JP6699085B2 - Method for purifying Fc binding protein - Google Patents

Method for purifying Fc binding protein Download PDF

Info

Publication number
JP6699085B2
JP6699085B2 JP2015063068A JP2015063068A JP6699085B2 JP 6699085 B2 JP6699085 B2 JP 6699085B2 JP 2015063068 A JP2015063068 A JP 2015063068A JP 2015063068 A JP2015063068 A JP 2015063068A JP 6699085 B2 JP6699085 B2 JP 6699085B2
Authority
JP
Japan
Prior art keywords
seq
binding protein
replaced
amino acid
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015063068A
Other languages
Japanese (ja)
Other versions
JP2016183113A (en
Inventor
陽介 寺尾
陽介 寺尾
直紀 山中
直紀 山中
大江 正剛
正剛 大江
しずか 西山
しずか 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015063068A priority Critical patent/JP6699085B2/en
Publication of JP2016183113A publication Critical patent/JP2016183113A/en
Application granted granted Critical
Publication of JP6699085B2 publication Critical patent/JP6699085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は、陽イオン交換クロマトグラフィーを用いてFc結合性タンパク質を精製する方法に関する。特に本発明は、ヒトFcγRIIIa由来のFc結合性タンパク質を、陽イオン交換クロマトグラフィーを用いてを高回収率かつ高純度に精製する方法に関する。   The present invention relates to methods for purifying Fc binding proteins using cation exchange chromatography. In particular, the present invention relates to a method of purifying human FcγRIIIa-derived Fc binding protein using cation exchange chromatography with high recovery and high purity.

Fcレセプターは、免疫グロブリン分子のFc領域に結合する一群の分子である。Fcレセプターはその結合する免疫グロブリンの種類によって分類されており、IgGのFc領域に結合するFcγレセプター、IgEのFc領域に結合するFcεレセプター、IgAのFc領域に結合するFcαレセプター等がある(非特許文献1)。また、各レセプターは、その構造の違いによりさらに細かく分類され、Fcγレセプターの場合、FcγRI、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIbの存在が報告されている(非特許文献1)。   Fc receptors are a group of molecules that bind to the Fc region of immunoglobulin molecules. Fc receptors are classified according to the type of immunoglobulin to which they bind, and include Fcγ receptors that bind to the Fc region of IgG, Fcε receptors that bind to the Fc region of IgE, and Fcα receptors that bind to the Fc region of IgA. Patent Document 1). Further, each receptor is further classified according to the difference in its structure, and in the case of Fcγ receptor, the presence of FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa, and FcγRIIIb has been reported (Non-Patent Document 1).

Fcγレセプターの中でも、FcγRIIIaはナチュラルキラー細胞(NK細胞)やマクロファージなどの細胞表面に存在しており、ヒト免疫機構の中でも重要なADCC(抗体依存性細胞傷害)活性に関与している重要なレセプターである。このFcγRIIIaとヒトIgGとの親和性は結合の強さを示す結合定数(KA)が10−1以下であることが報告されている(非特許文献2)。ヒトFcγRIIIaのアミノ酸配列(配列番号1)はUniProt(Accession number:P08637)などの公的データベースに公表されている。また、ヒトFcγRIIIaの構造上の機能ドメイン、細胞膜を貫通するためのシグナルペプチド配列、細胞膜貫通領域の位置についても同様に公表されている。図1にヒトFcγRIIIaの構造略図を示す。なお、図1中の番号はアミノ酸番号を示しており、その番号は配列番号1に記載のアミノ酸番号に対応する。すなわち、配列番号1中の1番目のメチオニン(Met)から16番目のアラニン(Ala)までがシグナル配列(S)、17番目のグリシン(Gly)から208番目のグルタミン(Gln)までが細胞外領域(EC)、209番目のバリン(Val)から229番目のバリン(Val)までが細胞膜貫通領域(TM)および230番目のリジン(Lys)から254番目のリジン(Lys)までが細胞内領域(C)とされている。なおFcγRIIIaはIgG1からIgG4まであるヒトIgGサブクラスのうち、特にIgG1とIgG3に対し強く結合する一方、IgG2とIgG4に対する結合は弱いことが知られている。 Among Fcγ receptors, FcγRIIIa is present on the cell surface of natural killer cells (NK cells) and macrophages, and is an important receptor involved in ADCC (antibody-dependent cellular cytotoxicity) activity, which is important in the human immune system. Is. It has been reported that the affinity between FcγRIIIa and human IgG has a binding constant (KA) showing the strength of binding of 10 7 M −1 or less (Non-patent Document 2). The amino acid sequence of human FcγRIIIa (SEQ ID NO: 1) has been published in public databases such as UniProt (Accession number: P08637). In addition, the functional domain of the structure of human FcγRIIIa, the signal peptide sequence for penetrating the cell membrane, and the position of the cell transmembrane region are also published. Figure 1 shows a structural schematic of human FcγRIIIa. The numbers in FIG. 1 indicate amino acid numbers, and the numbers correspond to the amino acid numbers set forth in SEQ ID NO:1. That is, the 1st methionine (Met) to 16th alanine (Ala) in SEQ ID NO: 1 is the signal sequence (S), and the 17th glycine (Gly) to 208th glutamine (Gln) is the extracellular region. (EC), 209th valine (Val) to 229th valine (Val) are transmembrane regions (TM), and 230th lysine (Lys) to 254th lysine (Lys) are intracellular regions (C). ). It is known that FcγRIIIa strongly binds to IgG1 and IgG3 among human IgG subclasses from IgG1 to IgG4, but weakly binds to IgG2 and IgG4.

近年になり見出されたFcレセプターの予想外の免疫抑制的な生物学的特性により、自己免疫疾患または自己免疫症候群、移植物の拒絶および悪性リンパ増殖の領域において医薬として注目を浴びつつある(非特許文献3)。また、Fcレセプターの機能である抗体の吸着能は各種抗体精製用クロマトグラフィー担体の捕捉機能を担うタンパク質としても利用することができる。しかしながら、前記目的でFcレセプターを利用するには、Fcレセプターを高純度に精製することが重要である。   Due to the unexpected immunosuppressive biological properties of Fc receptors discovered in recent years, it is attracting attention as a medicine in the fields of autoimmune diseases or syndromes, transplant rejection and malignant lymphoproliferative growth ( Non-Patent Document 3). Further, the ability of the Fc receptor to adsorb an antibody, which is a function of the Fc receptor, can be utilized as a protein having a function of capturing various chromatography carriers for antibody purification. However, in order to utilize the Fc receptor for the above purpose, it is important to purify the Fc receptor with high purity.

Fc結合性タンパク質(Fcレセプター)の精製に関しては、疎水クロマトグラフィーを用いたFc結合性タンパク質の精製について検討を行なっており、疎水クロマトグラフィー用担体に吸着したFc結合性タンパク質を10%(w/v)のグリセロールを含む緩衝液で溶出させることでFc結合性タンパク質を高純度かつ高効率な精製を実現している(特許文献1)。また陽イオン交換クロマトグラフィーを用いたFc結合性タンパク質の精製において、前記クロマトグラフィー用担体にアプライするFc結合性タンパク質を含む溶液、および前記担体に吸着したFc結合性タンパク質の溶出液に尿素を添加することで、不純物の吸着を抑え、高純度かつ高効率な精製を実現している(特許文献2)。   Regarding the purification of the Fc-binding protein (Fc receptor), the purification of the Fc-binding protein using hydrophobic chromatography is being studied, and the Fc-binding protein adsorbed on the carrier for hydrophobic chromatography is 10% (w/w). By eluting with a buffer solution containing glycerol of v), the Fc-binding protein is highly purified and highly efficient (Patent Document 1). Further, in the purification of the Fc-binding protein using cation exchange chromatography, urea is added to a solution containing the Fc-binding protein applied to the chromatography carrier and an eluate of the Fc-binding protein adsorbed on the carrier. By doing so, adsorption of impurities is suppressed, and highly purified and highly efficient purification is realized (Patent Document 2).

