JP6387640B2 - Method for preserving Fc receptor - Google Patents

Method for preserving Fc receptor Download PDF

Info

Publication number
JP6387640B2
JP6387640B2 JP2014056221A JP2014056221A JP6387640B2 JP 6387640 B2 JP6387640 B2 JP 6387640B2 JP 2014056221 A JP2014056221 A JP 2014056221A JP 2014056221 A JP2014056221 A JP 2014056221A JP 6387640 B2 JP6387640 B2 JP 6387640B2
Authority
JP
Japan
Prior art keywords
binding protein
aqueous solution
concentration
protein
sodium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014056221A
Other languages
Japanese (ja)
Other versions
JP2015178468A (en
Inventor
半澤 敏
敏 半澤
陽介 寺尾
陽介 寺尾
直紀 山中
直紀 山中
暢 今泉
暢 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014056221A priority Critical patent/JP6387640B2/en
Publication of JP2015178468A publication Critical patent/JP2015178468A/en
Application granted granted Critical
Publication of JP6387640B2 publication Critical patent/JP6387640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、Fcレセプターを水溶液中で長期間保存可能な方法に関する。   The present invention relates to a method capable of storing an Fc receptor in an aqueous solution for a long time.

Fcレセプターは、免疫グロブリン分子のFc領域に結合する一群の分子である。Fcレセプターはその結合する免疫グロブリンの種類によって分類されており、IgGのFc領域に結合するFcγレセプター、IgEのFc領域に結合するFcεレセプター、IgAのFc領域に結合するFcαレセプター等がある(非特許文献1)。また、各レセプターは、その構造の違いによりさらに細かく分類され、Fcγレセプターの場合、FcγRI、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIbの存在が報告されている(非特許文献1)。   Fc receptors are a group of molecules that bind to the Fc region of immunoglobulin molecules. Fc receptors are classified according to the type of immunoglobulin to which they bind, and include Fcγ receptors that bind to the Fc region of IgG, Fcε receptors that bind to the Fc region of IgE, Fcα receptors that bind to the Fc region of IgA, etc. Patent Document 1). Each receptor is further classified according to the difference in structure. In the case of an Fcγ receptor, the presence of FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa, and FcγRIIIb has been reported (Non-patent Document 1).

Fcγレセプターの一つであるFcγRIは単球とマクロファージ中で発現しており、好中球ではγインターフェロンにより誘導的に発現される(非特許文献1)。また、FcγRIはIgGに対する結合親和性が高く、その平衡解離定数(Kd)は10−8M以下である(非特許文献2)。FcγRIは、細胞外領域、細胞膜貫通領域、細胞内領域に区分され、IgGとの結合は、IgGのFc領域とFcγRIの細胞外領域で起こり、その後細胞質へとシグナルが伝達される。FcγRIはIgGとの結合に直接関わる分子量約42000のα鎖と、γ鎖の2種類のサブユニットによって構成されており、γ鎖は細胞膜と細胞外領域との境界で共有結合することでホモダイマーを形成している(非特許文献3)。 FcγRI, which is one of the Fcγ receptors, is expressed in monocytes and macrophages, and is inducibly expressed in neutrophils by γ interferon (Non-patent Document 1). FcγRI has high binding affinity for IgG, and its equilibrium dissociation constant (Kd) is 10 −8 M or less (Non-patent Document 2). FcγRI is divided into an extracellular region, a transmembrane region, and an intracellular region, and binding to IgG occurs in the Fc region of IgG and the extracellular region of FcγRI, and then a signal is transmitted to the cytoplasm. FcγRI is composed of two types of subunits, an α chain with a molecular weight of about 42000 that is directly involved in binding to IgG, and a γ chain. The γ chain covalently binds at the boundary between the cell membrane and the extracellular region, thereby (Non-Patent Document 3).

ヒトFcγRIのアミノ酸配列(配列番号1)、および遺伝子配列はExPASy(Primary accession number:P12314)などの公的データベースに公表されている。また、FcγRIの構造上の機能ドメイン、細胞膜を貫通するためのシグナルペプチド配列、細胞膜貫通領域の位置についても同様に公表されている。ヒトFcγRIのα鎖は図1に示す構造をとり、N末端側から15アミノ酸からなるシグナルペプチド領域(SS:配列番号1に記載のアミノ酸配列のうち1番目から15番目までの領域)、277アミノ酸からなる細胞外領域(EC:配列番号1に記載のアミノ酸配列のうち16番目から292番目までの領域)、21アミノ酸からなる細胞膜貫通領域(TM:配列番号1に記載のアミノ酸配列のうち293番目から313番目までの領域)、61アミノ酸からなる細胞内領域(C:配列番号1に記載のアミノ酸配列のうち314番目から374番目までの領域)から構成される。   The amino acid sequence (SEQ ID NO: 1) and gene sequence of human FcγRI are published in public databases such as ExPASy (Primary accession number: P12314). Similarly, the functional domain in the structure of FcγRI, the signal peptide sequence for penetrating the cell membrane, and the position of the cell membrane penetrating region are also published. The α chain of human FcγRI has the structure shown in FIG. 1, and is a signal peptide region consisting of 15 amino acids from the N-terminal side (SS: region from the first to the 15th of the amino acid sequence described in SEQ ID NO: 1), 277 amino acids An extracellular region (EC: the region from the 16th to the 292th of the amino acid sequence described in SEQ ID NO: 1), a transmembrane region consisting of 21 amino acids (TM: the 293rd of the amino acid sequence described in SEQ ID NO: 1) To 313th region), an intracellular region consisting of 61 amino acids (C: the region from 314th to 374th of the amino acid sequence described in SEQ ID NO: 1).

