JP6665414B2 - Method of storing Fc binding protein - Google Patents

Method of storing Fc binding protein Download PDF

Info

Publication number
JP6665414B2
JP6665414B2 JP2015063067A JP2015063067A JP6665414B2 JP 6665414 B2 JP6665414 B2 JP 6665414B2 JP 2015063067 A JP2015063067 A JP 2015063067A JP 2015063067 A JP2015063067 A JP 2015063067A JP 6665414 B2 JP6665414 B2 JP 6665414B2
Authority
JP
Japan
Prior art keywords
seq
substituted
binding protein
amino acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015063067A
Other languages
Japanese (ja)
Other versions
JP2016183112A (en
Inventor
陽介 寺尾
陽介 寺尾
直紀 山中
直紀 山中
大江 正剛
正剛 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015063067A priority Critical patent/JP6665414B2/en
Publication of JP2016183112A publication Critical patent/JP2016183112A/en
Application granted granted Critical
Publication of JP6665414B2 publication Critical patent/JP6665414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は、Fc結合性タンパク質を水溶液中で長期間保存可能な方法に関する。特に本発明はヒトFcγRIIIa由来のFc結合性タンパク質を水溶液中で長期間保存可能な方法に関する。   The present invention relates to a method for storing an Fc-binding protein in an aqueous solution for a long period of time. In particular, the present invention relates to a method capable of storing an Fc-binding protein derived from human FcγRIIIa in an aqueous solution for a long period of time.

Fcレセプターは、免疫グロブリン分子のFc領域に結合する一群の分子である。Fcレセプターはその結合する免疫グロブリンの種類によって分類されており、IgGのFc領域に結合するFcγレセプター、IgEのFc領域に結合するFcεレセプター、IgAのFc領域に結合するFcαレセプター等がある(非特許文献1)。また、各レセプターは、その構造の違いによりさらに細かく分類され、Fcγレセプターの場合、FcγRI、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIbの存在が報告されている(非特許文献1)。   Fc receptors are a group of molecules that bind to the Fc region of an immunoglobulin molecule. Fc receptors are classified according to the type of immunoglobulin to which they bind, and include Fcγ receptors that bind to the Fc region of IgG, Fcε receptors that bind to the Fc region of IgE, and Fcα receptors that bind to the Fc region of IgA (non- Patent Document 1). Further, each receptor is further classified finely according to the difference in its structure. In the case of Fcγ receptor, the presence of FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa, and FcγRIIIb has been reported (Non-patent Document 1).

Fcγレセプターの中でも、FcγRIIIaはナチュラルキラー細胞(NK細胞)やマクロファージなどの細胞表面に存在しており、ヒト免疫機構の中でも重要なADCC(抗体依存性細胞傷害)活性に関与している重要なレセプターである。このFcγRIIIaとヒトIgGとの親和性は結合の強さを示す結合定数(KA)が10−1以下であることが報告されている(非特許文献2)。ヒトFcγRIIIaのアミノ酸配列(配列番号1)はUniProt(Accession number:P08637)などの公的データベースに公表されている。また、ヒトFcγRIIIaの構造上の機能ドメイン、細胞膜を貫通するためのシグナルペプチド配列、細胞膜貫通領域の位置についても同様に公表されている。図1にヒトFcγRIIIaの構造略図を示す。なお、図1中の番号はアミノ酸番号を示しており、その番号は配列番号1に記載のアミノ酸番号に対応する。すなわち、配列番号1中の1番目のメチオニン(Met)から16番目のアラニン(Ala)までがシグナル配列(S)、17番目のグリシン(Gly)から208番目のグルタミン(Gln)までが細胞外領域(EC)、209番目のバリン(Val)から229番目のバリン(Val)までが細胞膜貫通領域(TM)および230番目のリジン(Lys)から254番目のリジン(Lys)までが細胞内領域(C)とされている。なおFcγRIIIaはIgG1からIgG4まであるヒトIgGサブクラスのうち、特にIgG1とIgG3に対し強く結合する一方、IgG2とIgG4に対する結合は弱いことが知られている。 Among the Fcγ receptors, FcγRIIIa is present on cell surfaces such as natural killer cells (NK cells) and macrophages, and is an important receptor involved in ADCC (antibody-dependent cytotoxicity) activity which is important in the human immune system. It is. It has been reported that the affinity between FcγRIIIa and human IgG has a binding constant (KA) indicating the strength of binding of 10 7 M −1 or less (Non-Patent Document 2). The amino acid sequence of human FcγRIIIa (SEQ ID NO: 1) has been published in public databases such as UniProt (Accession number: P08637). Similarly, the functional domain on the structure of human FcγRIIIa, the signal peptide sequence for penetrating the cell membrane, and the location of the cell membrane transmembrane region have been published. FIG. 1 shows a schematic diagram of the structure of human FcγRIIIa. The numbers in FIG. 1 indicate amino acid numbers, and the numbers correspond to the amino acid numbers described in SEQ ID NO: 1. That is, the signal sequence (S) is from the 1st methionine (Met) to the 16th alanine (Ala) in SEQ ID NO: 1, and the extracellular region is from the 17th glycine (Gly) to the 208th glutamine (Gln). (EC), the 209th valine (Val) to the 229th valine (Val) have a transmembrane region (TM) and the 230th lysine (Lys) to the 254th lysine (Lys) have an intracellular region (C). ). It is known that FcγRIIIa strongly binds to IgG1 and IgG3 among human IgG subclasses from IgG1 to IgG4, but weakly binds to IgG2 and IgG4.

遺伝子組換え技術を利用したFcレセプター(Fc結合性タンパク質)の発現に関しては、これまで、大腸菌(特許文献1)、動物細胞(非特許文献3)、バチルス属細菌(特許文献2)、酵母(特許文献3)、麹菌(特許文献4)を宿主とした発現が報告されている。中でも大腸菌を宿主として用いた系では、高密度培養によるFcレセプター(Fc結合性タンパク質)の製造法(特許文献5)、疎水クロマトグラフィー(特許文献6)や陽イオン交換クロマトグラフィーを用いたFcレセプター(Fc結合性タンパク質)の精製法も報告されている。さらにはFcレセプター構造遺伝子の改変によりFcレセプター(Fc結合性タンパク質)の安定化や生産性が向上する(特許文献7)など、Fcレセプターの産業利用への関心が高まっている。   Regarding the expression of Fc receptor (Fc binding protein) using gene recombination technology, Escherichia coli (Patent Document 1), animal cells (Non-patent Document 3), Bacillus bacteria (Patent Document 2), yeast ( Patent Literature 3) and expression using Aspergillus oryzae (Patent Literature 4) as hosts have been reported. In particular, in a system using Escherichia coli as a host, a method for producing an Fc receptor (Fc-binding protein) by high-density culture (Patent Document 5), an Fc receptor using hydrophobic chromatography (Patent Document 6) or cation exchange chromatography A method for purifying (Fc-binding protein) has also been reported. Furthermore, the Fc receptor (Fc binding protein) is stabilized and the productivity is improved by modifying the Fc receptor structural gene (Patent Document 7), and interest in industrial use of the Fc receptor is increasing.

一方でFcレセプターは精製後に溶液状態で保存すると凝集しやすいことが問題となっており、産業利用において重大な欠点となっていた。すなわち、精製したFcレセプターを使用するまでの間放置しておくと、凝集し析出する問題があった。さらに凝集したFcレセプターをそのまま放置しておくと変性し再溶解できなくなる問題もあった。   On the other hand, when the Fc receptor is stored in a solution state after purification, there is a problem that the Fc receptor is easily aggregated, which has been a serious drawback in industrial use. That is, if the purified Fc receptor is allowed to stand until it is used, there is a problem that the Fc receptor aggregates and precipitates. Furthermore, if the aggregated Fc receptor is left as it is, it is denatured and cannot be redissolved.