特開2011−126827号公報JP, 2011-126827, A 特開2012−250945号公報JP2012-250945A

J.V.Ravetch等,Annu.Rev.Immol/Lunol.,9,457,1991J. V. Ravetch et al., Annu. Rev. Immol/Lunol. , 9, 457, 1991 J.Galon等,Eur.J.Immol/Lunol.,27,1928−1932,1997J. Galon et al., Eur. J. Immol/Lunol. , 27, 1928-1932, 1997 Toshiyuki Takai,Jpn.J.Clin.Immol/Lunol.,28,318,2005Toshiyuki Takai, Jpn. J. Clin. Immol/Lunol. , 28, 318, 2005

前述したように、Fc結合性タンパク質の精製に関しては、特許文献1および2の開示がある。しかしながら、さらなる精製純度および精製効率の向上が求められていた。また、これら特許文献で開示の方法で検討したFc結合性タンパク質はヒトFcγRI由来のタンパク質であるが、別のFc結合性タンパク質であるヒトFcγRIIIa由来のタンパク質に対して同様に検討したところ、高純度かつ高効率な精製を行なうことができなかった。   As described above, Patent Documents 1 and 2 disclose the purification of Fc-binding proteins. However, further improvement in purification purity and purification efficiency has been demanded. Further, although the Fc-binding protein examined by the methods disclosed in these patent documents is a protein derived from human FcγRI, when it was similarly examined to a protein derived from another Fc-binding protein, human FcγRIIIa, high purity was obtained. Moreover, highly efficient purification could not be performed.

そこで本発明の目的は、Fc結合性タンパク質(特にヒトFcγRIIIa由来のFc結合性タンパク質)を、陽イオン交換クロマトグラフィーを用いて高純度かつ高効率に精製する方法を提供することにある。   Therefore, an object of the present invention is to provide a method for purifying an Fc-binding protein (in particular, an Fc-binding protein derived from human FcγRIIIa) with high purity and high efficiency by using cation exchange chromatography.

前記課題を解決するために鋭意検討した結果、Fc結合性タンパク質を吸着した陽イオン交換クロマトグラフィー担体を洗浄する工程に用いる洗浄液、および前記担体からFc結合性タンパク質を溶出させる工程に用いる溶出液における最適な塩濃度を見出し、本発明の完成に至った。   As a result of extensive studies to solve the above-mentioned problems, in a washing solution used in a step of washing a cation exchange chromatography carrier having an Fc-binding protein adsorbed thereon, and an eluate used in a step of eluting the Fc-binding protein from the carrier, The optimum salt concentration was found and the present invention was completed.

すなわち本発明の第一の態様は、
(1)陽イオン交換クロマトグラフィー用担体に、Fc結合性タンパク質を含む溶液を添加することで、前記担体にFc結合性タンパク質を吸着させる工程と、
(2)洗浄液を用いて、Fc結合性タンパク質を吸着した前記担体を洗浄する工程と、
(3)溶出液を用いて、前記担体に吸着したFc結合性タンパク質を溶出させる工程と、
を含むFc結合性タンパク質の精製方法であって、
前記(2)の工程が、150mmol/L未満の塩化ナトリウムを含む第一の洗浄液を用いて洗浄した後、150mmol/L以下かつ前記第一の洗浄液よりも高濃度の塩化ナトリウムを含む第二の洗浄液を用いて洗浄する工程であり、
前記(3)の工程が、250mmol/L以上の塩化ナトリウムを含む溶出液を用いてFc結合性タンパク質を溶出させる工程である、前記精製方法である。
That is, the first aspect of the present invention is
(1) adding a solution containing an Fc-binding protein to a carrier for cation exchange chromatography to adsorb the Fc-binding protein on the carrier,
(2) washing the carrier having adsorbed Fc-binding protein with a washing solution,
(3) eluting the Fc-binding protein adsorbed on the carrier using an eluent,
A method for purifying an Fc-binding protein comprising:
In the step (2), after washing with a first washing liquid containing less than 150 mmol/L of sodium chloride, a second washing liquid containing less than 150 mmol/L and a higher concentration of sodium chloride than the first washing liquid is used. It is a step of cleaning with a cleaning liquid,
In the purification method, the step (3) is a step of eluting the Fc-binding protein using an eluent containing 250 mmol/L or more of sodium chloride.

また本発明の第二の態様は、Fc結合性タンパク質が、
配列番号1に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含むタンパク質、または
配列番号1に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含み、かつ前記アミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質である、
前記第一の態様に記載の精製方法である。
A second aspect of the present invention is that the Fc-binding protein is
A protein containing amino acid residues from at least the 17th glycine to the 192nd glutamine in the amino acid sequence shown in SEQ ID NO: 1 or at least the 17th glycine to the 192nd glutamine in the amino acid sequence shown in SEQ ID NO: 1 Up to and including one or more amino acid residues, and one or more of the amino acid residues are substituted, inserted or deleted by other amino acid residues,
It is the purification method according to the first aspect.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、陽イオン交換クロマトグラフィー用担体に添加する、Fc結合性タンパク質を含む溶液の一例として、Fc結合性タンパク質をコードするポリヌクレオチドを含む発現プラスミドにより形質転換された宿主の培養液(後述する粗精製Fc結合性タンパク質溶液を含む)や、前記培養液(後述する粗精製Fc結合性タンパク質溶液を含む)を陽イオン交換クロマトグラフィー以外のクロマトグラフィーを用いて精製して得られた溶液があげられる。   In the present invention, as an example of a solution containing an Fc-binding protein added to a carrier for cation exchange chromatography, a culture solution of a host transformed with an expression plasmid containing a polynucleotide encoding the Fc-binding protein (see below). Or a solution obtained by purifying the culture solution (including the crude purified Fc-binding protein solution described later) using chromatography other than cation exchange chromatography. can give.

本発明において、Fc結合性タンパク質をコードするポリヌクレオチドを含む発現プラスミドにより形質転換する宿主とは、COS細胞やCHO細胞に代表される動物細胞、バチルス属(ブレビバチルス属細菌やパエニバチルス属細菌のような広義のバチルス属細菌も含む)や大腸菌に代表される細菌、サッカロマイセス属、ピキア属、シゾサッカロマイセス属に代表される酵母、麹菌に代表される糸状菌が例示できるが、取扱いの簡便な大腸菌を宿主とするのが好ましい。なお宿主が大腸菌の場合は、特開2012−034591号公報および特開2013−085531号公報に開示した方法等により、形質転換体を培養することで前記タンパク質を発現させればよい。   In the present invention, a host transformed with an expression plasmid containing a polynucleotide encoding an Fc-binding protein means an animal cell typified by COS cells or CHO cells, a Bacillus genus (such as Brevibacillus spp. or Paenibacillus spp. Bacteria in a broad sense) and bacteria represented by Escherichia coli, yeasts represented by Saccharomyces, Pichia, Schizosaccharomyces, and filamentous fungi represented by Aspergillus can be exemplified, but Escherichia coli is easy to handle. Is preferably used as the host. When the host is Escherichia coli, the protein may be expressed by culturing the transformant by the method disclosed in JP2012-034591A or JP2013-085531A.

本発明において、前記宿主の形質転換体の培養液から、クロマトグラフィー用担体に添加するための粗精製Fc結合性タンパク質溶液を得るには、発現の形態によって適宜選択すればよい。例えば、発現したタンパク質が宿主細胞のペリプラズムに発現する場合は、培養液を遠心分離して得られる宿主細胞を適切な緩衝液で懸濁し細胞破砕(物理的破砕、薬剤による破砕など)後、遠心分離により破砕残渣を除去することで、発現したタンパク質を含む無細胞抽出液を得ればよく、発現したタンパク質が宿主細胞のペリプラズムから培養上清に漏出する場合は、培養液を遠心分離して得られる培養上清から発現したタンパク質を回収すればよい。なお薬剤により宿主細胞を破砕する際は、例えば、特開2013−252099号公報に開示した方法や、BugBuster Protein extraction kit(タカラバイオ社製)等の市販の抽出試薬を用いて破砕するとよい。   In the present invention, in order to obtain a crude purified Fc-binding protein solution to be added to a carrier for chromatography from the culture medium of the transformant of the host, it may be appropriately selected depending on the form of expression. For example, when the expressed protein is expressed in the periplasm of host cells, the host cells obtained by centrifuging the culture solution are suspended in an appropriate buffer solution, disrupted by cells (physical disruption, disruption by a drug, etc.), and then centrifuged. It is sufficient to obtain a cell-free extract containing the expressed protein by removing the disruption residue by separation.If the expressed protein leaks from the periplasm of the host cell into the culture supernatant, centrifuge the culture solution. The expressed protein may be recovered from the obtained culture supernatant. When the host cells are disrupted with a drug, for example, the method disclosed in JP2013-252099A or a commercially available extraction reagent such as BugBuster Protein extraction kit (manufactured by Takara Bio Inc.) may be used.