前述した通りFcγRIの細胞外領域を構成するタンパク質は、高度な親和性のもと、ヒト抗体に対する優れた識別機能を有している。この高度な親和性に基づいて、診断試薬、抗体医薬品の研究用ツールまたはIgGなどの抗体医薬品の製造工程で利用されるアフィニティークロマトグラフィーのリガンドとして活用する方法が報告されている(特許文献1)。また近年になり、予想外の免疫抑制的な生物学的特性があることが見出されてより、自己免疫疾患または自己免疫症候群、移植物の拒絶および悪性リンパ増殖の領域において医薬として注目を浴びつつある(非特許文献2)。   As described above, the protein constituting the extracellular region of FcγRI has an excellent discrimination function for human antibodies with high affinity. Based on this high affinity, a method of utilizing as a diagnostic reagent, a research tool for antibody drugs, or a ligand for affinity chromatography used in the production process of antibody drugs such as IgG has been reported (Patent Document 1). . In recent years, it has been discovered that it has unexpected immunosuppressive biological properties, and has attracted attention as a pharmaceutical in the areas of autoimmune disease or autoimmune syndrome, transplant rejection and malignant lymphoproliferation. (Non-Patent Document 2).

遺伝子組換え技術を利用したFcγレセプターの発現に関しては、これまで、大腸菌(特許文献1)、動物細胞(非特許文献3)、バチルス属細菌(特許文献2)、酵母(特許文献3)、麹菌(特許文献4)を宿主とした発現が報告されている。中でも大腸菌を宿主として用いた系では、高密度培養によるFcγレセプターの製造法(特許文献5)、疎水クロマトグラフィー(特許文献6)や陽イオン交換クロマトグラフィーを用いたFcγレセプターの精製法も報告されている。さらにはFcγレセプター構造遺伝子の改変によりFcγレセプターの安定化や生産性が向上する(特許文献7)など、Fcγレセプターの産業利用への関心が高まっている。   Regarding expression of Fcγ receptor using gene recombination technology, E. coli (Patent Document 1), animal cells (Non-Patent Document 3), Bacillus bacteria (Patent Document 2), yeast (Patent Document 3), Neisseria gonorrhoeae Expression using (Patent Document 4) as a host has been reported. In particular, in systems using Escherichia coli as a host, methods for producing Fcγ receptors by high-density culture (Patent Document 5), purification methods for Fcγ receptors using hydrophobic chromatography (Patent Document 6) and cation exchange chromatography have also been reported. ing. Furthermore, interest in industrial use of Fcγ receptors is increasing, such as the modification of Fcγ receptor structural genes improves the stability and productivity of Fcγ receptors (Patent Document 7).

一方でFcγレセプターは精製後に溶液状態で保存すると凝集しやすいことが問題となっており、産業利用において重大な欠点となっていた。すなわち、精製したFcγレセプターを使用するまでの間放置しておくと、凝集し析出する問題があった。さらに凝集したFcγレセプターをそのまま放置しておくと変性し再溶解できなくなる問題もあった。   On the other hand, the Fcγ receptor has a problem that it easily aggregates when stored in a solution state after purification, which has been a serious drawback in industrial use. That is, if the purified Fcγ receptor is allowed to stand until it is used, there is a problem of aggregation and precipitation. Furthermore, there is a problem that if the aggregated Fcγ receptor is left as it is, it is denatured and cannot be redissolved.

特開2008−245580号公報JP 2008-245580 A 特開2009−201403号公報JP 2009-201403 A 特開2011−072246号公報JP 2011-072246 A 特開2011−200203号公報JP 2011-200203 A 特開2012−034591号公報JP 2012-034591 A 特開2011−126827号公報JP 2011-126825 A 特開2011−206046号公報JP 2011-206046 A

J.V.Ravetch等,Annu.Rev.Immunol.,9,457,1991J. et al. V. Ravetch et al., Annu. Rev. Immunol. , 9, 457, 1991 Toshiyuki Takai,Jpn.J.Clin.Immunol.,28,318,2005Toshiyuki Takai, Jpn. J. et al. Clin. Immunol. , 28, 318, 2005 A.Paetz等,Biochem.Biophys.Res.Commun.,338,1811,2005A. Paetz et al., Biochem. Biophys. Res. Commun. , 338, 1811, 2005

本発明の目的は、Fcγレセプターを凝集させずに長期間安定的に保存可能な溶液、およびFcγレセプターを凝集させずに長期間安定的に保存する方法を提供することにある。   An object of the present invention is to provide a solution that can be stably stored for a long period of time without aggregating the Fcγ receptor, and a method for stably storing the Fcγ receptor for a long period of time without aggregating.

前記課題を解決するために鋭意検討した結果、Fcγレセプターの凝集がハロゲン化物イオンによるものであることを見出し、本発明の完成に至った。   As a result of intensive studies to solve the above problems, it was found that the aggregation of Fcγ receptor is caused by halide ions, and the present invention has been completed.