タンパク質の保存方法としては、特定の抗体を安定に保存する緩衝液(特許文献8)や保存方法(特許文献9)が知られている。しかしながら前述した方法は、タンパク質としての性質の異なるFc結合性タンパク質には適用できなかった。そのためFcレセプターを安定に保存できる方法の開発が求められていた。   As a method for storing a protein, a buffer solution for stably storing a specific antibody (Patent Document 8) and a storing method (Patent Document 9) are known. However, the method described above could not be applied to Fc-binding proteins having different protein properties. Therefore, development of a method that can stably store the Fc receptor has been demanded.

特開2008−245580号公報JP 2008-245580 A 特開2009−201403号公報JP 2009-201403 A 特開2011−072246号公報JP 2011-072246 A 特開2011−200203号公報JP 2011-200203 A 特開2012−034591号公報JP 2012-034591 A 特開2011−126827号公報JP-A-2011-126827 特開2011−206046号公報JP 2011-206046 A 特表2008−515775号公報JP 2008-515775 A WO2005/035573号WO2005 / 035573

J.V.Ravetch等,Annu.Rev.Immunol.,9,457,1991J. V. Ravetch et al., Annu. Rev .. Immunol. , 9,457,1991 J.Galon等,Eur.J.Immunol.,27,1928−1932,1997J. Galon et al., Eur. J. Immunol. , 27, 1928-1932, 1997. A.Paetz等,Biochem.Biophys.Res.Commun.,338,1811,2005A. Paetz et al., Biochem. Biophys. Res. Commun. , 338, 1811, 2005

本発明の目的は、Fcレセプター(Fc結合性タンパク質)を凝集させずに長期間安定的に保存可能な溶液、およびFcレセプターを凝集させずに長期間安定的に保存する方法を提供することにある。   An object of the present invention is to provide a solution that can be stably stored for a long time without aggregating Fc receptor (Fc binding protein), and a method for stably storing the Fc receptor for a long time without aggregating the Fc receptor. is there.

前記課題を解決するために鋭意検討した結果、水溶液中のFcレセプター(Fc結合性タンパク質)を安定に保存できるpHを見出し、本発明の完成に至った。   As a result of intensive studies to solve the above problems, the present inventors have found a pH at which an Fc receptor (Fc binding protein) in an aqueous solution can be stably stored, and have completed the present invention.

すなわち本発明は、以下の態様を包含する:
(A)Fc結合性タンパク質を含む水溶液であって、前記水溶液のpHが7.0から9.0である、前記水溶液。
That is, the present invention includes the following embodiments:
(A) An aqueous solution containing an Fc-binding protein, wherein the pH of the aqueous solution is 7.0 to 9.0.

(B)さらに0.5mol/L以上の塩化ナトリウムを含む、(A)に記載の水溶液。   (B) The aqueous solution according to (A), further containing 0.5 mol / L or more of sodium chloride.

(C)Fc結合性タンパク質が、
配列番号1に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含むタンパク質、または
配列番号1に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含み、かつ前記アミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質である、
(A)または(B)に記載の水溶液。
(C) The Fc binding protein is
A protein comprising amino acid residues from at least the 17th glycine to the 192nd glutamine in the amino acid sequence of SEQ ID NO: 1, or at least the 17th glycine to the 192nd glutamine of the amino acid sequence of the SEQ ID NO: 1 Up to and including one or more of the amino acid residues is a protein substituted with another amino acid residue, inserted or deleted,
The aqueous solution according to (A) or (B).

(D)Fc結合性タンパク質をpH7.0から9.0の水溶液中で保存する、Fc結合性タンパク質の保存方法。   (D) A method for storing an Fc-binding protein, wherein the Fc-binding protein is stored in an aqueous solution having a pH of 7.0 to 9.0.

(E)Fc結合性タンパク質を、0.5mol/L以上の塩化ナトリウムを含むpH7.0から9.0の水溶液中で保存する、Fc結合性タンパク質の保存方法。   (E) A method for storing an Fc-binding protein, wherein the Fc-binding protein is stored in an aqueous solution containing 0.5 mol / L or more of sodium chloride at a pH of 7.0 to 9.0.

(F)Fc結合性タンパク質が、
配列番号1に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含むタンパク質、または
配列番号1に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含み、かつ前記アミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質である、
(D)または(E)に記載の保存方法。
(F) the Fc binding protein is
A protein comprising amino acid residues from at least the 17th glycine to the 192nd glutamine in the amino acid sequence of SEQ ID NO: 1, or at least the 17th glycine to the 192nd glutamine of the amino acid sequence of the SEQ ID NO: 1 Up to and including one or more of the amino acid residues is a protein substituted with another amino acid residue, inserted or deleted,
The storage method according to (D) or (E).

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明においてFc結合性タンパク質とは、ヒトFcγRIIIaの細胞外領域(具体的には天然型ヒトFcγRIIIaの場合、配列番号1に記載のアミノ酸配列のうち17番目のグリシンから208番目のグルタミンまでの領域)(図1)を構成するタンパク質があげられる。なお必ずしもヒトFcγRIIIa細胞外領域の全領域でなくてもよく、ヒトFcγRIIIa細胞外領域を構成するタンパク質(ポリペプチド)のうち、少なくとも抗体(免疫グロブリン)のFc領域に結合する本来の機能を発現し得る領域のポリペプチドを含んでいればよい。本明細書におけるヒトFc結合性タンパク質の一例として、
(i)配列番号1に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含むタンパク質や、
(ii)配列番号1に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含み、かつ前記アミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質、
があげられる。
In the present invention, the Fc-binding protein is an extracellular region of human FcγRIIIa (specifically, in the case of natural human FcγRIIIa, a region from glycine at position 17 to glutamine at position 208 in the amino acid sequence of SEQ ID NO: 1). ) (FIG. 1). The protein may not necessarily be the entire region of the extracellular region of human FcγRIIIa, and may express the original function of binding to at least the Fc region of an antibody (immunoglobulin) among proteins (polypeptides) constituting the extracellular region of human FcγRIIIa. What is necessary is just to include the polypeptide of the region to be obtained. As an example of the human Fc binding protein herein,
(I) a protein comprising amino acid residues from at least the 17th glycine to the 192nd glutamine in the amino acid sequence described in SEQ ID NO: 1,
(Ii) including at least the amino acid residues from glycine at position 17 to glutamine at position 192 in the amino acid sequence of SEQ ID NO: 1, and wherein at least one of the amino acid residues is substituted with another amino acid residue , Inserted or deleted proteins,
Is raised.

