JP6664509B2 - Polyisocyanate composition, blocked polyisocyanate composition, hydrophilic polyisocyanate composition, coating composition, and coating film - Google Patents

Polyisocyanate composition, blocked polyisocyanate composition, hydrophilic polyisocyanate composition, coating composition, and coating film Download PDF

Info

Publication number
JP6664509B2
JP6664509B2 JP2018545085A JP2018545085A JP6664509B2 JP 6664509 B2 JP6664509 B2 JP 6664509B2 JP 2018545085 A JP2018545085 A JP 2018545085A JP 2018545085 A JP2018545085 A JP 2018545085A JP 6664509 B2 JP6664509 B2 JP 6664509B2
Authority
JP
Japan
Prior art keywords
general formula
group
polyisocyanate composition
polyisocyanate
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018545085A
Other languages
Japanese (ja)
Other versions
JPWO2018070536A1 (en
Inventor
孝一郎 東
孝一郎 東
祐一 三輪
祐一 三輪
克宏 藤本
克宏 藤本
佳司郎 原田
佳司郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JPWO2018070536A1 publication Critical patent/JPWO2018070536A1/en
Application granted granted Critical
Publication of JP6664509B2 publication Critical patent/JP6664509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/022Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/285Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/027Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing urethodione groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/285Nitrogen containing compounds
    • C08G18/286Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/725Combination of polyisocyanates of C08G18/78 with other polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/771Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/798Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing urethdione groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/8064Masked polyisocyanates masked with compounds having only one group containing active hydrogen with monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • C08G18/8077Oximes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Description


本発明は、ポリイソシアネート組成物、ブロックポリイソシアネート組成物、親水性ポリイソシアネート組成物、塗料組成物、および塗膜に関する。 本願は、2016年10月14日に日本に出願された特願2016−203095、2016年10月14日に日本に出願された特願2016−203088、2016年10月14日に日本に出願された特願2016−203082、2016年10月14日に日本に出願された特願2016−203111、2016年10月14日に日本に出願された特願2016−203090、2016年10月14日に日本に出願された特願2016−203089、2016年10月14日に日本に出願された特願2016−203097、2016年10月14日に日本に出願された特願2016−203083に基づき優先権を主張し、その内容をここに援用する。

The present invention relates to a polyisocyanate composition, a blocked polyisocyanate composition, a hydrophilic polyisocyanate composition, a coating composition, and a coating film. The present application is filed with Japanese Patent Application No. 2006-203095 filed on October 14, 2016 in Japan, and filed with Japanese Patent Application No. 2006-203088 filed on October 14, 2016 in Japan. Japanese Patent Application No. 2006-20382, Japanese Patent Application No. 2006-203111 filed on October 14, 2016, Japanese Patent Application No. 2006-203090 filed on October 14, 2016, Japanese Patent Application No. Priority based on Japanese Patent Application No. 2006-203889 filed in Japan, Japanese Patent Application No. 2006-203097 filed on October 14, 2016 and Japanese Patent Application No. 2006-203803 filed on October 14, 2016 in Japan And its content is incorporated herein.


従来、ポリウレタン塗料から形成されるウレタン塗膜は、非常に優れた可撓性、耐薬品性、耐汚染性を有している。特にヘキサメチレンジイソシアネート(以下HDIとも言う)に代表される脂肪族ジイソシアネートから得られる無黄変ポリイソシアネートを硬化剤として用いた塗膜は更に耐候性に優れ、その需要は増加している。

Conventionally, urethane coatings formed from polyurethane coatings have very good flexibility, chemical resistance and stain resistance. In particular, a coating film using a non-yellowing polyisocyanate obtained from an aliphatic diisocyanate represented by hexamethylene diisocyanate (hereinafter also referred to as HDI) as a curing agent is further excellent in weather resistance, and the demand thereof is increasing.


しかし、これらの脂肪族ポリイソシアネートの課題として、乾燥性が悪いという点が挙げられる。
この課題を解決するものとして、ポリイソシアネートのイソシアネート基官能基数を高くする技術が公知であるが、一般的にイソシアネート基官能基数を高くするとポリイソシアネートの粘度が上がってしまい、取り扱いが困難となるため限界があった。

However, the problem of these aliphatic polyisocyanates is that the drying property is poor.
As a solution to this problem, a technique for increasing the number of isocyanate group functional groups of polyisocyanate is known. However, generally, when the number of isocyanate group functional groups is increased, the viscosity of the polyisocyanate increases, which makes handling difficult. There was a limit.


そこで、低粘度のトリイソシアネート化合物単独で用いたもの(例えば、特許文献3、6〜7参照。)、または、トリイソシアネート化合物の一部をイソシアヌレート化する技術(例えば、特許文献8参照。)が開示されている。これらのトリイソシアネート化合物を使用した場合、低粘度化とある程度の乾燥性とを満足するものが得られている。

Therefore, a technique using a low-viscosity triisocyanate compound alone (for example, see Patent Documents 3 and 6 to 7), or a technique for isocyanating a part of the triisocyanate compound (for example, see Patent Document 8). Is disclosed. When these triisocyanate compounds are used, those satisfying a low viscosity and a certain degree of drying property have been obtained.


また、近年、地球環境保護の高まりから、硬化剤として使用されるポリイソシアネートの低粘度化に向けた技術開発が盛んに行われている。ポリイソシアネートを低粘度化することにより、塗料組成物に使用される有機溶剤の使用量を低減できるためである(例えば、特許文献1、5参照。)。
また、イソシアネート基官能基数を維持し、低粘度化する技術が開示されている(例えば、特許文献2参照。)。

Further, in recent years, technical development for lowering the viscosity of polyisocyanate used as a curing agent has been actively carried out due to an increase in protection of the global environment. This is because the amount of the organic solvent used in the coating composition can be reduced by lowering the viscosity of the polyisocyanate (for example, see Patent Documents 1 and 5).
Also, a technique for maintaining the number of isocyanate group functional groups and reducing the viscosity has been disclosed (for example, see Patent Document 2).


一方、塗膜外観の問題(例えば、ブツ、ワキ等)を改善する技術が開示されている(例えば、特許文献4参照。)。
また、ポリウレタン塗膜に求められる性能の一つに、耐雨筋汚染性がある。この課題を解決するために、塗膜の表面を親水性にする事が求められる。親水性にするためには、シリケート化合物を硬化剤側に添加して用いるため、硬化剤とシリケート化合物との相溶性が重要である。ジイソシアネートを用いたポリイソシアネートにおいてシリケートとの相溶性を改良した技術が開示されている(例えば、特許文献9参照。)。

On the other hand, there has been disclosed a technique for improving the problem of the appearance of a coating film (for example, bumps, armpits, etc.) (for example, see Patent Document 4).
Further, one of the performances required for the polyurethane coating film is resistance to rain streak contamination. In order to solve this problem, it is required to make the surface of the coating film hydrophilic. Since the silicate compound is added to the hardener to be used in order to make it hydrophilic, compatibility between the hardener and the silicate compound is important. A technique has been disclosed in which polyisocyanate using diisocyanate has improved compatibility with silicate (see, for example, Patent Document 9).


また、近年、地球環境保護の高まりから、硬化剤として使用されるポリイソシアネートの低粘度化と、作業効率を高めるための乾燥性向上、これらの両立が求められ、技術開発が盛んに行われている。特にイソシアヌレート構造を主骨格とし、低粘度化と速乾性向上ができる技術が開示されている(特許文献2参照。)。
また、低粘度のトリイソシアネート化合物を用いる技術が開示されている(例えば、特許文献14参照。)。

In recent years, with the increasing protection of the global environment, lowering the viscosity of polyisocyanate used as a curing agent and improving drying properties to enhance work efficiency have been required. I have. In particular, there is disclosed a technology in which an isocyanurate structure is used as a main skeleton and which can reduce viscosity and improve quick drying (see Patent Document 2).
Further, a technique using a low-viscosity triisocyanate compound is disclosed (for example, see Patent Document 14).


また、建築外装塗料分野においては、作業環境の観点から、極性の低い有機溶剤が強く望まれている。特に、モノアルコールのアロファネート構造を有するポリイソシアネートは、低粘度で、低極性有機溶剤への溶解性が優れることが開示されており(特許文献10、11参照)、これらは、特許文献2および14では達成できない課題を達成している。

Further, in the field of architectural exterior paints, organic solvents having low polarity are strongly desired from the viewpoint of working environment. In particular, it is disclosed that polyisocyanates having an allophanate structure of a monoalcohol have low viscosity and excellent solubility in low-polarity organic solvents (see Patent Documents 10 and 11). Has achieved a task that cannot be achieved.


更に、低粘度のトリイソシアネート化合物を用いる技術として、トリイソシアネートとのブレンドにより速乾性を向上させる技術や(特許文献12)、トリイソシアネートのヌレート構造やアロファネート構造を所定量含むことによりイソシアネート構造数を増やして、低粘度、且つ、速乾とする技術(特許文献8)が開示され、更なる低粘度化と、乾燥性向上が図られている。

Further, as a technique using a low-viscosity triisocyanate compound, a technique of improving quick drying by blending with a triisocyanate (Patent Document 12), and a method of reducing the number of isocyanate structures by including a predetermined amount of a nurate structure and an allophanate structure of triisocyanate A technique of increasing the viscosity and drying quickly (Patent Document 8) has been disclosed, and further lowering the viscosity and improving the drying property have been achieved.


また、地球環境保護の側面から、溶剤を殆ど使用しない水系のウレタン塗料の開発も盛んに行われており、溶剤系にも水系にもおいても優れた性能を有する硬化剤の技術として、親水基を付加させることなくイソシアネート基数を維持して、低粘度とすることで水分散することができ、得られた塗膜の耐久性を高める技術も開示されている(特許文献13)。

Also, from the aspect of global environmental protection, the development of water-based urethane coatings that use almost no solvent has been actively pursued. As a curing agent technology that has excellent performance in both solvent-based and water-based coatings, hydrophilic A technique has been disclosed in which the number of isocyanate groups is maintained without adding a group, and the viscosity is reduced, whereby the dispersion can be carried out in water and the durability of the obtained coating film is increased (Patent Document 13).

特許第3055197号公報Japanese Patent No. 3055197 特許第5178200号公報Japanese Patent No. 5178200 特公昭63−15264号公報JP-B-63-15264 特許第4036750号公報Japanese Patent No. 4037750 特開平05−222007号公報JP 05-222007 A 特開昭53−135931号公報JP-A-53-135931 特開昭60−44561号公報JP-A-60-45661 特開平10−87782号公報JP-A-10-87782 特開2006−348235号公報JP 2006-348235 A 特許第5334361号公報Japanese Patent No. 5334361 特許第3891934号公報Japanese Patent No. 3891934 特開昭57−198761号公報JP-A-57-198761 特開平11−286649号公報JP-A-11-286649 特開昭57−198760号公報JP-A-57-198760 特開2008−024828号公報JP 2008-024828 A

しかし、特許文献1、5に開示されたポリイソシアネートを用いた場合、イソシアネート基の官能基数が低下することにより、乾燥性が低下する場合があった。
また、特許文献2に開示されたポリイソシアネートにおいても、さらなる低粘度化が望まれる場合があった。
さらに、特許文献3−4に開示されたポリイソシアネートにおいては、複層塗膜とした際の下地との密着性が不足する場合があった。
このようにポリイソシアネートはウレタン塗膜の硬化剤として、複層塗膜の材料に使用されることが多く、外観向上のための低粘度であることが求められ、かつ、乾燥性、下地との密着性に優れるものが切望されていた。
本発明は、上記事情に鑑みてなされたものであって、低粘度であり、かつ、速乾性、下地隠ぺい性、下地との密着性等の塗膜物性に優れるポリイソシアネートを提供する。
However, when the polyisocyanates disclosed in Patent Literatures 1 and 5 are used, the number of functional groups of the isocyanate group may be reduced, so that the drying property may be reduced.
Also, in the polyisocyanate disclosed in Patent Document 2, there is a case where further lowering the viscosity is desired.
Further, in the case of the polyisocyanate disclosed in Patent Documents 3-4, the adhesion to the base when forming a multilayer coating film may be insufficient.
As described above, the polyisocyanate is often used as a curing agent for a urethane coating film in a material for a multilayer coating film, and is required to have a low viscosity for improving the appearance, and is also required to have a drying property and a base. What has excellent adhesiveness has long been desired.
The present invention has been made in view of the above circumstances, and provides a polyisocyanate having a low viscosity and excellent coating properties such as quick-drying property, concealing property of a base, and adhesion to a base.

また、作業の省力化とともに、更なる耐久性の要求が高まった背景から、ポリイソシアネートにはさらなる乾燥性の向上や、耐酸性や耐加水分解性に優れた塗膜を形成するため、極性の高いポリオールと相溶することが求められる。また、過酷な条件においても、塗膜が高い耐クラック性を有することが求められている。
しかし、特許文献3、6〜8に開示されたトリイソシアネート、ポリイソシアネートにおいて、低粘度化と上記の要求とを同時に解決することは困難であった。
本発明は、上記事情に鑑みてなされたものであって、低粘度であり、かつ、極性ポリオールとの相溶性に優れ、温度変化および湿度変化が繰り返される条件下において、耐クラック性に優れた塗膜を形成しうるポリイソシアネート組成物を提供する。
In addition, due to the labor saving of work and the demand for more durability, the polyisocyanate has a further improvement in drying property and forms a coating film with excellent acid resistance and hydrolysis resistance. It is required to be compatible with high polyols. Further, even under severe conditions, it is required that the coating film has high crack resistance.
However, in the triisocyanates and polyisocyanates disclosed in Patent Documents 3 and 6 to 8, it has been difficult to simultaneously reduce the viscosity and the above-mentioned requirements.
The present invention has been made in view of the above circumstances, has low viscosity, and has excellent compatibility with polar polyols, and has excellent crack resistance under conditions where temperature and humidity changes are repeated. Provided is a polyisocyanate composition capable of forming a coating film.

また、作業の省力化とともに、更なる耐久性の要求が高まった背景から、ポリイソシアネートにはさらなる乾燥性の向上や、硬度、耐水性に優れた塗膜を形成することが求められる。
しかし、特許文献3、6〜8に開示されたトリイソシアネート、ポリイソシアネートにおいて、上記の要求を同時に解決することは困難であった。
本発明は、上記事情に鑑みてなされたものであって、乾燥性、硬度、および耐水性に優れた塗膜を形成しうるポリイソシアネート組成物を提供する。
In addition, from the background of the need for further durability as well as labor saving of the work, polyisocyanate is required to further improve the drying property and to form a coating film having excellent hardness and water resistance.
However, in the triisocyanate and polyisocyanate disclosed in Patent Literatures 3 and 6 to 8, it has been difficult to simultaneously satisfy the above requirements.
The present invention has been made in view of the above circumstances, and provides a polyisocyanate composition capable of forming a coating film having excellent drying properties, hardness, and water resistance.

また、作業の省力化とともに、更なる耐久性の要求が高まった背景から、ポリイソシアネートにはさらなる乾燥性の向上および基材への密着性向上が求められている。しかし、特許文献3、6〜8に開示されたトリイソシアネート、ポリイソシアネートにおいても、乾燥性と基材への密着性を両立することは困難であった。
本発明は、上記事情に鑑みてなされたものであり、乾燥性が良好であり、かつ温度変化、湿度変化のある環境下におかれても基材への密着性が良好な塗膜を形成しうるポリイソシアネート組成物、塗料組成物および塗膜を提供することを目的とする。
In addition, from the background of labor demands and increased durability requirements, polyisocyanates are required to have further improved drying properties and improved adhesion to substrates. However, even with the triisocyanates and polyisocyanates disclosed in Patent Documents 3 and 6 to 8, it has been difficult to achieve both dryness and adhesion to a substrate.
The present invention has been made in view of the above circumstances, has good drying properties, and forms a coating film having good adhesion to a substrate even in an environment with a change in temperature and humidity. It is an object of the present invention to provide a polyisocyanate composition, a coating composition and a coating film which can be used.

また、先述の通り、耐雨筋汚染性の向上のためにシリケート化合物との相溶性が要望されていたが、特許文献1、3、5〜8に開示されたポリイソシアネートおよびトリイソシアネート化合物では、シリケート化合物との相溶性を達成することは困難であった。
また、特許文献9に開示されたポリイソシアネート組成物では、シリケート化合物との相溶性が向上するものの、乾燥性が劣るという欠点があった。
本発明は、上記事情に鑑みてなされたものであって、低粘度であり、シリケート相溶性に優れたポリイソシアネート組成物、乾燥性およびリコート密着性が良好な塗料組成物、ならびに耐擦り傷性に優れた塗膜を提供する。
In addition, as described above, compatibility with silicate compounds has been demanded for improvement of stain resistance to rain streaks. However, in the polyisocyanate and triisocyanate compounds disclosed in Patent Documents 1, 3, 5 to 8, silicate is used. It was difficult to achieve compatibility with the compound.
Further, the polyisocyanate composition disclosed in Patent Document 9 has a drawback that although the compatibility with the silicate compound is improved, the drying property is poor.
The present invention has been made in view of the above circumstances, and has a low viscosity, a polyisocyanate composition having excellent silicate compatibility, a coating composition having good drying properties and recoat adhesion, and abrasion resistance. Provides excellent coatings.

また、作業の省力化とともに、更なる耐久性の要求が高まった背景から、ポリイソシアネートにはさらなる乾燥性の向上や、耐酸性や耐加水分解性に優れた塗膜を形成するため、極性の高いポリオールと相溶することが求められる。しかし、特許文献3、6〜8に開示されたトリイソシアネート、ポリイソシアネートにおいて、低粘度化と上記の要求を同時に解決することは困難であった。
本発明は、低粘度であり、かつ、速乾性、極性ポリオールとの相溶性に優れるポリイソシアネート組成物を提供する。
In addition, due to the labor saving of work and the demand for more durability, the polyisocyanate has a further improvement in drying property and forms a coating film with excellent acid resistance and hydrolysis resistance. It is required to be compatible with high polyols. However, in the triisocyanates and polyisocyanates disclosed in Patent Documents 3 and 6 to 8, it has been difficult to simultaneously reduce the viscosity and satisfy the above-mentioned requirements.
The present invention provides a polyisocyanate composition having a low viscosity, a fast drying property, and excellent compatibility with a polar polyol.

また、特許文献10、11に開示されたポリイソシアネートは、粘度を下げるために官能基数を下げると乾燥性が低下し、官能基数を高めると粘度が上昇してしまうという課題があり、乾燥性と低粘度を同時に満足することは困難であった。
特許文献8や12に開示されたポリイソシアネートでは、低粘度のままで乾燥性は向上するものの、両者を高いレベルで両立させることは容易でなく、また、更に粘度を下げるために環境にやさしい低極性有機溶剤へ溶解させようとしても、溶解度が充分ではなかった。
更に、特許文献2、8、10〜12に記載のポリイソシアネートは溶剤系にて使用するものであり、水に分散させて水系塗料の硬化剤として使用することは困難であった。特許文献13にはイソシアネート基数を低下させずに、水に分散させた硬化剤として用いる技術も開示されているが、水に分散した状態を保つことができる時間は短く、通常の塗料に使用することは困難であった。
建築外装塗料や自動車内外装塗料の分野等では、塗料の硬化剤は、溶剤使用量削減のための低粘度化、かつ塗装時間短縮のための速乾性を有し、且つ、作業環境の観点から低極性有機溶剤に溶解できるようにするか、または、溶剤量を大幅に削減できる水系塗料で使えるように水分散できるようにすることが望ましく、これら課題が満足できる硬化剤が強く求められている。しかし、これらの要求を同時に解決できることは困難であった。
Further, the polyisocyanates disclosed in Patent Documents 10 and 11 have a problem that when the number of functional groups is reduced to reduce the viscosity, the drying property is reduced, and when the number of functional groups is increased, the viscosity is increased. It was difficult to simultaneously satisfy the low viscosity.
In the polyisocyanates disclosed in Patent Literatures 8 and 12, although the drying property is improved while maintaining the low viscosity, it is not easy to achieve both at a high level, and the low viscosity is environmentally friendly. Attempts to dissolve in polar organic solvents did not provide sufficient solubility.
Furthermore, the polyisocyanates described in Patent Documents 2, 8, and 10 to 12 are used in a solvent system, and it has been difficult to disperse the polyisocyanate in water and use it as a curing agent for water-based paints. Patent Document 13 discloses a technique of using as a curing agent dispersed in water without reducing the number of isocyanate groups, but the time in which the state of dispersion in water can be maintained is short, and it is used for ordinary paints. It was difficult.
In the field of architectural exterior paint and automotive interior / exterior paint, etc., the curing agent of the paint has low viscosity to reduce the amount of solvent used, has quick drying property to shorten the coating time, and from the viewpoint of the working environment It is desirable to be able to dissolve in a low-polarity organic solvent or to be able to disperse in water so that it can be used in a water-based paint that can greatly reduce the amount of a solvent. . However, it has been difficult to solve these requirements simultaneously.