すなわち本発明は、以下の発明を包含する:
(i)Fc結合性タンパク質を含む水溶液であって、当該水溶液中に含まれるハロゲン化物イオンの濃度が200mM未満である、前記水溶液。
That is, the present invention includes the following inventions:
(I) An aqueous solution containing an Fc-binding protein, wherein the concentration of halide ions contained in the aqueous solution is less than 200 mM.

(ii)Fc結合性タンパク質をハロゲン化物イオンの濃度が200mM未満の水溶液で保存する、Fc結合性タンパク質の保存方法。   (Ii) A method for storing an Fc binding protein, wherein the Fc binding protein is stored in an aqueous solution having a halide ion concentration of less than 200 mM.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明においてFc結合性タンパク質とは、Fcγレセプターの細胞外領域を構成するタンパク質のことをいう。一例として、Fcγレセプターが天然型ヒトFcγRIの場合は配列番号1に記載のアミノ酸配列のうち16番目のグルタミンから292番目のヒスチジンまでの領域がFc結合性タンパク質に相当する。ただし必ずしもFcγレセプターの細胞外領域の全領域でなくてもよく、Fcγレセプターの細胞外領域を構成するタンパク質(ポリペプチド)のうち、少なくとも抗体(免疫グロブリン)のFc領域に結合する本来の機能を発現し得る領域のポリペプチドを含んでいればよい。当該Fc結合性タンパク質の一例として、
(I)配列番号1に記載のアミノ酸配列のうち少なくとも16番目のグルタミンから289番目のバリンまでのアミノ酸残基を含むタンパク質や、
(II)配列番号1に記載のアミノ酸配列のうち少なくとも16番目のグルタミンから289番目のバリンまでのアミノ酸残基を含み、かつ前記アミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質、
があげられる。
In the present invention, the Fc-binding protein refers to a protein constituting the extracellular region of the Fcγ receptor. As an example, when the Fcγ receptor is a natural human FcγRI, the region from the 16th glutamine to the 292nd histidine in the amino acid sequence shown in SEQ ID NO: 1 corresponds to the Fc-binding protein. However, it does not necessarily have to be the entire extracellular region of the Fcγ receptor. Of the proteins (polypeptides) constituting the extracellular region of the Fcγ receptor, at least the original function of binding to the Fc region of an antibody (immunoglobulin) is required. It only needs to contain a polypeptide in a region that can be expressed. As an example of the Fc binding protein,
(I) a protein comprising an amino acid residue from at least the 16th glutamine to the 289th valine in the amino acid sequence of SEQ ID NO: 1,
(II) contains at least amino acid residues from the 16th glutamine to the 289th valine in the amino acid sequence of SEQ ID NO: 1, and one or more of the amino acid residues are substituted with other amino acid residues Inserted or deleted protein,
Can be given.

前記(II)の具体例としては、特開2011−206046号公報や特開2014−027916号公報に開示のFc結合性タンパク質があげられる。   Specific examples of the (II) include Fc-binding proteins disclosed in JP2011-206046A and JP2014-027916A.

本発明はFc結合性タンパク質を含む水溶液を保存する際、当該水溶液に含まれるハロゲン化物イオンの濃度を200mM未満とすることを特徴としている。ここでいうハロゲン化物イオンとは、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンのことをいう。Fc結合性タンパク質を含む水溶液から前述の濃度以下になるまでハロゲン化物イオンを除去する方法に特に限定はなく、透析による方法、限外ろ過による方法、ハロゲン化物イオンが200mM未満にまで希釈する方法、イオン交換膜、イオン交換樹脂やイオン交換クロマトグラフィー担体に通過させることでハロゲン化物イオンを吸着除去する方法、硝酸銀などを添加して生成した沈殿を除去する方法、硫安などのハロゲン化物イオンを含まない塩やアセトン、エタノールなどの水と任意の容量比で混和する有機溶媒を加えて沈殿物として回収した後に200mM未満のハロゲン化物イオンを含む水または緩衝液に再溶解する方法、が例示できる。中でも処理の簡便性から、透析や限外ろ過による方法が工業的には好ましく用いられる。なおFc結合性タンパク質水溶液に含まれるハロゲン化物イオンの濃度は少ないほどよく、好ましくは150mM未満、より好ましくは80mM未満、さらに好ましくは50mM未満である。   The present invention is characterized in that, when an aqueous solution containing an Fc-binding protein is stored, the concentration of halide ions contained in the aqueous solution is less than 200 mM. As used herein, halide ions refer to fluoride ions, chloride ions, bromide ions, and iodide ions. There is no particular limitation on the method for removing halide ions from an aqueous solution containing an Fc-binding protein until the concentration is lower than the above-mentioned concentration, a method by dialysis, a method by ultrafiltration, a method in which halide ions are diluted to less than 200 mM, Does not contain halide ions such as ammonium sulfate, a method that adsorbs and removes halide ions by passing through ion-exchange membranes, ion-exchange resins and ion-exchange chromatography carriers, a method that removes precipitates formed by adding silver nitrate, etc. Examples thereof include a method of adding an organic solvent miscible with water such as salt, acetone or ethanol in an arbitrary volume ratio and recovering it as a precipitate, and then re-dissolving it in water or a buffer containing less than 200 mM halide ions. Among these, from the viewpoint of simplicity of treatment, a method using dialysis or ultrafiltration is preferably used industrially. The concentration of halide ions contained in the Fc-binding protein aqueous solution is preferably as low as possible, preferably less than 150 mM, more preferably less than 80 mM, and even more preferably less than 50 mM.