前記(ii)の具体例としては、配列番号1に記載のアミノ酸配列のうち17番目から192番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において以下の(1)から(40)のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質(特願2014−166883号)があげられる。
(1)配列番号1の18番目のメチオニンがアルギニンに置換
(2)配列番号1の27番目のバリンがグルタミン酸に置換
(3)配列番号1の29番目のフェニルアラニンがロイシンまたはセリンに置換
(4)配列番号1の30番目のロイシンがグルタミンに置換
(5)配列番号1の35番目のチロシンがアスパラギン酸、グリシン、リジン、ロイシン、アスパラギン、プロリン、セリン、スレオニン、ヒスチジンのいずれかに置換
(6)配列番号1の46番目のリジンがイソロイシンまたはスレオニンに置換
(7)配列番号1の48番目のグルタミンがヒスチジンまたはロイシンに置換
(8)配列番号1の50番目のアラニンがヒスチジンに置換
(9)配列番号1の51番目のチロシンがアスパラギン酸またはヒスチジンに置換
(10)配列番号1の54番目のグルタミン酸がアスパラギン酸またはグリシンに置換
(11)配列番号1の56番目のアスパラギンがスレオニンに置換
(12)配列番号1の59番目のグルタミンがアルギニンに置換
(13)配列番号1の61番目のフェニルアラニンがチロシンに置換
(14)配列番号1の64番目のグルタミン酸がアスパラギン酸に置換
(15)配列番号1の65番目のセリンがアルギニンに置換
(16)配列番号1の71番目のアラニンがアスパラギン酸に置換
(17)配列番号1の75番目のフェニルアラニンがロイシン、セリン、チロシンのいずれかに置換
(18)配列番号1の77番目のアスパラギン酸がアスパラギンに置換
(19)配列番号1の78番目のアラニンがセリンに置換
(20)配列番号1の82番目のアスパラギン酸がグルタミン酸またはバリンに置換
(21)配列番号1の90番目のグルタミンがアルギニンに置換
(22)配列番号1の92番目のアスパラギンがセリンに置換
(23)配列番号1の93番目のロイシンがアルギニンまたはメチオニンに置換
(24)配列番号1の95番目のスレオニンがアラニンまたはセリンに置換
(25)配列番号1の110番目のロイシンがグルタミンに置換
(26)配列番号1の115番目のアルギニンがグルタミンに置換
(27)配列番号1の116番目のトリプトファンがロイシンに置換
(28)配列番号1の118番目のフェニルアラニンがチロシンに置換
(29)配列番号1の119番目のリジンがグルタミン酸に置換
(30)配列番号1の120番目のグルタミン酸がバリンに置換
(31)配列番号1の121番目のグルタミン酸がアスパラギン酸またはグリシンに置換
(32)配列番号1の151番目のフェニルアラニンがセリンまたはチロシンに置換
(33)配列番号1の155番目のセリンがスレオニンに置換
(34)配列番号1の163番目のスレオニンがセリンに置換
(35)配列番号1の167番目のセリンがグリシンに置換
(36)配列番号1の169番目のセリンがグリシンに置換
(37)配列番号1の171番目のフェニルアラニンがチロシンに置換
(38)配列番号1の180番目のアスパラギンがリジン、セリン、イソロイシンのいずれかに置換
(39)配列番号1の185番目のスレオニンがセリンに置換
(40)配列番号1の192番目のグルタミンがリジンに置換
また前記(ii)の別の具体例としては、配列番号2に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において以下の(41)から(111)のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質があげられ、さらに具体的な例として配列番号3に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含むFc結合性タンパク質があげられる(特願2015−047462号)。
(41)配列番号2の45番目のフェニルアラニンがイソロイシンまたはロイシンに置換
(42)配列番号2の55番目のグルタミン酸がグリシンに置換
(43)配列番号2の64番目のグルタミンがアルギニンに置換
(44)配列番号2の67番目のチロシンがセリンに置換
(45)配列番号2の77番目のフェニルアラニンがチロシンに置換
(46)配列番号2の93番目のアスパラギン酸がグリシンに置換
(47)配列番号2の98番目のアスパラギン酸がグルタミン酸に置換
(48)配列番号2の106番目のグルタミンがアルギニンに置換
(49)配列番号2の128番目のグルタミンがロイシンに置換
(50)配列番号2の133番目のバリンがグルタミン酸に置換
(51)配列番号2の135番目のリジンがアスパラギンまたはグルタミン酸に置換
(52)配列番号2の156番目のスレオニンがイソロイシンに置換
(53)配列番号2の158番目のロイシンがグルタミンに置換
(54)配列番号2の187番目のフェニルアラニンがセリンに置換
(55)配列番号2の191番目のロイシンがアルギニンに置換
(56)配列番号2の196番目のアスパラギンがセリンに置換
(57)配列番号2の204番目のイソロイシンがバリンに置換
(58)配列番号2の34番目のメチオニンがイソロイシン、リジン、スレオニンのいずれかに置換
(59)配列番号2の37番目のグルタミン酸がグリシンまたはリジンに置換
(60)配列番号2の39番目のロイシンがメチオニンまたはアルギニンに置換
(61)配列番号2の49番目のグルタミンがプロリンに置換
(62)配列番号2の62番目のリジンがイソロイシンまたはグルタミン酸に置換
(63)配列番号2の64番目のグルタミンがトリプトファンに置換
(64)配列番号2の67番目のチロシンがヒスチジンまたはアスパラギンに置換
(65)配列番号2の70番目のグルタミン酸がグリシンまたはアスパラギン酸に置換
(66)配列番号2の72番目のアスパラギンがセリンまたはイソロイシンに置換
(67)配列番号2の77番目のフェニルアラニンがロイシンに置換
(68)配列番号2の80番目のグルタミン酸がグリシンに置換
(69)配列番号2の81番目のセリンがアルギニンに置換
(70)配列番号2の83番目のイソロイシンがロイシンに置換
(71)配列番号2の84番目のセリンがプロリンに置換
(72)配列番号2の85番目のセリンがアスパラギンに置換
(73)配列番号2の87番目のアラニンがスレオニンに置換
(74)配列番号2の90番目のチロシンがフェニルアラニンに置換
(75)配列番号2の91番目のフェニルアラニンがアルギニンに置換
(76)配列番号2の93番目のアスパラギン酸がバリンまたはグルタミン酸に置換
(77)配列番号2の94番目のアラニンがグルタミン酸に置換
(78)配列番号2の97番目のバリンがメチオニンとグルタミン酸に置換
(79)配列番号2の98番目のアスパラギン酸がアラニンに置換
(80)配列番号2の102番目のグルタミン酸がアスパラギン酸に置換
(81)配列番号2の106番目のグルタミンがロイシンに置換
(82)配列番号2の109番目のロイシンがグルタミンに置換
(83)配列番号2の117番目のグルタミンがロイシンに置換
(84)配列番号2の119番目のグルタミン酸がバリンに置換
(85)配列番号2の121番目のヒスチジンがアルギニンに置換
(86)配列番号2の130番目のプロリンがロイシンに置換
(87)配列番号2の135番目のリジンがチロシンに置換
(88)配列番号2の136番目のグルタミン酸がバリンに置換
(89)配列番号2の141番目のヒスチジンがグルタミンに置換
(90)配列番号2の146番目のセリンがスレオニンに置換
(91)配列番号2の154番目のリジンがアルギニンに置換
(92)配列番号2の159番目のグルタミンがヒスチジンに置換
(93)配列番号2の163番目のグリシンがバリンに置換
(94)配列番号2の165番目のリジンがメチオニンに置換
(95)配列番号2の167番目のフェニルアラニンがチロシンに置換
(96)配列番号2の169番目のヒスチジンがチロシンに置換
(97)配列番号2の174番目のチロシンがフェニルアラニンに置換
(98)配列番号2の177番目のリジンがアルギニンに置換
(99)配列番号2の185番目のセリンがグリシンに置換
(100)配列番号2の194番目のセリンがアルギニンに置換
(101)配列番号2の196番目のアスパラギンがリジンに置換
(102)配列番号2の201番目のスレオニンがアラニンに置換
(103)配列番号2の203番目のアスパラギンがイソロイシンまたはリジンに置換
(104)配列番号2の207番目のスレオニンがアラニンに置換
(105)配列番号2の94番目のアラニンがセリンに置換
(106)配列番号2の98番目のアスパラギン酸がグルタミン酸に置換
(107)配列番号2の117番目のグルタミンがアルギニンに置換
(108)配列番号2の156番目のスレオニンがイソロイシンに置換
(109)配列番号2の174番目のチロシンがヒスチジンに置換
(110)配列番号2の181番目のリジンがグルタミン酸に置換
(111)配列番号2の203番目のアスパラギンがアスパラギン酸またはチロシンに置換
また前記(ii)のさらに別の具体例としては、配列番号1に記載のアミノ酸配列のうち17番目から192番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において以下の(112)から(115)に示す天然に生じるアミノ酸置換のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質があげられる。
(112)配列番号1の66番目のロイシンがヒスチジンまたはアルギニンに置換
(113)配列番号1の147番目のグリシンがアスパラギン酸に置換
(114)配列番号1の158番目のチロシンがヒスチジンに置換
(115)配列番号1の176番目のバリンがフェニルアラニンに置換
本発明はFc結合性タンパク質を含む水溶液を保存する際、当該水溶液のpHを7.0から9.0の範囲とすることを特徴としている。好ましくは、前記pHの範囲で緩衝能を有する緩衝液成分を含むとよく、一例として、リン酸緩衝液、トリス−塩酸緩衝液、ホウ酸緩衝液、グリシン−水酸化ナトリウム緩衝液、MOPS緩衝液、TES緩衝液、HEPES緩衝液、DIPSO緩衝液、TASPO緩衝液、POPSO緩衝液、EPPS緩衝液、Tricine緩衝液、Bicine緩衝液、TAPS緩衝液があげられる。なお、Fc結合性タンパク質を含む水溶液に0.5mol/L以上の塩化ナトリウムをさらに含ませると、保存中に発生するFc結合性タンパク質の凝集をさらに抑えることができるため、より好ましい。本発明のFc結合性タンパク質を含む水溶液の調製法に特に限定はなく、例えば、透析による方法や、限外ろ過による方法や、硫安などの塩またはアセトン、エタノール等の水と任意の容量比で混和する有機溶媒を加えて沈殿物として回収する方法を用いて、Fc結合性タンパク質水溶液(またはFc結合性タンパク質そのもの)を調製した後、pHが7.0から9.0の緩衝液に再溶解させればよい。中でも処理の簡便性から、透析や限外ろ過による方法が工業的には好ましく用いられる。塩化ナトリウムの添加は、前述した方法で得られたpHが7.0から9.0の水溶液に、必要量の塩化ナトリウムを添加すればよい。
As a specific example of the above (ii), the amino acid sequence containing the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1 and the following (1) And Fc-binding protein (Japanese Patent Application No. 2014-166883) in which at least one amino acid substitution of (40) has occurred.
(1) Substitution of methionine at position 18 of SEQ ID NO: 1 with arginine (2) Substitution of valine at position 27 of SEQ ID NO: 1 with glutamic acid (3) Substitution of phenylalanine at position 29 of SEQ ID NO: 1 with leucine or serine (4) Leucine at position 30 of SEQ ID NO: 1 is substituted with glutamine (5) Tyrosine at position 35 of SEQ ID NO: 1 is substituted with any of aspartic acid, glycine, lysine, leucine, asparagine, proline, serine, threonine, and histidine (6) Lysine at position 46 of SEQ ID NO: 1 is substituted with isoleucine or threonine (7) Glutamine at position 48 of SEQ ID NO: 1 is substituted with histidine or leucine (8) Alanine at position 50 of SEQ ID NO: 1 is substituted with histidine (9) Sequence The tyrosine at position 51 of No. 1 is substituted with aspartic acid or histidine (10). Glutamic acid at position 54 of No. 1 is substituted with aspartic acid or glycine (11) Asparagine at position 56 of SEQ ID NO. 1 is substituted with threonine (12) Glutamine at position 59 of SEQ ID NO. 1 is substituted with arginine (13) SEQ ID NO. The phenylalanine at position 61 is replaced with tyrosine (14) The glutamic acid at position 64 in SEQ ID NO: 1 is replaced with aspartic acid (15) The serine at position 65 in SEQ ID NO: 1 is replaced with arginine (16) The position at position 71 in SEQ ID NO: 1 Alanine is substituted with aspartic acid. (17) The 75th phenylalanine in SEQ ID NO: 1 is substituted with any of leucine, serine, and tyrosine. (18) The 77th aspartic acid in SEQ ID NO: 1 is substituted with asparagine. (19) SEQ ID NO: 1 Alanine at position 78 is replaced with serine (20) Laginic acid is substituted with glutamic acid or valine (21) Glutamine at position 90 in SEQ ID NO: 1 is substituted with arginine (22) Asparagine at position 92 in SEQ ID NO: 1 is substituted with serine (23) Leucine at position 93 in SEQ ID NO: 1 is substituted (24) Threonine at position 95 in SEQ ID NO: 1 is substituted with alanine or serine (25) Leucine at position 110 in SEQ ID NO: 1 is substituted with glutamine (26) Arginine at position 115 in SEQ ID NO: 1 is glutamine (27) Substitution of tryptophan at position 116 of SEQ ID NO: 1 with leucine (28) Substitution of phenylalanine at position 118 of SEQ ID NO: 1 with tyrosine (29) Substitution of lysine at position 119 of SEQ ID NO: 1 with glutamic acid (30) Glutamate at position 120 of SEQ ID NO: 1 is replaced with valine (31) sequence The glutamic acid at position 121 of No. 1 is substituted by aspartic acid or glycine (32) The phenylalanine at position 151 of SEQ ID NO: 1 is replaced by serine or tyrosine (33) The serine at position 155 of SEQ ID NO: 1 is replaced by threonine (34) No. 1 threonine at position 163 is replaced with serine (35) Serine at position 167 of SEQ ID NO. 1 is replaced with glycine (36) Serine at position 169 of SEQ ID NO. 1 is replaced with glycine (37) Position 171 of SEQ ID NO. (38) Substitute the asparagine at position 180 of SEQ ID NO: 1 with any of lysine, serine, and isoleucine (39) Substitute the threonine at position 185 of SEQ ID NO: 1 with serine (40) The 192nd glutamine is substituted with lysine. Another specific example of the above (ii) is The amino acid sequence represented by SEQ ID NO: 2 including the amino acid residues from the 33rd position to the 208th position and the amino acid residues from the 17th position to the 192nd position, at least one of the following (41) to (111): An Fc-binding protein in which one amino acid substitution has occurred; more specifically, an Fc-binding protein comprising amino acid residues 33 to 208 in the amino acid sequence of SEQ ID NO: 3 (Japanese Patent Application No. 2015-047462).