本発明において、精製に用いる陽イオン交換クロマトグラフィー用担体は、カルボキシメチル基、スルホプロピル基、スルホン酸基といった陽イオン交換基を担体に導入したものであれば特に限定はなく、具体例として、TOYOPEARL CM−650、TOYOPEARL SP−650、TOYOPEARL GigaCap S−650(以上、東ソー社製)、CM Sepharose Fast Flow(GEヘルスケア社製)があげられる。なお、前記陽イオン交換クロマトグラフィー用担体を用いて、本発明の精製方法を実施する際は、前記担体へのFc結合性タンパク質を含む溶液(アプライ液)の添加量や、前記担体のタンパク吸着性能等によって決定した量の担体を、適切なオープンカラム等に充填して行なえばよい。また、前記陽イオン交換クロマトグラフィー用担体は、アプライ液を添加する前に、あらかじめ、塩を含む適切な緩衝液(Tris−HCl緩衝液、グリシン−NaOH緩衝液、リン酸塩緩衝液等)で平衡化するとよい。   In the present invention, the carrier for cation exchange chromatography used for purification is not particularly limited as long as it has a cation exchange group such as a carboxymethyl group, a sulfopropyl group, or a sulfonic acid group introduced into the carrier. TOYOPEARL CM-650, TOYOPEARL SP-650, TOYOPEARL GigaCap S-650 (above, Tosoh Corporation make), and CM Sepharose Fast Flow (GE Healthcare company make) are mentioned. When carrying out the purification method of the present invention using the carrier for cation exchange chromatography, the amount of the solution containing Fc-binding protein (applying solution) added to the carrier and the protein adsorption of the carrier The carrier may be packed in an appropriate open column or the like with the amount of the carrier determined by the performance and the like. In addition, the cation exchange chromatography carrier may be prepared by adding a suitable salt-containing buffer solution (Tris-HCl buffer solution, glycine-NaOH buffer solution, phosphate buffer solution, etc.) in advance before adding the apply solution. Equilibrate.

本発明の精製方法では、前述した緩衝液であらかじめ平衡化した陽イオン交換クロマトグラフィー用担体に、Fc結合性タンパク質を含む溶液(アプライ液)を添加して、前記担体にFc結合性タンパク質を吸着させた後、溶出工程前に洗浄液を用いて前記担体に吸着しないタンパク質を除去する。その際、前記除去操作を150mmol/L未満の塩化ナトリウムを含む第一の洗浄液を用いて除去した後、150mmol/L以下かつ前記第一の洗浄液よりも高濃度の塩化ナトリウムを含む第二の洗浄液を用いて除去することで行なう。具体的には、前記第一の洗浄液として平衡化した緩衝液に含まれる塩と同じイオン強度の塩化ナトリウムを含む緩衝液を、前記第二の洗浄液を前記第一の洗浄液以上かつ150mmol/L以下の濃度の塩化ナトリウムを含む緩衝液を、それぞれ用いる例があげられる。なお前記除去操作を行なう際に用いる、第一の洗浄液に含まれる塩化ナトリウム濃度を100mmol/L未満とし、第二の洗浄液に含まれる塩化ナトリウム濃度を100mmol/L以下かつ前記第一の洗浄液よりも高い濃度とすると、その後の溶出工程により回収されるFc結合性タンパク質の回収率や純度がさらに向上する点で好ましい。前記好ましい態様の一例として、陽イオン交換クロマトグラフィー用担体の平衡化に用いる緩衝液を40mmol/Lから60mmol/Lの範囲の塩化ナトリウムに相当するイオン強度を有した緩衝液とし、第一の洗浄液に含まれる塩化ナトリウム濃度を40mmol/Lから60mmol/Lの範囲とし、第二の洗浄液に含まれる塩化ナトリウム濃度を80mmol/Lから100mmol/Lの範囲とする例があげられる。   In the purification method of the present invention, a solution containing an Fc-binding protein (applying solution) is added to a carrier for cation exchange chromatography preliminarily equilibrated with the above-mentioned buffer to adsorb the Fc-binding protein on the carrier. After that, a protein not adsorbed on the carrier is removed using a washing solution before the elution step. At that time, after removing the removal operation using a first cleaning liquid containing less than 150 mmol/L of sodium chloride, a second cleaning liquid containing 150 mmol/L or less and a concentration of sodium chloride higher than that of the first cleaning liquid. By removing with. Specifically, a buffer solution containing sodium chloride having the same ionic strength as the salt contained in the equilibrated buffer solution as the first washing solution, the second washing solution is the first washing solution or more and 150 mmol/L or less. Examples of using a buffer solution containing sodium chloride at a concentration of The concentration of sodium chloride contained in the first cleaning liquid used when performing the removal operation is less than 100 mmol/L, the concentration of sodium chloride contained in the second cleaning liquid is 100 mmol/L or less and more than that of the first cleaning liquid. A high concentration is preferable in that the recovery rate and purity of the Fc-binding protein recovered in the subsequent elution step are further improved. As an example of the preferred embodiment, the buffer solution used for equilibrating the carrier for cation exchange chromatography is a buffer solution having an ionic strength corresponding to sodium chloride in the range of 40 mmol/L to 60 mmol/L, and the first washing solution The concentration of sodium chloride contained in is in the range of 40 mmol/L to 60 mmol/L, and the concentration of sodium chloride contained in the second cleaning liquid is in the range of 80 mmol/L to 100 mmol/L.

一方、前記担体に吸着したFc結合性タンパク質を溶出させるための溶出液は、250mmol/L以上の塩化ナトリウムを含む緩衝液を用いればよい。なお、溶出液に含まれる塩化ナトリウムの濃度を300mmol/Lから400mmol/Lの範囲とするとより好ましい。   On the other hand, as an eluent for eluting the Fc-binding protein adsorbed on the carrier, a buffer solution containing 250 mmol/L or more of sodium chloride may be used. The concentration of sodium chloride contained in the eluate is more preferably in the range of 300 mmol/L to 400 mmol/L.

本発明においてFc結合性タンパク質とは、ヒトFcγRIの細胞外領域(具体的には天然型ヒトFcγRIの場合、配列番号5に記載のアミノ酸配列のうち16番目のグルタミンから292番目のヒスチジンまでの領域)を構成するタンパク質、またはヒトFcγRIIIaの細胞外領域(具体的には天然型ヒトFcγRIIIaの場合、配列番号1に記載のアミノ酸配列のうち17番目のグリシンから208番目のグルタミンまでの領域)(図1)を構成するタンパク質があげられる。なお必ずしもヒトFcγRI細胞外領域またはヒトFcγRIIIa細胞外領域の全領域でなくてもよく、ヒトFcγRI細胞外領域またはヒトFcγRIIIa細胞外領域を構成するタンパク質(ポリペプチド)のうち、少なくとも抗体(免疫グロブリン)のFc領域に結合する本来の機能を発現し得る領域のポリペプチドを含んでいればよい。本明細書におけるヒトFc結合性タンパク質の一例として、
(i)配列番号5に記載のアミノ酸配列のうち少なくとも16番目のグルタミンから289番目のバリンまでのアミノ酸残基を含むタンパク質や、
(ii)配列番号5に記載のアミノ酸配列のうち少なくとも16番目のグルタミンから289番目のバリンまでのアミノ酸残基を含み、かつ前記アミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質や、
(iii)配列番号1に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含むタンパク質や、
(iv)配列番号1に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含み、かつ前記アミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質、
があげられる。中でも前記(iii)および(iv)、すなわちヒトFcγRIIIa細胞外領域を構成するタンパク質のうち、少なくとも抗体のFc領域に結合する本来の機能を発現し得る領域のポリペプチドを含んだタンパク質、または当該タンパク質を構成するアミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質に対して、本発明を適用させると好ましい。
In the present invention, the Fc-binding protein means an extracellular region of human FcγRI (specifically, in the case of natural human FcγRI, a region from the 16th glutamine to the 292nd histidine in the amino acid sequence of SEQ ID NO: 5). ), or the extracellular region of human FcγRIIIa (specifically, in the case of natural human FcγRIIIa, the region from the 17th glycine to the 208th glutamine in the amino acid sequence of SEQ ID NO: 1) (Fig. The protein that constitutes 1) may be mentioned. It is not always necessary to use the entire human FcγRI extracellular region or human FcγRIIIa extracellular region, and at least an antibody (immunoglobulin) among proteins (polypeptides) constituting the human FcγRI extracellular region or human FcγRIIIa extracellular region It suffices to include the polypeptide of the region capable of expressing the original function of binding to the Fc region of the. As an example of the human Fc binding protein in the present specification,
(I) a protein containing at least the 16th glutamine to the 289th valine in the amino acid sequence of SEQ ID NO: 5, or
(Ii) Containing at least the 16th amino acid residue from glutamine to the 289th valine in the amino acid sequence of SEQ ID NO: 5, and replacing one or more of the amino acid residues with another amino acid residue , Inserted or deleted proteins,
(Iii) a protein containing an amino acid residue from at least the 17th glycine to the 192nd glutamine in the amino acid sequence of SEQ ID NO: 1,
(Iv) Containing at least the 17th amino acid residue from glycine to the 192nd glutamine in the amino acid sequence of SEQ ID NO: 1, and replacing one or more of the amino acid residues with another amino acid residue , Inserted or deleted proteins,
Can be given. Among them, (iii) and (iv), that is, among the proteins constituting the human FcγRIIIa extracellular region, a protein containing at least a polypeptide capable of expressing the original function of binding to the Fc region of an antibody, or the protein It is preferable to apply the present invention to a protein in which one or more of the amino acid residues constituting the are substituted, inserted or deleted with other amino acid residues.