本発明は上記事情に鑑みてなされたものであり、低粘度であり、かつ、速乾性、低極性有機溶媒への溶解性に優れるので溶剤系塗料の硬化剤に適し、さらに、水にも容易に分散できることで水系塗料の硬化剤としても用いることができるポリイソシアネートを提供する。   The present invention has been made in view of the above circumstances, has a low viscosity, and fast drying, excellent solubility in a low-polarity organic solvent, so that it is suitable for a curing agent for a solvent-based paint, and furthermore, is easy to water. The present invention provides a polyisocyanate which can be used as a curing agent for a water-based paint because it can be dispersed in water.

また、特許文献2に開示されたポリイソシアネートを用いた場合、さらなる低粘度化が求められる場合があり、特許文献14に開示されたポリイソシアネートを用いた場合、乾燥性が低下する場合があった。
また、特許文献11および15に開示されたポリイソシアネートにおいては、官能基数の低下から乾燥性が低下する場合があった。
例えば、建築外装塗料分野等では、溶剤使用量削減のための低粘度化、かつ塗装時間短縮のための速乾性、また、作業環境の観点から低極性有機溶剤へ溶解性、の課題が満足できる硬化剤が強く求められている。しかし、これらの要求を同時に解決できることは困難であった。
本発明は、上記事情に鑑みてなされたものであって、低粘度、速乾性であり、かつ、低極性有機溶媒への溶解性に優れるポリイソシアネートを提供する。
Further, when the polyisocyanate disclosed in Patent Document 2 is used, further lowering of the viscosity may be required, and when the polyisocyanate disclosed in Patent Document 14 is used, the drying property may be reduced. .
Further, in the polyisocyanates disclosed in Patent Literatures 11 and 15, drying properties may be reduced due to a decrease in the number of functional groups.
For example, in the field of architectural exterior paints, the problems of low viscosity for reducing the amount of solvent used, quick drying for shortening the coating time, and solubility in low-polarity organic solvents from the viewpoint of the working environment can be satisfied. There is a strong need for a curing agent. However, it has been difficult to solve these requirements simultaneously.
The present invention has been made in view of the above circumstances, and provides a polyisocyanate having low viscosity, quick drying, and excellent solubility in a low polar organic solvent.

本発明者らは、鋭意研究した結果、特定構造を有するポリイソシアネート組成物が上記課題を達成できることを発見し、本発明を成すに至った。
すなわち、本発明は以下の態様を含む。[1]一般式(I)、(II)、(III)または(IV)で表されるポリイソシアネート化合物を含む、ポリイソシアネート組成物。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a polyisocyanate composition having a specific structure can achieve the above object, and have accomplished the present invention.
That is, the present invention includes the following aspects. [1] A polyisocyanate composition containing a polyisocyanate compound represented by the general formula (I), (II), (III) or (IV).

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509


Figure 0006664509
Figure 0006664509

Figure 0006664509
[一般式(I)、(II)、(III)および(IV)中、複数あるR11、R21、R31およびR41は、それぞれ独立に、有機基であり、複数あるR 11 、R 31 およびR 41 のうち少なくとも1つは一般式(V)または(VI)で表される基であり、複数あるR 21 のうち少なくとも1つは一般式(V)で表される基である。複数あるR11、R21、R31およびR41は、それぞれ同一であってもよく異なっていてもよい。一般式(III)中、R32は、1価以上のアルコールから1つのヒドロキシ基を除去した残基である。」
Figure 0006664509
[In general formulas (I), (II), (III) and (IV), a plurality of R 11 , R 21 , R 31 and R 41 are each independently an organic group, and a plurality of R 11 , R At least one of R 31 and R 41 is a group represented by formula (V) or (VI), and at least one of a plurality of R 21 is a group represented by formula (V). A plurality of R 11 , R 21 , R 31 and R 41 may be the same or different. In the general formula (III), R 32 is a residue obtained by removing one hydroxy group from a monohydric or higher alcohol. "

Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]

Figure 0006664509
[一般式(VI)中、Yはエステル構造を含む炭素数1〜20の2価の炭化水素基である。波線は結合手を意味する。][2]一般式(I)および一般式(II)で表されるポリイソシアネート化合物を含む、[1]に記載のポリイソシアネート組成物。
Figure 0006664509
[In the general formula (VI), Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms including an ester structure. A wavy line indicates a bond. [2] The polyisocyanate composition according to [1], comprising a polyisocyanate compound represented by the general formula (I) and the general formula (II).


Figure 0006664509
Figure 0006664509

Figure 0006664509
[一般式(I)および一般式(II)中、複数あるR11およびR21は、それぞれ独立に、有機基であり、複数あるR11およびR21のうち少なくとも1つは一般式(V)で表される基である。複数あるR11およびR21は、それぞれ同一であってもよく異なっていてもよい。]
Figure 0006664509
[In the general formulas (I) and (II), a plurality of R 11 and R 21 are each independently an organic group, and at least one of the plurality of R 11 and R 21 is a group represented by the general formula (V) Is a group represented by A plurality of R 11 and R 21 may be the same or different. ]


Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。][3]前記一般式(I)および前記一般式(II)で表されるポリイソシアネート化合物を含み、

イミノオキサジアジンジオン構造とイソシアヌレート構造とのモル比率が、0.01以上1.5以下である、[2]に記載のポリイソシアネート組成物。[4]一般式(V)−1で表されるトリイソシアネートをさらに含む、[2]または[3]に記載のポリイソシアネート組成物。
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. [3] including a polyisocyanate compound represented by the general formula (I) and the general formula (II),

The polyisocyanate composition according to [2], wherein the molar ratio between the iminooxadiazinedione structure and the isocyanurate structure is 0.01 or more and 1.5 or less. [4] The polyisocyanate composition according to [2] or [3], further comprising a triisocyanate represented by the general formula (V) -1.


Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。][5]前記一般式(II)で表されるポリイソシアネート化合物を含み、ポリイソシアネート組成物のNCO%から算出される、理論反応率が47%以下である、[2]〜[4]のいずれか一項に記載のポリイソシアネート組成物。
[6]前記一般式(II)で表されるポリイソシアネート化合物を含み、ポリイソシアネート組成物のNCO%から算出される、理論反応率が95%以上150%以下である、[2]〜[4]のいずれか一項に記載のポリイソシアネート組成物。
[7]前記一般式(II)で示されるポリイソシアネート化合物(A)と、前記一般式(V)−1で示されるトリイソシアネート化合物(B)とを含む、ポリイソシアネート組成物であって、

ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる、前記ポリイソシアネート化合物(A)の数平均分子量のピーク面積(A)と、前記トリイソシアネート化合物(B)の数平均分子量のピーク面積(B)と、の面積比率((A)/[(A)+(B)])が0.8以上1未満である、[4]に記載のポリイソシアネート組成物。[8]前記一般式(II)中のR21のすべてが前記一般式(V)で示されるトリイソシアネートであるモノマー3量体を化合物(C)とした時、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる、前記ポリイソシアネート化合物(A)の数平均分子量のピーク面積(A)と、前記トリイソシアネート化合物(B)の数平均分子量のピーク面積(B)と、前記化合物(C)の数平均分子量のピーク面積(C)との面積比率((C)/[(A)+(B)])が0.3以上1未満である、[7]に記載のポリイソシアネート組成物。
[9]イソシアネート基官能価が4以上12以下である、[7]または[8]に記載のポリイソシアネート組成物。
[10]一般式(II)および一般式(III)で表されるポリイソシアネート化合物を含み、イソシアヌレート構造とアロファネート構造とのモル比が100/0.1〜100/15である、[1]に記載のポリイソシアネート組成物。
Figure 0006664509
[In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. [5] The composition according to any of [2] to [4], comprising a polyisocyanate compound represented by the general formula (II), and having a theoretical conversion of 47% or less, calculated from the NCO% of the polyisocyanate composition. The polyisocyanate composition according to claim 1.
[6] The polyisocyanate compound represented by the general formula (II), wherein the theoretical conversion calculated from the NCO% of the polyisocyanate composition is 95% or more and 150% or less, [2] to [4] ] The polyisocyanate composition of any one of the above.
[7] A polyisocyanate composition comprising a polyisocyanate compound (A) represented by the general formula (II) and a triisocyanate compound (B) represented by the general formula (V) -1;

The peak area (A) of the number average molecular weight of the polyisocyanate compound (A) and the peak area (B) of the number average molecular weight of the triisocyanate compound (B) obtained by gel permeation chromatography (GPC) measurement. The polyisocyanate composition according to [4], wherein the area ratio ((A) / [(A) + (B)]) is 0.8 or more and less than 1. [8] When a monomer trimer in which all of R 21 in the general formula (II) is a triisocyanate represented by the general formula (V) is a compound (C), gel permeation chromatography (GPC) The peak area (A) of the number average molecular weight of the polyisocyanate compound (A), the peak area (B) of the number average molecular weight of the triisocyanate compound (B), and the number of the compound (C) obtained by the measurement. The polyisocyanate composition according to [7], wherein the area ratio ((C) / [(A) + (B)]) of the average molecular weight to the peak area (C) is 0.3 or more and less than 1.
[9] The polyisocyanate composition according to [7] or [8], wherein the isocyanate group functionality is 4 or more and 12 or less.
[10] The polyisocyanate compound represented by the general formula (II) or (III), wherein the molar ratio of the isocyanurate structure to the allophanate structure is 100 / 0.1 to 100/15, [1]. The polyisocyanate composition according to the above.


Figure 0006664509
Figure 0006664509

Figure 0006664509
[一般式(II)および一般式(III)中、複数あるR21およびR31は、それぞれ独立に、有機基であり、複数あるR21およびR31のうち少なくとも1つは一般式(V)で表される基である。複数あるR21およびR31は、それぞれ同一であってもよく異なっていてもよい。R32は、1価以上のアルコールから1つのヒドロキシ基を除去した残基である。]
Figure 0006664509
[In the general formulas (II) and (III), a plurality of R 21 and R 31 are each independently an organic group, and at least one of the plurality of R 21 and R 31 is a group represented by the general formula (V) Is a group represented by A plurality of R 21 and R 31 may be the same or different. R 32 is a residue obtained by removing one hydroxy group from a monovalent or higher alcohol. ]


Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
[11]一般式(V)−1で表されるトリイソシアネートをさらに含む、[10]に記載のポリイソシアネート組成物。
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]
[11] The polyisocyanate composition according to [10], further comprising a triisocyanate represented by the general formula (V) -1.


Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。][12]一般式(II)および一般式(IV)で表されるポリイソシアネート化合物を含み、イソシアヌレート構造とウレトジオン構造とのモル比が100/0.1〜100/100である、[1]に記載のポリイソシアネート組成物。
Figure 0006664509
[In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. [12] The polyisocyanate compound represented by the general formula (II) or (IV), wherein the molar ratio between the isocyanurate structure and the uretdione structure is 100 / 0.1 to 100/100. ] The polyisocyanate composition as described in [1].


Figure 0006664509
Figure 0006664509

Figure 0006664509
[一般式(II)および(IV)中、複数あるR21およびR41は、それぞれ独立に、有機基であり、複数あるR21およびR41のうち少なくとも1つは一般式(V)で表される基である。複数あるR21およびR41は、それぞれ同一であってもよく異なっていてもよい。」
Figure 0006664509
[In the general formulas (II) and (IV), a plurality of R 21 and R 41 are each independently an organic group, and at least one of the plurality of R 21 and R 41 is represented by the general formula (V). It is a group to be performed. A plurality of R 21 and R 41 may be the same or different. "


Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。][13]一般式(V)−1で表されるトリイソシアネートをさらに含む、[12]に記載のポリイソシアネート組成物。
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. [13] The polyisocyanate composition according to [12], further comprising a triisocyanate represented by the general formula (V) -1.

Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。]
[14]一般式(II)で表されるポリイソシアネート化合物を含み、
ヘキサメチレンジイソシアネートから誘導されるポリイソシアネートと1級アルコールとの反応速度(V )に対する、ポリイソシアネート組成物と1級アルコールとの反応速度(V )の比(V /V )が、5以上13未満である、ポリイソシアネート組成物。
Figure 0006664509
[In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]
[14] the general formula polyisocyanate compound represented by (II) seen including,
The ratio (V h / V p ) of the reaction rate (V p ) between the polyisocyanate composition and the primary alcohol to the reaction rate (V h ) between the polyisocyanate derived from hexamethylene diisocyanate and the primary alcohol , The polyisocyanate composition , which is 5 or more and less than 13 .


Figure 0006664509
[一般式(II)中、R21は有機基である。複数あるR21のうち少なくとも1つは、一般式(V)で表される基、または一般式(VI)で表される基である。複数あるR21は、それぞれ同一であってもよく異なっていてもよい。]
Figure 0006664509
[In the general formula (II), R 21 is an organic group. At least one of the plurality of R 21 is a group represented by the general formula (V) or a group represented by the general formula (VI). A plurality of R 21 may be the same or different. ]


Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、エステル構造および/またはエーテル構造を含んでいる炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a divalent hydrocarbon group having 1 to 20 carbon atoms and containing an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]

Figure 0006664509
[一般式(VI)中、Yはエステル構造を含む炭素数1〜20の2価の炭化水素基である。波線は結合手を意味する。]
15]一般式(V)−1で表されるトリイソシアネートまたは一般式(VI)−1で示されるジイソシアネートをさらに含む、[14]に記載のポリイソシアネート組成物。
Figure 0006664509
[In the general formula (VI), Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms including an ester structure. A wavy line indicates a bond . ]
[ 15 ] The polyisocyanate composition according to [14] , further comprising a triisocyanate represented by the general formula (V) -1 or a diisocyanate represented by the general formula (VI) -1.


Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。]
Figure 0006664509
[In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]

Figure 0006664509
[一般式(VI)−1中、Yはエステル構造を含んでいてもよい炭素数1〜20の2価の炭化水素基である。]
16]一般式(III)で示されるポリイソシアネート化合物を含むポリイソシアネート組成物であって、
該ポリイソシアネート組成物に含まれるイソシアネート基、アロファネート構造、イソシアヌレート構造、ウレトジオン構造、イミノオキサジアジンジオン構造、ウレタン構造、およびビュレット構造に含まれる窒素元素の総数に対して、該アロファネート構造に含まれる窒素元素(ただし、R31、R32に含まれる窒素元素を除く)の数が1.5%以上60%以下である[1]に記載のポリイソシアネート組成物。
Figure 0006664509
[In general formula (VI) -1, Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain an ester structure. ]
[ 16 ] A polyisocyanate composition containing a polyisocyanate compound represented by the general formula (III),
The isocyanate group contained in the polyisocyanate composition, allophanate structure, isocyanurate structure, uretdione structure, iminooxadiazinedione structure, urethane structure, and the total number of nitrogen elements contained in the burette structure included in the allophanate structure The polyisocyanate composition according to [1], wherein the number of nitrogen elements (excluding nitrogen elements contained in R 31 and R 32 ) is 1.5% or more and 60% or less.


Figure 0006664509
[一般式(III)中、R31は有機基である。複数あるR31のうち少なくとも1つは、一般式(V)で示される基であり、R32は1価以上のアルコールのヒドロキシル基を除去した残基である。]
Figure 0006664509
[In the general formula (III), R 31 is an organic group. At least one of the plurality of R 31 is a group represented by the general formula (V), and R 32 is a residue obtained by removing a hydroxyl group of a monohydric or higher alcohol. ]

Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
17]前記アロファネート構造に含まれるR32が、2価以上のアルコールのヒドロキシル基を除去した残基である、請求項16に記載のポリイソシアネート組成物。
18]前記アロファネート構造に含まれるR32が、炭素数3〜50である1価以上のアルコールのヒドロキシル基を除去した残基である、[16]または[17]に記載のポリイソシアネート組成物。
19]一般式(III)で表されるポリイソシアネート化合物を含む、[1]に記載のポリイソシアネート組成物。
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]
[17] R 32 contained in the allophanate structure is a residue obtained by removing the divalent or more hydroxyl groups of the alcohol, polyisocyanate composition according to claim 16.
[ 18 ] The polyisocyanate composition according to [ 16 ] or [ 17 ], wherein R 32 contained in the allophanate structure is a residue obtained by removing a hydroxyl group of a monohydric or higher alcohol having 3 to 50 carbon atoms. .
[ 19 ] The polyisocyanate composition according to [1], comprising a polyisocyanate compound represented by the general formula (III).


Figure 0006664509
[一般式(III)中、複数あるR31は、それぞれ独立に、有機基であり、複数あるR31のうち少なくとも1つは一般式(V)で表される基、または一般式(VI)で表される基である。複数あるR31は、それぞれ同一であってもよく異なっていてもよい。R32は、1価以上のアルコールから1つのヒドロキシ基を除去した残基である。]
Figure 0006664509
[In general formula (III), a plurality of R 31 are each independently an organic group, and at least one of the plurality of R 31 is a group represented by general formula (V) or a general formula (VI) Is a group represented by A plurality of R 31 may be the same or different. R 32 is a residue obtained by removing one hydroxy group from a monovalent or higher alcohol. ]


Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]

Figure 0006664509
[一般式(VI)中、Yはエステル構造を含む炭素数1〜20の2価の炭化水素基である。波線は結合手を意味する。]
20]アロファネート構造、ウレトジオン構造、イミノオキサジアジンジオン構造、イソシアヌレート構造、ウレタン構造、およびビュレット構造の各モル比率をa、b、c、d、e、およびfとしたとき、アロファネート構造のモル比率(a/(a+b+c+d+e+f))が、0.02以上0.95以下である、[19]に記載のポリイソシアネート組成物。
21]ヘキサメチレンジイソシアネートから誘導されるポリイソシアネートと1級アルコールとの反応速度(V)に対する、ポリイソシアネート組成物と1級アルコールとの反応速度(V)の比(V/V)が、5以上13未満である、[19]または[20]に記載のポリイソシアネート組成物。
[22]一般式(V)−1で表されるトリイソシアネートまたは一般式(VI)−1で示されるジイソシアネートをさらに含む、[19]〜[21]のいずれか一項に記載のポリイソシアネート組成物。
Figure 0006664509
[In the general formula (VI), Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms including an ester structure. A wavy line indicates a bond. ]
[ 20 ] When allophanate structure, uretdione structure, iminooxadiazinedione structure, isocyanurate structure, urethane structure, and buret structure are represented by a, b, c, d, e, and f, respectively, the allophanate structure The polyisocyanate composition according to [ 19 ], wherein the molar ratio (a / (a + b + c + d + e + f)) is 0.02 or more and 0.95 or less.
[21] against the rate of reaction of a polyisocyanate with primary alcohols derived from hexamethylene diisocyanate (V h), the polyisocyanate composition and the ratio (V h / V p of the reaction rate of the primary alcohol (V p) ) Is 5 or more and less than 13, wherein the polyisocyanate composition according to [ 19 ] or [ 20 ].
[22] The polyisocyanate composition according to any one of [ 19 ] to [ 21 ], further including a triisocyanate represented by the general formula (V) -1 or a diisocyanate represented by the general formula (VI) -1. object.


Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。]
Figure 0006664509
[In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]

Figure 0006664509
[一般式(VI)−1中、Yはエステル構造を含んでいてもよい炭素数1〜20の2価の炭化水素基である。]
23][1]〜[22]のいずれか一項に記載のポリイソシアネート組成物が含有する前記一般式(I)、(II)、(III)または(IV)で表されるポリイソシアネート化合物の、イソシアネート基の少なくとも一部がブロック剤で保護された、ブロックポリイソシアネート組成物。
24][1]〜[23]のいずれか一項に記載のポリイソシアネート組成物が含有する前記一般式(I)、(II)、(III)または(IV)で表されるポリイソシアネート化合物の、イソシアネート基の少なくとも一部に親水性基が付加された、親水性ポリイソシアネート組成物。
25][23]に記載のブロックポリイソシアネート組成物が含有する前記一般式(I)、(II)、(III)または(VI)で表されるポリイソシアネート化合物の、イソシアネート基の少なくとも一部に親水性基が付加された、親水性ポリイソシアネート組成物。
26][1]〜[22]のいずれか一項に記載のポリイソシアネート組成物と、ポリオールとを含む、塗料組成物。
27][23]に記載のブロックポリイソシアネート組成物と、ポリオールとを含む、塗料組成物。
28][24]または[25]に記載の親水性ポリイソシアネート組成物と、ポリオールとを含む、塗料組成物。
29][26]〜[28]のいずれか一項に記載の塗料組成物を硬化した塗膜。
30]水と、水に分散した[16]〜[19]のいずれかに記載のポリイソシアネート組成物、とを含む、水分散体。
31]水と、[23]に記載のブロックポリイソシアネート組成物、とを含む、水分散体。
32]水と、[23]または[24]に記載の親水性ポリイソシアネート組成物、とを含む、水分散体。
Figure 0006664509
[In general formula (VI) -1, Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain an ester structure. ]
[ 23 ] The polyisocyanate compound represented by the general formula (I), (II), (III) or (IV) contained in the polyisocyanate composition according to any one of [1] to [ 22 ]. The blocked polyisocyanate composition, wherein at least a part of the isocyanate group is protected by a blocking agent.
[ 24 ] The polyisocyanate compound represented by the general formula (I), (II), (III) or (IV) contained in the polyisocyanate composition according to any one of [1] to [ 23 ]. The hydrophilic polyisocyanate composition wherein a hydrophilic group is added to at least a part of the isocyanate group.
[ 25 ] At least a part of the isocyanate group of the polyisocyanate compound represented by the general formula (I), (II), (III) or (VI) contained in the blocked polyisocyanate composition according to [ 23 ]. A hydrophilic polyisocyanate composition, wherein a hydrophilic group is added to the polyisocyanate.
[ 26 ] A coating composition comprising the polyisocyanate composition according to any one of [1] to [ 22 ] and a polyol.
[ 27 ] A coating composition comprising the blocked polyisocyanate composition according to [ 23 ] and a polyol.
[ 28 ] A coating composition comprising the hydrophilic polyisocyanate composition according to [ 24 ] or [ 25 ], and a polyol.
[ 29 ] A coating film obtained by curing the coating composition according to any one of [ 26 ] to [ 28 ].
[ 30 ] An aqueous dispersion comprising water and the polyisocyanate composition according to any one of [ 16 ] to [ 19 ] dispersed in water.
[ 31 ] An aqueous dispersion comprising water and the blocked polyisocyanate composition according to [ 23 ].
[ 32 ] An aqueous dispersion comprising water and the hydrophilic polyisocyanate composition according to [23] or [24] .

本発明によれば、低粘度であり、かつ、速乾性、下地隠ぺい性、下地との密着性等の塗膜物性に優れるポリイソシアネート組成物を提供することができる。   According to the present invention, it is possible to provide a polyisocyanate composition having a low viscosity and excellent in properties of a coating film such as quick-drying property, concealing property of a base, and adhesion to a base.

本発明によれば、低粘度であり、極性ポリオールとの相溶性に優れ、温度変化、湿度変化、紫外線ばく露条件下において、耐クラック性に優れた塗膜を形成しうるポリイソシアネート組成物を提供することができる。   According to the present invention, a polyisocyanate composition that has a low viscosity, has excellent compatibility with polar polyols, and is capable of forming a coating film having excellent crack resistance under conditions of temperature change, humidity change, and UV exposure. Can be provided.

本発明によれば、乾燥性に優れ、硬度、耐水性に優れた塗膜を形成しうるポリイソシアネート組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the polyisocyanate composition which is excellent in drying property, and which can form a coating film excellent in hardness and water resistance can be provided.

本発明によれば、乾燥性が良好であり、かつ温度変化、湿度変化のある環境下におかれても基材への密着性が良好な塗膜を形成しうるポリイソシアネート組成物を提供することができる。   According to the present invention, there is provided a polyisocyanate composition which has good drying properties, and can form a coating film having good adhesion to a substrate even in an environment having a change in temperature and a change in humidity. be able to.

本発明によれば、低粘度であり、シリケートとの相溶性に優れるポリイソシアネート組成物を提供することができる。また、本発明によるポリイソシアネート組成物を用いた塗料組成物は、優れた乾燥性とリコート密着性を持つ。更に、上記塗料組成物から得られる塗膜は、良好な耐擦り傷性を持つ。   According to the present invention, a polyisocyanate composition having low viscosity and excellent compatibility with silicate can be provided. Further, the coating composition using the polyisocyanate composition according to the present invention has excellent drying properties and recoat adhesion. Furthermore, the coating film obtained from the above coating composition has good scratch resistance.

本発明によれば、低粘度であり、かつ、速乾性に優れるポリイソシアネート組成物を提供することができる。また、本発明によるポリイソシアネート組成物を用いた塗料組成物は、優れた乾燥性と下地密着性を持つ。   According to the present invention, it is possible to provide a polyisocyanate composition having a low viscosity and excellent in quick-drying property. Further, the coating composition using the polyisocyanate composition according to the present invention has excellent drying properties and substrate adhesion.

本発明によれば、低粘度であり、かつ、速乾性、極性ポリオールとの相溶性に優れるポリイソシアネート組成物を提供することができる。   According to the present invention, it is possible to provide a polyisocyanate composition having a low viscosity, a fast drying property, and an excellent compatibility with a polar polyol.

本発明によれば、低極性溶剤に溶解させることと、速乾性を両立することができ、かつ、低粘度なので溶剤量を減らすことができ、更には、水に分散させて水系塗料の硬化剤にも使用できるポリイソシアネート組成物を提供することができる。   According to the present invention, dissolving in a low-polarity solvent, can be compatible with quick-drying, and, since the viscosity is low, the amount of the solvent can be reduced, furthermore, the curing agent of the water-based paint by dispersing in water Can be provided.

本発明によれば、低粘度、速乾性であり、かつ、低極性有機溶媒への溶解性に優れるポリイソシアネート組成物を提供することができる。   According to the present invention, it is possible to provide a polyisocyanate composition having low viscosity, quick drying, and excellent solubility in a low-polarity organic solvent.

以下、本発明を実施するための形態について詳細に説明する。以下の本発明を実施するための実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。   Hereinafter, embodiments for carrying out the present invention will be described in detail. The following embodiments for carrying out the present invention are exemplifications for describing the present invention, and are not intended to limit the present invention to the following contents. The present invention can be appropriately modified and implemented within the scope of the invention.

本明細書において、「ポリイソシアネート」とは、1つ以上のイソシアネート基(−NCO)を有するモノマーが複数結合した重合体をいう。
本明細書において、「ポリオール」とは、2つ以上のヒドロキシ基(−OH)を有する化合物をいう。
In this specification, “polyisocyanate” refers to a polymer in which a plurality of monomers having one or more isocyanate groups (—NCO) are bonded.
As used herein, “polyol” refers to a compound having two or more hydroxy groups (—OH).

<ポリイソシアネート組成物>
〔第1実施形態〕

本発明の第1実施形態のポリイソシアネート組成物は、一般式(I)、(II)、(III)または(IV)で表されるポリイソシアネート化合物を含む。
<Polyisocyanate composition>
[First Embodiment]

The polyisocyanate composition of the first embodiment of the present invention contains a polyisocyanate compound represented by the general formula (I), (II), (III) or (IV).

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509


Figure 0006664509
Figure 0006664509

Figure 0006664509
[一般式(I)、(II)、(III)および(IV)中、複数あるR11、R21、R31およびR41は、それぞれ独立に、有機基であり、複数あるR11、R21、R31およびR41のうち少なくとも1つは一般式(V)または(VI)で表される基である。複数あるR11、R21、R31およびR41は、それぞれ同一であってもよく異なっていてもよい。一般式(III)中、R32は、1価以上のアルコールから1つのヒドロキシ基を除去した残基である。」
Figure 0006664509
[In general formulas (I), (II), (III) and (IV), a plurality of R 11 , R 21 , R 31 and R 41 are each independently an organic group, and a plurality of R 11 , R At least one of 21 , R 31 and R 41 is a group represented by formula (V) or (VI). A plurality of R 11 , R 21 , R 31 and R 41 may be the same or different. In the general formula (III), R 32 is a residue obtained by removing one hydroxy group from a monohydric or higher alcohol. "

Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]

Figure 0006664509
[一般式(VI)中、Yはエステル構造を含む炭素数1〜20の2価の炭化水素基である。波線は結合手を意味する。]
Figure 0006664509
[In the general formula (VI), Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms including an ester structure. A wavy line indicates a bond. ]

〔第1−1実施形態〕

本発明の第1−1実施形態のポリイソシアネート組成物は、一般式(I)または一般式(II)で表されるポリイソシアネート化合物を含む。
[1-1 Embodiment]

The polyisocyanate composition of Embodiment 1-1 of the present invention contains a polyisocyanate compound represented by the general formula (I) or the general formula (II).

Figure 0006664509
Figure 0006664509

Figure 0006664509
[一般式(I)および(II)中、複数あるR11およびR21は、それぞれ独立に、有機基であり、複数あるR11およびR21のうち少なくとも1つは一般式(V)で表される基である。複数あるR11およびR21は、それぞれ同一であってもよく異なっていてもよい。」
Figure 0006664509
[In general formulas (I) and (II), a plurality of R 11 and R 21 are each independently an organic group, and at least one of the plurality of R 11 and R 21 is represented by a general formula (V). It is a group to be performed. A plurality of R 11 and R 21 may be the same or different. "

Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
以下、一般式(I)、一般式(II)、および一般式(V)について説明する。
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]
Hereinafter, the general formula (I), the general formula (II), and the general formula (V) will be described.

・一般式(I) -General formula (I)

Figure 0006664509
一般式(I)で表されるポリイソシアネート化合物は、イミノオキサジアジンジオン構造を有する。イミノオキサジアジンジオン構造はイソシアネートモノマー3分子からなるポリイソシアネートである。
Figure 0006664509
The polyisocyanate compound represented by the general formula (I) has an iminooxadiazinedione structure. The iminooxadiazinedione structure is a polyisocyanate composed of three isocyanate monomer molecules.

[R11

一般式(I)において、複数あるR11は、それぞれ独立に、有機基である。複数あるR11は、それぞれ同一であってもよく異なっていてもよい。
第1−1実施形態においては、3つのR11のうち、少なくとも1つは上記一般式(V)で表される基であり、2つのR11が上記一般式(V)で表される基であることが好ましく、3つのR11すべてが上記一般式(V)で表される基であることがより好ましい。
[R 11 ]

In the general formula (I), a plurality of R 11 are each independently an organic group. A plurality of R 11 may be the same or different.
In the first 1-1 embodiment, of the three R 11, at least one is a group represented by the general formula (V), groups in which two R 11 is represented by the general formula (V) It is more preferable that all three R 11 are groups represented by the above general formula (V).

11のうち、上記一般式(III)で表される基以外の基としては、例えば、テトラメチレンジイソシアネート(TMDI)、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、2,2,4−トリメチルヘキサン−1,6−ジイソシアネート、2−メチルペンタン−1,5−ジイソシアネート(MPDI)、1,3−ビス(イソシアナトメチル)−シクロヘキサン(1,3−H6−XDI)、3(4)−イソシアナトメチル−1−メチル−シクロヘキシルイソアネート(IMCI);イソホロンジイソシアネート(IPDI)、ビス(イソシアナトメチル)−ノルボルナン(NBDI)、1,3−ビス(イソシアナトメチル)−ベンゼン、1,3−ビス(2−イソシアナトプロピル−2)ベンゼンおよび4,4‘−ジシクロヘキシルメタンジイソシアネート(H12MDI)から1つのイソシアネート基を除去した残基が挙げられる。Examples of the group other than the group represented by the general formula (III) in R 11 include, for example, tetramethylene diisocyanate (TMDI), pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), 2,2,4 -Trimethylhexane-1,6-diisocyanate, 2-methylpentane-1,5-diisocyanate (MPDI), 1,3-bis (isocyanatomethyl) -cyclohexane (1,3-H6-XDI), 3 (4) -Isocyanatomethyl-1-methyl-cyclohexylisoanate (IMCI); isophorone diisocyanate (IPDI), bis (isocyanatomethyl) -norbornane (NBDI), 1,3-bis (isocyanatomethyl) -benzene, 1, 3-bis (2-isocyanatopropyl-2) benzene And a residue obtained by removing one isocyanate group from 4,4′-dicyclohexylmethane diisocyanate (H12MDI).

・一般式(II) -General formula (II)

Figure 0006664509
一般式(II)で表されるポリイソシアネート化合物は、イソシアヌレート構造を有する。イソシアヌレート構造はイソシアネートモノマー3分子からなるポリイソシアネートである。
Figure 0006664509
The polyisocyanate compound represented by the general formula (II) has an isocyanurate structure. The isocyanurate structure is a polyisocyanate composed of three isocyanate monomer molecules.

[R21

一般式(II)において、複数あるR21は、それぞれ独立に、有機基である。複数あるR21は、それぞれ同一であってもよく異なっていてもよい。
第1−1実施形態においては、3つのR21のうち、少なくとも1つは上記一般式(V)で表される基であり、2つのR21が上記一般式(V)で表される基であることが好ましく、3つのR21すべてが上記一般式(V)で表される基であることがより好ましい。
[R 21 ]

In the general formula (II), a plurality of R 21 are each independently an organic group. A plurality of R 21 may be the same or different.
In the first 1-1 embodiment, of the three R 21, at least one is a group represented by the general formula (V), groups in which two R 21 is represented by the general formula (V) It is more preferable that all three R 21 are groups represented by the above general formula (V).

21のうち、上記一般式(V)で表される基以外の基としては、例えば、上述の「・一般式(I)」で例示されたものと同様のものが挙げられる。・一般式(V)Examples of the group other than the group represented by the general formula (V) in R 21 include, for example, the same groups as those exemplified in the above-described “• General formula (I)”.・ General formula (V)

Figure 0006664509
Figure 0006664509

[Y

一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造[−C(=O)−O−]および/またはエーテル構造(−O−)を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。
エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基としては、−(CHn1−X−(CHn2−で表される基(n1およびn2はそれぞれ独立して、0〜10の整数である。但し、n1およびn2の両方とも0になることはない。Xは、エステル基またはエーテル基である)。
反応速度を速めたい場合、Xがエステル基であることが好ましい。
n1及びn2は0〜4が好ましく、0〜2がより好ましい。n1及びn2の組み合わせとしては、例えば、n1=0、n2=2の組み合わせ、n1=2、n2=2の組み合わせが好ましい。
[Y 1 ]

In the general formula (V), a plurality of Y 1 are each independently a single bond or a carbon which may contain an ester structure [—C (= O) —O—] and / or an ether structure (—O—). It is a divalent hydrocarbon group of the formulas 1 to 20. A plurality of Y 1 may be the same or different.
Examples of the divalent hydrocarbon group having ester structure and / or carbon atoms which may contain an ether structure 1~20, - (CH 2) n1 -X- (CH 2) n2 - group represented by (n1 and n2 Are each independently an integer from 0 to 10. However, both n1 and n2 are not 0. X is an ester group or an ether group.
When it is desired to increase the reaction rate, X is preferably an ester group.
n1 and n2 are preferably from 0 to 4, more preferably from 0 to 2. As a combination of n1 and n2, for example, a combination of n1 = 0 and n2 = 2, and a combination of n1 = 2 and n2 = 2 are preferable.

[R51

51は、水素原子または、炭素数1〜12の1価の炭化水素基である。R51における炭化水素基としては、特に限定されず、アルキル基、アルケニル基、アルキニル基等が挙げられる。R51としては、水素原子が好ましい。
[ R51 ]

R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. The hydrocarbon group for R 51 is not particularly limited, and includes an alkyl group, an alkenyl group, an alkynyl group, and the like. As R 51 , a hydrogen atom is preferable.

第1−1実施形態における一般式(V)で表される基の元となるトリイソシアネートの分子量は139以上1000以下であることが好ましい。
分子量の下限値は、150以上が好ましく、180以上がより好ましく、200以上が特に好ましい。また分子量の上限値は、800以下が好ましく、600以下がより好ましく、400以下が特に好ましい。分子量が上記下限値以上であることにより、結晶性を抑制しやすくなる。また、分子量が上記上限値以下であることにより、低粘度化を達成しやすくなる。
It is preferable that the molecular weight of the triisocyanate that is the base of the group represented by the general formula (V) in the 1-1 embodiment is from 139 to 1,000.
The lower limit of the molecular weight is preferably 150 or more, more preferably 180 or more, and particularly preferably 200 or more. The upper limit of the molecular weight is preferably 800 or less, more preferably 600 or less, and particularly preferably 400 or less. When the molecular weight is equal to or more than the above lower limit, crystallinity is easily suppressed. In addition, when the molecular weight is equal to or less than the above upper limit, lower viscosity can be easily achieved.

第1−1実施形態における一般式(V)で表される基の元となるトリイソシアネートは、低粘度とするため、複数あるY31中の炭化水素基が脂肪族基および/または芳香族基を有することが好ましい。また、R51は水素であることが好ましい。
また、複数あるYが炭化水素基のみで構成されていることが好ましい。
また、塗料組成物の硬化剤として使用した際の耐候性を良好とするため、複数あるY中の炭化水素基が脂肪族基または脂環族基を有することが好ましい。
別途、耐熱性を保持するため、複数あるYのうち少なくとも1つが、エステル基を有することが好ましい。
また、耐加水分解性を保持するためには、複数あるYのうち少なくとも1つが、エーテル構造を含む炭化水素基、または炭化水素基を有することが好ましい。
In order to reduce the viscosity of the triisocyanate that is the source of the group represented by the general formula (V) in the 1-1 embodiment, a plurality of hydrocarbon groups in Y 31 are an aliphatic group and / or an aromatic group. It is preferable to have Also, R 51 is preferably hydrogen.
In addition, it is preferable that a plurality of Y 1 be composed of only a hydrocarbon group.
Further, in order to improve the weather resistance when used as a curing agent of the coating composition, but preferably the hydrocarbon group in the plurality of Y 1 is an aliphatic group or an alicyclic group.
Separately, in order to maintain heat resistance, at least one of the plurality of Y 1 preferably has an ester group.
Further, in order to maintain hydrolysis resistance, at least one of the plurality of Y 1 preferably has a hydrocarbon group containing an ether structure or a hydrocarbon group.

第1−1実施形態における一般式(V)で表される基の元となるトリイソシアネートとしては、例えば、特公昭63−15264号公報に開示されている4−イソシアネートメチル−1,8−オクタメチレンジイソシアネート(以下、「NTI」と称する場合がある、分子量251)、特開昭57−198760号公報に開示されている1,3,6−ヘキサメチレントリイソシアネート(以下、「HTI」と称する場合がある、分子量209)、特公平4−1033号公報に開示されているビス(2−イソシアナトエチル)2−イソシアナトグルタレート(以下、GTIと言う、分子量311)、特開昭53−135931号公報に開示されているリジントリイソシアネート(以下、LTIと言う、分子量267)等が挙げられる。
これらの中では、イソシアネート基の反応性をより向上できる観点から、NTI、GTI又はLTIが好ましく、NTI又はLTIがより好ましく、LTIが特に好ましい。
Examples of the triisocyanate that is a source of the group represented by the general formula (V) in the 1-1 embodiment include 4-isocyanatomethyl-1,8-octaphthalate disclosed in JP-B-63-15264. Methylene diisocyanate (hereinafter sometimes referred to as “NTI”, molecular weight 251), 1,3,6-hexamethylene triisocyanate (hereinafter referred to as “HTI”) disclosed in JP-A-57-198760. Bis (2-isocyanatoethyl) 2-isocyanatoglutarate (hereinafter referred to as GTI, molecular weight 311) disclosed in JP-B-4-1033, JP-A-53-135931. Lysine triisocyanate (hereinafter, referred to as LTI, molecular weight 267) and the like.
Among these, NTI, GTI or LTI is preferable, NTI or LTI is more preferable, and LTI is particularly preferable from the viewpoint of further improving the reactivity of the isocyanate group.