(41) Substitution of phenylalanine at position 45 of SEQ ID NO: 2 with isoleucine or leucine (42) Substitution of glutamic acid at position 55 of SEQ ID NO: 2 with glycine (43) Substitution of glutamine at position 64 of SEQ ID NO: 2 with arginine (44) Tyrosine at position 67 in SEQ ID NO: 2 is substituted with serine (45) Phenylalanine at position 77 in SEQ ID NO: 2 is substituted with tyrosine (46) Aspartic acid at position 93 in SEQ ID NO: 2 is substituted with glycine (47) The aspartic acid at position 98 is replaced with glutamic acid (48) The glutamine at position 106 in SEQ ID NO: 2 is replaced with arginine (49) The glutamine at position 128 in SEQ ID NO: 2 is replaced with leucine (50) The valine at position 133 in SEQ ID NO: 2 Is replaced with glutamic acid. (51) The lysine at position 135 in SEQ ID NO: 2 is asparagine or Substitution with glutamic acid (52) Threonine at position 156 of SEQ ID NO: 2 is substituted with isoleucine (53) Leucine at position 158 of SEQ ID NO: 2 is substituted with glutamine (54) Phenylalanine at position 187 of SEQ ID NO: 2 is substituted with serine (55 ) Leucine at position 191 of SEQ ID NO: 2 is substituted with arginine (56) Asparagine at position 196 of SEQ ID NO: 2 is substituted with serine (57) Isoleucine at position 204 of SEQ ID NO: 2 is substituted with valine (58) Substitution of methionine at position 34 with any of isoleucine, lysine, or threonine (59) Substitution of glutamic acid at position 37 of SEQ ID NO: 2 with glycine or lysine (60) Substitution of leucine at position 39 of SEQ ID NO: 2 with methionine or arginine ( 61) substitution of glutamine at position 49 of SEQ ID NO: 2 with proline ( 2) The lysine at position 62 of SEQ ID NO: 2 is substituted with isoleucine or glutamic acid (63) The glutamine at position 64 of SEQ ID NO: 2 is substituted with tryptophan (64) The tyrosine at position 67 of SEQ ID NO: 2 is substituted with histidine or asparagine (65 ) Glutamic acid at position 70 of SEQ ID NO: 2 is substituted with glycine or aspartic acid (66) Asparagine at position 72 of SEQ ID NO: 2 is substituted with serine or isoleucine (67) Phenylalanine at position 77 of SEQ ID NO: 2 is substituted with leucine (68) ) The glutamic acid at position 80 in SEQ ID NO: 2 is substituted with glycine (69) The serine at position 81 in SEQ ID NO: 2 is substituted with arginine (70) The isoleucine at position 83 in SEQ ID NO: 2 is substituted with leucine (71) Serine at position 84 replaced with proline (72) 85 of SEQ ID NO: 2 Serine is substituted with asparagine (73) alanine at position 87 of SEQ ID NO: 2 is substituted with threonine (74) tyrosine at position 90 of SEQ ID NO: 2 is substituted with phenylalanine (75) phenylalanine at position 91 of SEQ ID NO: 2 is arginine (76) Aspartic acid at position 93 in SEQ ID NO: 2 is substituted with valine or glutamic acid (77) Alanine at position 94 in SEQ ID NO: 2 is substituted with glutamic acid (78) Valine at position 97 of SEQ ID NO: 2 is substituted with methionine and glutamic acid (79) Substitution of aspartic acid at position 98 of SEQ ID NO: 2 with alanine (80) Substitution of glutamic acid at position 102 of SEQ ID NO: 2 with aspartic acid (81) Substitution of glutamine at position 106 of SEQ ID NO: 2 with leucine ( 82) Leucine at position 109 in SEQ ID NO: 2 is substituted with glutamine (83) Glutamine at position 117 of SEQ ID NO: 2 is replaced with leucine (84) Glutamic acid at position 119 of SEQ ID NO: 2 is replaced with valine (85) Histidine at position 121 of SEQ ID NO: 2 is replaced with arginine (86) 130 of SEQ ID NO: 2 Proline is replaced by leucine (87) 135th lysine of SEQ ID NO: 2 is replaced by tyrosine (88) Glutamate at 136th of SEQ ID NO: 2 is replaced by valine (89) Histidine at 141st of SEQ ID NO: 2 is glutamine (90) Serine at position 146 of SEQ ID NO: 2 is substituted with threonine (91) Lysine at position 154 of SEQ ID NO: 2 is substituted with arginine (92) Glutamine at position 159 of SEQ ID NO: 2 is substituted with histidine (93) The 163rd glycine in SEQ ID NO: 2 is replaced with valine (94). Substitution with nin (95) Phenylalanine at position 167 of SEQ ID NO: 2 is substituted with tyrosine (96) Histidine at position 169 of SEQ ID NO: 2 is substituted with tyrosine (97) Tyrosine at position 174 of SEQ ID NO: 2 is substituted with phenylalanine (98 ) Lysine at position 177 of SEQ ID NO: 2 is substituted with arginine (99) Serine at position 185 of SEQ ID NO: 2 is substituted with glycine (100) Serine at position 194 of SEQ ID NO: 2 is substituted with arginine (101) SEQ ID NO: 2 Substitution of the 196th asparagine with lysine (102) Substitution of the 201st threonine of SEQ ID NO: 2 with alanine (103) Substitution of the 203th asparagine of SEQ ID NO: 2 with isoleucine or lysine (104) Substitution of threonine with alanine (105) Substitution with phosphorus (106) Substitution of 98th aspartic acid of SEQ ID NO: 2 with glutamic acid (107) Substitution of 117th glutamine of SEQ ID NO: 2 with arginine (108) Substitution of 156th threonine of SEQ ID NO: 2 with isoleucine ( 109) Tyrosine at position 174 of SEQ ID NO: 2 is substituted with histidine (110) Lysine at position 181 of SEQ ID NO: 2 is substituted with glutamic acid (111) Asparagine at position 203 of SEQ ID NO: 2 is substituted with aspartic acid or tyrosine As yet another specific example of ii), the amino acid sequence includes the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1, and the following 17th to 192th amino acid residues are represented by the following ( At least one of the naturally occurring amino acid substitutions shown in 112) to (115); An Fc binding protein in which at least one amino acid substitution has occurred.
(112) The 66th leucine in SEQ ID NO: 1 is substituted with histidine or arginine. (113) The 147th glycine in SEQ ID NO: 1 is substituted with aspartic acid. (114) The 158th tyrosine of SEQ ID NO: 1 is substituted with histidine (115). ) Substitution of valine at position 176 of SEQ ID NO: 1 with phenylalanine The present invention is characterized in that, when an aqueous solution containing an Fc-binding protein is stored, the pH of the aqueous solution is in the range of 7.0 to 9.0. Preferably, it contains a buffer component having a buffering capacity in the above-mentioned pH range. For example, phosphate buffer, Tris-HCl buffer, borate buffer, glycine-sodium hydroxide buffer, MOPS buffer TES buffer, HEPES buffer, DIPSO buffer, TASPO buffer, POPSO buffer, EPPS buffer, Tricine buffer, Bicine buffer, and TAPS buffer. It is more preferable that the aqueous solution containing the Fc-binding protein further contain 0.5 mol / L or more of sodium chloride, because the aggregation of the Fc-binding protein generated during storage can be further suppressed. The method for preparing the aqueous solution containing the Fc-binding protein of the present invention is not particularly limited. For example, a method by dialysis, a method by ultrafiltration, or a salt such as ammonium sulfate or water such as acetone or ethanol at any volume ratio. After preparing an aqueous solution of Fc-binding protein (or Fc-binding protein itself) using a method of adding a miscible organic solvent and collecting the precipitate as a precipitate, the solution is redissolved in a buffer having a pH of 7.0 to 9.0. It should be done. Above all, dialysis and ultrafiltration are preferably used industrially from the viewpoint of simplicity of treatment. For the addition of sodium chloride, a necessary amount of sodium chloride may be added to the aqueous solution having a pH of 7.0 to 9.0 obtained by the above-described method.