前記(ii)の具体例としては、特開2011−206046号公報や特開2014−027916号公報に開示のFc結合性タンパク質があげられる。   Specific examples of (ii) include Fc-binding proteins disclosed in JP2011-206046A and JP2014-027916A.

また前記(iv)の具体例としては、配列番号1に記載のアミノ酸配列のうち17番目から192番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において以下の(1)から(40)のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質(特願2014−166883号)があげられる。
(1)配列番号1の18番目のメチオニンがアルギニンに置換
(2)配列番号1の27番目のバリンがグルタミン酸に置換
(3)配列番号1の29番目のフェニルアラニンがロイシンまたはセリンに置換
(4)配列番号1の30番目のロイシンがグルタミンに置換
(5)配列番号1の35番目のチロシンがアスパラギン酸、グリシン、リジン、ロイシン、アスパラギン、プロリン、セリン、スレオニン、ヒスチジンのいずれかに置換
(6)配列番号1の46番目のリジンがイソロイシンまたはスレオニンに置換
(7)配列番号1の48番目のグルタミンがヒスチジンまたはロイシンに置換
(8)配列番号1の50番目のアラニンがヒスチジンに置換
(9)配列番号1の51番目のチロシンがアスパラギン酸またはヒスチジンに置換
(10)配列番号1の54番目のグルタミン酸がアスパラギン酸またはグリシンに置換
(11)配列番号1の56番目のアスパラギンがスレオニンに置換
(12)配列番号1の59番目のグルタミンがアルギニンに置換
(13)配列番号1の61番目のフェニルアラニンがチロシンに置換
(14)配列番号1の64番目のグルタミン酸がアスパラギン酸に置換
(15)配列番号1の65番目のセリンがアルギニンに置換
(16)配列番号1の71番目のアラニンがアスパラギン酸に置換
(17)配列番号1の75番目のフェニルアラニンがロイシン、セリン、チロシンのいずれかに置換
(18)配列番号1の77番目のアスパラギン酸がアスパラギンに置換
(19)配列番号1の78番目のアラニンがセリンに置換
(20)配列番号1の82番目のアスパラギン酸がグルタミン酸またはバリンに置換
(21)配列番号1の90番目のグルタミンがアルギニンに置換
(22)配列番号1の92番目のアスパラギンがセリンに置換
(23)配列番号1の93番目のロイシンがアルギニンまたはメチオニンに置換
(24)配列番号1の95番目のスレオニンがアラニンまたはセリンに置換
(25)配列番号1の110番目のロイシンがグルタミンに置換
(26)配列番号1の115番目のアルギニンがグルタミンに置換
(27)配列番号1の116番目のトリプトファンがロイシンに置換
(28)配列番号1の118番目のフェニルアラニンがチロシンに置換
(29)配列番号1の119番目のリジンがグルタミン酸に置換
(30)配列番号1の120番目のグルタミン酸がバリンに置換
(31)配列番号1の121番目のグルタミン酸がアスパラギン酸またはグリシンに置換
(32)配列番号1の151番目のフェニルアラニンがセリンまたはチロシンに置換
(33)配列番号1の155番目のセリンがスレオニンに置換
(34)配列番号1の163番目のスレオニンがセリンに置換
(35)配列番号1の167番目のセリンがグリシンに置換
(36)配列番号1の169番目のセリンがグリシンに置換
(37)配列番号1の171番目のフェニルアラニンがチロシンに置換
(38)配列番号1の180番目のアスパラギンがリジン、セリン、イソロイシンのいずれかに置換
(39)配列番号1の185番目のスレオニンがセリンに置換
(40)配列番号1の192番目のグルタミンがリジンに置換
また前記(iv)の別の具体例としては、配列番号2に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において以下の(41)から(111)のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質があげられ、さらに具体的な例として配列番号3に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含むFc結合性タンパク質があげられる(特願2015−047462号)。
(41)配列番号2の45番目のフェニルアラニンがイソロイシンまたはロイシンに置換
(42)配列番号2の55番目のグルタミン酸がグリシンに置換
(43)配列番号2の64番目のグルタミンがアルギニンに置換
(44)配列番号2の67番目のチロシンがセリンに置換
(45)配列番号2の77番目のフェニルアラニンがチロシンに置換
(46)配列番号2の93番目のアスパラギン酸がグリシンに置換
(47)配列番号2の98番目のアスパラギン酸がグルタミン酸に置換
(48)配列番号2の106番目のグルタミンがアルギニンに置換
(49)配列番号2の128番目のグルタミンがロイシンに置換
(50)配列番号2の133番目のバリンがグルタミン酸に置換
(51)配列番号2の135番目のリジンがアスパラギンまたはグルタミン酸に置換
(52)配列番号2の156番目のスレオニンがイソロイシンに置換
(53)配列番号2の158番目のロイシンがグルタミンに置換
(54)配列番号2の187番目のフェニルアラニンがセリンに置換
(55)配列番号2の191番目のロイシンがアルギニンに置換
(56)配列番号2の196番目のアスパラギンがセリンに置換
(57)配列番号2の204番目のイソロイシンがバリンに置換
(58)配列番号2の34番目のメチオニンがイソロイシン、リジン、スレオニンのいずれかに置換
(59)配列番号2の37番目のグルタミン酸がグリシンまたはリジンに置換
(60)配列番号2の39番目のロイシンがメチオニンまたはアルギニンに置換
(61)配列番号2の49番目のグルタミンがプロリンに置換
(62)配列番号2の62番目のリジンがイソロイシンまたはグルタミン酸に置換
(63)配列番号2の64番目のグルタミンがトリプトファンに置換
(64)配列番号2の67番目のチロシンがヒスチジンまたはアスパラギンに置換
(65)配列番号2の70番目のグルタミン酸がグリシンまたはアスパラギン酸に置換
(66)配列番号2の72番目のアスパラギンがセリンまたはイソロイシンに置換
(67)配列番号2の77番目のフェニルアラニンがロイシンに置換
(68)配列番号2の80番目のグルタミン酸がグリシンに置換
(69)配列番号2の81番目のセリンがアルギニンに置換
(70)配列番号2の83番目のイソロイシンがロイシンに置換
(71)配列番号2の84番目のセリンがプロリンに置換
(72)配列番号2の85番目のセリンがアスパラギンに置換
(73)配列番号2の87番目のアラニンがスレオニンに置換
(74)配列番号2の90番目のチロシンがフェニルアラニンに置換
(75)配列番号2の91番目のフェニルアラニンがアルギニンに置換
(76)配列番号2の93番目のアスパラギン酸がバリンまたはグルタミン酸に置換
(77)配列番号2の94番目のアラニンがグルタミン酸に置換
(78)配列番号2の97番目のバリンがメチオニンとグルタミン酸に置換
(79)配列番号2の98番目のアスパラギン酸がアラニンに置換
(80)配列番号2の102番目のグルタミン酸がアスパラギン酸に置換
(81)配列番号2の106番目のグルタミンがロイシンに置換
(82)配列番号2の109番目のロイシンがグルタミンに置換
(83)配列番号2の117番目のグルタミンがロイシンに置換
(84)配列番号2の119番目のグルタミン酸がバリンに置換
(85)配列番号2の121番目のヒスチジンがアルギニンに置換
(86)配列番号2の130番目のプロリンがロイシンに置換
(87)配列番号2の135番目のリジンがチロシンに置換
(88)配列番号2の136番目のグルタミン酸がバリンに置換
(89)配列番号2の141番目のヒスチジンがグルタミンに置換
(90)配列番号2の146番目のセリンがスレオニンに置換
(91)配列番号2の154番目のリジンがアルギニンに置換
(92)配列番号2の159番目のグルタミンがヒスチジンに置換
(93)配列番号2の163番目のグリシンがバリンに置換
(94)配列番号2の165番目のリジンがメチオニンに置換
(95)配列番号2の167番目のフェニルアラニンがチロシンに置換
(96)配列番号2の169番目のヒスチジンがチロシンに置換
(97)配列番号2の174番目のチロシンがフェニルアラニンに置換
(98)配列番号2の177番目のリジンがアルギニンに置換
(99)配列番号2の185番目のセリンがグリシンに置換
(100)配列番号2の194番目のセリンがアルギニンに置換
(101)配列番号2の196番目のアスパラギンがリジンに置換
(102)配列番号2の201番目のスレオニンがアラニンに置換
(103)配列番号2の203番目のアスパラギンがイソロイシンまたはリジンに置換
(104)配列番号2の207番目のスレオニンがアラニンに置換
(105)配列番号2の94番目のアラニンがセリンに置換
(106)配列番号2の98番目のアスパラギン酸がグルタミン酸に置換
(107)配列番号2の117番目のグルタミンがアルギニンに置換
(108)配列番号2の156番目のスレオニンがイソロイシンに置換
(109)配列番号2の174番目のチロシンがヒスチジンに置換
(110)配列番号2の181番目のリジンがグルタミン酸に置換
(111)配列番号2の203番目のアスパラギンがアスパラギン酸またはチロシンに置換
また前記(iv)のさらに別の具体例としては、配列番号1に記載のアミノ酸配列のうち17番目から192番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において以下の(112)から(115)に示す天然に生じるアミノ酸置換のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質があげられる。
(112)配列番号1の66番目のロイシンがヒスチジンまたはアルギニンに置換
(113)配列番号1の147番目のグリシンがアスパラギン酸に置換
(114)配列番号1の158番目のチロシンがヒスチジンに置換
(115)配列番号1の176番目のバリンがフェニルアラニンに置換
本発明の精製方法において、カラムから溶出した画分に含まれるFc結合性タンパク質を定量するには、従来から知られている安定かつ効率的に定量できる方法の中から適宜選択すればよいが、ELISA法(酵素結合免疫吸着法)による分析方法が好ましい。
Further, as a specific example of the above (iv), in the amino acid sequence set forth in SEQ ID NO: 1, the 17th to 192nd amino acid residues are included, and in the 17th to 192nd amino acid residues, the following ( An Fc-binding protein (Japanese Patent Application No. 2014-166883) in which at least any one amino acid substitution among 1) to (40) has occurred.
(1) Substitution of methionine at position 18 of SEQ ID NO: 1 with arginine (2) Substitution of valine at position 27 of SEQ ID NO: 1 with glutamic acid (3) Substitution of phenylalanine at position 29 of SEQ ID NO: 1 with leucine or serine (4) Substitution of leucine at position 30 of SEQ ID NO: 1 with glutamine (5) Substitution of tyrosine at position 35 of SEQ ID NO: 1 with any of aspartic acid, glycine, lysine, leucine, asparagine, proline, serine, threonine, and histidine (6) Lysine at position 46 of SEQ ID NO: 1 is replaced with isoleucine or threonine (7) Glutamine at position 48 of SEQ ID NO: 1 is replaced with histidine or leucine (8) Alanine at position 50 of SEQ ID NO: 1 is replaced with histidine (9) Sequence Substitution of 51st tyrosine of No. 1 with aspartic acid or histidine (10) Substitution of 54th glutamic acid of SEQ ID NO: 1 with aspartic acid or glycine (11) Substitution of 56th asparagine of SEQ ID NO: 1 with threonine (12) Substitution of glutamine at position 59 of SEQ ID NO: 1 with arginine (13) Substitution of phenylalanine at position 61 of SEQ ID NO: 1 with tyrosine (14) Substitution of glutamic acid at position 64 of SEQ ID NO: 1 with aspartic acid (15) Substitution of serine at position 65 with arginine (16) Substitution of alanine at position 71 of SEQ ID NO: 1 with aspartic acid (17) Substitution of phenylalanine at position 75 of SEQ ID NO: 1 with leucine, serine or tyrosine (18) Sequence Substitution of 77th aspartic acid of No. 1 with asparagine (19) Substitution of 78th alanine of SEQ ID NO: 1 with serine (20) Substitution of 82nd aspartic acid of SEQ ID NO: 1 with glutamic acid or valine (21) SEQ ID NO: Glutamine at position 90 of 1 was replaced with arginine (22) Asparagine at position 92 of SEQ ID NO: 1 was replaced with serine (23) Leucine at position 93 of SEQ ID NO: 1 was replaced with arginine or methionine (24) 95 of SEQ ID NO: 1 Threonine was replaced with alanine or serine (25) Leucine at position 110 of SEQ ID NO: 1 was replaced with glutamine (26) Arginine at position 115 of SEQ ID NO: 1 was replaced with glutamine (27) Tryptophan at position 116 of SEQ ID NO: 1 Is replaced with leucine (28) Phenylalanine at position 118 of SEQ ID NO: 1 is replaced with tyrosine (29) Lysine at position 119 of SEQ ID NO: 1 is replaced with glutamic acid (30) Glutamic acid at position 120 of SEQ ID NO: 1 is replaced with valine ( 