本発明はFc結合性タンパク質を含む水溶液を保存する際、当該水溶液に含まれるハロゲン化物イオンの濃度を200mM未満とすることを特徴としている。これにより、精製したFc結合性タンパク質を、他の用途(例えばアフィニティクロマトグラフィ用リガンド)に用いるまでの間に、凝集により生じる、Fc結合性タンパク質のロスが防止され、Fc結合性タンパク質の利用効率を大幅に向上させることできる。   The present invention is characterized in that, when an aqueous solution containing an Fc-binding protein is stored, the concentration of halide ions contained in the aqueous solution is less than 200 mM. This prevents loss of the Fc-binding protein caused by aggregation before the purified Fc-binding protein is used for other applications (for example, ligands for affinity chromatography), and improves the utilization efficiency of the Fc-binding protein. Can be greatly improved.

ヒト型FcγRIの構造を示す図。The figure which shows the structure of human type | mold FcγRI. Fc結合性タンパク質水溶液に含まれる塩化ナトリウム濃度による、Fc結合性タンパク質の保存安定性への影響を示す図。The figure which shows the influence on the storage stability of Fc binding protein by the sodium chloride concentration contained in Fc binding protein aqueous solution. 200mM 硫酸ナトリウム存在下でのFc結合性タンパク質水溶液に含まれる塩化ナトリウム濃度による、Fc結合性タンパク質の保存安定性への影響を示す図。The figure which shows the influence on the storage stability of Fc binding protein by the sodium chloride concentration contained in Fc binding protein aqueous solution in presence of 200 mM sodium sulfate. Fc結合性タンパク質水溶液に含まれるアニオン種による、Fc結合性タンパク質の保存安定性への影響を示す図。The figure which shows the influence on the storage stability of Fc binding protein by the anion seed | species contained in Fc binding protein aqueous solution. 本発明のFc結合性タンパク質水溶液(タンパク質濃度:10mg/mL)の長期保存安定性を示す図。The figure which shows the long-term storage stability of the Fc binding protein aqueous solution (protein concentration: 10 mg / mL) of this invention. 本発明のFc結合性タンパク質水溶液(タンパク質濃度:30mg/mL)の長期保存安定性を示す図。The figure which shows the long-term storage stability of the Fc binding protein aqueous solution (protein concentration: 30 mg / mL) of this invention.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は前記例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to the said example.

実施例1 Fc結合性タンパク質水溶液の調製
(1)Fc結合性タンパク質をコードするポリヌクレオチドを含む発現ベクターで大腸菌を形質転換して得られた組換え大腸菌を、特開2012−034591号公報に記載の方法で培養することで、前記タンパク質を発現させた。
(2)組換え大腸菌の培養液より菌体を回収後、抽出液(650mM 塩化ナトリウム、1mM EDTA、6mM 硫酸マグネシウム、250U/L Benzonase(商品名)、0.05g/L Lysozyme、0.4%(v/v) Triton X−100(商品名)および50mM 塩化カルシウムを含む50mM Tris−HCl(pH8.0))を添加して菌体を懸濁させ、その後臭化セチルトリメチルアンモニウム塩(CTAB)を終濃度で0.5%(w/v)添加し撹拌することで、菌体内に発現した前記タンパク質を抽出した。
(3)(2)で得られた菌体抽出液に、酢酸を、液のpHが3.5となるよう、撹拌しながら滴下することで酸処理を行ない、遠心分離により上清(酸処理液)を回収した。
(4)酸処理液に尿素を終濃度1Mとなるよう添加後、あらかじめ平衡化緩衝液A(1M 尿素を含む20mM リン酸緩衝液(pH 6.0))で平衡化した、陽イオン交換クロマトグラフィー用ゲル(TOYOPEARL CM−650、東ソー製)を充填したカラムに添加し、平衡化緩衝液Aで十分洗浄後、1M 塩化ナトリウムを含む平衡化緩衝液AでFc結合性タンパク質を溶出した。
(5)(4)の溶出液を、特開2011−126827号に記載の疎水クロマトグラフィーを用いた方法によりヒトFc結合性タンパク質を精製した。
(6)あらかじめ平衡化緩衝液B(20mM リン酸緩衝液(pH6.0))で平衡化した、陽イオン交換クロマトグラフィー用ゲル(TOYOPEARL CM−650、東ソー製)を充填したカラムに、(5)で精製したFc結合性タンパク質水溶液を添加した。
(7)平衡化緩衝液Bで十分量洗浄後、1M 塩化ナトリウムを含む平衡化緩衝液Bで溶出することで、高度に精製したFc結合性タンパク質を含む水溶液を得た。
(8)(7)で得られた水溶液10mLを、1mMのEDTAを含む20mM MES(2−モルフォリノエタンスルホン酸)緩衝液(pH5.0)1Lに対し、3回透析することで脱塩し、水溶液中に含まれる塩化ナトリウムを完全に除去した。透析後のFc結合性タンパク質濃度は6mg/mLだった。
(9)(8)で得られた脱塩後の溶液を4℃で20日間静置保存した。
Example 1 Preparation of Fc-binding protein aqueous solution (1) Recombinant Escherichia coli obtained by transforming Escherichia coli with an expression vector containing a polynucleotide encoding an Fc-binding protein is described in JP2012-034591A. The protein was expressed by culturing according to the above method.
(2) After recovering bacterial cells from the recombinant Escherichia coli culture solution, the extract (650 mM sodium chloride, 1 mM EDTA, 6 mM magnesium sulfate, 250 U / L Benzonase (trade name), 0.05 g / L lysozyme, 0.4%) (V / v) Triton X-100 (trade name) and 50 mM Tris-HCl (pH 8.0) containing 50 mM calcium chloride) were added to suspend the cells, and then cetyltrimethylammonium bromide (CTAB) Was added at a final concentration of 0.5% (w / v) and stirred to extract the protein expressed in the cells.
(3) Acid treatment is performed by adding dropwise acetic acid to the bacterial cell extract obtained in (2) while stirring so that the pH of the solution becomes 3.5, and the supernatant (acid treatment) is centrifuged. Liquid).
(4) Cation exchange chromatography after equilibration with equilibration buffer A (20 mM phosphate buffer (pH 6.0) containing 1M urea) after adding urea to the acid treatment solution to a final concentration of 1M. The gel was added to a column packed with a chromatography gel (TOYOPEARL CM-650, manufactured by Tosoh Corporation), washed thoroughly with equilibration buffer A, and then Fc-binding protein was eluted with equilibration buffer A containing 1 M sodium chloride.
(5) The human Fc-binding protein was purified from the eluate of (4) by the method using hydrophobic chromatography described in JP2011-126927A.
(6) A column packed with a gel for cation exchange chromatography (TOYOPEARL CM-650, manufactured by Tosoh) equilibrated with equilibration buffer B (20 mM phosphate buffer (pH 6.0)) in advance (5 Fc-binding protein aqueous solution purified in (1) was added.
(7) After washing a sufficient amount with equilibration buffer B, elution was performed with equilibration buffer B containing 1 M sodium chloride to obtain an aqueous solution containing highly purified Fc-binding protein.
(8) 10 mL of the aqueous solution obtained in (7) is desalted by dialysis three times against 1 L of 20 mM MES (2-morpholinoethanesulfonic acid) buffer (pH 5.0) containing 1 mM EDTA. The sodium chloride contained in the aqueous solution was completely removed. The Fc binding protein concentration after dialysis was 6 mg / mL.
(9) The solution after desalting obtained in (8) was stored at 4 ° C. for 20 days.