第1−1実施形態における一般式(V)で表される基の元となるトリイソシアネートは、アミノ酸誘導体やエーテルアミン、アルキルトリアミン等のアミンをイソシアネート化して得ることができる。アミノ酸誘導体としては、例えば2,5−ジアミノ吉草酸、2,6−ジアミノヘキサン酸、アスパラギン酸、グルタミン酸等を用いることができる。これらアミノ酸はジアミンモノカルボン酸またはモノアミンジカルボン酸であるので、カルボキシル基を、例えばエタノールアミン等のアルカノールアミンでエステル化する。これにより、得られるエステル基を有するトリアミンはホスゲン化等によりエステル構造を含むトリイソシアネートとすることができる。
エーテルアミンとしては、例えば、ポリオキシアルキレントリアミンである三井化学ファイン社の商品名「D403」等が挙げられる。これはトリアミンであり、アミンのホスゲン化等によりエーテル構造を含むトリイソシアネートとすることができる。
アルキルトリアミンとしては、例えば、トリイソシアナトノナン(4−アミノメチル−1,8−オクタンジアミン)等が挙げられる。これはトリアミンであり、アミンのホスゲン化等により炭化水素のみを含むトリイソシアネートとすることができる。
The triisocyanate serving as the base of the group represented by the general formula (V) in the 1-1 embodiment can be obtained by isocyanating an amino acid derivative or an amine such as an etheramine or an alkyltriamine. As the amino acid derivative, for example, 2,5-diaminovaleric acid, 2,6-diaminohexanoic acid, aspartic acid, glutamic acid and the like can be used. Since these amino acids are diamine monocarboxylic acids or monoamine dicarboxylic acids, the carboxyl group is esterified with an alkanolamine such as ethanolamine. Thereby, the obtained triamine having an ester group can be converted into a triisocyanate having an ester structure by phosgenation or the like.
Examples of the ether amine include “D403”, a product name of Mitsui Chemical Fine Inc., which is a polyoxyalkylene triamine. This is a triamine, and can be converted to a triisocyanate containing an ether structure by phosgenation of an amine or the like.
Examples of the alkyltriamine include triisocyanatononane (4-aminomethyl-1,8-octanediamine) and the like. This is a triamine, and can be converted into a triisocyanate containing only a hydrocarbon by phosgenation of the amine or the like.

イミノオキサジアジンジオン構造、またはイソシアヌレート構造を生成する方法として、触媒を用いる方法がある。例えば、一般に触媒として知られている下記(1)〜(10)の触媒が使用できる。
(1)テトラメチルアンモニウムフルオリド水和物、テトラエチルアンモニウムフルオリド等の、一般式M[Fn]、または一般式M[Fn(HF)m]で表される(ポリ)フッ化水素(上記一般式中、mおよびnは、m/n>0の関係を満たす整数であり、Mはn荷電カチオン(混合物)または合計でn価の1個以上のラジカルを表す。)
(2)3,3,3−トリフルオロカルボン酸;4,4,4,3,3−ペンタフルオロブタン酸;5,5,5,4,4,3,3−ヘプタフルオロペンタン酸;3,3−ジフルオロプロパ−2−エン酸等の一般式R−C(2R’)−C(O)O−、または一般式R=CR’−C(O)O−(上記一般式中、RおよびRは、必要に応じて分岐状、環状、および/または不飽和の炭素数1〜30のパーフルオロアルキル基であり、R’は水素原子、炭素数1〜20のアルキル基、およびアリール基からなる群から選択され、必要に応じてヘテロ原子を含有する。複数あるR’は、それぞれ同一であってもよく異なっていてもよい。)と、第4級アンモニウムカチオン、または第4級ホスホニウムカチオンからなる化合物。
(3)テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等のテトラアルキルアンモニウムのハイドロオキサイド;その酢酸塩、オクチル酸塩、ミリスチン酸塩、安息香酸塩等の有機弱酸塩、
(4)トリメチルヒドロキシエチルアンモニウム、トリメチルヒドロキシプロピルアンモニウム、トリエチルヒドロキシエチルアンモニウム、トリエチルヒドロキシプロピルアンモニウム等のヒドロキシアルキルアンモニウムのハイドロオキサイド;その酢酸塩、オクチル酸塩、ミリスチン酸塩、安息香酸塩等の有機弱酸塩、
(5)酢酸、カプロン酸、オクチル酸、ミリスチン酸等のアルキルカルボン酸の錫、亜鉛、鉛等の金属塩、
(6)ナトリウム、カリウム等の金属アルコラート、
(7)ヘキサメチレンジシラザン等のアミノシリル基含有化合物、
(8)マンニッヒ塩基類、
(9)第3級アミン類とエポキシ化合物との併用、
(10)トリブチルホスフィン等の燐系化合物、
等が挙げられる。
中でも、触媒としては、入手容易性の観点から、テトラメチルアンモニウムフルオリド水和物が好ましい。また、安全性の観点から、(2)が好ましい。また、不要な副生成物を生じさせにくい観点から、4級アンモニウムの有機弱酸塩が好ましい。
As a method for producing an iminooxadiazinedione structure or an isocyanurate structure, there is a method using a catalyst. For example, the following catalysts (1) to (10) generally known as catalysts can be used.
(1) (poly) hydrogen fluoride represented by general formula M [Fn] or general formula M [Fn (HF) m] such as tetramethylammonium fluoride hydrate, tetraethylammonium fluoride, etc. In the formula, m and n are integers satisfying the relationship of m / n> 0, and M represents an n-charged cation (mixture) or one or more radicals having a total of n valence.)
(2) 3,3,3-trifluorocarboxylic acid; 4,4,4,3,3-pentafluorobutanoic acid; 5,5,5,4,4,3,3-heptafluoropentanoic acid; General formula R 1 -C (2R ′) — C (O) O— such as 3-difluoroprop-2-enoic acid or general formula R 2 = CR′—C (O) O— (in the above general formula, R 1 and R 2 are, if necessary, a branched, cyclic, and / or unsaturated perfluoroalkyl group having 1 to 30 carbon atoms, R ′ is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, And a group containing an aryl group and optionally containing a hetero atom. A plurality of R's may be the same or different.) And a quaternary ammonium cation or a quaternary ammonium cation. A compound comprising a quaternary phosphonium cation.
(3) Tetraalkylammonium hydroxides such as tetramethylammonium, tetraethylammonium and tetrabutylammonium; organic acid salts thereof such as acetates, octylates, myristates and benzoates;
(4) Hydroxides of hydroxyalkylammonium such as trimethylhydroxyethylammonium, trimethylhydroxypropylammonium, triethylhydroxyethylammonium, and triethylhydroxypropylammonium; organic weak acids such as acetates, octylates, myristates, and benzoates; salt,
(5) metal salts such as tin, zinc and lead of alkyl carboxylic acids such as acetic acid, caproic acid, octylic acid and myristic acid;
(6) metal alcoholates such as sodium and potassium,
(7) an aminosilyl group-containing compound such as hexamethylene disilazane;
(8) Mannich bases,
(9) a combination of a tertiary amine and an epoxy compound,
(10) phosphorus compounds such as tributylphosphine,
And the like.
Among them, tetramethylammonium fluoride hydrate is preferable as the catalyst from the viewpoint of availability. From the viewpoint of safety, (2) is preferable. In addition, a quaternary ammonium organic weak acid salt is preferable from the viewpoint that unnecessary by-products are not easily generated.

これらの触媒は、触媒混合性の観点から、溶剤で希釈、または溶剤とともに添加しても良い。溶剤としては、例えば、1−メチルピロリドン、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、メチルエチルケトン、アセトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、エタノール、メタノール、iso−プロパノール、1−プロパノール、iso−ブタノール、1−ブタノール、2−エチルヘキサノール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、酢酸エチル、酢酸イソプロピル、酢酸ブチル、トルエン、キシレン、ペンタン、iso−ペンタン、ヘキサン、iso−ヘキサン、シクロヘキサン、ソルベントナフサ、ミネラルスピリット、ジメチルホルムアミド等を挙げることができる。これらの触媒は、単独で用いてもよく、2種以上を混合して用いてもよい。
中でも、溶剤としては、イミノオキサジアジンジオン生成の観点から、エタノール、メタノール、iso−プロパノール、1−プロパノール、iso−ブタノール、1−ブタノール、2−エチルヘキサノール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4−ブタンジオール、または1,3−ブタンジオールが好ましく、iso−ブタノール、1−ブタノール、または2−エチルヘキサノールがより好ましい。
These catalysts may be diluted with a solvent or added together with the solvent, from the viewpoint of catalyst mixing properties. As the solvent, for example, 1-methylpyrrolidone, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether, methyl ethyl ketone, acetone, methyl isobutyl ketone, Propylene glycol monomethyl ether acetate, ethanol, methanol, iso-propanol, 1-propanol, iso-butanol, 1-butanol, 2-ethylhexanol, cyclohexanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, , 3-butanediol, ethyl acetate, isopropyl acetate, butyl acetate, toluene, xylene, pentane, iso- pentane, hexane, iso- hexane, cyclohexane, solvent naphtha, mineral spirits, dimethylformamide and the like. These catalysts may be used alone or in combination of two or more.
Among them, as the solvent, from the viewpoint of iminooxadiazinedione production, ethanol, methanol, iso-propanol, 1-propanol, iso-butanol, 1-butanol, 2-ethylhexanol, cyclohexanol, ethylene glycol, diethylene glycol, triethylene glycol Ethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, or 1,3-butanediol is preferred, and iso-butanol, 1-butanol, or 2-ethylhexanol is more preferred.

イミノオキサジアジンジオン構造、またはイソシアヌレート構造を生成する反応温度は、40℃以上120℃以下で行うことが好ましい。温度の下限値としては、50℃以上であることが好ましく、55℃以上であることがより好ましい。また、温度の上限値としては、100℃以下であることが好ましく、90℃以下であることがより好ましく、80℃以下であることがさらに好ましい。反応温度が上記下限値以上であることで、反応速度を維持することが可能であり、また、反応温度が上記上限値以下であることで、ポリイソシアネート組成物の着色を抑制することができる。
反応は、特に限定されないが、例えば、リン酸、酸性リン酸エステル等の酸性化合物の添加により停止する。
The reaction temperature for forming the iminooxadiazinedione structure or the isocyanurate structure is preferably from 40 ° C to 120 ° C. The lower limit of the temperature is preferably 50 ° C. or higher, more preferably 55 ° C. or higher. Further, the upper limit of the temperature is preferably 100 ° C. or lower, more preferably 90 ° C. or lower, and further preferably 80 ° C. or lower. When the reaction temperature is equal to or higher than the lower limit, the reaction rate can be maintained. When the reaction temperature is equal to or lower than the upper limit, coloring of the polyisocyanate composition can be suppressed.
The reaction is not particularly limited, but is stopped by, for example, addition of an acidic compound such as phosphoric acid or an acidic phosphoric acid ester.

第1−1実施形態のポリイソシアネート組成物の転化率は、1%以上100%以下であることが好ましく、10%以上80%以下であることがより好ましく、20%以上70%以下が特に好ましい。上記下限値以上では、硬化性が優れる傾向にあり、上記上限値以下では、粘度が低く作業性が優れる傾向にある。   The conversion of the polyisocyanate composition of Embodiment 1-1 is preferably 1% or more and 100% or less, more preferably 10% or more and 80% or less, and particularly preferably 20% or more and 70% or less. . Above the lower limit, the curability tends to be excellent, and below the upper limit, the viscosity tends to be low and the workability tends to be excellent.

前記、転化率はゲルパーミッションクロマトグラフ(以下「GPC」という)を用い、ポリスチレン基準の数平均分子量により、未反応トリイソシアネートよりも数平均分子量の大きなピークの面積割合とした。   The conversion was determined by gel permeation chromatography (hereinafter referred to as "GPC"), and the area ratio of the peak having a number average molecular weight larger than that of the unreacted triisocyanate was determined by the number average molecular weight based on polystyrene.


第1−1実施形態のポリイソシアネート組成物が有するイソシアヌレート構造に対して、イミノオキサジアジンジオン構造のモル比率の下限値は、0.01以上であることが好ましく、0.02以上であることがより好ましく、0.05以上であることがさらに好ましく、0.1以上であることが特に好ましい。また、モル比率の上限値としては、1.5以下であることが好ましく、1.3以下であることがより好ましく、0.8以下であることがさらに好ましく、0.4以下であることが特に好ましい。モル比率が上記下限値以上であると、下地塗膜との密着性がより良好となる傾向にあり、また、モル比率が上記上限値以下であると、乾燥性がより良好となる傾向にある。

The lower limit of the molar ratio of the iminooxadiazinedione structure to the isocyanurate structure of the polyisocyanate composition of the 1-1 embodiment is preferably 0.01 or more, and more preferably 0.02 or more. More preferably, it is more preferably 0.05 or more, and particularly preferably 0.1 or more. Further, the upper limit of the molar ratio is preferably 1.5 or less, more preferably 1.3 or less, further preferably 0.8 or less, and more preferably 0.4 or less. Particularly preferred. When the molar ratio is equal to or more than the lower limit, the adhesiveness with the underlying coating film tends to be better, and when the molar ratio is equal to or less than the upper limit, the drying property tends to be better. .

第1−1実施形態のポリイソシアネート組成物中のポリイソシアネート化合物の含有量は、特に限定されないが、1質量%以上100質量%以下であることが好ましく、10質量%以上90質量%以下であることがより好ましく、12質量%以上80質量%以下であることがさらに好まく、15質量%以上77質量%以下であることがさらに好ましく、15質量%以上75質量%以下であることがさらに好ましく、20質量%以上70質量%以下であることが特に好ましい。上記下限値以上であると、耐候性が優れる傾向にあり、上記上限値以下では、粘度が低く作業性が優れる傾向にある。   The content of the polyisocyanate compound in the polyisocyanate composition of Embodiment 1-1 is not particularly limited, but is preferably 1% by mass or more and 100% by mass or less, and is preferably 10% by mass or more and 90% by mass or less. More preferably, it is 12% by mass or more and 80% by mass or less, further preferably 15% by mass or more and 77% by mass or less, further preferably 15% by mass or more and 75% by mass or less. , 20 mass% or more and 70 mass% or less. When it is at least the lower limit, weather resistance tends to be excellent, and when it is at most the upper limit, viscosity tends to be low and workability tends to be excellent.

また、第1−1実施形態のポリイソシアネート組成物には、前記一般式(I)、または前記一般式(II)で表されるポリイソシアネート化合物以外に、ウレトジオン構造を有する化合物、アロファネート構造を有する化合物、ウレタン構造を有する化合物、またはビュレット構造を有する化合物が含まれてもよい。
ウレトジオン構造、アロファネート構造、ウレタン構造、またはビュレット構造は、それぞれ次式(VII)、(VIII)、(IX)、または(X)に示される。中でも、塗膜硬度の観点から、アロファネート構造を有する化合物、またはウレトジオン構造を有する化合物が好ましい。
In addition, the polyisocyanate composition of Embodiment 1-1 has a compound having an uretdione structure and an allophanate structure in addition to the polyisocyanate compound represented by the general formula (I) or the general formula (II). A compound, a compound having a urethane structure, or a compound having a buret structure may be included.
The uretdione structure, allophanate structure, urethane structure, or buret structure is represented by the following formula (VII), (VIII), (IX), or (X), respectively. Among them, a compound having an allophanate structure or a compound having a uretdione structure is preferable from the viewpoint of coating film hardness.

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

第1−1実施形態のポリイソシアネート組成物は、下記一般式(V)−1で示されるトリイソシアネートをさらに含むことが好ましい。・一般式(V)−1   It is preferable that the polyisocyanate composition of the first embodiment further includes a triisocyanate represented by the following general formula (V) -1. -General formula (V) -1


Figure 0006664509
Figure 0006664509

[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。][In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]

〔R51、Y

一般式(V)−1中のR51、Yに関する説明は、前記一般式(V)中のR51、Yに関する説明と同様である。
第1−1実施形態においては、複数あるYの少なくとも1つはエステル構造および/またはエーテル構造を含むことが好ましい。
また、一般式(V)−1中のR51、Yは、前記一般式(V)中のR51、Yと同一であってもよく異なっていてもよい。
[R 51 , Y 1 ]

Description of the general formula (V) R 51, Y 1 in the -1 is the same as the description of R 51, Y 1 in the general formula (V).
In the 1-1 embodiment, at least one of the plurality of Y 1 preferably contains an ester structure and / or an ether structure.
In general formula (V) R 51, Y 1 in the -1, R 51, Y 1 and may be different may be the same in the general formula (V).

公知のポリイソシアネート組成物、例えば1,6−ヘキサメチレンジイソシアネート、1,5−ペンタンジイソシアネート、トルエンジイソシアネートもしくはイソホロンジイソシアネートのような揮発性ジイソシアネートから作製する場合、未反応の出発ジイソシアネートを、例えば蒸留により最終生成物からポリイソシアネート組成物の重量に対し2重量%未満、好ましくは1重量%未満の程度まで除去する必要がある。しかしながら第1−1実施形態のポリイソシアネート組成物を製造する場合は、第1−1実施形態に用いるトリイソシアネートのNCO基数が3個のため、第1−1実施形態のポリイソシアネート組成物のポリオールとの架橋能力を低下させず、必ずしも除去する必要がない。
未反応のトリイソシアネートを除去する場合は、薄膜蒸留法や溶剤抽出法等により、ポリイソシアネート組成物と分離することができる。
When made from known polyisocyanate compositions, e.g., volatile diisocyanates such as 1,6-hexamethylene diisocyanate, 1,5-pentane diisocyanate, toluene diisocyanate or isophorone diisocyanate, the unreacted starting diisocyanate is finalized, for example, by distillation. It is necessary to remove from the product to less than 2% by weight, preferably less than 1% by weight, based on the weight of the polyisocyanate composition. However, when producing the polyisocyanate composition of the 1-1 embodiment, since the number of NCO groups of the triisocyanate used in the 1-1 embodiment is 3, the polyol of the polyisocyanate composition of the 1-1 embodiment is used. It does not necessarily reduce the cross-linking ability with the polymer and does not necessarily need to be removed.
When removing unreacted triisocyanate, it can be separated from the polyisocyanate composition by a thin-film distillation method, a solvent extraction method, or the like.

第1−1実施形態のポリイソシアネート組成物の25℃における粘度は、特に制限を受けないが5mPa・s以上1000mPa・s以下であることが好ましく、8mPa・s以上800mPa・sm以下がより好ましく、10mPa・s以上500mPa・sm以下がさらに好ましく、10mPa・s以上100mPa・sm以下が特に好ましい。上記下限値以上では、硬化性が優れる傾向があり、上記上限値以下では、作業性が優れる傾向がある。粘度は、E型粘度計(トキメック社製)を用いることによって測定することができる。   The viscosity at 25 ° C. of the polyisocyanate composition of the 1-1 embodiment is not particularly limited, but is preferably 5 mPa · s or more and 1000 mPa · s or less, more preferably 8 mPa · s or more and 800 mPa · sm or less, It is more preferably from 10 mPa · s to 500 mPa · sm, particularly preferably from 10 mPa · s to 100 mPa · sm. Above the lower limit, curability tends to be excellent, and below the upper limit, workability tends to be excellent. The viscosity can be measured by using an E-type viscometer (manufactured by Tokimec).


第1−1実施形態のポリイソシアネート組成物においては、前記一般式(II)で表されるポリイソシアネート化合物を含み、ポリイソシアネート組成物のNCO%から算出される、理論反応率が47%以下であることが好ましい。
前記理論反応率は、1%以上47%以下がより好ましく、10%以上45%以下がさらに好ましく、15%以上45%%以下が特に好ましい。上記下限値以上では、硬化性が優れる傾向にあり、上記上限値以下では、粘度が低く作業性が優れるとともに、塗膜の耐クラック性が優れる傾向にある。

The polyisocyanate composition of the 1-1 embodiment includes a polyisocyanate compound represented by the general formula (II), and has a theoretical reaction rate of 47% or less, calculated from NCO% of the polyisocyanate composition. Preferably, there is.
The theoretical reaction rate is more preferably 1% or more and 47% or less, further preferably 10% or more and 45% or less, and particularly preferably 15% or more and 45% or less. Above the lower limit, the curability tends to be excellent, and below the upper limit, the viscosity tends to be low, the workability is excellent, and the crack resistance of the coating film tends to be excellent.

