまりこのセットリング分離操作の簡便確実化が工芸分野において要求される。本発明装置ではこのスラッジの分離除去が精密確実で、仕上がりが向上した。趣味で行う銅版画では小型機器として2Wの小型水中ポンプが便利であった。
自動車の車体、建築用鋼材に施される電着塗装の際、この前段処理にリン酸によるエッチング操作(リン酸塩被覆処理)が行われる。エッチングされた鉄のスラッジ除去が必要で、大きなセットリングタンクが設けられる。本発明装置によると正確簡便により分離分別が行われた。産業装置としては(有)プテイオ社の4Wの交流ポンプが便利であった。
アルミニウム資材の表面処理に際しては、苛性ソーダ液等でのエッチング処理が行われる。このエッチング液にはアルミナ泥が発生するが、沈降分離除去した上澄液はアルカリ液として繰り返し利用できる。この分離分別に本発明装置が好適である。エッチング操作で生じる水素ガスの気泡の分離が効果的に行われる効果で、分離回収されたスラッジはアルミニウムに再生される。
実施例12.抽出、焙煎操作
小型機器としては2Wの水中ポンプが便利であり、加熱を伴う出汁取、煎じ、抽出操作に提供した。加熱段階で溶存空気が気泡となる過程で、効果的な気化性物質の除去により、スッキリした出汁、コーヒー、煎茶が得られた。活性酸素、活性水素と称されている物質とは気化性物質と推定される。
実施例13.電極反応装置
また電池、電気分解等の電極反応における隔膜室内液の制御において、気化性物質を系外に取除く操作を組み込めたことは、電極反応におけるガス分極を確実に制御でき、優れた電池の実現、合理的な電気分解への道を開くとの期待が持てる。
実施例14.交換、吸着塔
図1に示すような竜巻状の水流形成を防止することは、イオン交換反応、活性炭吸着塔に好都合である。φ150mm、H1500mm縦長のPVC管に図2の構成で、管内に園芸用の鹿沼土を充填しこれを200リットルドラム缶に沈めて雨水貯留槽とした。鹿沼土層からは常に清澄な水が採取でき、これは数年を経ても目詰まりしていない。天然の湧水を再現したものと考えることができる。この塔では鹿沼土に含まれるゼオライト鉱物のイオン交換反応が関与したとみている。
実施例15.雨水貯留槽
住宅の雨樋を水源として雨水貯留槽が設けられている一例として、φ300mmのPVC製円筒管を貯水槽として雨水を溜めたところ、黄砂などの無機微粒子、花粉等の有機微粒子、PM2.5等、様々な汚染物が流入して蓄積し、夏場なら1か月もすると黒く淀んで、ボウフラの温床となり、用水として役立たない。図1に示すように流入水の上水が流出し、貯留水が淀むためである。また図1に示すように底域から採水しても、竜巻状態の下で形成された表層からの採取水では、これを静置しても底域が淀んで腐敗して、この腐敗水では利用価値に乏しい。図示していないが、採水パイプ5の位置を水面近くに移設し、降雨で流入した水に相当する量の水を底域から排出させ、図2のような鼻1を設けたところ、竜巻状にはならず、降雨に応じて生じる水頭差によって、底域からは所望量の水が排出されて槽内が淀まなかった。
夕立のような激しい降雨の場合は、蒸留水のような純水が供給されることになるから、貯留水の電気伝導度が1μS/cm以下になり、優れた備蓄水源になった。この状態が3年以上維持されており、保安の視点から水抜き点検したところ、底域には清浄な砂状の無機質の蓄積しかなかった。
1 貯水槽(貯水域)
2 越流堰
3 浸漬型固液分離手段(濾過分離装置:本発明では透過装置)
4 透水面(濾過面)
5 採水パイプ
5a、5b、5c 分岐パイプ(鼻2)
6 流量調節バルブ
7 スクリュー式排出機構
8 採水ポンプ
9(9a、9b、9c、〜9n) 単位エレメント
10 ヘドロ(層)
11 チューブ
12 上方端側解放口(鼻1)
13 下方端側解放口
14 樋
15 安全路
22 フランジ
25 縦リブ(縦格子)
26 スリット(貫通路)
27 ボルト連結孔
A 透水面を透過する以前の被処理水を示す付記記号
B 透水面を透過した以降の被処理水を示す付記記号
X 第1の貯水槽に関連する部材を示す付記記号
Y 第2の貯水槽に関連する部材を示す付記記号

Claims (5)