結果を図2に示す。20日間の保存で沈殿物の析出は認められず、上清中のタンパク質濃度にも変化は認められなかった(NaCl 0mMの結果)。   The results are shown in FIG. Precipitation was not observed after storage for 20 days, and no change was observed in the protein concentration in the supernatant (result of NaCl 0 mM).

実施例2 Fc結合性タンパク質水溶液中に含まれる塩化ナトリウムの影響(その1)
実施例1(8)で得られた脱塩後の水溶液に4M 塩化ナトリウム水溶液を添加することで、塩化ナトリウムを78mM、154mM、262mM、364mMまたは525mM含むFc結合性タンパク質水溶液をそれぞれ調製した後、4℃で20日間静置保存し、溶液中のタンパク質濃度を測定した。
Example 2 Effect of Sodium Chloride Contained in Fc Binding Protein Aqueous Solution (Part 1)
After adding 4 M sodium chloride aqueous solution to the aqueous solution after desalting obtained in Example 1 (8), each prepared Fc binding protein aqueous solution containing 78 mM, 154 mM, 262 mM, 364 mM or 525 mM sodium chloride, The solution was stored at 4 ° C. for 20 days, and the protein concentration in the solution was measured.

結果を図2に示す。塩化ナトリウムを78mM含んだFc結合性タンパク質水溶液は、24時間までの保存では沈殿物の析出や溶液中のタンパク質濃度に変化は認められなかったものの、5日間の保存では沈殿物が生じ溶液中のタンパク質濃度も4.8mg/mLに低下した。NaClを154mM含んだFc結合性タンパク質水溶液は、24時間の保存で沈殿物が生じ溶液中のタンパク質濃度も1.2mg/mLに低下した。塩化ナトリウムを262mM以上含んだFc結合性タンパク質水溶液は、24時間の保存で溶液中のタンパク質濃度がほぼ0にまで低下した。   The results are shown in FIG. The Fc-binding protein aqueous solution containing 78 mM sodium chloride did not show precipitation or change in protein concentration in the solution after storage for up to 24 hours. The protein concentration also decreased to 4.8 mg / mL. The Fc-binding protein aqueous solution containing 154 mM NaCl contained a precipitate after storage for 24 hours, and the protein concentration in the solution also decreased to 1.2 mg / mL. The Fc-binding protein aqueous solution containing 262 mM or more of sodium chloride decreased the protein concentration in the solution to almost 0 after storage for 24 hours.

以上の結果から、Fc結合性タンパク質水溶液に塩化ナトリウム(塩化物イオン)が含まれると、Fc結合性タンパク質の凝集が促進され、塩化ナトリウム(塩化物イオン)濃度が200mM以上になるとFc結合性タンパク質が速やかに(24時間以内に)凝集されることがわかる。   From the above results, when sodium chloride (chloride ion) is contained in the Fc binding protein aqueous solution, the aggregation of the Fc binding protein is promoted, and when the sodium chloride (chloride ion) concentration is 200 mM or more, the Fc binding protein. Is quickly aggregated (within 24 hours).