前記理論反応率は、すべての多量体が3量体であると仮定したときの反応率としてあらわされるものである。理論反応率c(%)は、合成したポリイソシアネート組成物のNCO%(x%)、使用したトリイソシアネートのNCO%(a%)(下記式[B]参照)、およびトリイソシアネート3量体のNCO%(b%)(下記式[C]参照)から、下記式[D]により求められる。
使用したトリイソシアネートのNCO%:(a)=(NCOの分子量/使用したトリイソシアネートの分子量)×100(%)[B]
トリイソシアネート3量体のNCO%:(b)=(NCOの分子量/トリイソシアネート3量体の分子量)×100(%)[C]
理論反応率c(%)=[(x-a)/(b-a)]×100 (%)[D]
The theoretical conversion is expressed as a conversion assuming that all multimers are trimers. The theoretical reaction rate c (%) is calculated based on the NCO% (x%) of the synthesized polyisocyanate composition, the NCO% (a%) of the used triisocyanate (see the following formula [B]), and the triisocyanate trimer. From NCO% (b%) (see the following formula [C]), it can be obtained by the following formula [D].
NCO% of triisocyanate used: (a) = (molecular weight of NCO / molecular weight of triisocyanate used) × 100 (%) [B]
NCO% of triisocyanate trimer: (b) = (molecular weight of NCO / molecular weight of triisocyanate trimer) × 100 (%) [C]
Theoretical reaction rate c (%) = [(xa) / (ba)] x 100 (%) [D]


また、第1−1実施形態のポリイソシアネート組成物においては、前記一般式(II)で表されるポリイソシアネート化合物を含み、ポリイソシアネート組成物のNCO%から算出される、理論反応率は、95%以上150%以下が好まし。前記理論反応率は、100%以上130以下がより好ましく、100%以上120%以下が特に好ましい。上記下限値以上では、塗膜の硬度および耐水性が優れる傾向にあり、上記上限値以下では、溶剤の使用量が少なく、塗料の低溶剤化が可能な傾向にある。

The polyisocyanate composition of the 1-1 embodiment contains the polyisocyanate compound represented by the general formula (II), and has a theoretical conversion rate of 95 calculated from NCO% of the polyisocyanate composition. % Or more and 150% or less is preferable. The theoretical reaction rate is more preferably 100% or more and 130 or less, particularly preferably 100% or more and 120% or less. Above the lower limit, the hardness and water resistance of the coating film tend to be excellent, and below the upper limit, the amount of solvent used is small, and the solvent of the paint tends to be low.


第1−1実施形態においては、前記一般式(II)で表されるポリイソシアネート化合物(A)と前記一般式(V)−1で表されるトリイソシアネート化合物(B)とを含み、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる、前記ポリイソシアネート化合物(A)の数平均分子量のピーク面積(A)と、前記トリイソシアネート化合物(B)の数平均分子量のピーク面積(B)と、の面積比率((A)/[(A)+(B)])が0.8以上1未満であることが好ましい。
GPC測定による面積比率((A)/[(A)+(B)])は実施例に記載の方法により算出できる。
GPC測定による、(A)と(B)の面積比率((A)/[(A)+(B)])は、0.85以上1未満であることが好ましく、0.9以上1未満であることがより好ましい。

In a 1-1 embodiment, the gel permeate includes a polyisocyanate compound (A) represented by the general formula (II) and a triisocyanate compound (B) represented by the general formula (V) -1. Of the peak area (A) of the number average molecular weight of the polyisocyanate compound (A) and the peak area (B) of the number average molecular weight of the triisocyanate compound (B), which are obtained by the application chromatography (GPC) measurement. The area ratio ((A) / [(A) + (B)]) is preferably 0.8 or more and less than 1.
The area ratio ((A) / [(A) + (B)]) by GPC measurement can be calculated by the method described in Examples.
The area ratio ((A) / [(A) + (B)]) of (A) and (B) by GPC measurement is preferably 0.85 or more and less than 1, and is 0.9 or more and less than 1. More preferably, there is.


また、前記一般式(II)中のR21のすべてが前記一般式(V)で示されるトリイソシアネートであるモノマー3量体を化合物(C)とした時、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる、前記ポリイソシアネート化合物(A)の数平均分子量のピーク面積(A)と、前記トリイソシアネート化合物(B)の数平均分子量のピーク面積(B)と、前記化合物(C)の数平均分子量のピーク面積(C)との面積比率((C)/[(A)+(B)])は、乾燥性、下地基材への密着性、作業性を全て好適とする観点から0.3以上1未満であることが好ましい。上記比率は0.35以上1未満であることがより好ましく、0.4以上1未満であることが特に好ましい。

When a monomer trimer in which all of R 21 in the general formula (II) is a triisocyanate represented by the general formula (V) is a compound (C), measurement by gel permeation chromatography (GPC) is performed. The peak area (A) of the number average molecular weight of the polyisocyanate compound (A), the peak area (B) of the number average molecular weight of the triisocyanate compound (B), and the number average of the compound (C) obtained by The area ratio of the molecular weight to the peak area (C) ((C) / [(A) + (B)]) is from the viewpoint of optimizing all the drying properties, adhesion to the base material, and workability. It is preferably 3 or more and less than 1. The ratio is more preferably 0.35 or more and less than 1, and particularly preferably 0.4 or more and less than 1.


また、イソシアネート基官能価は、乾燥性、下地基材への密着性、作業性を全て好適とする観点から、4以上12以下であることが好ましい。上記官能価は、5以上11以下であることがより好ましく、6以上9以下であることが特に好ましい。

Further, the isocyanate group functionality is preferably 4 or more and 12 or less from the viewpoint of optimizing all of the drying property, the adhesion to the base substrate, and the workability. The functionality is more preferably 5 or more and 11 or less, and particularly preferably 6 or more and 9 or less.

〔第1−2実施形態〕

本発明の第1−2実施形態のポリイソシアネート組成物は、一般式(II)および(III)で表されるポリイソシアネート化合物を含み、イソシアヌレート構造とアロファネート構造とのモル比が100/0.1〜100/15である。
[1-2nd Embodiment]

The polyisocyanate composition of the 1-2 embodiment of the present invention contains the polyisocyanate compounds represented by the general formulas (II) and (III), and the molar ratio of the isocyanurate structure to the allophanate structure is 100/0. 1 to 100/15.

Figure 0006664509
Figure 0006664509

Figure 0006664509
[一般式(II)および一般式(III)中、複数あるR21およびR31は、それぞれ独立に、有機基であり、複数あるR21およびR31のうち少なくとも1つは一般式(V)で表される基である。複数あるR21およびR31は、それぞれ同一であってもよく異なっていてもよい。R32は、1価以上のアルコールから1つのヒドロキシ基を除去した残基である。]
Figure 0006664509
[In the general formulas (II) and (III), a plurality of R 21 and R 31 are each independently an organic group, and at least one of the plurality of R 21 and R 31 is a group represented by the general formula (V) Is a group represented by A plurality of R 21 and R 31 may be the same or different. R 32 is a residue obtained by removing one hydroxy group from a monovalent or higher alcohol. ]

Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。] 以下、一般式(II)、一般式(III)および一般式(V)について説明する。
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. Hereinafter, general formulas (II), (III) and (V) will be described.

・一般式(II)
-General formula (II)

Figure 0006664509
一般式(II)で表されるポリイソシアネート化合物は、イソシアヌレート構造を有する。イソシアヌレート構造は、トリイソシアネートモノマー3分子からなるポリイソシアネートである。
Figure 0006664509
The polyisocyanate compound represented by the general formula (II) has an isocyanurate structure. The isocyanurate structure is a polyisocyanate composed of three triisocyanate monomer molecules.

[R21

一般式(II)において、複数あるR21は、それぞれ独立に、有機基である。複数あるR21は、それぞれ同一であってもよく異なっていてもよい。
第1−2実施形態においては、3つのR21のうち、少なくとも1つは上記一般式(V)で表される基であり、2つのR21が上記一般式(V)で表される基であることが好ましく、3つのR21すべてが上記一般式(V)で表される基であることがより好ましい。
[R 21 ]

In the general formula (II), a plurality of R 21 are each independently an organic group. A plurality of R 21 may be the same or different.
In the first 1-2 embodiment, of the three R 21, at least one is a group represented by the general formula (V), groups in which two R 21 is represented by the general formula (V) It is more preferable that all three R 21 are groups represented by the above general formula (V).

21のうち、上記一般式(V)で表される基以外の基としては、例えば、テトラメチレンジイソシアネート(TMDI)、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、2,2,4−トリメチルヘキサン−1,6−ジイソシアネート、2−メチルペンタン−1,5−ジイソシアネート(MPDI)、1,3−ビス(イソシアナトメチル)−シクロヘキサン(1,3−H6−XDI)、3(4)−イソシアナトメチル−1−メチル−シクロヘキシルイソアネート(IMCI);イソホロンジイソシアネート(IPDI)、ビス(イソシアナトメチル)−ノルボルナン(NBDI)、1,3−ビス(イソシアナトメチル)−ベンゼン、1,3−ビス(2−イソシアナトプロピル−2)ベンゼンおよび4,4‘−ジシクロヘキシルメタンジイソシアネート(H12MDI)から1つのイソシアネート基を除去した残基が挙げられる。Examples of the group other than the group represented by the general formula (V) in R 21 include, for example, tetramethylene diisocyanate (TMDI), pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), 2,2,4 -Trimethylhexane-1,6-diisocyanate, 2-methylpentane-1,5-diisocyanate (MPDI), 1,3-bis (isocyanatomethyl) -cyclohexane (1,3-H6-XDI), 3 (4) -Isocyanatomethyl-1-methyl-cyclohexylisoanate (IMCI); isophorone diisocyanate (IPDI), bis (isocyanatomethyl) -norbornane (NBDI), 1,3-bis (isocyanatomethyl) -benzene, 1, 3-bis (2-isocyanatopropyl-2) benzene and And a residue obtained by removing one isocyanate group from 4,4′-dicyclohexylmethane diisocyanate (H12MDI).

・一般式(III)
・ General formula (III)

Figure 0006664509
一般式(III)で表されるポリイソシアネート化合物は、アロファネート構造を有する。アロファネート構造は、トリイソシアネートモノマー2分子と1価以上のアルコールからなるポリイソシアネートである。
Figure 0006664509
The polyisocyanate compound represented by the general formula (III) has an allophanate structure. The allophanate structure is a polyisocyanate comprising two molecules of a triisocyanate monomer and a monohydric or higher alcohol.

[R31

一般式(III)において、複数あるR31は、それぞれ独立に、有機基である。複数あるR31は、それぞれ同一であってもよく異なっていてもよい。
第1−2実施形態においては、3つのR31のうち、少なくとも1つは上記一般式(V)で表される基であり、2つのR31が上記一般式(V)で表される基であることが好ましく、3つのR31すべてが上記一般式(V)で表される基であることがより好ましい。
[R 31 ]

In the general formula (III), a plurality of R 31 are each independently an organic group. A plurality of R 31 may be the same or different.
In the first 1-2 embodiment, of the three R 31, at least one is a group represented by the general formula (V), groups in which two R 31 is represented by the general formula (V) It is more preferable that all three R 31 are groups represented by the above general formula (V).

31のうち、上記一般式(V)で表される基以外の基としては、例えば、上述の「・一般式(II)」で例示されたものと同様のものが挙げられる。Examples of the group other than the group represented by the general formula (V) in R 31 include, for example, the same groups as those exemplified in the above-described “• General formula (II)”.

[R32

一般式(III)において、R32は、1価以上のアルコールから1つのヒドロキシ基を除去した残基である。
32として、より具体的には、例えば、メタノール、エタノール、1−プロパノール、2−ブロパノール、1−ブタノール、2−ブタノール、iso−ブタノール、1−ペンタノール、2−ペンタノール、イソアミルアルコール、1−ヘキサノール、2−ヘキサノール、1−ヘプタノール、1−オクタノール、2−エチル−1−ヘキサノール、3,3,5−トリメチル−1−ヘキサノール、トリデカノール、ペンタデカノール等の飽和脂肪族アルコール、シクロヘキサノール、シクロペンタノール等の飽和環状脂肪族アルコール、アリルアルコール、ブテノール、ヘキセノール、2−ヒドロキシエチルアクリレート等の不飽和脂肪族アルコール等の1価のアルコールから1つのヒドロキシ基を除去した残基である。
[ R32 ]

In the general formula (III), R 32 is a residue obtained by removing one hydroxyl group from monovalent or polyvalent alcohols.
More specifically, R 32 is, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, 1-pentanol, 2-pentanol, isoamyl alcohol, -Saturated aliphatic alcohols such as hexanol, 2-hexanol, 1-heptanol, 1-octanol, 2-ethyl-1-hexanol, 3,3,5-trimethyl-1-hexanol, tridecanol and pentadecanol, cyclohexanol, It is a residue obtained by removing one hydroxy group from a monohydric alcohol such as an unsaturated aliphatic alcohol such as a saturated cyclic aliphatic alcohol such as cyclopentanol, allyl alcohol, butenol, hexenol, or 2-hydroxyethyl acrylate.

例えば、エチレングリコール、プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,6−ヘキサンジオール、1,4−ヘキサンジオール、1,6−シクロヘキサンジオール、1,4−シクロヘキサンジオール、メチルペンタンジオール、シクロヘキサンジメタノール、メチルペンタンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、水添ビスフェノールA等の2価のアルコールから1つのヒドロキシ基を除去した残基である。   For example, ethylene glycol, propanediol, 1,4-butanediol, 1,3-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,6-cyclohexanediol, 1,4-cyclohexanediol, A residue obtained by removing one hydroxy group from a dihydric alcohol such as methylpentanediol, cyclohexanedimethanol, methylpentanediol, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, hydrogenated bisphenol A, etc. .

例えば、グリセリン、2−メチル−2−ヒドロキシメチル−1,3−プロパンジオール、2,4−ヒドロキシ−3−ヒドロキシメチルペンタン、1,2,6−ヘキサントリオール等の3価のアルコールから1つのヒドロキシ基を除去した残基である。   For example, one hydroxyl group is formed from a trihydric alcohol such as glycerin, 2-methyl-2-hydroxymethyl-1,3-propanediol, 2,4-hydroxy-3-hydroxymethylpentane, 1,2,6-hexanetriol. This is the residue from which the group has been removed.

例えば、エリスロース等のテトリトール、キシリトール等のペンチトール、ソルビトール等のヘキシトールのような糖アルコール等の4価のアルコールから1つのヒドロキシ基を除去した残基である。   For example, it is a residue obtained by removing one hydroxy group from a tetrahydric alcohol such as sugar alcohol such as pentitol such as erythrose and pentitol such as xylitol and hexitol such as sorbitol.

例えば、フェノール、ベンジルフェノール、o−クレゾール、p−クレゾール、カテコール、エチルフェノール、オクチルフェノール、キシレノール、ナフトール、ノニルフェノール、ビスフェノールA等のフェノール類から1つのヒドロキシ基を除去した残基である。   For example, it is a residue obtained by removing one hydroxy group from phenols such as phenol, benzylphenol, o-cresol, p-cresol, catechol, ethylphenol, octylphenol, xylenol, naphthol, nonylphenol and bisphenol A.

例えば、上記のアルコールを原料としたポリエステルポリオール、ポリプロピレングリコール、ポリエチレングリコール、ポリテトラエチレングリコール等のアルコールから1つのヒドロキシ基を除去した残基であってもよい。
例えば、水酸基を有するアクリルポリオールから1つのヒドロキシ基を除去した残基であってもよい。
For example, a residue obtained by removing one hydroxy group from an alcohol such as polyester polyol, polypropylene glycol, polyethylene glycol, or polytetraethylene glycol using the above-mentioned alcohol as a raw material may be used.
For example, it may be a residue obtained by removing one hydroxy group from an acrylic polyol having a hydroxyl group.

中でも、実施形態1−2におけるR32としては、シリケートの相溶性、塗膜硬度の観点から、1価のアルコールから1つのヒドロキシ基を除去した残基が好ましく、炭素数が3〜9である1価のアルコーから1つのヒドロキシ基を除去した残基がより好ましく、1−ブタノール、iso−ブタノール、または2−エチル−1−ヘキサノールから1つのヒドロキシ基を除去した残基が最も好ましい。炭素数が3以上であれば、シリケートとの相溶性が良好であり、炭素数が9以下であれば、塗膜に十分な耐擦り傷性を付与する事が出来る。
Among these, as R 32 in the embodiment 1-2, the compatibility of the silicate from the viewpoint of film hardness is preferably monovalent removing residues one hydroxy group from an alcohol, carbon atoms is 3 to 9 A residue obtained by removing one hydroxy group from monovalent alcohol is more preferred, and a residue obtained by removing one hydroxy group from 1-butanol, iso-butanol, or 2-ethyl-1-hexanol is most preferred. When the carbon number is 3 or more, the compatibility with the silicate is good, and when the carbon number is 9 or less, sufficient scratch resistance can be imparted to the coating film.

第1−2実施形態のポリイソシアネート組成物は、イソシアヌレート構造とアロファネート構造とを有する。イソシアヌレート構造とアロファネート構造とのモル比は、100/0.1〜100/15の範囲であり、100/1〜100/12が好ましく、100/2〜100/10がより好ましく、100/4〜100/8がさらに好ましい。上記上限値以下であれば塗膜にした際の耐擦り傷性が良好で、上記下限値以上であればシリケートとの相溶性が十分である。なお、ポリイソシアネート組成物中のイソシアヌレート構造とアロファネート構造のモル比は、例えば、13C−NMRを用いて測定する事が出来る。The polyisocyanate composition of the first to second embodiments has an isocyanurate structure and an allophanate structure. The molar ratio between the isocyanurate structure and the allophanate structure is in the range of 100 / 0.1 to 100/15, preferably 100/1 to 100/12, more preferably 100/2 to 100/10, and more preferably 100/4. ~ 100/8 is more preferred. If it is less than the above upper limit, the abrasion resistance of the coating film is good, and if it is more than the above lower limit, the compatibility with the silicate is sufficient. The molar ratio between the isocyanurate structure and the allophanate structure in the polyisocyanate composition can be measured using, for example, 13 C-NMR.

・一般式(V) ・ General formula (V)

Figure 0006664509
[Y

一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造[−C(=O)−O−]および/またはエーテル構造(−O−)を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。
エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基としては、−(CHn1−X−(CHn2−で表される基(n1およびn2はそれぞれ独立して、0〜10の整数である。但し、n1およびn2の両方とも0になることはなく、n1、n2のうち、NCOと結合している側は1以上であることが好ましい。Xは、エステル基またはエーテル基である)。
反応速度を速めたい場合、Xがエステル基であることが好ましい。
n1及びn2は0〜4が好ましく、0〜2がより好ましい。n1及びn2の組み合わせとしては、例えば、n1=0、n2=2の組み合わせ、n1=2、n2=2の組み合わせが好ましい。
Figure 0006664509
[Y 1 ]

In the general formula (V), a plurality of Y 1 are each independently a single bond or a carbon which may contain an ester structure [—C (= O) —O—] and / or an ether structure (—O—). It is a divalent hydrocarbon group of the formulas 1 to 20. A plurality of Y 1 may be the same or different.
Examples of the divalent hydrocarbon group having ester structure and / or carbon atoms which may contain an ether structure 1~20, - (CH 2) n1 -X- (CH 2) n2 - group represented by (n1 and n2 Are each independently an integer from 0 to 10. However, both n1 and n2 do not become 0, and it is preferable that one of n1 and n2 bonded to NCO is 1 or more. X is an ester or ether group).
When it is desired to increase the reaction rate, X is preferably an ester group.
n1 and n2 are preferably from 0 to 4, more preferably from 0 to 2. As a combination of n1 and n2, for example, a combination of n1 = 0 and n2 = 2, and a combination of n1 = 2 and n2 = 2 are preferable.

[R51

51は、水素原子または、炭素数1〜12の1価の炭化水素基である。R51における炭化水素基としては、特に限定されず、アルキル基、アルケニル基、アルキニル基等が挙げられる。R51としては、水素原子が好ましい。
[ R51 ]

R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. The hydrocarbon group for R 51 is not particularly limited, and includes an alkyl group, an alkenyl group, an alkynyl group, and the like. As R 51 , a hydrogen atom is preferable.

第1−2実施形態における一般式(V)で表される基の元となるトリイソシアネートの分子量は139以上1000以下であることが好ましい。
分子量の下限値は、150以上が好ましく、180以上がより好ましく、200以上が特に好ましい。また分子量の上限値は、800以下が好ましく、600以下がより好ましく、400以下が特に好ましい。分子量が上記下限値以上であることにより、結晶性を抑制しやすくなる。また、分子量が上記上限値以下であることにより、低粘度化を達成しやすくなる。
It is preferable that the molecular weight of the triisocyanate which is the base of the group represented by the general formula (V) in the 1-2 embodiment is 139 or more and 1000 or less.
The lower limit of the molecular weight is preferably 150 or more, more preferably 180 or more, and particularly preferably 200 or more. The upper limit of the molecular weight is preferably 800 or less, more preferably 600 or less, and particularly preferably 400 or less. When the molecular weight is equal to or more than the above lower limit, crystallinity is easily suppressed. In addition, when the molecular weight is equal to or less than the above upper limit, lower viscosity can be easily achieved.