本発明はFc結合性タンパク質を含む水溶液を保存する際、当該水溶液のpHを7.0から9.0とすることを特徴としている。これにより、精製したFc結合性タンパク質を、他の用途(例えばアフィニティークロマトグラフィー用リガンド)に用いるまでの間に、凝集により生じる、Fc結合性タンパク質のロスが防止され、Fc結合性タンパク質の利用効率を大幅に向上させることできる。   The present invention is characterized in that when storing an aqueous solution containing an Fc-binding protein, the pH of the aqueous solution is adjusted to 7.0 to 9.0. This prevents the loss of the Fc-binding protein caused by aggregation before using the purified Fc-binding protein for other uses (for example, ligands for affinity chromatography), and improves the utilization efficiency of the Fc-binding protein. Can be greatly improved.

ヒトFcγRIIIaの構造を示す図。The figure which shows the structure of human Fc (gamma) RIIIa. Fc結合性タンパク質を含む水溶液の、pHによる安定性の違いを示す図。The figure which shows the difference of the stability of the aqueous solution containing Fc binding protein by pH. Fc結合性タンパク質を含む水溶液に添加する塩による、安定性の違いを示す図。The figure which shows the difference of stability by the salt added to the aqueous solution containing Fc binding protein. Fc結合性タンパク質を含む水溶液に添加する塩化ナトリウムの濃度による、安定性の違いを示す図。The figure which shows the difference of the stability by the density | concentration of the sodium chloride added to the aqueous solution containing Fc binding protein. 本発明のFc結合性タンパク質水溶液の保存安定性を示す図。The figure which shows the storage stability of the Fc binding protein aqueous solution of this invention.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は前記例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.