実施例3 Fc結合性タンパク質水溶液中に含まれる硫酸ナトリウムの影響(その2)
(1)実施例1(7)で得られたFc結合性タンパク質水溶液10mLを、1mMのEDTAと0.2Mの硫酸ナトリウムを含む20mM MES緩衝液(pH5.0)に対して3回透析することで脱塩し、溶液中に含まれる塩化ナトリウムを完全に除去した。透析後のFc結合性タンパク質濃度は6mg/mLだった。
(2)(1)で得られた溶液を4℃で20日間静置保存した。
Example 3 Effect of sodium sulfate contained in an aqueous Fc-binding protein solution (Part 2)
(1) Dialyze 10 mL of the Fc-binding protein aqueous solution obtained in Example 1 (7) three times against 20 mM MES buffer (pH 5.0) containing 1 mM EDTA and 0.2 M sodium sulfate. The sodium chloride contained in the solution was completely removed. The Fc binding protein concentration after dialysis was 6 mg / mL.
(2) The solution obtained in (1) was stored at 4 ° C. for 20 days.

結果を図3に示す。保存中に沈殿物の析出は認められず、上清中のFc結合性タンパク質濃度にも変化は認められなかった(NaCl 0mMでの結果)。この結果より、硫酸ナトリウム(硫酸イオン)を添加しても、Fc結合性タンパク質水溶液の保存安定性には影響を受けないことがわかる。   The results are shown in FIG. No precipitate was observed during storage, and no change was observed in the Fc-binding protein concentration in the supernatant (result of NaCl 0 mM). From this result, it can be seen that even when sodium sulfate (sulfate ion) is added, the storage stability of the aqueous Fc-binding protein solution is not affected.

実施例4 Fc結合性タンパク質水溶液中に含まれる塩化ナトリウムの影響(その3)
実施例3(1)で得られた脱塩後の水溶液に4M 塩化ナトリウム水溶液を添加することで、NaClを78mM、154mM、262mM、364mMまたは525mM含むFc結合性タンパク質水溶液をそれぞれ調製した後、4℃で20日間静置保存し、溶液中のタンパク質濃度を測定した。
Example 4 Effect of Sodium Chloride Contained in an Fc Binding Protein Aqueous Solution (Part 3)
After adding 4 M sodium chloride aqueous solution to the aqueous solution after desalting obtained in Example 3 (1), Fc-binding protein aqueous solutions containing NaCl of 78 mM, 154 mM, 262 mM, 364 mM, or 525 mM were prepared. The plate was stored at 20 ° C. for 20 days, and the protein concentration in the solution was measured.

結果を図3に示す。塩化ナトリウムを78mM含んだFc結合性タンパク質水溶液は、塩化ナトリウムを含まないときと同様、保存中に沈殿物の析出は認められず、上清中のFc結合性タンパク質濃度にも変化は認められなかった。塩化ナトリウムを154mM含んだFc結合性タンパク質水溶液は、5日間までの保存では沈殿物の析出や溶液中のタンパク質濃度に変化は認められなかったものの、20日間の保存では沈殿物が生じ溶液中のタンパク質濃度は4.2mg/mLに低下した。塩化ナトリウムを262mM以上含んだFc結合性タンパク質水溶液は、24時間までの保存では沈殿物の析出や溶液中のタンパク質濃度にほぼ変化は認められなかったものの、5日間の保存では上清中のタンパク質濃度はそれぞれ4.7mg/mL(262mM)、1.4mg/mL(364mM)及び0.7mg/mL(525mM)まで減少し、20日間の保存では上清中のタンパク質濃度がほぼ0となった。   The results are shown in FIG. In the case of an Fc-binding protein aqueous solution containing 78 mM sodium chloride, no precipitate was observed during storage, and no change was observed in the Fc-binding protein concentration in the supernatant, as in the case of no sodium chloride. It was. The Fc-binding protein aqueous solution containing 154 mM sodium chloride did not show precipitation or changes in protein concentration in the solution after storage for up to 5 days, but precipitates were generated in the solution after storage for 20 days. The protein concentration dropped to 4.2 mg / mL. The Fc-binding protein aqueous solution containing 262 mM or more of sodium chloride showed almost no change in precipitation or protein concentration in the solution when stored for up to 24 hours, but the protein in the supernatant when stored for 5 days. Concentrations decreased to 4.7 mg / mL (262 mM), 1.4 mg / mL (364 mM), and 0.7 mg / mL (525 mM), respectively, and the protein concentration in the supernatant was nearly zero after 20 days of storage. .

すなわち、Fc結合性タンパク質水溶液に硫酸ナトリウム(硫酸イオン、すなわちハロゲン化物以外のイオン)を含むと、塩化ナトリウム(塩化物イオン)による凝集促進が抑えられるものの、塩化ナトリウム(塩化物イオン)が200mM以上になるとFc結合性タンパク質の凝集が促進され、保存安定性が低下することがわかる。   That is, when sodium sulfate (sulfate ions, that is, ions other than halides) is contained in the Fc-binding protein aqueous solution, aggregation promotion by sodium chloride (chloride ions) is suppressed, but sodium chloride (chloride ions) is 200 mM or more. Then, it can be seen that the aggregation of Fc-binding protein is promoted and the storage stability is lowered.