第1−2実施形態における一般式(V)で表される基の元となるトリイソシアネートは、低粘度とするため、複数あるY中の炭化水素基が脂肪族基および/または芳香族基を有することが好ましい。また、R51は水素であることが好ましい。
また、塗料組成物の硬化剤として使用した際の耐候性を良好とするため、複数あるY中の炭化水素基が脂肪族基または脂環族基を有することが好ましい。
また、複数あるYが炭化水素基のみで構成されていることが好ましい。
別途、耐熱性を保持するため、複数あるYのうち少なくとも1つが、エステル基を有することが好ましい。
また、耐加水分解性を保持するためには、複数あるY31のうち少なくとも1つが、エーテル構造を含む炭化水素基、または炭化水素基を有することが好ましい。
The triisocyanate that is the basis of the group represented by the general formula (V) in the first to second embodiments has a low viscosity, and therefore, a plurality of hydrocarbon groups in Y 1 are an aliphatic group and / or an aromatic group. It is preferable to have Also, R 51 is preferably hydrogen.
Further, in order to improve the weather resistance when used as a curing agent of the coating composition, but preferably the hydrocarbon group in the plurality of Y 1 is an aliphatic group or an alicyclic group.
In addition, it is preferable that a plurality of Y 1 be composed of only a hydrocarbon group.
Separately, in order to maintain heat resistance, at least one of the plurality of Y 1 preferably has an ester group.
In order to maintain hydrolysis resistance, at least one of the plurality of Y 31 preferably has a hydrocarbon group containing an ether structure or a hydrocarbon group.

第1−2実施形態における一般式(V)で表される基の元となるトリイソシアネートとしては、例えば、特公昭63−15264号公報に開示されている4−イソシアネートメチル−1,8−オクタメチレンジイソシアネート(以下、「NTI」と称する場合がある、分子量251)、特開昭57−198760号公報に開示されている1,3,6−ヘキサメチレントリイソシアネート(以下、「HTI」と称する場合がある、分子量209)、特公平4−1033号公報に開示されているビス(2−イソシアナトエチル)2−イソシアナトグルタレート(以下、GTIと言う、分子量311)、特開昭53−135931号公報に開示されているリジントリイソシアネート(以下、LTIと言う、分子量267)等が挙げられる。
これらの中では、イソシアネート基の反応性をより向上できる観点から、NTI、GTI、またはLTIが好ましく、NTIまたはLTIがより好ましく、LTIが特に好ましい。
Examples of the triisocyanate which is the basis of the group represented by the general formula (V) in the 1-2 embodiment include 4-isocyanatomethyl-1,8-octaphthalate disclosed in JP-B-63-15264. Methylene diisocyanate (hereinafter sometimes referred to as “NTI”, molecular weight 251), 1,3,6-hexamethylene triisocyanate (hereinafter referred to as “HTI”) disclosed in JP-A-57-198760. Bis (2-isocyanatoethyl) 2-isocyanatoglutarate (hereinafter referred to as GTI, molecular weight 311) disclosed in JP-B-4-1033, JP-A-53-135931. Lysine triisocyanate (hereinafter, referred to as LTI, molecular weight 267) and the like.
Among these, NTI, GTI, or LTI is preferable, NTI or LTI is more preferable, and LTI is particularly preferable, from the viewpoint of further improving the reactivity of the isocyanate group.

第1−2実施形態における一般式(V)で表される基の元となるトリイソシアネートは、アミノ酸誘導体やエーテルアミン、アルキルトリアミン等のアミンをイソシアネート化して得ることができる。アミノ酸誘導体としては、例えば2,5−ジアミノ吉草酸、2,6−ジアミノヘキサン酸、アスパラギン酸、グルタミン酸等を用いることができる。これらアミノ酸はジアミンモノカルボン酸またはモノアミンジカルボン酸であるので、カルボキシル基を、例えばエタノールアミン等のアルカノールアミンでエステル化する。これにより、得られるエステル基を有するトリアミンはホスゲン化等によりエステル構造を含むトリイソシアネートとすることができる。
エーテルアミンとしては、例えば、ポリオキシアルキレントリアミンである三井化学ファイン社の商品名「D403」等が挙げられる。これはトリアミンであり、アミンのホスゲン化等によりエーテル構造を含むトリイソシアネートとすることができる。
アルキルトリアミンとしては、例えば、トリイソシアナトノナン(4−アミノメチル−1,8−オクタンジアミン)等が挙げられる。これはトリアミンであり、アミンのホスゲン化等により炭化水素のみを含むトリイソシアネートとすることができる。
The triisocyanate serving as the base of the group represented by the general formula (V) in the first to second embodiments can be obtained by isocyanating an amino acid derivative or an amine such as an etheramine or an alkyltriamine. As the amino acid derivative, for example, 2,5-diaminovaleric acid, 2,6-diaminohexanoic acid, aspartic acid, glutamic acid and the like can be used. Since these amino acids are diamine monocarboxylic acids or monoamine dicarboxylic acids, the carboxyl group is esterified with an alkanolamine such as ethanolamine. Thereby, the obtained triamine having an ester group can be converted into a triisocyanate having an ester structure by phosgenation or the like.
Examples of the ether amine include “D403”, a product name of Mitsui Chemical Fine Inc., which is a polyoxyalkylene triamine. This is a triamine, which can be converted to a triisocyanate containing an ether structure by phosgenation of an amine or the like.
Examples of the alkyltriamine include triisocyanatononane (4-aminomethyl-1,8-octanediamine) and the like. This is a triamine, and can be converted to a triisocyanate containing only a hydrocarbon by phosgenation of the amine or the like.

イソシアヌレート構造および/またはアロファネート構造を形成する方法としては、イソシアヌレート化触媒を用いる方法がある。イソシアヌレート化触媒としては、特に限定されないが、一般に塩基性を有するものが好ましく、例えば、
(1)テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等のテトラアルキルアンモニウムのハイドロオキサイド;その酢酸塩、オクチル酸塩、ミリスチン酸塩、安息香酸塩等の有機弱酸塩、
(2)トリメチルヒドロキシエチルアンモニウム、トリメチルヒドロキシプロピルアンモニウム、トリエチルヒドロキシエチルアンモニウム、トリエチルヒドロキシプロピルアンモニウム等のヒドロキシアルキルアンモニウムのハイドロオキサイド;その酢酸塩、オクチル酸塩、ミリスチン酸塩、安息香酸塩等の有機弱酸塩、
(3)酢酸、カプロン酸、オクチル酸、ミリスチン酸等のアルキルカルボン酸の錫、亜鉛、鉛等の金属塩、
(4)ナトリウム、カリウム等の金属アルコラート、
(5)ヘキサメチレンジシラザン等のアミノシリル基含有化合物、
(6)マンニッヒ塩基類、
(7)第3級アミン類とエポキシ化合物との併用、
(8)トリブチルホスフィン等の燐系化合物、等が挙げられる。
この中で、不要な副生成物を生じさせにくい観点から、4級アンモニウムの有機弱酸塩が好ましく、テトラアルキルアンモニウムの有機弱酸塩がより好ましい。
As a method for forming an isocyanurate structure and / or an allophanate structure, there is a method using an isocyanurate-forming catalyst. The isocyanurate-forming catalyst is not particularly limited, but generally has a basic property, for example,
(1) Tetraalkylammonium hydroxides such as tetramethylammonium, tetraethylammonium and tetrabutylammonium; organic weak salts such as acetates, octylates, myristates and benzoates;
(2) Hydroxides of hydroxyalkylammonium such as trimethylhydroxyethylammonium, trimethylhydroxypropylammonium, triethylhydroxyethylammonium, triethylhydroxypropylammonium; organic weak acids such as acetate, octylate, myristate, benzoate and the like. salt,
(3) metal salts such as tin, zinc and lead of alkyl carboxylic acids such as acetic acid, caproic acid, octylic acid and myristic acid;
(4) metal alcoholates such as sodium and potassium,
(5) an aminosilyl group-containing compound such as hexamethylene disilazane;
(6) Mannich bases,
(7) Combination of tertiary amines and epoxy compound,
(8) Phosphorus compounds such as tributylphosphine and the like.
Among them, a quaternary ammonium organic weak acid salt is preferable, and a tetraalkyl ammonium organic weak acid salt is more preferable, from the viewpoint of hardly generating unnecessary by-products.

これらの触媒は、触媒混合性の観点から、溶剤で希釈、または溶剤とともに添加しても良い。溶剤としては、例えば、1−メチルピロリドン、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、メチルエチルケトン、アセトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、エタノール、メタノール、iso−プロパノール、1−プロパノール、iso−ブタノール、1−ブタノール、2−エチルヘキサノール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、酢酸エチル、酢酸イソプロピル、酢酸ブチル、トルエン、キシレン、ペンタン、iso−ペンタン、ヘキサン、iso−ヘキサン、シクロヘキサン、ソルベントナフサ、ミネラルスピリット、ジメチルホルムアミド等を挙げることができ、2種以上を併用できる。   These catalysts may be diluted with a solvent or added together with the solvent, from the viewpoint of catalyst mixing properties. As the solvent, for example, 1-methylpyrrolidone, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether, methyl ethyl ketone, acetone, methyl isobutyl ketone, Propylene glycol monomethyl ether acetate, ethanol, methanol, iso-propanol, 1-propanol, iso-butanol, 1-butanol, 2-ethylhexanol, cyclohexanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, , 3-butanediol, ethyl acetate, isopropyl acetate, butyl acetate, toluene, xylene, pentane, iso-pentane, hexane, iso-hexane, cyclohexane, solvent naphtha, mineral spirit, dimethylformamide and the like. The above can be used in combination.

イソシアヌレート化反応温度としては、50℃以上120℃以下が好ましく、60℃以上90℃以下がより好ましい。上記上限値以下であることで、着色などを効果的に防止できる傾向にあり、好ましい。
イソシアヌレート化反応は、特に限定されないが、例えば、リン酸、酸性リン酸エステル等の酸性化合物の添加により停止する。
The isocyanuration reaction temperature is preferably from 50 ° C to 120 ° C, more preferably from 60 ° C to 90 ° C. When the content is not more than the above upper limit, coloring and the like tend to be effectively prevented, which is preferable.
The isocyanuration reaction is not particularly limited, but is stopped by, for example, addition of an acidic compound such as phosphoric acid or acidic phosphate.

第1−2実施形態のポリイソシアネート組成物の転化率は、1%以上100%以下であることが好ましく、10%以上80%以下であることがより好ましく、20%以上70%以下が特に好ましい。上記下限値以上では、硬化性が優れる傾向にあり、上記上限値以下では、粘度が低く作業性が優れる傾向にある。   The conversion of the polyisocyanate composition of the 1-2 embodiment is preferably 1% or more and 100% or less, more preferably 10% or more and 80% or less, and particularly preferably 20% or more and 70% or less. . Above the lower limit, the curability tends to be excellent, and below the upper limit, the viscosity tends to be low and the workability tends to be excellent.

前記、転化率はゲルパーミッションクロマトグラフ(以下「GPC」という)を用い、ポリスチレン基準の数平均分子量により、未反応トリイソシアネートよりも数平均分子量の大きなピークの面積割合とした。   The conversion was determined by gel permeation chromatography (hereinafter referred to as "GPC"), and the area ratio of the peak having a number average molecular weight larger than that of the unreacted triisocyanate was determined by the number average molecular weight based on polystyrene.

第1−2実施形態のポリイソシアネート組成物中のポリイソシアネート化合物の含有量は、1質量%以上100質量%以下であることが好ましく、10質量%以上90質量%以下であることがより好ましく、20質量%以上80質量%以下であることがさらに好ましい。上記下限値以上であると、耐候性が優れる傾向にあり、上記上限値以下では、粘度が低く作業性が優れる傾向にある。   The content of the polyisocyanate compound in the polyisocyanate composition of the 1-2 embodiment is preferably from 1% by mass to 100% by mass, more preferably from 10% by mass to 90% by mass, More preferably, it is 20% by mass or more and 80% by mass or less. When it is at least the lower limit, weather resistance tends to be excellent, and when it is at most the upper limit, viscosity tends to be low and workability tends to be excellent.

また、第1−2実施形態のポリイソシアネート組成物には、前記一般式(I)、または前記一般式(II)で表されるポリイソシアネート化合物以外に、ウレトジオン構造を有する化合物、イミノオキサジアジンジオン構造を有する化合物、ウレタン構造を有する化合物、またはビュレット構造を有する化合物が含まれてもよい。
ウレトジオン構造、イミノオキサジアジンジオン構造、ウレタン構造、またはビュレット構造は、それぞれ次式(VII)、(XI)、(IX)、または(X)に示される。中でも複層塗膜の下層への染込み性の観点から、ウレトジオン構造を有する化合物、またはイミノオキサジアジンジオン構造を有する化合物が好ましい。
Further, in addition to the polyisocyanate compound represented by the general formula (I) or the general formula (II), a compound having a uretdione structure, an iminooxadiazine, A compound having a dione structure, a compound having a urethane structure, or a compound having a buret structure may be included.
The uretdione structure, iminooxadiazinedione structure, urethane structure, or buret structure is represented by the following formula (VII), (XI), (IX), or (X), respectively. Above all, a compound having a uretdione structure or a compound having an iminooxadiazinedione structure is preferred from the viewpoint of infiltration into the lower layer of the multilayer coating film.

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

第1−2実施形態のポリイソシアネート組成物は、下記一般式(V)−1で示されるトリイソシアネートをさらに含むことが好ましい。・一般式(V)−1
It is preferable that the polyisocyanate composition of the 1-2 embodiment further contains a triisocyanate represented by the following general formula (V) -1. -General formula (V) -1

Figure 0006664509
Figure 0006664509

[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。][In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]

〔R51、Y

一般式(V)−1中のR51、Yに関する説明は、前記一般式(V)中のR51、Yに関する説明と同様である。
第1−2実施形態においては、複数あるYの少なくとも1つはエステル構造および/またはエーテル構造を含むことが好ましい。
また、一般式(V)−1中のR51、Yは、前記一般式(V)中のR51、Yと同一であってもよく異なっていてもよい。
[R 51 , Y 1 ]

Description of the general formula (V) R 51, Y 1 in the -1 is the same as the description of R 51, Y 1 in the general formula (V).
In the first to second embodiments, at least one of the plurality of Y 1 preferably contains an ester structure and / or an ether structure.
In general formula (V) R 51, Y 1 in the -1, R 51, Y 1 and may be different may be the same in the general formula (V).

公知のポリイソシアネート組成物、例えば1,6−ヘキサメチレンジイソシアネート、1,5−ペンタンジイソシアネート、トルエンジイソシアネートもしくはイソホロンジイソシアネートのような揮発性ジイソシアネートから作製する場合、未反応の出発ジイソシアネートを、例えば蒸留により最終生成物からポリイソシアネート組成物の重量に対し2重量%未満、好ましくは1重量%未満の程度まで除去する必要がある。しかしながら第1−2実施形態のポリイソシアネート組成物を製造する場合は、第1−2実施形態に用いるトリイソシアネートのNCO基数が3個のため、第1−2実施形態のポリイソシアネート組成物のポリオールとの架橋能力を低下させず、必ずしも除去する必要がない。
未反応のトリイソシアネートを除去する場合は、薄膜蒸留法や溶剤抽出法等により、ポリイソシアネート組成物と分離することができる。
When made from known polyisocyanate compositions, e.g., volatile diisocyanates such as 1,6-hexamethylene diisocyanate, 1,5-pentane diisocyanate, toluene diisocyanate or isophorone diisocyanate, the unreacted starting diisocyanate is finalized, for example, by distillation. It is necessary to remove from the product to less than 2% by weight, preferably less than 1% by weight, based on the weight of the polyisocyanate composition. However, when manufacturing the polyisocyanate composition of the 1-2 embodiment, the number of NCO groups of the triisocyanate used in the 1-2 embodiment is 3, and therefore the polyol of the polyisocyanate composition of the 1-2 embodiment is used. It does not necessarily reduce the cross-linking ability with the polymer and does not necessarily need to be removed.
When removing unreacted triisocyanate, it can be separated from the polyisocyanate composition by a thin-film distillation method, a solvent extraction method, or the like.

第1−2実施形態のポリイソシアネート組成物の25℃における粘度は、特に制限を受けないが5mPa・s以上2000mPa・s以下であることが好ましく、10mPa・s以上1800mPa・sm以下であることがより好ましく、15mPa・s以上250mPa・s以下であることがさらに好ましい。上記下限値以上では、硬化性が優れる傾向があり、上記上限値以下では、作業性が優れる傾向がある。粘度は、E型粘度計(トキメック社製)を用いることによって測定することができる。   The viscosity at 25 ° C. of the polyisocyanate composition of the 1-2 embodiment is not particularly limited, but is preferably 5 mPa · s or more and 2000 mPa · s or less, and is preferably 10 mPa · s or more and 1800 mPa · sm or less. More preferably, it is more preferably from 15 mPa · s to 250 mPa · s. Above the lower limit, curability tends to be excellent, and below the upper limit, workability tends to be excellent. The viscosity can be measured by using an E-type viscometer (manufactured by Tokimec).

〔第1−3実施形態〕
本発明の第1−3実施形態のポリイソシアネート組成物は、一般式(II)および(IV)で表されるポリイソシアネート化合物を含み、イソシアヌレート構造とウレトジオン構造とのモル比が100/0.1〜100/100であり、好ましくは100/0.1〜100/45である。
モル比率が上記下限値以上であると、下地塗膜との密着性がより良好となる傾向にあり、また、モル比率が上記上限値以下であると、乾燥性がより良好となる傾向にある。
[1-3 embodiment]
The polyisocyanate composition of the first to third embodiments of the present invention contains the polyisocyanate compounds represented by the general formulas (II) and (IV), and the molar ratio of the isocyanurate structure to the uretdione structure is 100/0. 1/100/100, preferably 100 / 0.1-100 / 45.
When the molar ratio is equal to or more than the lower limit, the adhesiveness with the underlying coating film tends to be better, and when the molar ratio is equal to or less than the upper limit, the drying property tends to be better. .


Figure 0006664509
Figure 0006664509

Figure 0006664509
[一般式(II)および(IV)中、複数あるR21およびR41は、それぞれ独立に、有機基であり、複数あるR21およびR41のうち少なくとも1つは一般式(V)で表される基である。複数あるR21およびR41は、それぞれ同一であってもよく異なっていてもよい。」
Figure 0006664509
[In the general formulas (II) and (IV), a plurality of R 21 and R 41 are each independently an organic group, and at least one of the plurality of R 21 and R 41 is represented by the general formula (V). It is a group to be performed. A plurality of R 21 and R 41 may be the same or different. "


Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。] 以下、一般式(II)、一般式(IV)、および一般式(V)について説明する。
・一般式(II)

Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. Hereinafter, general formula (II), general formula (IV), and general formula (V) will be described.
-General formula (II)

Figure 0006664509
一般式(II)で表されるポリイソシアネート化合物は、イソシアヌレート構造を有する。イソシアヌレート構造は、トリイソシアネートモノマー3分子からなるポリイソシアネートである。
Figure 0006664509
The polyisocyanate compound represented by the general formula (II) has an isocyanurate structure. The isocyanurate structure is a polyisocyanate composed of three triisocyanate monomer molecules.

[R21

一般式(II)において、複数あるR21は、それぞれ独立に、有機基である。複数あるR21は、それぞれ同一であってもよく異なっていてもよい。
第1−3実施形態においては、3つのR21のうち、少なくとも1つは上記一般式(V)で表される基であり、2つのR21が上記一般式(V)で表される基であることが好ましく、3つのR21すべてが上記一般式(V)で表される基であることがより好ましい。
[R 21 ]

In the general formula (II), a plurality of R 21 are each independently an organic group. A plurality of R 21 may be the same or different.
In the first 1-3 embodiment, of the three R 21, at least one is a group represented by the general formula (V), groups in which two R 21 is represented by the general formula (V) It is more preferable that all three R 21 are groups represented by the above general formula (V).