実施例1 Fc結合性タンパク質の調製
以降の実施例で用いるFc結合性タンパク質を、以下の方法で調製した。
(1)配列番号3に記載の配列からなるFc結合性タンパク質をコードするポリヌクレオチド(配列番号4)を含む発現ベクターpTrcFcR9T8−R1を、特開2014−223064号公報で開示の方法にて作成し、当該発現ベクターを用いて大腸菌を形質転換した。なお配列番号3に記載の配列からなるFc結合性タンパク質は、配列番号2に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において以下の(I)から(IV)のアミノ酸置換が生じたFc結合性タンパク質である(特願2015−047462号)。
(I)配列番号2の45番目のフェニルアラニンがイソロイシンに置換
(II)配列番号2の64番目のグルタミンがアルギニンに置換
(III)配列番号2の133番目のバリンがグルタミン酸に置換
(IV)配列番号2の187番目のフェニルアラニンがセリンに置換
(2)得られた組換え大腸菌を、特開2012−034591号公報および特開2013−085531号公報で開示の方法に基づき、培養することで、Fc結合性タンパク質を発現させた。
(3)組換え大腸菌の培養液より菌体を回収後、特開2013−252099号公報で開示の抽出液を用いて、菌体内に発現したFc結合性タンパク質を抽出した。
(4)(3)で得られた菌体抽出液から遠心分離により上清を回収し、Fc結合性タンパク質抽出液を得た。
(5)(4)で得られたFc結合性タンパク質抽出液を、あらかじめ平衡化緩衝液A(150mmol/Lの塩化ナトリウムと0.05%のTween 20とを含んだ20mmol/LのTris−HCl酸緩衝液(pH 7.5))で平衡化した、アフィニティークロマトグラフィー用ゲル(IgG Sepharose6 Fast Flow、GEヘルスケア社製)を充填したカラムに添加した。
(6)平衡化緩衝液Aでゲルを十分洗浄した後、0.1mol/Lグリシン−塩酸緩衝液(pH 3.0)でFc結合性タンパク質を溶出し、高純度に精製したヒトFc結合性タンパク質を含む溶液を得た。
Example 1 Preparation of Fc binding protein Fc binding protein used in the following examples was prepared by the following method.
(1) An expression vector pTrcFcR9T8-R1 containing a polynucleotide (SEQ ID NO: 4) encoding an Fc-binding protein consisting of the sequence of SEQ ID NO: 3 was prepared by the method disclosed in JP-A-2014-223064. Escherichia coli was transformed with the expression vector. The Fc-binding protein having the sequence of SEQ ID NO: 3 contains the 33rd to 208th amino acid residues in the amino acid sequence of SEQ ID NO: 2, and the 33th to 208th amino acid residues. It is an Fc-binding protein having the following amino acid substitutions from (I) to (IV) (Japanese Patent Application No. 2015-047462).
(I) Substitution of phenylalanine at position 45 of SEQ ID NO: 2 with isoleucine (II) Substitution of glutamine at position 64 of SEQ ID NO: 2 with arginine (III) Substitution of valine at position 133 of SEQ ID NO: 2 with glutamic acid (IV) SEQ ID NO: The 187th phenylalanine in No. 2 was replaced with serine. (2) The obtained recombinant Escherichia coli was cultured based on the method disclosed in JP-A-2012-034591 and JP-A-2013-085531 to obtain Fc-binding. Sex protein was expressed.
(3) After recovering the cells from the culture solution of the recombinant Escherichia coli, the Fc-binding protein expressed in the cells was extracted using the extract disclosed in JP2013-252099A.
(4) The supernatant was recovered from the bacterial cell extract obtained in (3) by centrifugation to obtain an Fc-binding protein extract.
(5) Using the Fc-binding protein extract obtained in (4) in advance in equilibration buffer A (20 mmol / L Tris-HCl containing 150 mmol / L sodium chloride and 0.05% Tween 20) An affinity chromatography gel (IgG Sepharose 6 Fast Flow, manufactured by GE Healthcare) equilibrated with an acid buffer (pH 7.5) was added to the column.
(6) After sufficiently washing the gel with the equilibration buffer A, the Fc-binding protein was eluted with 0.1 mol / L glycine-HCl buffer (pH 3.0), and the human Fc-binding protein was purified to high purity. A solution containing the protein was obtained.

実施例2 pHの違いによる水溶液中のFc結合性タンパク質の安定性評価
Fc結合性タンパク質を含む水溶液の、pHによる安定性の違いを確認した。
(1)実施例1で得られた精製Fc結合性タンパク質水溶液を以下の組成からなる緩衝液で透析した。
(検討した緩衝液)
20mmol/L クエン酸緩衝液(pH 3.0)
20mmol/L クエン酸緩衝液(pH 3.5)
20mmol/L 酢酸緩衝液(pH 4.0)
20mmol/L 酢酸緩衝液(pH 4.5)
20mmol/L 酢酸緩衝液(pH 5.0)
20mmol/L 酢酸緩衝液(pH 5.5)
20mmol/L リン酸緩衝液(pH 6.0)
20mmol/L リン酸緩衝液(pH 6.5)
20mmol/L リン酸緩衝液(pH 7.0)
20mmol/L リン酸緩衝液(pH 7.5)
20mmol/L トリス−塩酸緩衝液(pH 8.0)
20mmol/L トリス−塩酸緩衝液(pH 8.5)
20mmol/L ホウ酸緩衝液(pH 9.0)
20mmol/L ホウ酸緩衝液(pH 9.5)
20mmol/L ホウ酸緩衝液(pH 10.0)
(2)アヴァクタ社製Optim2タンパク質物性解析装置を用いて、温度上昇によるFc結合性タンパク質の凝集開始温度Tagg(℃)の測定をすることで、タンパク質の安定性を評価した。
Example 2 Evaluation of Stability of Fc-Binding Protein in Aqueous Solution Due to Difference in pH A difference in stability of an aqueous solution containing an Fc-binding protein due to pH was confirmed.
(1) The purified Fc-binding protein aqueous solution obtained in Example 1 was dialyzed against a buffer having the following composition.
(Buffer studied)
20 mmol / L citrate buffer (pH 3.0)
20 mmol / L citrate buffer (pH 3.5)
20 mmol / L acetate buffer (pH 4.0)
20 mmol / L acetate buffer (pH 4.5)
20 mmol / L acetate buffer (pH 5.0)
20 mmol / L acetate buffer (pH 5.5)
20 mmol / L phosphate buffer (pH 6.0)
20 mmol / L phosphate buffer (pH 6.5)
20 mmol / L phosphate buffer (pH 7.0)
20 mmol / L phosphate buffer (pH 7.5)
20 mmol / L Tris-HCl buffer (pH 8.0)
20 mmol / L Tris-HCl buffer (pH 8.5)
20 mmol / L borate buffer (pH 9.0)
20 mmol / L borate buffer (pH 9.5)
20 mmol / L borate buffer (pH 10.0)
(2) The stability of the protein was evaluated by measuring the aggregation initiation temperature Tagg (° C.) of the Fc-binding protein due to the temperature rise using an Optim2 protein physical property analyzer manufactured by Avacta.