31) Array Substitution of glutamic acid at position 121 of number 1 with aspartic acid or glycine (32) Substitution of phenylalanine at position 151 of sequence number 1 with serine or tyrosine (33) Substitution of serine at position 155 of sequence number 1 (34) The 163rd threonine of No. 1 is replaced with serine (35) The 167th serine of SEQ ID NO: 1 is replaced with glycine (36) The 169th serine of SEQ ID NO: 1 is replaced with glycine (37) The 171st position of SEQ ID NO: 1 Of phenylalanine of (38) asparagine at position 180 in SEQ ID NO: 1 is replaced with any of lysine, serine, and isoleucine (39) Threonine at position 185 of SEQ ID NO: 1 is replaced with serine (40) of SEQ ID NO: 1 Substitution of 192nd glutamine with lysine As another specific example of the above (iv), the amino acid sequence shown in SEQ ID NO: 2 contains the 33rd to 208th amino acid residues, and the 17th to 192nd amino acids. An Fc-binding protein in which at least any one of the following (41) to (111) is substituted in the amino acid residues up to the th position is mentioned, and a more specific example thereof is shown in SEQ ID NO: 3. An Fc-binding protein containing amino acid residues 33 to 208 of the amino acid sequence can be mentioned (Japanese Patent Application No. 2015-047462).
(41) The 45th phenylalanine of SEQ ID NO:2 is replaced with isoleucine or leucine (42) The 55th glutamic acid of SEQ ID NO:2 is replaced with glycine (43) The 64th glutamine of SEQ ID NO:2 is replaced with arginine (44) Substitution of 67th tyrosine of SEQ ID NO: 2 with serine (45) Substitution of 77th phenylalanine of SEQ ID NO: 2 with tyrosine (46) Substitution of 93rd aspartic acid of SEQ ID NO: 2 with glycine (47) of SEQ ID NO: 2 98th aspartic acid is replaced with glutamic acid (48) 106th glutamine of SEQ ID NO: 2 is replaced with arginine (49) 128th glutamine of SEQ ID NO: 2 is replaced with leucine (50) 133rd valine of SEQ ID NO: 2 Is replaced with glutamic acid (51) The lysine at position 135 in SEQ ID NO: 2 is replaced with asparagine or glutamic acid (52) The threonine at position 156 in SEQ ID NO: 2 is replaced with isoleucine (53) The leucine at position 158 in SEQ ID NO: 2 is replaced with glutamine Substitution (54) Substitution of phenylalanine at position 187 of SEQ ID NO: 2 with serine (55) Substitution of leucine at position 191 of SEQ ID NO: 2 with arginine (56) Substitution of serine at position 196 of SEQ ID NO: 2 (57) The 204th isoleucine of No. 2 is replaced by valine (58) The 34th methionine of SEQ ID NO: 2 is replaced by isoleucine, lysine, or threonine (59) The 37th glutamic acid of SEQ ID NO: 2 is replaced by glycine or lysine (60) The 39th leucine of SEQ ID NO:2 is replaced with methionine or arginine (61) The 49th glutamine of SEQ ID NO:2 is replaced with proline (62) The 62nd lysine of SEQ ID NO:2 is replaced with isoleucine or glutamic acid ( 63) Glutamine at the 64th position in SEQ ID NO: 2 was replaced by tryptophan (64) Tyrosine at 67th position in SEQ ID NO: 2 was replaced by histidine or asparagine (65) Glutamic acid at 70th position in SEQ ID NO: 2 was replaced by glycine or aspartic acid ( 66) The 72nd asparagine of SEQ ID NO: 2 is substituted with serine or isoleucine (67) The 77th phenylalanine of SEQ ID NO: 2 is substituted with leucine (68) The 80th glutamic acid of SEQ ID NO: 2 is substituted with glycine (69) sequence The 81st serine of No. 2 was replaced with arginine (70) The 83rd isoleucine of SEQ ID NO: 2 was replaced with leucine (71) The 84th serine of SEQ ID NO: 2 was replaced with proline (72) 85 of SEQ ID NO: 2 Substituting serine with asparagine (73) Substituting alanine at position 87 in SEQ ID NO: 2 with threonine (74) Substituting tyrosine at position 90 in SEQ ID NO: 2 with phenylalanine (75) Arginine with position 91 phenylalanine in SEQ ID NO: 2 Substitution (76) The 93rd aspartic acid of SEQ ID NO:2 is substituted with valine or glutamic acid (77) The 94th alanine of SEQ ID NO:2 is substituted with glutamic acid (78) The 97th valine of SEQ ID NO:2 is methionine and glutamic acid (79) The 98th aspartic acid of SEQ ID NO: 2 is replaced with alanine (80) The 102nd glutamic acid of SEQ ID NO: 2 is replaced with aspartic acid (81) The 106th glutamine of SEQ ID NO: 2 is replaced with leucine ( 82) The 109th leucine of SEQ ID NO:2 was replaced with glutamine (83) The 117th glutamine of SEQ ID NO:2 was replaced with leucine (84) The 119th glutamic acid of SEQ ID NO:2 was replaced with valine (85) SEQ ID NO:2 At position 121 in arginine is substituted (86) Proline at position 130 in SEQ ID NO: 2 is replaced by leucine (87) Lysine at position 135 in SEQ ID NO: 2 is replaced by tyrosine (88) Glutamic acid at position 136 in SEQ ID NO: 2 Is substituted with valine (89) Histidine at position 141 of SEQ ID NO: 2 is replaced with glutamine (90) Serine at position 146 of SEQ ID NO: 2 is replaced with threonine (91) Lysine at position 154 of SEQ ID NO: 2 is replaced with arginine ( 92) Glutamine at position 159 in SEQ ID NO: 2 was replaced with histidine (93) Glycine at position 163 in SEQ ID NO: 2 was replaced with valine (94) Lysine at position 165 in SEQ ID NO: 2 was replaced with methionine (95) SEQ ID NO: 2 Phenylalanine at position 167 is replaced with tyrosine (96) Histidine at position 169 of SEQ ID NO: 2 is replaced with tyrosine (97) Tyrosine at position 174 of SEQ ID NO: 2 is replaced with phenylalanine (98) Lysine at position 177 of SEQ ID NO: 2 Is replaced with arginine (99) The 185th serine of SEQ ID NO:2 is replaced with glycine (100) The 194th serine of SEQ ID NO:2 is replaced with arginine (101) The 196th asparagine of SEQ ID NO:2 is replaced with lysine ( 102) Substitution of 201st threonine of SEQ ID NO: 2 with alanine (103) Substitution of 203th asparagine of SEQ ID NO: 2 with isoleucine or lysine (104) Substitution of 207th threonine of SEQ ID NO: 2 with alanine (105) sequence The 94th alanine of number 2 is Substitution with phosphorus (106) Substitution of 98th aspartic acid of SEQ ID NO: 2 with glutamic acid (107) Substitution of 117th glutamine of SEQ ID NO: 2 with arginine (108) Substitution of 156th threonine of SEQ ID NO: 2 with isoleucine ( 109) The 174th tyrosine of SEQ ID NO:2 is replaced with histidine (110) The 181st lysine of SEQ ID NO:2 is replaced with glutamic acid (111) The 203rd asparagine of SEQ ID NO:2 is replaced with aspartic acid or tyrosine. Another specific example of iv) includes the 17th to 192nd amino acid residues in the amino acid sequence set forth in SEQ ID NO: 1, and the 17th to 192nd amino acid residues have the following ( An Fc-binding protein in which at least one amino acid substitution among the naturally occurring amino acid substitutions from (112) to (115) has occurred.
(112) Substitution of leucine at position 66 of SEQ ID NO: 1 with histidine or arginine (113) Substitution of glycine at position 147 of SEQ ID NO: 1 with aspartic acid (114) Substitution of tyrosine at position 158 of SEQ ID NO: 1 with histidine (115) ) Phenylalanine is substituted for the 176th valine of SEQ ID NO: 1 In the purification method of the present invention, in order to quantify the Fc-binding protein contained in the fraction eluted from the column, it is possible to stably and efficiently use a conventionally known method. The method may be appropriately selected from among quantifiable methods, but an analysis method by an ELISA method (enzyme-linked immunosorbent method) is preferable.