21のうち、上記一般式(V)で表される基以外の基としては、例えば、テトラメチレンジイソシアネート(TMDI)、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、2,2,4−トリメチルヘキサン−1,6−ジイソシアネート、2−メチルペンタン−1,5−ジイソシアネート(MPDI)、1,3−ビス(イソシアナトメチル)−シクロヘキサン(1,3−H6−XDI)、3(4)−イソシアナトメチル−1−メチル−シクロヘキシルイソアネート(IMCI);イソホロンジイソシアネート(IPDI)、ビス(イソシアナトメチル)−ノルボルナン(NBDI)、1,3−ビス(イソシアナトメチル)−ベンゼン、1,3−ビス(2−イソシアナトプロピル−2)ベンゼンおよび4,4‘−ジシクロヘキシルメタンジイソシアネート(H12MDI)から1つのイソシアネート基を除去した残基が挙げられる。・一般式(IV)
Examples of the group other than the group represented by the general formula (V) in R 21 include, for example, tetramethylene diisocyanate (TMDI), pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), 2,2,4 -Trimethylhexane-1,6-diisocyanate, 2-methylpentane-1,5-diisocyanate (MPDI), 1,3-bis (isocyanatomethyl) -cyclohexane (1,3-H6-XDI), 3 (4) -Isocyanatomethyl-1-methyl-cyclohexylisoanate (IMCI); isophorone diisocyanate (IPDI), bis (isocyanatomethyl) -norbornane (NBDI), 1,3-bis (isocyanatomethyl) -benzene, 1, 3-bis (2-isocyanatopropyl-2) benzene and And a residue obtained by removing one isocyanate group from 4,4′-dicyclohexylmethane diisocyanate (H12MDI). -General formula (IV)

Figure 0006664509
一般式(IV)において、複数あるR41は、前記「・一般式(II)におけるR21と同様である。・一般式(V)
Figure 0006664509
In the general formula (IV), a plurality of R 41 are the same as those of “R 21 in the general formula (II).

Figure 0006664509
[Y

一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造[−C(=O)−O−]および/またはエーテル構造(−O−)を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。
エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基としては、−(CHn1−X−(CHn2−で表される基(n1およびn2はそれぞれ独立して、0〜10の整数である。但し、n1およびn2の両方とも0になることはなく、n1、n2のうち、NCOと結合している側は1以上であることが好ましい。Xは、エステル基またはエーテル基である)。
反応速度を速めたい場合、Xがエステル基であることが好ましい。
n1及びn2は0〜4が好ましく、0〜2がより好ましい。n1及びn2の組み合わせとしては、例えば、n1=0、n2=2の組み合わせ、n1=2、n2=2の組み合わせが好ましい。
Figure 0006664509
[Y 1 ]

In the general formula (V), a plurality of Y 1 are each independently a single bond or a carbon which may contain an ester structure [—C (= O) —O—] and / or an ether structure (—O—). It is a divalent hydrocarbon group of the formulas 1 to 20. A plurality of Y 1 may be the same or different.
Examples of the divalent hydrocarbon group having ester structure and / or carbon atoms which may contain an ether structure 1~20, - (CH 2) n1 -X- (CH 2) n2 - group represented by (n1 and n2 Are each independently an integer from 0 to 10. However, both n1 and n2 do not become 0, and it is preferable that one of n1 and n2 bonded to NCO is 1 or more. X is an ester or ether group).
When it is desired to increase the reaction rate, X is preferably an ester group.
n1 and n2 are preferably from 0 to 4, more preferably from 0 to 2. As a combination of n1 and n2, for example, a combination of n1 = 0 and n2 = 2, and a combination of n1 = 2 and n2 = 2 are preferable.

[R51

51は、水素原子または、炭素数1〜12の1価の炭化水素基である。R51における炭化水素基としては、特に限定されず、アルキル基、アルケニル基、アルキニル基等が挙げられる。R51としては、水素原子が好ましい。
[ R51 ]

R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. The hydrocarbon group for R 51 is not particularly limited, and includes an alkyl group, an alkenyl group, an alkynyl group, and the like. As R 51 , a hydrogen atom is preferable.

第1−3実施形態における一般式(V)で表される基の元となるトリイソシアネートの分子量は139以上1000以下であることが好ましい。
分子量の下限値は、150以上が好ましく、180以上がより好ましく、200以上が特に好ましい。また分子量の上限値は、800以下が好ましく、600以下がより好ましく、400以下が特に好ましい。分子量が上記下限値以上であることにより、結晶性を抑制しやすくなる。また、分子量が上記上限値以下であることにより、低粘度化を達成しやすくなる。
It is preferable that the molecular weight of the triisocyanate that is the base of the group represented by the general formula (V) in the first to third embodiments is 139 or more and 1000 or less.
The lower limit of the molecular weight is preferably 150 or more, more preferably 180 or more, and particularly preferably 200 or more. The upper limit of the molecular weight is preferably 800 or less, more preferably 600 or less, and particularly preferably 400 or less. When the molecular weight is equal to or more than the above lower limit, crystallinity is easily suppressed. In addition, when the molecular weight is equal to or less than the above upper limit, lower viscosity can be easily achieved.

第1−3実施形態における一般式(V)で表される基の元となるトリイソシアネートは、低粘度とするため、複数あるY中の炭化水素基が脂肪族基および/または芳香族基を有することが好ましい。また、R51は水素であることが好ましい。
また、塗料組成物の硬化剤として使用した際の耐候性を良好とするため、複数あるY中の炭化水素基が脂肪族基または脂環族基を有することが好ましい。
また、複数あるYが炭化水素基のみで構成されていることが好ましい。
別途、耐熱性を保持するため、複数あるYのうち少なくとも1つが、エステル基を有することが好ましい。
また、耐加水分解性を保持するためには、複数あるY31のうち少なくとも1つが、エーテル構造を含む炭化水素基、または炭化水素基を有することが好ましい。
The triisocyanate which is the base of the group represented by the general formula (V) in the first to third embodiments has a low viscosity, and therefore, a plurality of hydrocarbon groups in Y 1 are an aliphatic group and / or an aromatic group. It is preferable to have Also, R 51 is preferably hydrogen.
Further, in order to improve the weather resistance when used as a curing agent of the coating composition, but preferably the hydrocarbon group in the plurality of Y 1 is an aliphatic group or an alicyclic group.
In addition, it is preferable that a plurality of Y 1 be composed of only a hydrocarbon group.
Separately, in order to maintain heat resistance, at least one of the plurality of Y 1 preferably has an ester group.
In order to maintain hydrolysis resistance, at least one of the plurality of Y 31 preferably has a hydrocarbon group containing an ether structure or a hydrocarbon group.

第1−3実施形態における一般式(V)で表される基の元となるトリイソシアネートとしては、例えば、特公昭63−15264号公報に開示されている4−イソシアネートメチル−1,8−オクタメチレンジイソシアネート(以下、「NTI」と称する場合がある、分子量251)、特開昭57−198760号公報に開示されている1,3,6−ヘキサメチレントリイソシアネート(以下、「HTI」と称する場合がある、分子量209)、特公平4−1033号公報に開示されているビス(2−イソシアナトエチル)2−イソシアナトグルタレート(以下、GTIと言う、分子量311)、特開昭53−135931号公報に開示されているリジントリイソシアネート(以下、LTIと言う、分子量267)等が挙げられる。
これらの中では、イソシアネート基の反応性をより向上できる観点から、NTI、GTI、またはLTIが好ましく、NTIまたはLTIがより好ましく、LTIが特に好ましい。
Examples of the triisocyanate which is a source of the group represented by the general formula (V) in the first to third embodiments include 4-isocyanatomethyl-1,8-octaphthalate disclosed in JP-B-63-15264. Methylene diisocyanate (hereinafter sometimes referred to as “NTI”, molecular weight 251), 1,3,6-hexamethylene triisocyanate (hereinafter referred to as “HTI”) disclosed in JP-A-57-198760. Bis (2-isocyanatoethyl) 2-isocyanatoglutarate (hereinafter referred to as GTI, molecular weight 311) disclosed in JP-B-4-1033, JP-A-53-135931. Lysine triisocyanate (hereinafter, referred to as LTI, molecular weight 267) and the like.
Among these, NTI, GTI, or LTI is preferable, NTI or LTI is more preferable, and LTI is particularly preferable, from the viewpoint of further improving the reactivity of the isocyanate group.

第1−3実施形態における一般式(V)で表される基の元となるトリイソシアネートは、アミノ酸誘導体やエーテルアミン、アルキルトリアミン等のアミンをイソシアネート化して得ることができる。アミノ酸誘導体としては、例えば2,5−ジアミノ吉草酸、2,6−ジアミノヘキサン酸、アスパラギン酸、グルタミン酸等を用いることができる。これらアミノ酸はジアミンモノカルボン酸またはモノアミンジカルボン酸であるので、カルボキシル基を、例えばエタノールアミン等のアルカノールアミンでエステル化する。これにより、得られるエステル基を有するトリアミンはホスゲン化等によりエステル構造を含むトリイソシアネートとすることができる。
エーテルアミンとしては、例えば、ポリオキシアルキレントリアミンである三井化学ファイン社の商品名「D403」等が挙げられる。これはトリアミンであり、アミンのホスゲン化等によりエーテル構造を含むトリイソシアネートとすることができる。
アルキルトリアミンとしては、例えば、トリイソシアナトノナン(4−アミノメチル−1,8−オクタンジアミン)等が挙げられる。これはトリアミンであり、アミンのホスゲン化等により炭化水素のみを含むトリイソシアネートとすることができる。
The triisocyanate which is the base of the group represented by the general formula (V) in the first to third embodiments can be obtained by isocyanating an amino acid derivative or an amine such as an etheramine or an alkyltriamine. As the amino acid derivative, for example, 2,5-diaminovaleric acid, 2,6-diaminohexanoic acid, aspartic acid, glutamic acid and the like can be used. Since these amino acids are diamine monocarboxylic acids or monoamine dicarboxylic acids, the carboxyl group is esterified with an alkanolamine such as ethanolamine. Thereby, the obtained triamine having an ester group can be converted into a triisocyanate having an ester structure by phosgenation or the like.
Examples of the ether amine include “D403”, a product name of Mitsui Chemical Fine Inc., which is a polyoxyalkylene triamine. This is a triamine, which can be converted to a triisocyanate containing an ether structure by phosgenation of an amine or the like.
Examples of the alkyltriamine include triisocyanatononane (4-aminomethyl-1,8-octanediamine) and the like. This is a triamine, and can be converted to a triisocyanate containing only a hydrocarbon by phosgenation of the amine or the like.

イソシアヌレート構造および/またはアロファネート構造を形成する方法としては、イソシアヌレート化触媒を用いる方法がある。イソシアヌレート化触媒としては、特に限定されないが、一般に塩基性を有するものが好ましく、例えば、
(1)テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等のテトラアルキルアンモニウムのハイドロオキサイド;その酢酸塩、オクチル酸塩、ミリスチン酸塩、安息香酸塩等の有機弱酸塩、
(2)トリメチルヒドロキシエチルアンモニウム、トリメチルヒドロキシプロピルアンモニウム、トリエチルヒドロキシエチルアンモニウム、トリエチルヒドロキシプロピルアンモニウム等のヒドロキシアルキルアンモニウムのハイドロオキサイド;その酢酸塩、オクチル酸塩、ミリスチン酸塩、安息香酸塩等の有機弱酸塩、
(3)酢酸、カプロン酸、オクチル酸、ミリスチン酸等のアルキルカルボン酸の錫、亜鉛、鉛等の金属塩、
(4)ナトリウム、カリウム等の金属アルコラート、
(5)ヘキサメチレンジシラザン等のアミノシリル基含有化合物、
(6)マンニッヒ塩基類、
(7)第3級アミン類とエポキシ化合物との併用、
(8)トリブチルホスフィン等の燐系化合物、等が挙げられる。
この中で、不要な副生成物を生じさせにくい観点から、4級アンモニウムの有機弱酸塩が好ましく、テトラアルキルアンモニウムの有機弱酸塩がより好ましい。
As a method for forming an isocyanurate structure and / or an allophanate structure, there is a method using an isocyanurate-forming catalyst. The isocyanurate-forming catalyst is not particularly limited, but generally has a basic property, for example,
(1) Tetraalkylammonium hydroxides such as tetramethylammonium, tetraethylammonium and tetrabutylammonium; organic weak salts such as acetates, octylates, myristates and benzoates;
(2) Hydroxides of hydroxyalkylammonium such as trimethylhydroxyethylammonium, trimethylhydroxypropylammonium, triethylhydroxyethylammonium, triethylhydroxypropylammonium; organic weak acids such as acetate, octylate, myristate, benzoate and the like. salt,
(3) metal salts such as tin, zinc and lead of alkyl carboxylic acids such as acetic acid, caproic acid, octylic acid and myristic acid;
(4) metal alcoholates such as sodium and potassium,
(5) an aminosilyl group-containing compound such as hexamethylene disilazane;
(6) Mannich bases,
(7) Combination of tertiary amines and epoxy compound,
(8) Phosphorus compounds such as tributylphosphine and the like.
Among them, a quaternary ammonium organic weak acid salt is preferable, and a tetraalkyl ammonium organic weak acid salt is more preferable, from the viewpoint of hardly generating unnecessary by-products.

これらの触媒は、触媒混合性の観点から、溶剤で希釈、または溶剤とともに添加しても良い。溶剤としては、例えば、1−メチルピロリドン、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、メチルエチルケトン、アセトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、エタノール、メタノール、iso−プロパノール、1−プロパノール、iso−ブタノール、1−ブタノール、2−エチルヘキサノール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、酢酸エチル、酢酸イソプロピル、酢酸ブチル、トルエン、キシレン、ペンタン、iso−ペンタン、ヘキサン、iso−ヘキサン、シクロヘキサン、ソルベントナフサ、ミネラルスピリット、ジメチルホルムアミド等を挙げることができ、2種以上を併用できる。   These catalysts may be diluted with a solvent or added together with the solvent, from the viewpoint of catalyst mixing properties. As the solvent, for example, 1-methylpyrrolidone, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether, methyl ethyl ketone, acetone, methyl isobutyl ketone, Propylene glycol monomethyl ether acetate, ethanol, methanol, iso-propanol, 1-propanol, iso-butanol, 1-butanol, 2-ethylhexanol, cyclohexanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, , 3-butanediol, ethyl acetate, isopropyl acetate, butyl acetate, toluene, xylene, pentane, iso-pentane, hexane, iso-hexane, cyclohexane, solvent naphtha, mineral spirit, dimethylformamide and the like. The above can be used in combination.

イソシアヌレート化反応温度としては、50℃以上120℃以下が好ましく、60℃以上90℃以下がより好ましい。上記上限値以下であることで、着色などを効果的に防止できる傾向にあり、好ましい。
イソシアヌレート化反応は、特に限定されないが、例えば、リン酸、酸性リン酸エステル等の酸性化合物の添加により停止する。
The isocyanuration reaction temperature is preferably from 50 ° C to 120 ° C, more preferably from 60 ° C to 90 ° C. When the content is not more than the above upper limit, coloring and the like tend to be effectively prevented, which is preferable.
The isocyanuration reaction is not particularly limited, but is stopped by, for example, addition of an acidic compound such as phosphoric acid or acidic phosphate.

ウレトジオン構造を形成する方法としては、ウレトジオン化触媒を用いる方法や、ウレトジオン化触媒を用いることなく、100℃以上の高温処理で形成させる方法がある。 まず、ウレトジオン化触媒としては、特に限定されないが、一般に公知のウレトジオン化触媒、例えばトリエチルホスフィン、ジブチルエチルホスフィン、トリ−n−プロピルホスフィン、トリアミルホスフィン、トリベンジルメチルホスフィン等のトリアルキルホスフィン類あるいはピリジン等の存在下、0〜90℃の反応温度で、溶剤不存在下、または不活性溶剤、たとえばトルエン、キシレンその他の芳香族系溶剤、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、プロピレングリコールメチルエーテルアセテート、エチル−3−エトキシプロピオネート等のグリコールエーテルエステル系溶剤の存在下、製造することができる。
As a method of forming the uretdione structure, there are a method using a uretdionation catalyst and a method of forming the uretdione structure by a high-temperature treatment at 100 ° C. or higher without using a uretdionation catalyst. First, the uretdionation catalyst is not particularly limited, but generally known uretdionation catalysts such as triethylphosphine, dibutylethylphosphine, tri-n-propylphosphine, triamylphosphine, trialkylphosphines such as tribenzylmethylphosphine, or In the presence of pyridine or the like, at a reaction temperature of 0 to 90 ° C., in the absence of a solvent, or in an inert solvent such as toluene, xylene or another aromatic solvent, methyl ethyl ketone, a ketone solvent such as methyl isobutyl ketone, ethyl acetate, It can be produced in the presence of an ester solvent such as butyl acetate and a glycol ether ester solvent such as propylene glycol methyl ether acetate and ethyl-3-ethoxypropionate.

これらの触媒は、触媒混合性の観点から、溶剤で希釈、または溶剤とともに添加しても良い。溶剤としては、例えば、1−メチルピロリドン、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、メチルエチルケトン、アセトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、エタノール、メタノール、iso−プロパノール、1−プロパノール、iso−ブタノール、1−ブタノール、2−エチルヘキサノール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、酢酸エチル、酢酸イソプロピル、酢酸ブチル、トルエン、キシレン、ペンタン、iso−ペンタン、ヘキサン、iso−ヘキサン、シクロヘキサン、ソルベントナフサ、ミネラルスピリット、ジメチルホルムアミド等を挙げることができ、2種以上を併用できる。   These catalysts may be diluted with a solvent or added together with the solvent, from the viewpoint of catalyst mixing properties. As the solvent, for example, 1-methylpyrrolidone, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether, methyl ethyl ketone, acetone, methyl isobutyl ketone, Propylene glycol monomethyl ether acetate, ethanol, methanol, iso-propanol, 1-propanol, iso-butanol, 1-butanol, 2-ethylhexanol, cyclohexanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, , 3-butanediol, ethyl acetate, isopropyl acetate, butyl acetate, toluene, xylene, pentane, iso-pentane, hexane, iso-hexane, cyclohexane, solvent naphtha, mineral spirit, dimethylformamide and the like. The above can be used in combination.

本発明では、上述の触媒に加えて助触媒を任意に用いることができる。前記助触媒としては、酸素、窒素または硫黄に結合した水素原子を少なくとも1個有し、pKaが少なくとも6の有機化合物が好ましい。 好適な助触媒としては、分子量が32〜200の低分子量一価または多価アルコール、あるいは前記アルコールの混合物である。例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、n−ヘキサノール、2−エチル−1−ヘキサノール、1−メトキシ−2−プロパノール、エチレングリコール、プロピレングリコール、異性体ブタンジオール、ヘキサンジオール及びオクタンジオール、ジエチレングリコール、ジプロピレングリコール、2−エチル−1,3−ヘキサン
ジオール、2,2,4−トリメチルペンタンジオール、グリセロール、トリメチロールプロパン並びにこれら及び/または他のアルコールの混合物が挙げられる。
In the present invention, a promoter can be optionally used in addition to the above-mentioned catalyst. The co-catalyst is preferably an organic compound having at least one hydrogen atom bonded to oxygen, nitrogen or sulfur and having a pKa of at least 6. Suitable cocatalysts are low molecular weight monohydric or polyhydric alcohols having a molecular weight of 32 to 200, or mixtures of said alcohols. For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, n-hexanol, 2-ethyl-1-hexanol, 1-methoxy-2-propanol, ethylene glycol, propylene glycol, isomeric butanediol, hexanediol and Octanediol, diethylene glycol, dipropylene glycol, 2-ethyl-1,3-hexanediol, 2,2,4-trimethylpentanediol, glycerol, trimethylolpropane and mixtures of these and / or other alcohols.

ウレトジオン化触媒を使用してウレトジオン化する際の反応温度としては、0℃以上100℃以下が好ましく、25℃以上90℃以下がより好ましい。上記上限値以下であることで、着色などを効果的に防止できる傾向にあり、好ましい。 ウレトジオン化反応の停止は特に限定されないが、所望の反応率に達した時点で、例えばリン酸、パラトルエンスルホン酸メチル、硫黄等の溶液を加えてウレトジオン化触媒を不活性化し、反応を停止させる。
The reaction temperature at the time of uretdionation using a uretdionation catalyst is preferably from 0 ° C to 100 ° C, more preferably from 25 ° C to 90 ° C. When the content is not more than the above upper limit, coloring and the like tend to be effectively prevented, which is preferable. The termination of the uretdionation reaction is not particularly limited, but upon reaching a desired reaction rate, for example, a solution of phosphoric acid, methyl paratoluenesulfonate, sulfur or the like is added to inactivate the uretdionation catalyst and stop the reaction. .