凝集開始温度Tagg(℃)の測定結果を図2に示す。pHが7.0から9.0で凝集開始温度が高くなっていることから、当該pH領域の水溶液でFc結合性タンパク質の安定性が向上することがわかる。   FIG. 2 shows the measurement results of the aggregation start temperature Tagg (° C.). Since the aggregation initiation temperature is high when the pH is from 7.0 to 9.0, it can be seen that the stability of the Fc-binding protein is improved with an aqueous solution in the pH range.

実施例3 塩の違いによる水溶液中のFc結合性タンパク質の安定性評価
Fc結合性タンパク質を含む水溶液に添加する塩による、安定性の違いを確認した。
(1)実施例1で得られた精製Fc結合性タンパク質水溶液を以下の組成からなる緩衝液で透析した。なお塩の濃度は、各塩のイオン強度の効果を考慮し、適宜調整した。
(検討した緩衝液)
0.5mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.5mol/L 塩化カリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.16mol/L 塩化マグネシウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.16mol/L 塩化カルシウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.16mol/L 硫酸アンモニウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.12mol/L 硫酸マグネシウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.16mol/L 硫酸ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.005mol/L EDTAを含んだ20mmol/L リン酸緩衝液(pH 7.5)
(2)アヴァクタ社製Optim2タンパク質物性解析装置を用いて、温度上昇によるFc結合性タンパク質の凝集開始温度Tagg(℃)の測定をすることで、タンパク質の安定性を評価した。
Example 3 Evaluation of stability of Fc-binding protein in aqueous solution due to difference in salt Difference in stability due to salt added to the aqueous solution containing Fc-binding protein was confirmed.
(1) The purified Fc-binding protein aqueous solution obtained in Example 1 was dialyzed against a buffer having the following composition. The concentration of the salt was appropriately adjusted in consideration of the effect of the ionic strength of each salt.
(Buffer studied)
20 mmol / L phosphate buffer containing 0.5 mol / L sodium chloride (pH 7.5)
20 mmol / L phosphate buffer containing 0.5 mol / L potassium chloride (pH 7.5)
20 mmol / L phosphate buffer containing 0.16 mol / L magnesium chloride (pH 7.5)
20 mmol / L phosphate buffer containing 0.16 mol / L calcium chloride (pH 7.5)
20 mmol / L phosphate buffer containing 0.16 mol / L ammonium sulfate (pH 7.5)
20 mmol / L phosphate buffer containing 0.12 mol / L magnesium sulfate (pH 7.5)
20 mmol / L phosphate buffer containing 0.16 mol / L sodium sulfate (pH 7.5)
20 mmol / L phosphate buffer containing 0.005 mol / L EDTA (pH 7.5)
(2) The stability of the protein was evaluated by measuring the aggregation initiation temperature Tagg (° C.) of the Fc-binding protein due to the temperature rise using an Optim2 protein physical property analyzer manufactured by Avacta.

凝集開始温度Tagg(℃)の測定結果を図3に示す。添加する塩として塩化ナトリウムを用いることで、Fc結合性タンパク質の安定性が向上することがわかる。   FIG. 3 shows the measurement results of the aggregation start temperature Tagg (° C.). It can be seen that the use of sodium chloride as the salt to be added improves the stability of the Fc-binding protein.

実施例4 塩濃度の違いによる水溶液中のFc結合性タンパク質の安定性評価
Fc結合性タンパク質を含む水溶液に添加する塩化ナトリウムの濃度による、安定性の違いを確認した。
(1)実施例1で得られた精製Fc結合性タンパク質水溶液を以下の組成からなる緩衝液で透析した。
(検討した緩衝液)
0.1mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.2mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.3mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.4mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.5mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.6mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.7mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.8mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
0.9mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
1.0mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)
(2)アヴァクタ社製Optim2タンパク質物性解析装置を用いて、温度上昇によるFc結合性タンパク質の凝集開始温度Tagg(℃)の測定をすることで、タンパク質の安定性を評価した。
Example 4 Evaluation of Stability of Fc Binding Protein in Aqueous Solution Due to Difference in Salt Concentration Difference in stability due to the concentration of sodium chloride added to the aqueous solution containing Fc binding protein was confirmed.
(1) The purified Fc-binding protein aqueous solution obtained in Example 1 was dialyzed against a buffer having the following composition.
(Buffer studied)
20 mmol / L phosphate buffer containing 0.1 mol / L sodium chloride (pH 7.5)
20 mmol / L phosphate buffer containing 0.2 mol / L sodium chloride (pH 7.5)
20 mmol / L phosphate buffer containing 0.3 mol / L sodium chloride (pH 7.5)
20 mmol / L phosphate buffer containing 0.4 mol / L sodium chloride (pH 7.5)
20 mmol / L phosphate buffer containing 0.5 mol / L sodium chloride (pH 7.5)
20 mmol / L phosphate buffer containing 0.6 mol / L sodium chloride (pH 7.5)
20 mmol / L phosphate buffer containing 0.7 mol / L sodium chloride (pH 7.5)
20 mmol / L phosphate buffer (pH 7.5) containing 0.8 mol / L sodium chloride
20 mmol / L phosphate buffer (pH 7.5) containing 0.9 mol / L sodium chloride
20 mmol / L phosphate buffer (pH 7.5) containing 1.0 mol / L sodium chloride
(2) The stability of the protein was evaluated by measuring the aggregation initiation temperature Tagg (° C.) of the Fc-binding protein due to the temperature rise using an Optim2 protein physical property analyzer manufactured by Avacta.

凝集開始温度Tagg(℃)の測定結果を図4に示す。塩化ナトリウム濃度を0.5mol/L以上添加することでFc結合性タンパク質の安定性が向上することがわかる。   FIG. 4 shows the measurement results of the aggregation start temperature Tagg (° C.). It can be seen that the stability of the Fc-binding protein is improved by adding the sodium chloride concentration of 0.5 mol / L or more.

上記実施例2から4の結果をまとめると、Fc結合性タンパク質を含む水溶液のpHが7.0から9.0であり、かつ前記水溶液に0.5mol/L以上の塩化ナトリウムをさらに含ませると、Fc結合性タンパク質を最も安定的に保存できることがわかる。   Summarizing the results of Examples 2 to 4, the pH of the aqueous solution containing the Fc-binding protein is from 7.0 to 9.0, and the aqueous solution further contains 0.5 mol / L or more of sodium chloride. , Fc-binding protein can be stored most stably.

実施例5
本発明のFc結合性タンパク質水溶液の保存安定性を確認した。
(1)0.8mol/L 塩化ナトリウムを含んだ20mmol/L リン酸緩衝液(pH 7.5)に実施例1で得られた精製Fc結合性タンパク質を添加することで、Fc結合性タンパク質水溶液を調製した。
(2)調製した水溶液を、−20℃での凍結保存、または3から10℃での冷蔵保存を行なった。
Example 5
The storage stability of the aqueous Fc-binding protein solution of the present invention was confirmed.
(1) By adding the purified Fc-binding protein obtained in Example 1 to a 20 mmol / L phosphate buffer (pH 7.5) containing 0.8 mol / L sodium chloride, an aqueous solution of the Fc-binding protein was prepared. Was prepared.
(2) The prepared aqueous solution was stored frozen at -20 ° C or refrigerated at 3 to 10 ° C.