本発明の精製方法により得られたFc結合性タンパク質は、医薬品、臨床検査薬、バイオセンサー、またはアフィニティーリガンド(分離剤)など様々な用途に用いることができる。使用の際の形態や純度はその用途により異なり、本発明の精製方法により得られたFc結合性タンパク質をそのまま用いてもよいし、さらに高度に精製したものを用いてもよいし、またその中間の純度の精製度合いのものを用いてもよい。   The Fc-binding protein obtained by the purification method of the present invention can be used for various applications such as pharmaceuticals, clinical test agents, biosensors, and affinity ligands (separating agents). The form and purity at the time of use differ depending on the intended use, and the Fc-binding protein obtained by the purification method of the present invention may be used as it is, or may be a highly purified product, or an intermediate thereof. You may use the thing of the purification degree of.

本発明は、(1)陽イオン交換クロマトグラフィー用担体に、Fc結合性タンパク質を含む溶液を添加することで、前記担体にFc結合性タンパク質を吸着させる工程と、(2)洗浄液を用いて、Fc結合性タンパク質を吸着した前記担体を洗浄する工程と、(3)溶出液を用いて、前記担体に吸着したFc結合性タンパク質を溶出させる工程と、を含むFc結合性タンパク質の精製方法において、前記(2)の工程を、150mmol/L未満の塩化ナトリウムを含む第一の洗浄液を用いて洗浄した後、150mmol/L以下かつ前記第一の洗浄液よりも高濃度の塩化ナトリウムを含む第二の洗浄液を用いて洗浄する工程とし、前記(3)の工程を、250mmol/L以上の塩化ナトリウムを含む溶出液を用いてFc結合性タンパク質を溶出させる工程とすることを特徴としている。本発明により、一段階のカラムクロマトグラフィー操作によって、Fc結合性タンパク質(特にヒトFcγRIIIa由来のFc結合性タンパク質)を高回収率かつ高純度に精製することができる。   The present invention uses (1) a step of adsorbing a solution containing an Fc-binding protein to a carrier for cation exchange chromatography to adsorb the Fc-binding protein on the carrier, and (2) a washing solution, A method for purifying an Fc-binding protein, comprising the steps of washing the carrier having adsorbed the Fc-binding protein, and (3) eluting the Fc-binding protein adsorbed to the carrier using an eluent. After the step (2) is washed with a first washing liquid containing less than 150 mmol/L sodium chloride, a second washing liquid containing 150 mmol/L or less and a higher concentration of sodium chloride than the first washing liquid is used. The step (3) is characterized in that the Fc-binding protein is eluted with an eluent containing 250 mmol/L or more of sodium chloride. According to the present invention, Fc-binding protein (particularly Fc-binding protein derived from human FcγRIIIa) can be purified with high recovery and high purity by one-step column chromatography operation.

また、本発明の精製方法は前記担体に導入するFc結合性タンパク質を含む溶液の量(アプライ量)に係わらず適用可能な方法であるため、Fc結合性タンパク質の分析目的に適用できることはもちろん、工業的なFc結合性タンパク質生産の一工程にも適用することができる。   In addition, since the purification method of the present invention is a method that can be applied regardless of the amount of the solution containing the Fc-binding protein to be introduced into the carrier (applying amount), it is of course applicable to the purpose of analyzing Fc-binding protein, It can also be applied to one step of industrial Fc binding protein production.

本発明の精製方法で得られたFc結合性タンパク質は、そのまま、またはさらなる精製により、医薬品、臨床検査薬、バイオセンサー、またはアフィニティーリガンド(分離剤)など様々な用途に用いることができる。   The Fc-binding protein obtained by the purification method of the present invention can be used as it is or after further purification for various applications such as pharmaceuticals, clinical test agents, biosensors, or affinity ligands (separating agents).

ヒトFcγRIIIaの構造を示す図。The figure which shows the structure of human FcγRIIIa. 実施例2において、溶出工程で得られる画分の純度を確認した結果(サイズ排除クロマトグラフィーのクロマトグラム)。The result of confirming the purity of the fraction obtained in the elution step in Example 2 (chromatogram of size exclusion chromatography). 比較例1において、溶出工程で得られる画分の純度を確認した結果(サイズ排除クロマトグラフィーのクロマトグラム)。The result of confirming the purity of the fraction obtained in the elution step in Comparative Example 1 (chromatogram of size exclusion chromatography).

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は前記例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.