実施例5 陰イオンの影響
(1)実施例1(8)で得られた脱塩後の水溶液に、純水、2M 塩化ナトリウム水溶液、2M 臭化ナトリウム水溶液、2M ヨウ化ナトリウム水溶液、2M リン酸二水素一ナトリウム緩衝液(pH5.3)、シュウ酸ナトリウム粉末、2M クエン酸ナトリウム緩衝液(pH5.4)、または2M 硫酸ナトリウム水溶液を加えることで、各陰イオン(アニオン)が200mM含まれる水溶液となるよう調製した。この際、タンパク質濃度が一定になるように純水にて5mg/mLに調整した。
(2)(1)で調整した溶液を4℃で22日間静置保存した。
Example 5 Influence of anions (1) To the aqueous solution after desalting obtained in Example 1 (8), pure water, 2M sodium chloride aqueous solution, 2M sodium bromide aqueous solution, 2M sodium iodide aqueous solution, 2M phosphoric acid An aqueous solution containing 200 mM of each anion (anion) by adding monosodium dihydrogen buffer (pH 5.3), sodium oxalate powder, 2M sodium citrate buffer (pH 5.4), or 2M aqueous sodium sulfate solution. It prepared so that it might become. At this time, the protein concentration was adjusted to 5 mg / mL with pure water so that the protein concentration was constant.
(2) The solution prepared in (1) was stored at 4 ° C. for 22 days.

結果を図4に示す。純水(なし)、リン酸二水素一ナトリウム(PO4)、シュウ酸ナトリウム(シュウ酸)、クエン酸ナトリウム(クエン酸)、および硫酸ナトリウム(SO4)を添加した水溶液では、保存中に沈殿物の析出は認められず、上清中のFc結合性タンパク質濃度にも変化は認められなかった。一方、塩化ナトリウム(Cl)、臭化ナトリウム(Br)およびヨウ化ナトリウム(I)を添加した水溶液では、保存中に沈殿物の析出が進み、22日間の保存で上清中のタンパク質濃度がほぼ0となった。特に臭化ナトリウム(Br)およびヨウ化ナトリウム(I)を添加した液では添加直後より沈殿物が析出し、上清中のタンパク質濃度も低下した。   The results are shown in FIG. In aqueous solutions to which pure water (none), monosodium dihydrogen phosphate (PO4), sodium oxalate (oxalic acid), sodium citrate (citric acid), and sodium sulfate (SO4) were added, No precipitation was observed, and no change was observed in the Fc-binding protein concentration in the supernatant. On the other hand, in an aqueous solution to which sodium chloride (Cl), sodium bromide (Br), and sodium iodide (I) were added, precipitation of the precipitate progressed during storage, and the protein concentration in the supernatant was almost constant after storage for 22 days. 0. In particular, in the solution to which sodium bromide (Br) and sodium iodide (I) were added, a precipitate was deposited immediately after the addition, and the protein concentration in the supernatant was also reduced.

以上の結果から、Fc結合性タンパク質はハロゲン化物イオンにより凝集沈殿が促進される一方、その他の陰イオン(アニオン)には凝集促進効果はないことが判明した。   From the above results, it was found that aggregation precipitation is promoted by halide ions in Fc-binding proteins, while other anions (anions) have no aggregation promoting effect.

実施例6 長期保存安定性試験
(1)実施例1(1)から(7)と同様にFc結合性タンパク質を調製し、限外ろ過膜で約10mg/mLまで濃縮した後、純水を加えながら限外ろ過を行なうことで電気伝導度が2mS/cmになるまで脱塩した。なお純水の添加速度と限外ろ過によるろ過速度が一致するよう、母液重量を電子天びんで測定して、その重量が一定になるように制御している。
(2)脱塩後、Fc結合性タンパク質が30mg/mLになるまで濃縮した。
(3)濃縮液の一部を採取し、純水を加えることで10mg/mLのFc結合性タンパク質水溶液を調製した。
(4)(2)で得られた30mg/mLのFc結合性タンパク質水溶液および(3)で調製した10mg/mLのFc結合性タンパク質水溶液を、0.2μmの除菌フィルターでろ過し、滅菌済みの密閉容器に小分けした後、−20℃、4℃、25℃または37℃で保存した。
(5)一ヶ月ごとに各水溶液の沈殿物生成の観察および水溶液中のタンパク質濃度の測定を行なった。
Example 6 Long-term storage stability test (1) Fc-binding protein was prepared in the same manner as in Examples 1 (1) to (7), concentrated to about 10 mg / mL with an ultrafiltration membrane, and then pure water was added. While performing ultrafiltration, desalting was performed until the electric conductivity reached 2 mS / cm. Note that the weight of the mother liquor is measured with an electronic balance so that the addition rate of pure water and the filtration rate by ultrafiltration are matched, and the weight is controlled to be constant.
(2) After desalting, the Fc-binding protein was concentrated to 30 mg / mL.
(3) A part of the concentrated solution was collected, and pure water was added to prepare a 10 mg / mL Fc-binding protein aqueous solution.
(4) The 30 mg / mL Fc-binding protein aqueous solution obtained in (2) and the 10 mg / mL Fc-binding protein aqueous solution prepared in (3) were filtered through a 0.2 μm sterilization filter and sterilized. And then stored at −20 ° C., 4 ° C., 25 ° C. or 37 ° C.
(5) Observation of precipitate formation in each aqueous solution and measurement of protein concentration in the aqueous solution were conducted every month.