結果を図5に示す。凍結保存、冷凍保存ともに6ヶ月以上保存しても、Fc結合性タンパク質の劣化はなく、沈殿物や凝集体も確認できなかった。このことから本発明により、Fc結合性タンパク質を水溶液中で長期間、安定に保存できることがわかる。   FIG. 5 shows the results. Even when stored for 6 months or longer in both frozen storage and frozen storage, no deterioration of the Fc-binding protein was observed, and no precipitates or aggregates were confirmed. This indicates that the present invention can stably store an Fc-binding protein in an aqueous solution for a long period of time.

Claims (2)

Fc結合性タンパク質を含む水溶液であって、
前記水溶液のpHが7.0から8.5であり、
前記水溶液が0.5mol/L以上1.0mol/L以下の塩化ナトリウムを含み、
前記Fc結合性タンパク質が、
(i)配列番号3に記載のアミノ酸配列からなるタンパク質、または
(ii)配列番号3に記載のアミノ酸配列において以下の(a)〜(d)のいずれか1以上のアミノ酸置換が生じているアミノ酸配列からなるタンパク質である、
前記水溶液:
(a)配列番号1の66番目に該当するロイシンがヒスチジンまたはアルギニンに置換
(b)配列番号1の147番目に該当するグリシンがアスパラギン酸に置換
(c)配列番号1の158番目に該当するチロシンがヒスチジンに置換
(d)配列番号1の176番目に該当するバリンがフェニルアラニンに置換。
An aqueous solution containing an Fc-binding protein,
The aqueous solution has a pH of 7.0 to 8.5,
The aqueous solution contains 0.5 mol / L or more and 1.0 mol / L or less sodium chloride,
The Fc binding protein is
(I) a protein consisting of the amino acid sequence of SEQ ID NO: 3, or (ii) an amino acid having any one or more of the following amino acid substitutions (a) to (d) in the amino acid sequence of SEQ ID NO: 3 A protein consisting of a sequence,
The aqueous solution:
(A) Leucine corresponding to position 66 of SEQ ID NO: 1 is substituted with histidine or arginine. (B) Glycine corresponding to position 147 of SEQ ID NO: 1 is substituted with aspartic acid. (C) Tyrosine corresponding to position 158 of SEQ ID NO: 1. Is substituted with histidine. (D) Valine corresponding to position 176 of SEQ ID NO: 1 is substituted with phenylalanine.
Fc結合性タンパク質を0.5mol/L以上1.0mol/L以下の塩化ナトリウムを含むpH7.0から8.5の水溶液中で保存する、Fc結合性タンパク質の保存方法であって、
前記Fc結合性タンパク質が、
(i)配列番号3に記載のアミノ酸配列からなるタンパク質、または
(ii)配列番号3に記載のアミノ酸配列において以下の(a)〜(d)のいずれか1以上のアミノ酸置換が生じているアミノ酸配列からなるタンパク質である、方法:
(a)配列番号1の66番目に該当するロイシンがヒスチジンまたはアルギニンに置換
(b)配列番号1の147番目に該当するグリシンがアスパラギン酸に置換
(c)配列番号1の158番目に該当するチロシンがヒスチジンに置換
(d)配列番号1の176番目に該当するバリンがフェニルアラニンに置換。
A method for storing an Fc-binding protein, comprising storing the Fc-binding protein in an aqueous solution containing sodium chloride of 0.5 mol / L or more and 1.0 mol / L or less and having a pH of 7.0 to 8.5,
The Fc binding protein is
(I) a protein consisting of the amino acid sequence of SEQ ID NO: 3, or (ii) an amino acid having any one or more of the following amino acid substitutions (a) to (d) in the amino acid sequence of SEQ ID NO: 3 The method is a protein consisting of a sequence:
(A) Leucine corresponding to position 66 of SEQ ID NO: 1 is substituted with histidine or arginine. (B) Glycine corresponding to position 147 of SEQ ID NO: 1 is substituted with aspartic acid. (C) Tyrosine corresponding to position 158 of SEQ ID NO: 1. Is substituted with histidine. (D) Valine corresponding to position 176 of SEQ ID NO: 1 is substituted with phenylalanine.
JP2015063067A 2015-03-25 2015-03-25 Method of storing Fc binding protein Active JP6665414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063067A JP6665414B2 (en) 2015-03-25 2015-03-25 Method of storing Fc binding protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063067A JP6665414B2 (en) 2015-03-25 2015-03-25 Method of storing Fc binding protein

Publications (2)

Publication Number Publication Date
JP2016183112A JP2016183112A (en) 2016-10-20
JP6665414B2 true JP6665414B2 (en) 2020-03-13

Family

ID=57242473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063067A Active JP6665414B2 (en) 2015-03-25 2015-03-25 Method of storing Fc binding protein

Country Status (1)

Country Link
JP (1) JP6665414B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006183A1 (en) * 1998-12-03 2000-06-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Recombinant soluble Fc receptors
US20080248510A1 (en) * 2007-04-03 2008-10-09 Ulrich Brinkmann HUMAN Fc GAMMA RECEPTOR III
CN102131517B (en) * 2008-06-27 2014-12-17 津莫吉尼蒂克斯公司 Soluble hybrid fc gamma receptors and related methods
JP5812627B2 (en) * 2010-03-10 2015-11-17 公益財団法人相模中央化学研究所 Improved Fc receptor and method for producing the same
JP2013112640A (en) * 2011-11-29 2013-06-10 Tosoh Corp Fc BONDING PROTEIN ENHANCED IN STABILITY
EP2796144A1 (en) * 2013-04-26 2014-10-29 SuppreMol GmbH Highly concentrated Formulations of soluble Fc receptors

Also Published As

Publication number Publication date
JP2016183112A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP7560507B2 (en) CD40L-specific Tn3-derived scaffolds and methods of use thereof
JP6181145B2 (en) Novel immunoglobulin binding proteins with improved specificity
JP7536294B2 (en) Fc region variants of antibodies
CA3086199A1 (en) Engineered il-2 fc fusion proteins
AU2021200423B2 (en) Method of purifying albumin-fusion proteins
DK2850100T3 (en) RECOMBINANT BACTERIA HOST CELLS FOR PROTEIN EXPRESSION.
JPWO2008143199A1 (en) Novel polypeptide, material for affinity chromatography, and method for separation and / or purification of immunoglobulin
JP2017509335A5 (en)
JP6805831B2 (en) Proteins that have affinity for immunoglobulins, affinity separators using them, columns for liquid chromatography
JP2022501357A (en) Methods for Purifying Heterodimer Multispecific Antibodies
CA2842559A1 (en) Polypeptide separation methods
CA2884290A1 (en) Il-17a binding molecules and medical uses thereof
EP2740792A1 (en) Novel modified protein comprising tandem-type multimer of mutant extracellular domain of protein g
EP2881403A1 (en) Scavenger containing protein formed from tandem-type multimer of mutant extracellular domain of protein g
JP2019530430A5 (en)
JPWO2015050153A1 (en) A protein comprising a plurality of domains having an affinity for a protein having an Fc portion of immunoglobulin G (IgG) and linked by a linker.
JP6665414B2 (en) Method of storing Fc binding protein
Nogi et al. Novel affinity tag system using structurally defined antibody‐tag interaction: application to single‐step protein purification
JP6699085B2 (en) Method for purifying Fc binding protein
JP2015019615A (en) Novel modified protein derived from variant of outer membrane domain of cell of protein g
JP6753143B2 (en) A polynucleotide encoding FcγRIIa and a method for producing FcγRIIa.
JP6387640B2 (en) Method for preserving Fc receptor
Tan et al. Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of a major group 7 allergen, Der f 7, from the dust mite Dermatophagoides farinae
JP2017029001A (en) Novel modified protein of extracellular domain of protein G

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191101

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R151 Written notification of patent or utility model registration

Ref document number: 6665414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151