実施例1 Fc結合性タンパク質の調製
以降の実施例で用いるFc結合性タンパク質を含む溶液を、以下の方法で調製した。
(1)配列番号3に記載の配列からなるFc結合性タンパク質をコードするポリヌクレオチド(配列番号4)を含む発現ベクターpTrcFcR9T8−R1を、特開2014−223064号公報で開示の方法にて作成し、当該発現ベクターを用いて大腸菌を形質転換した。なお配列番号3に記載の配列からなるFc結合性タンパク質は、配列番号2に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において以下の(I)から(IV)のアミノ酸置換が生じたFc結合性タンパク質である(特願2015−047462号)。
(I)配列番号2の45番目のフェニルアラニンがイソロイシンに置換
(II)配列番号2の64番目のグルタミンがアルギニンに置換
(III)配列番号2の133番目のバリンがグルタミン酸に置換
(IV)配列番号2の187番目のフェニルアラニンがセリンに置換
(2)得られた組換え大腸菌を、特開2012−034591号公報および特開2013−085531号公報で開示の方法に基づき、培養することで、Fc結合性タンパク質を発現させた。
(3)組換え大腸菌の培養液より菌体を回収後、抽出液(1mmol/LのEDTA、40mmol/Lの塩化ナトリウム、2mmol/Lの硫酸マグネシウム、250Unit/LのBenzonase(メルク社製)、0.0005(w/v)%のリゾチーム、0.5(w/v)%のTriton X−100(商品名)、および0.001(w/v)%のデオキシコール酸ナトリウムを含む20mmol/Lのリン酸緩衝液(pH6.0))を用いて、菌体内に発現した前記タンパク質を抽出した。
(4)(3)で得られた菌体抽出液から遠心分離により上清を回収し、Fc結合性タンパク質抽出液を得た。
(5)(4)で得られた抽出液を陽イオン交換クロマトグラフィー用担体に添加するため、イオン強度(電気伝導度)が50mmol/Lの塩化ナトリウム濃度に相当するイオン強度となるよう調整した。
Example 1 Preparation of Fc-binding protein A solution containing Fc-binding protein used in the following examples was prepared by the following method.
(1) An expression vector pTrcFcR9T8-R1 containing a polynucleotide (SEQ ID NO: 4) encoding an Fc-binding protein consisting of the sequence shown in SEQ ID NO: 3 was prepared by the method disclosed in JP-A-2014-223064. Escherichia coli was transformed with the expression vector. The Fc-binding protein consisting of the sequence set forth in SEQ ID NO: 3 contains the amino acid residues 33 to 208 of the amino acid sequence set forth in SEQ ID NO: 2, and the amino acid residues 33 to 208 are the same. It is an Fc-binding protein having the following amino acid substitutions (I) to (IV) in the group (Japanese Patent Application No. 2015-047462).
(I) 45th phenylalanine of SEQ ID NO: 2 is replaced with isoleucine (II) 64th glutamine of SEQ ID NO: 2 is replaced with arginine (III) 133rd valine of SEQ ID NO: 2 is replaced with glutamic acid (IV) SEQ ID NO: The recombinant Escherichia coli obtained by substituting the 187th phenylalanine of 2 with serine (2) was cultured according to the method disclosed in JP2012-034591A and JP2013-085531A, thereby binding Fc. Sex protein was expressed.
(3) After recovering the bacterial cells from the culture solution of recombinant Escherichia coli, the extract (1 mmol/L EDTA, 40 mmol/L sodium chloride, 2 mmol/L magnesium sulfate, 250 Unit/L Benzonase (manufactured by Merck), 20 mmol/mol containing 0.0005 (w/v)% lysozyme, 0.5 (w/v)% Triton X-100 (trade name), and 0.001 (w/v)% sodium deoxycholate. The protein expressed in the cells was extracted with L phosphate buffer (pH 6.0).
(4) The supernatant was recovered from the bacterial cell extract obtained in (3) by centrifugation to obtain an Fc-binding protein extract.
(5) Since the extract obtained in (4) was added to the carrier for cation exchange chromatography, the ionic strength (electrical conductivity) was adjusted to an ionic strength corresponding to a sodium chloride concentration of 50 mmol/L. .

実施例2 Fc結合性タンパク質の精製
(1)実施例1の(5)で得られたFc結合性タンパク質抽出液を、50mmol/Lの塩化ナトリウムを添加した20mmol/Lのリン酸緩衝液(pH6.0)であらかじめ平衡化させた陽イオン交換クロマトグラフィー用担体TOYOPEARL CM−650M(東ソー社製)にアプライすることで、Fc結合性タンパク質を前記担体に吸着させた。
(2)Fc結合性タンパク質を吸着した前記担体を、50mmol/Lの塩化ナトリウムを添加した20mmol/Lのリン酸緩衝液(pH6.0)で洗浄することで、夾雑不純物を除去した(第一の洗浄工程)。
(3)さらに100mmol/Lの塩化ナトリウムを添加した20mmol/Lのリン酸緩衝液(pH6.0)で洗浄することで、夾雑不純物を除去した(第二の洗浄工程)。
(4)350mmol/Lの塩化ナトリウムを添加した20mmol/Lのリン酸緩衝液(pH6.0)をFc結合性タンパク質を吸着した前記担体にアプライすることで、前記Fc結合性タンパク質を溶出させた(溶出工程)。
(5)第二の洗浄工程で得られた画分、および溶出工程で得られた画分に含まれるFc結合性タンパク質の量を特開2014−223064号公報で開示のELISA法を用いて得た後、各画分に含まれるFc結合性タンパク質の量を添加したFc結合性タンパク質の量で除することで、Fc結合性タンパク質の回収率を算出した。またFc結合性タンパク質の純度はサイズ排除クロマトグラフィー(TSKGel G3000SWXL、東ソー社製)分析により算出した。
Example 2 Purification of Fc-binding protein (1) The Fc-binding protein extract obtained in (5) of Example 1 was treated with 20 mmol/L phosphate buffer (pH 6) containing 50 mmol/L sodium chloride. .0) was applied in advance to a cation exchange chromatography carrier TOYOPEARL CM-650M (manufactured by Tosoh Corporation) to adsorb the Fc-binding protein to the carrier.
(2) Contaminant impurities were removed by washing the carrier having adsorbed the Fc-binding protein with 20 mmol/L phosphate buffer (pH 6.0) containing 50 mmol/L sodium chloride. Cleaning step).
(3) Contaminant impurities were removed by further washing with 20 mmol/L phosphate buffer (pH 6.0) containing 100 mmol/L sodium chloride added (second washing step).
(4) The Fc-binding protein was eluted by applying 20 mmol/L phosphate buffer (pH 6.0) containing 350 mmol/L sodium chloride to the carrier having the Fc-binding protein adsorbed thereon. (Elution step).
(5) The amount of Fc-binding protein contained in the fraction obtained in the second washing step and the fraction obtained in the elution step was obtained using the ELISA method disclosed in JP-A-2014-223064. Then, the recovery rate of Fc-binding protein was calculated by dividing the amount of Fc-binding protein contained in each fraction by the amount of added Fc-binding protein. The purity of the Fc-binding protein was calculated by size exclusion chromatography (TSKGel G3000SWXL, manufactured by Tosoh Corporation).

実施例3から5ならびに比較例1から4
実施例2(2)に記載の第一の洗浄工程、実施例2(3)に記載の第二の洗浄工程、および実施例2(4)に記載の溶出工程、で用いた20mmol/Lのリン酸緩衝液(pH6.0)中に含まれる塩化ナトリウムの濃度をそれぞれ表1に示す濃度とした他は、実施例2と同様な方法でFc結合性タンパク質の精製を行なった。なお比較例1および2は、第二の洗浄工程をスキップしている。
Examples 3 to 5 and Comparative Examples 1 to 4
20 mmol/L used in the first washing step described in Example 2(2), the second washing step described in Example 2(3), and the elution step described in Example 2(4). The Fc-binding protein was purified in the same manner as in Example 2 except that the concentrations of sodium chloride contained in the phosphate buffer (pH 6.0) were changed to those shown in Table 1. In Comparative Examples 1 and 2, the second cleaning step is skipped.

Figure 0006699085
実施例2から5ならびに比較例1から4の結果を表2にまとめて示す。第二の洗浄工程で用いる洗浄液に含まれる塩化ナトリウム濃度を150mmol/L以下かつ第一の洗浄工程で用いる洗浄液に含まれる塩化ナトリウム濃度(50mmol/L)以上とし、溶出工程で用いる洗浄液に含まれる塩化ナトリウム濃度を250mmol/L以上とすることで、溶出工程で得られる画分におけるFc結合性タンパク質の回収率が65%以上かつ純度も85%以上となり、Fc結合性タンパク質を高回収率かつ高純度に精製できることがわかる(実施例2から5)。なお実施例2において、溶出工程で得られる画分の純度を確認した結果(クロマトグラム)を図2に示す。
Figure 0006699085
The results of Examples 2 to 5 and Comparative Examples 1 to 4 are summarized in Table 2. The concentration of sodium chloride contained in the cleaning solution used in the second cleaning step is 150 mmol/L or less and the concentration of sodium chloride contained in the cleaning solution used in the first cleaning step is 50 mmol/L or more, and contained in the cleaning solution used in the elution step. By setting the sodium chloride concentration to 250 mmol/L or more, the Fc-binding protein recovery rate in the fraction obtained in the elution step is 65% or more and the purity is 85% or more, and the Fc-binding protein recovery rate is high. It can be seen that it can be purified to a high degree of purity (Examples 2 to 5). In addition, in Example 2, the result (chromatogram) of confirming the purity of the fraction obtained in the elution step is shown in FIG.