タンパク質濃度の推移を図5(タンパク質濃度:10mg/mL)および図6(タンパク質濃度:30mg/mL)に示す。いずれの条件においても、5ヶ月間の保存期間中に沈殿の析出もなく、上清中のタンパク質濃度の減少も観察されなかった。   Changes in protein concentration are shown in FIG. 5 (protein concentration: 10 mg / mL) and FIG. 6 (protein concentration: 30 mg / mL). Under either condition, no precipitation occurred during the storage period of 5 months, and no decrease in protein concentration in the supernatant was observed.

以上のことから本発明の保存方法により、Fc結合性タンパク質は溶液状態で長期間安定に保存できることが確認された。   From the above, it was confirmed that the Fc-binding protein can be stably stored in a solution state for a long period of time by the storage method of the present invention.

Claims (2)

Fc結合性タンパク質を含む水溶液であって、
前記水溶液中に含まれるハロゲン化物イオンの濃度が80mM未満であり、
pHが5.0であり、
Fc結合性タンパク質が配列番号1に記載のアミノ酸配列のうち少なくとも16番目のグルタミンから289番目のバリンまでのアミノ酸残基を含むFcγRIである、
前記水溶液。
An aqueous solution comprising an Fc binding protein,
Ri concentration 80 mM less than Der halide ions contained in the aqueous solution,
pH is 5.0,
Ru FcγRI Der comprising amino acid residues from at least the 16th glutamine to 289 valine of the amino acid sequence of the Fc binding protein is described in SEQ ID NO: 1,
The aqueous solution.
Fc結合性タンパク質をハロゲン化物イオンの濃度が80mM未満であり、pHが5.0である水溶液で保存する、Fc結合性タンパク質の保存方法であって、
Fc結合性タンパク質が配列番号1に記載のアミノ酸配列のうち少なくとも16番目のグルタミンから289番目のバリンまでのアミノ酸残基を含むFcγRIである、方法
A method for storing an Fc binding protein, comprising storing the Fc binding protein in an aqueous solution having a halide ion concentration of less than 80 mM and a pH of 5.0 ,
The method, wherein the Fc-binding protein is FcγRI containing at least the 16th glutamine to 289th valine amino acid residues in the amino acid sequence set forth in SEQ ID NO: 1 .
JP2014056221A 2014-03-19 2014-03-19 Method for preserving Fc receptor Active JP6387640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056221A JP6387640B2 (en) 2014-03-19 2014-03-19 Method for preserving Fc receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056221A JP6387640B2 (en) 2014-03-19 2014-03-19 Method for preserving Fc receptor

Publications (2)

Publication Number Publication Date
JP2015178468A JP2015178468A (en) 2015-10-08
JP6387640B2 true JP6387640B2 (en) 2018-09-12

Family

ID=54262802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056221A Active JP6387640B2 (en) 2014-03-19 2014-03-19 Method for preserving Fc receptor

Country Status (1)

Country Link
JP (1) JP6387640B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006183A1 (en) * 1998-12-03 2000-06-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Recombinant soluble Fc receptors
CA2676098A1 (en) * 2007-01-23 2008-07-31 Zymogenetics, Inc. Soluble fcgammaria and related methods
JP5699429B2 (en) * 2009-12-18 2015-04-08 東ソー株式会社 Purification method of Fc receptor

Also Published As

Publication number Publication date
JP2015178468A (en) 2015-10-08

Similar Documents

Publication Publication Date Title
Chollangi et al. Development of robust antibody purification by optimizing protein‐A chromatography in combination with precipitation methodologies
JP5774612B2 (en) Method
EP3004163B1 (en) Method for purifying antibody
CN106459143A (en) Downstream processing of an alkaline phosphatase
JP6480906B2 (en) Cleaning composition, protein purification method, and protein
CN1934128B (en) Process for producing human serum albumin by heating in presence of divalent cation
TW201444863A (en) A method for increasing pyro-glutamic acid formation of a protein
JP6622334B2 (en) Production cell line enhancer
HU231498B1 (en) Improvement of affinity chromatography of immunoglobulins by using pre-capture flocculation
JP2014527518A5 (en)
JP5307716B2 (en) Dockin polypeptide and method for purifying recombinant fusion protein using the same
JP6387640B2 (en) Method for preserving Fc receptor
JP2023515123A (en) NON-PROTEIN A Purification Method of Adalimumab
Wu et al. Evaluation of a PEG/hydroxypropyl starch aqueous two‐phase system for the separation of monoclonal antibodies from cell culture supernatant
CN109320611B (en) Purification method of human-mouse chimeric monoclonal antibody biological similar drug
JP7445332B2 (en) Optimized method for bevacizumab purification
WO2017154869A1 (en) Method for producing mutant human erythropoietin
WO2023031965A1 (en) Method to obtain a purified antibody composition
KR102286260B1 (en) How to purify a sulfatase protein
JP5830945B2 (en) Purification method of Fc receptor
JP6665414B2 (en) Method of storing Fc binding protein
JP6136236B2 (en) Purification method of recombinant protein
WO2023007516A1 (en) Method to control high molecular weight aggregates in an antibody composition
EP4396195A1 (en) Method to obtain a purified antibody composition
Possner Structural studies of glycoprotein sorting and processing complexes in the early secretory pathway

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R151 Written notification of patent or utility model registration

Ref document number: 6387640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151