  1. 被処理水の水槽中に略垂直姿勢で浸漬される筒状外観を備えると共に少なくとも筒軸方向上端が封鎖され、かつ筒体外周には筒壁を通して筒体の外部から内腔への水の通過移動が自在であるような貫通路によって構成される透水面を備えた透水機構部を備え、
    両端が解放されて略垂直姿勢で被処理水の水槽中に浸漬されるチューブを、その下方端側解放口を、前記筒体内腔部の任意高さ位置に臨ませるように配置して該内腔部に存在する被処理水を該チューブの下方端側解放口を通して該チューブ内に導入させると共に、該チューブの上方端側解放口を、被処理水の水槽の水面上へ突出させて、該チューブ内に前記下方端側解放口から浸入している被処理水を該上方端側解放口の内腔に至らせて大気圧に解放さた状態とする鼻〔以下鼻1という〕とし、
    略垂直姿勢で前記透水機構部内の被処理水中に浸漬される採水パイプを設けると共に、該採水パイプの採水行程に沿って、該採水パイプから上向き方向に分岐させた任意数の分岐パイプを被処理水の水槽の被処理水面より高い位置の大気中に突出させて、該採水パイプ内を流れる被処理水の上面を大気圧に解放させた状態とする鼻〔以下鼻2という〕とし、
    前記透水機構部は前記筒体の外周面に前記透水面を有すると共に筒軸方向に連結・解除自在に構成された筒状透水体を単位エレメントとし、被処理水の水槽状況に対応して該単位エレメントの連結数を最適化することにより、必要最適深度域をカバーし得る長さの透水機構部を形成して使用するものであり、
    各単位エレメントにおける透水面は、可視大きさの水通過孔を筒壁貫通方向に備えて構成されるものであり、
    前記透水機構部の前記内腔に移動している被処理水および該被処理水中の非可視的微細濁質並びに該非可視的微細濁質の一部を構成する気化性物質が、該内腔を臨んで連結された前記採水パイプを経由して、上方端側解放口を採水ポンプの使用に基づく吸引力によるか、または前記被処理水の水槽の水位に基づく位置エネルギーによって抜き出されるように構成すると共に前記気化性物質を鼻2から大気中に放散させるように構成されたものであることを特徴とする気化性物質を系外排除できる水処理装置。
  2. 前記透水機構部の透水面の外周側に、任意の織・編・網状分離手段を着脱自在に添設して使用できるものである請求項1に記載の水処理装置。
  3. 請求項1または2に記載された装置を用い、被処理水の水槽から前記採水パイプを介して排出される被処理水を当該水槽の被処理水中に注入するように返戻供給するか、若しくは請求項1または2に記載された構成からなる装置が配設された別水系の被処理水槽の被処理水中に注入するように供給して、それら返戻供給または供給された槽中の被処理水に緩やかな旋回流を形成することで、該被処理水槽中において非可視的微細濁質の凝集乃至微細気泡化を促進し、前記透水機構部を介して循環させることで、該気泡化された物質の鼻2からの排除を促進することを特徴とする気化性物質を系外排除できる水処理方法。
  4. 前記気泡化された物質を鼻2の出口で凝固析出せしめて、鼻2の出口部を更新して排除するか、または燃焼等で消滅させる請求項に記載の水処理方法。
  5. 前記被処理水を貯留する水源水域(以下、下池という)と別の活用水域(以下、上池という)の間で被処理水を往復移動させることとし、上池から下池には、請求項1または2に記載された装置を用いて自然流下させ、下池から上池には、請求項1または2に記載された装置を用いて揚水することとし、上池と下池の間の循環系を複数段繰り返す請求項3または4に記載の水処理方法。
JP2016050633A 2016-03-15 2016-03-15 気化性物質を系外排除できる水処理装置及び方法 Active JP6666176B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016050633A JP6666176B2 (ja) 2016-03-15 2016-03-15 気化性物質を系外排除できる水処理装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016050633A JP6666176B2 (ja) 2016-03-15 2016-03-15 気化性物質を系外排除できる水処理装置及び方法

Publications (2)

Publication Number Publication Date
JP2017164670A JP2017164670A (ja) 2017-09-21
JP6666176B2 true JP6666176B2 (ja) 2020-03-13

Family

ID=59909461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016050633A Active JP6666176B2 (ja) 2016-03-15 2016-03-15 気化性物質を系外排除できる水処理装置及び方法

Country Status (1)

Country Link
JP (1) JP6666176B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117368029B (zh) * 2023-12-07 2024-03-08 水利部交通运输部国家能源局南京水利科学研究院 自动获取土石坝坝体材料冲蚀系数的试验装置及方法

Also Published As

Publication number Publication date
JP2017164670A (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
KR101282100B1 (ko) 탱크 물 전체가 아닌 적은 양의 물에 대해 여과가 수행되는 레크리에이션용 및 장식용 탱크 내의 물에 대한 효과적인 여과 공정
US9951509B2 (en) Water treatment system
CN104108830B (zh) 中水深度处理及回用系统
WO2009108032A1 (es) Planta y método para tratar simultáneamente, aguas residuales y lodos generados
US20150101981A1 (en) Assemblies and methods for treating wastewater
CN104402177A (zh) 一种小区生活污水处理系统
CN202063793U (zh) 多级污水处理用生物反应系统
JP6666176B2 (ja) 気化性物質を系外排除できる水処理装置及び方法
KR101547856B1 (ko) 침전물 부양형 수질 정화시스템
RU2654757C1 (ru) Система очистки сточных вод
WO1993023338A1 (fr) Appareil purificateur
KR101635966B1 (ko) 수질정화 기능을 갖는 생태수로
CN107935190A (zh) 一种复氧型潜流人工湿地
KR200258654Y1 (ko) 상수도용 간이 급속 침전 여과 장치
CN207227231U (zh) 一种屠宰场污水环保处理装置
KR20100129118A (ko) 하폐수 재활용 이온활성화 정화시스템
KR20150016770A (ko) 연못의 생태계 조절 시스템
CN206328279U (zh) 一种矿井废水处理系统
Coppen Advanced wastewater treatment systems
JP5273962B2 (ja) 水の浄化装置
JP2005058957A (ja) 浮体式水域浄化処理装置
KR200283201Y1 (ko) 호수의 수질정화시스템
JP2014008474A (ja) 池水循環ハイブリッド浄化方法及び池水循環ハイブリッド浄化システム
JP2000024678A5 (ja)
KR200266497Y1 (ko) 상수도용 간이급속여과장치

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200220

R150 Certificate of patent or registration of utility model

Ref document number: 6666176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250