一方、第二の洗浄工程をスキップすると、溶出工程で得られる画分におけるFc結合性タンパク質の純度(比較例1)または回収率(比較例2)が低下することがわかる。また第二の洗浄工程を行なっても、第二の洗浄工程で用いる洗浄液に含まれる塩化ナトリウム濃度が200mmol/L以上とすると、第二の洗浄工程で得られる画分にFc結合性タンパク質が溶出するため、溶出工程で得られる画分におけるFc結合性タンパク質の回収率(比較例3および4)が大きく低下することがわかる。なお比較例1において、溶出工程で得られる画分の純度を確認した結果(クロマトグラム)を図3に示す。   On the other hand, when the second washing step is skipped, it can be seen that the purity (Comparative Example 1) or recovery rate (Comparative Example 2) of the Fc-binding protein in the fraction obtained in the elution step decreases. Even if the second washing step is performed, if the sodium chloride concentration in the washing solution used in the second washing step is 200 mmol/L or more, the Fc-binding protein is eluted in the fraction obtained in the second washing step. Therefore, it can be seen that the recovery rate of Fc-binding protein (Comparative Examples 3 and 4) in the fraction obtained in the elution step is significantly reduced. In Comparative Example 1, the result (chromatogram) of confirming the purity of the fraction obtained in the elution step is shown in FIG.

Figure 0006699085
Figure 0006699085

Claims (1)

(1)陽イオン交換クロマトグラフィー用担体に、Fc結合性タンパク質を含む溶液を添加することで、前記担体にFc結合性タンパク質を吸着させる工程と、
(2)洗浄液を用いて、Fc結合性タンパク質を吸着した前記担体を洗浄する工程と、
(3)溶出液を用いて、前記担体に吸着したFc結合性タンパク質を溶出させる工程と、
を含むFc結合性タンパク質の精製方法であって、
前記(2)の工程が、50mmol/Lの塩化ナトリウムを含む第一の洗浄液を用いて洗浄した後、100mmol/Lの塩化ナトリウムを含む第二の洗浄液を用いて洗浄する工程であり、
前記(3)の工程が、300mmol/L以上400mmol/L以下の塩化ナトリウムを含む溶出液を用いてFc結合性タンパク質を溶出させる工程であり、
Fc結合性タンパク質が、
(i)配列番号に記載のアミノ酸配列のうち少なくとも33番目のグリシンから208番目のグルタミンまでのアミノ酸残基を含むタンパク質、または
(ii)配列番号に記載のアミノ酸配列において以下の(a)〜(d)のいずれか1以上のアミノ酸置換が生じているアミノ酸配列のうち少なくとも33番目のグリシンから208番目のグルタミンまでのアミノ酸残基を含タンパク質である

(a)配列番号1の66番目に該当するロイシンがヒスチジンまたはアルギニンに置換
(b)配列番号1の147番目に該当するグリシンがアスパラギン酸に置換
(c)配列番号1の158番目に該当するチロシンがヒスチジンに置換
(d)配列番号1の176番目に該当するバリンがフェニルアラニンに置換。
(1) A step of adsorbing an Fc-binding protein on the carrier by adding a solution containing an Fc-binding protein to the carrier for cation exchange chromatography,
(2) washing the carrier having adsorbed Fc-binding protein with a washing solution,
(3) eluting the Fc-binding protein adsorbed on the carrier using an eluent,
A method for purifying an Fc-binding protein comprising:
Step (2) is washed with a first washing solution containing sodium chloride of 5 0 mmol / L, a step of washing with a second wash solution containing sodium chloride 100 mmol / L,
Wherein (3) the step of, Ri step der eluting the Fc binding protein with an elution solution containing the following sodium chloride 300 mmol / L or more 400 mmol / L,
Fc binding protein
(I) a protein containing an amino acid residue from at least the 33rd glycine to the 208th glutamine in the amino acid sequence of SEQ ID NO: 3 , or
(Ii) Amino acid from at least the 33rd glycine to the 208th glutamine in the amino acid sequence of SEQ ID NO: 3 in the amino acid sequence in which at least one amino acid substitution of the following (a) to (d) occurs: it is including protein residues,
METHODS;
(A) Replacing the leucine corresponding to the 66th position in SEQ ID NO: 1 with histidine or arginine
(B) Glycine corresponding to the 147th position of SEQ ID NO: 1 is replaced with aspartic acid
(C) Tyrosine corresponding to the 158th position of SEQ ID NO: 1 is replaced with histidine
(D) The valine corresponding to the 176th position of SEQ ID NO: 1 was substituted with phenylalanine.
JP2015063068A 2015-03-25 2015-03-25 Method for purifying Fc binding protein Active JP6699085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063068A JP6699085B2 (en) 2015-03-25 2015-03-25 Method for purifying Fc binding protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063068A JP6699085B2 (en) 2015-03-25 2015-03-25 Method for purifying Fc binding protein

Publications (2)

Publication Number Publication Date
JP2016183113A JP2016183113A (en) 2016-10-20
JP6699085B2 true JP6699085B2 (en) 2020-05-27

Family

ID=57242682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063068A Active JP6699085B2 (en) 2015-03-25 2015-03-25 Method for purifying Fc binding protein

Country Status (1)

Country Link
JP (1) JP6699085B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021091933A1 (en) * 2019-11-07 2021-05-14 Amgen Inc. High salt washes during cation exchange chromatography to remove product-realated impurities
AU2020380256A1 (en) * 2019-11-07 2022-06-09 Amgen Inc. High salt load conditioning during cation exchange chromatography to remove product-realated impurities

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031806A2 (en) * 1997-01-21 1998-07-23 Human Genome Sciences, Inc. Fc RECEPTORS AND POLYPEPTIDES
US7741285B2 (en) * 2001-11-13 2010-06-22 Genentech, Inc. APO-2 ligand/trail formulations
HUE033623T2 (en) * 2002-09-11 2017-12-28 Genentech Inc Protein purification
NZ571479A (en) * 2006-04-05 2012-10-26 Abbott Biotech Ltd Antibody purification
JP5830945B2 (en) * 2011-06-06 2015-12-09 東ソー株式会社 Purification method of Fc receptor
JP2015035958A (en) * 2013-08-12 2015-02-23 東ソー株式会社 POLYNUCLEOTIDE ENCODING HUMAN Fc RECEPTOR AND METHOD FOR PRODUCING HUMAN Fc RECEPTOR UTILIZING POLYNUCLEOTIDE CONCERNED

Also Published As

Publication number Publication date
JP2016183113A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
US20200277330A1 (en) Methods for purifying antibodies
DK2513134T3 (en) Washing solution and process for affinity chromatography
RU2609633C2 (en) Method of affinity chromatography to obtain purified protein
JP5873016B2 (en) Protein purification method using amino acids
DK2089429T3 (en) PROCEDURE FOR MANUFACTURING NON-AGGREGATED ANTIBODY-FC DOMAINS
RU2759909C2 (en) Antibody purification methods
EP3247718A1 (en) Modulation of charge variants in a monoclonal antibody composition
DK2969099T3 (en) REMOVAL OF LAKED AFFINITY PURIFICATION LIGAND
WO2013004587A1 (en) Method for separation of monomeric polypeptides from aggregated polypeptides
JP2015502959A (en) Separation of IgG2 disulfide isoform
JP6699085B2 (en) Method for purifying Fc binding protein
WO2012160536A1 (en) Antibody purification
WO2011038894A1 (en) Protein a chromatography
JP6451118B2 (en) Antibody separation method
KR20200129133A (en) How to purify antibodies
JP5830945B2 (en) Purification method of Fc receptor
JP6303379B2 (en) Antibody purification method
JP2011126827A (en) METHOD FOR PURIFYING Fc RECEPTOR
JP6476807B2 (en) Efficient antibody separation method
JP6115126B2 (en) Purification method of human IgG3
JP6665414B2 (en) Method of storing Fc binding protein
JP2014118402A (en) Method for purifying recombinant protein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R151 Written notification of patent or utility model registration

Ref document number: 6699085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151