ウレトジオン化触媒を用いずに、高温処理することでウレトジオン構造を形成させることもできる。ウレトジオン構造形成時の処理温度としては、100℃以上200℃以下が好ましく、120℃以上180℃以下がより好ましく、150℃以上170℃以下がさらに好ましい。上記上限値以下であることで、着色などを効果的に防止できる傾向にあり、下限値以上であることで効率的に形成させられる傾向にあり、好ましい。
この方法によりウレトジオン構造体を製造する場合、他の構造体を合成後、トリイソシアネート単量体の存在下加熱処理を行ってもよいし、最初にトリイソシアネート単量体のみで加熱処理を行いウレトジオン構造体を合成し、その後他の構造体を合成してもよい。こうすることで、ウレトジオン含有ポリイソシアネート組成物を一括で合成することができる。
A uretdione structure can be formed by high-temperature treatment without using a uretdione-forming catalyst. The processing temperature at the time of forming the uretdione structure is preferably from 100 ° C to 200 ° C, more preferably from 120 ° C to 180 ° C, and even more preferably from 150 ° C to 170 ° C. When the amount is equal to or less than the above upper limit, coloring or the like tends to be effectively prevented, and when the amount is equal to or more than the lower limit, there is a tendency to form efficiently, which is preferable.
When producing a uretdione structure by this method, after synthesizing another structure, a heat treatment may be performed in the presence of a triisocyanate monomer, or first, a heat treatment may be performed only with the triisocyanate monomer to perform uretdione structure. A structure may be synthesized and then another structure may be synthesized. By doing so, the uretdione-containing polyisocyanate composition can be synthesized at a time.

第1−3実施形態のポリイソシアネート組成物の転化率は、1%以上100%以下であることが好ましく、10%以上80%以下であることがより好ましく、20%以上70%以下が特に好ましい。上記下限値以上では、硬化性が優れる傾向にあり、上記上限値以下では、粘度が低く作業性が優れる傾向にある。   The conversion of the polyisocyanate composition of the first to third embodiments is preferably 1% or more and 100% or less, more preferably 10% or more and 80% or less, and particularly preferably 20% or more and 70% or less. . Above the lower limit, the curability tends to be excellent, and below the upper limit, the viscosity tends to be low and the workability tends to be excellent.

前記、転化率はゲルパーミッションクロマトグラフ(以下「GPC」という)を用い、ポリスチレン基準の数平均分子量により、未反応トリイソシアネートよりも数平均分子量の大きなピークの面積割合とした。   The conversion was determined by gel permeation chromatography (hereinafter referred to as "GPC"), and the area ratio of the peak having a number average molecular weight larger than that of the unreacted triisocyanate was determined by the number average molecular weight based on polystyrene.

第1−3実施形態のポリイソシアネート組成物中のポリイソシアネート化合物の含有量は、1質量%以上100質量%以下であることが好ましく、10質量%以上90質量%以下であることがより好ましく、20質量%以上80質量%以下であることがさらに好ましい。上記下限値以上であると、耐候性が優れる傾向にあり、上記上限値以下では、粘度が低く作業性が優れる傾向にある。   The content of the polyisocyanate compound in the polyisocyanate composition of the first to third embodiments is preferably from 1% by mass to 100% by mass, more preferably from 10% by mass to 90% by mass, More preferably, it is 20% by mass or more and 80% by mass or less. When it is at least the lower limit, weather resistance tends to be excellent, and when it is at most the upper limit, viscosity tends to be low and workability tends to be excellent.

また、第1−3実施形態のポリイソシアネート組成物には、前記一般式(I)、または前記一般式(II)で表されるポリイソシアネート化合物以外に、アロファネート構造を有する化合物、イミノオキサジアジンジオン構造を有する化合物、ウレタン構造を有する化合物、またはビュレット構造を有する化合物が含まれてもよい。
アロファネート構造、イミノオキサジアジンジオン構造、ウレタン構造、またはビュレット構造は、それぞれ次式(VIII)、(XI)、(IX)、または(X)に示される。中でも複層塗膜の下層への染込み性の観点から、イミノオキサジアジンジオン構造を有する化合物が、シリケートとの相溶性の観点からアロファネート構造を有する化合物が好ましい。
The polyisocyanate composition according to the first to third embodiments includes, in addition to the polyisocyanate compound represented by the general formula (I) or the general formula (II), a compound having an allophanate structure, iminooxadiazine A compound having a dione structure, a compound having a urethane structure, or a compound having a buret structure may be included.
The allophanate structure, iminooxadiazinedione structure, urethane structure, or burette structure is represented by the following formula (VIII), (XI), (IX), or (X), respectively. Among them, a compound having an iminooxadiazinedione structure is preferable from the viewpoint of infiltration into the lower layer of the multilayer coating film, and a compound having an allophanate structure is preferable from the viewpoint of compatibility with silicate.

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

第1−3実施形態のポリイソシアネート組成物は、下記一般式(V)−1で示されるトリイソシアネートをさらに含むことが好ましい。・一般式(V)−1
The polyisocyanate composition of the first to third embodiments preferably further contains a triisocyanate represented by the following general formula (V) -1. -General formula (V) -1

Figure 0006664509
Figure 0006664509

[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。][In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]

〔R51、Y
一般式(V)−1中のR51、Yに関する説明は、前記一般式(V)中のR51、Yに関する説明と同様である。
第1−3実施形態においては、複数あるYの少なくとも1つはエステル構造および/またはエーテル構造を含むことが好ましい。
また、一般式(V)−1中のR51、Yは、前記一般式(V)中のR51、Yと同一であってもよく異なっていてもよい。
[R 51 , Y 1 ]
Description of the general formula (V) R 51, Y 1 in the -1 is the same as the description of R 51, Y 1 in the general formula (V).
In the first to third embodiments, at least one of the plurality of Y 1 preferably contains an ester structure and / or an ether structure.
In general formula (V) R 51, Y 1 in the -1, R 51, Y 1 and may be different may be the same in the general formula (V).

公知のポリイソシアネート組成物、例えば1,6−ヘキサメチレンジイソシアネート、1,5−ペンタンジイソシアネート、トルエンジイソシアネートもしくはイソホロンジイソシアネートのような揮発性ジイソシアネートから作製する場合、未反応の出発ジイソシアネートを、例えば蒸留により最終生成物からポリイソシアネート組成物の重量に対し2重量%未満、好ましくは1重量%未満の程度まで除去する必要がある。しかしながら第1−3実施形態のポリイソシアネート組成物を製造する場合は、第1−3実施形態に用いるトリイソシアネートのNCO基数が3個のため、第1−3実施形態のポリイソシアネート組成物のポリオールとの架橋能力を低下させず、必ずしも除去する必要がない。
未反応のトリイソシアネートを除去する場合は、薄膜蒸留法や溶剤抽出法等により、ポリイソシアネート組成物と分離することができる。
When made from known polyisocyanate compositions, e.g., volatile diisocyanates such as 1,6-hexamethylene diisocyanate, 1,5-pentane diisocyanate, toluene diisocyanate or isophorone diisocyanate, the unreacted starting diisocyanate is finalized, for example, by distillation. It is necessary to remove from the product to less than 2% by weight, preferably less than 1% by weight, based on the weight of the polyisocyanate composition. However, when producing the polyisocyanate composition of the first to third embodiments, the polyol of the polyisocyanate composition of the first to third embodiments has three NCO groups in the triisocyanate used in the first to third embodiments. It does not necessarily reduce the cross-linking ability with the polymer and does not necessarily need to be removed.
When removing unreacted triisocyanate, it can be separated from the polyisocyanate composition by a thin-film distillation method, a solvent extraction method, or the like.

第1−3実施形態のポリイソシアネート組成物の25℃における粘度は、特に制限を受けないが5mPa・s以上3000mPa・s以下であることが好ましく、10mPa・s以上1800mPa・sm以下であることがより好ましく、15mPa・s以上250mPa・s以下であることがさらに好ましい。上記下限値以上では、硬化性が優れる傾向があり、上記上限値以下では、作業性が優れる傾向がある。粘度は、E型粘度計(トキメック社製)を用いることによって測定することができる。   The viscosity at 25 ° C. of the polyisocyanate composition of the first to third embodiments is not particularly limited, but is preferably 5 mPa · s or more and 3000 mPa · s or less, and is preferably 10 mPa · s or more and 1800 mPa · sm or less. More preferably, it is more preferably from 15 mPa · s to 250 mPa · s. Above the lower limit, curability tends to be excellent, and below the upper limit, workability tends to be excellent. The viscosity can be measured by using an E-type viscometer (manufactured by Tokimec).

〔第1−4実施形態〕

本発明の第1−4実施形態のポリイソシアネート組成物は、一般式(II)で表されるポリイソシアネート化合物を含む。
[First to fourth embodiments]

The polyisocyanate composition of the first to fourth embodiments of the present invention contains a polyisocyanate compound represented by the general formula (II).

Figure 0006664509
[一般式(II)中、R21は有機基である。複数あるR21のうち少なくとも1つは、一般式(V)で表される基、または一般式(VI)で表される基である。複数あるR21は、それぞれ同一であってもよく異なっていてもよい。]
Figure 0006664509
[In the general formula (II), R 21 is an organic group. At least one of the plurality of R 21 is a group represented by the general formula (V) or a group represented by the general formula (VI). A plurality of R 21 may be the same or different. ]

Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]

Figure 0006664509
[一般式(VI)中、Yはエステル構造を含む炭素数1〜20の2価の炭化水素基である。波線は結合手を意味する。]
以下、一般式(II)、一般式(V)、一般式(IV)、および一般式(VI)について説明する。・一般式(II)
Figure 0006664509
[In the general formula (VI), Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms including an ester structure. A wavy line indicates a bond. ]
Hereinafter, the general formula (II), the general formula (V), the general formula (IV), and the general formula (VI) will be described. -General formula (II)

Figure 0006664509
Figure 0006664509

一般式(II)で表されるポリイソシアネート化合物は、イソシアヌレート構造を有する。イソシアヌレート構造は、イソシアネートモノマー3分子からなるポリイソシアネートである。   The polyisocyanate compound represented by the general formula (II) has an isocyanurate structure. The isocyanurate structure is a polyisocyanate composed of three molecules of an isocyanate monomer.

〔R21

一般式(II)において、R21は有機基である。複数あるR21のうち少なくとも1つは、下記一般式(V)で表される基、または下記一般式(VI)で表される基である。複数あるR21は、それぞれ同一であってもよく異なっていてもよい。
第1−4実施形態においては、3つのR21のうち、少なくとも1つは、下記一般式(V)で表される基、または下記一般式(VI)で表される基であり、2つのR21が下記一般式(V)で表される基、または下記一般式(VI)で表される基であることが好ましく、3つのR21すべてが下記一般式(V)で表される基、または下記一般式(VI)で表される基であることがより好ましい。
[R 21 ]

In the general formula (II), R 21 is an organic group. At least one of the plurality of R 21 is a group represented by the following general formula (V) or a group represented by the following general formula (VI). A plurality of R 21 may be the same or different.
In the first to fourth embodiments, at least one of the three R 21 is a group represented by the following general formula (V) or a group represented by the following general formula (VI); R 21 is preferably a group represented by the following general formula (V) or a group represented by the following general formula (VI), and all three R 21 are groups represented by the following general formula (V) Or a group represented by the following general formula (VI).

21のうち、前記一般式(V)で表される基以外の基、または前記一般式(VI)で表される基以外の基としては、例えば、テトラメチレンジイソシアネート(TMDI)、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、2,2,4−トリメチルヘキサン−1,6−ジイソシアネート、2−メチルペンタン−1,5−ジイソシアネート(MPDI)、1,3−ビス(イソシアナトメチル)−シクロヘキサン(1,3−H6−XDI)、3(4)−イソシアナトメチル−1−メチル−シクロヘキシルイソアネート(IMCI);イソホロンジイソシアネート(IPDI)、ビス(イソシアナトメチル)−ノルボルナン(NBDI)、1,3−ビス(イソシアナトメチル)−ベンゼン、1,3−ビス(2−イソシアナトプロピル−2)ベンゼンおよび4,4‘−ジシクロヘキシルメタンジイソシアネート(H12MDI)からイソシアネート基を除去した残基が挙げられる。Examples of the group other than the group represented by the general formula (V) or the group other than the group represented by the general formula (VI) in R 21 include, for example, tetramethylene diisocyanate (TMDI), pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane-1,6-diisocyanate, 2-methylpentane-1,5-diisocyanate (MPDI), 1,3-bis (isocyanatomethyl) -Cyclohexane (1,3-H6-XDI), 3 (4) -isocyanatomethyl-1-methyl-cyclohexylisoanate (IMCI); isophorone diisocyanate (IPDI), bis (isocyanatomethyl) -norbornane (NBDI) , 1,3-bis (isocyanatomethyl) -benzene, 1,3-bi And a residue obtained by removing an isocyanate group from di (2-isocyanatopropyl-2) benzene and 4,4′-dicyclohexylmethane diisocyanate (H12MDI).

・一般式(V) ・ General formula (V)

Figure 0006664509
〔Y

一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造[−C(=O)−O−]及び/又はエーテル構造(−O−)を含んでもよい炭素数1〜20の2価の炭化水素基である。複数存在するYは、それぞれ同一であってもよく異なっていてもよい。但し、複数あるYのうち少なくとも1つは、エステル構造を含む。
エステル構造及び/又はエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基としては、−(CHn1−X−(CHn2−で表される基(n1及びn2はそれぞれ独立して、0〜10の整数である。但し、n1及びn2の両方とも0になることはなく、n1、n2のうち、NCOと結合している側は1以上であることが好ましい。Xは、エステル基またはエーテル基である)。
反応速度を速めたい場合、Xがエステル基であることが好ましい。
n1及びn2は0〜4が好ましく、0〜2がより好ましい。n1及びn2の組み合わせとしては、例えば、n1=0、n2=2の組み合わせ、n1=2、n2=2の組み合わせが好ましい。
Figure 0006664509
[Y 1 ]

In the general formula (V), a plurality of Y 1 are each independently a single bond or a carbon which may contain an ester structure [—C (= O) —O—] and / or an ether structure (—O—). It is a divalent hydrocarbon group of the formulas 1 to 20. A plurality of Y 1 may be the same or different. However, at least one of the plurality of Y 1 includes an ester structure.
Examples of the divalent hydrocarbon group having ester structure and / or carbon atoms which may contain an ether structure 1~20, - (CH 2) n1 -X- (CH 2) n2 - group represented by (n1 and n2 Are each independently an integer from 0 to 10. However, both n1 and n2 do not become 0, and the side of n1 and n2 that is bonded to NCO is preferably 1 or more. X is an ester or ether group).
When it is desired to increase the reaction rate, X is preferably an ester group.
n1 and n2 are preferably from 0 to 4, more preferably from 0 to 2. As a combination of n1 and n2, for example, a combination of n1 = 0 and n2 = 2, and a combination of n1 = 2 and n2 = 2 are preferable.

〔R51

51は、水素原子又は、炭素数1〜12の1価の炭化水素基である。R51における炭化水素基としては、特に限定されず、アルキル基、アルケニル基、アルキニル基等が挙げられる。R51としては、水素原子が好ましい。
[R 51 ]

R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. The hydrocarbon group for R 51 is not particularly limited, and includes an alkyl group, an alkenyl group, an alkynyl group, and the like. As R 51 , a hydrogen atom is preferable.

第1−4実施形態における一般式(V)で表される基の元となるトリイソシアネートの分子量は139以上1000以下であることが好ましい。
分子量の下限値は、150以上が好ましく、180以上がより好ましく、200以上が特に好ましい。また分子量の上限値は、800以下が好ましく、600以下がより好ましく、400以下が特に好ましい。分子量が上記下限値以上であることにより、結晶性を抑制しやすくなる。また、分子量が上記上限値以下であることにより、低粘度化を達成しやすくなる。
It is preferable that the molecular weight of the triisocyanate that is the base of the group represented by the general formula (V) in the first to fourth embodiments is 139 or more and 1000 or less.
The lower limit of the molecular weight is preferably 150 or more, more preferably 180 or more, and particularly preferably 200 or more. The upper limit of the molecular weight is preferably 800 or less, more preferably 600 or less, and particularly preferably 400 or less. When the molecular weight is equal to or more than the above lower limit, crystallinity is easily suppressed. In addition, when the molecular weight is equal to or less than the above upper limit, lower viscosity can be easily achieved.

第1−4実施形態における一般式(V)で表される基の元となるトリイソシアネートは、低粘度とするため、複数存在するY中の炭化水素基が脂肪族基、及び/又は芳香族基を有することが好ましい。また、R51は水素であることが好ましい。
また、塗料組成物の硬化剤として使用した際の耐候性を良好とするため、Y中の炭化水素基が脂肪族基又は脂環族基を有することが好ましい。
別途、耐熱性を保持するため、複数存在するYのうち少なくとも1つが、エステル基を有することが好ましい。
Since the triisocyanate that is the base of the group represented by the general formula (V) in the first to fourth embodiments has a low viscosity, a plurality of hydrocarbon groups in Y 1 are an aliphatic group and / or an aromatic group. It preferably has a group. Also, R 51 is preferably hydrogen.
Further, in order to improve the weather resistance when used as a curing agent of the coating composition, a hydrocarbon group in Y 1 preferably has an aliphatic group or an alicyclic group.
Separately, in order to maintain heat resistance, at least one of a plurality of Y 1 preferably has an ester group.

第1−4実施形態における一般式(V)で表される基の元となるトリイソシアネートとしては、例えば、特公平4−1033号公報に開示されているビス(2−イソシアナトエチル)2−イソシアナトグルタレート(以下、GTIと言う、分子量311)、特開昭53−135931号公報に開示されているリジントリイソシアネート(以下、LTIと言う、分子量267)などが挙げられる。
これらの中では、イソシアネート基の反応性をより向上できる観点から、LTIが特に好ましい。
Examples of the triisocyanate that is a source of the group represented by the general formula (V) in the first to fourth embodiments include bis (2-isocyanatoethyl) 2- disclosed in Japanese Patent Publication No. Hei 4-1033. Examples include isocyanatoglutarate (hereinafter, referred to as GTI, molecular weight 311) and lysine triisocyanate (hereinafter, referred to as LTI, molecular weight 267) disclosed in JP-A-53-135931.
Among these, LTI is particularly preferred from the viewpoint of further improving the reactivity of the isocyanate group.

また、耐加水分解性を保持するためには、複数あるYのうち少なくとも1つが、エーテル構造を含む炭化水素基を有することが好ましい。・一般式(VI)
Further, in order to maintain hydrolysis resistance, at least one of the plurality of Y 1 preferably has a hydrocarbon group containing an ether structure. -General formula (VI)

Figure 0006664509
〔Y
一般式(VI)中、Yはエステル構造を含む炭素数1〜20の2価の炭化水素基である。
Figure 0006664509
[Y 2 ]
In the general formula (VI), Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms and containing an ester structure.

第1−4実施形態における一般式(VI)で表される基の元となるジイソシアネートは、塗料組成物の硬化剤として使用した際のイソシアネート基の反応性を高めるため、エステル構造を有する。
また、低粘度とするため、Y中の炭化水素基が構造中に脂肪族基、芳香族基を有することが好ましく、耐熱性を保持するため、Yが、エステル構造を有する炭化水素基を有することが好ましい。
この分類に該当する例としては、リジンジイソシアネート(以下、LDI)などが挙げられる。
The diisocyanate serving as the base of the group represented by the general formula (VI) in the first to fourth embodiments has an ester structure in order to increase the reactivity of the isocyanate group when used as a curing agent of the coating composition.
Further, the hydrocarbon group in Y 2 preferably has an aliphatic group or an aromatic group in the structure in order to have a low viscosity. In order to maintain heat resistance, Y 2 is a hydrocarbon group having an ester structure. It is preferable to have
Examples of this category include lysine diisocyanate (hereinafter, LDI).

第1−4実施形態における一般式(V)で表される基の元となるトリイソシアネートまたは一般式(VI)で表される基の元となるジイソシアネートは、アミノ酸誘導体などのアミンをイソシアネート化して得ることができる。アミノ酸誘導体としては、例えば2,5−ジアミノ吉草酸、2,6−ジアミノヘキサン酸、アスパラギン酸、グルタミン酸などを用いることができる。これらアミノ酸はジアミンモノカルボン酸またはモノアミンジカルボン酸であるので、カルボキシル基を、例えばエタノールアミンなどのアルカノールアミンでエステル化、または、カルボキシル基を、例えばメタノールなどでエステル化することで、アミノ基数を制御することができる。得られるエステル基を有するアミンはホスゲン化などによりエステル構造を含むトリイソシアネートまたはジイソシアネートとすることができる。   The triisocyanate as the base of the group represented by the general formula (V) or the diisocyanate as the base of the group represented by the general formula (VI) in the first to fourth embodiments is obtained by converting an amine such as an amino acid derivative into isocyanate. Obtainable. As the amino acid derivative, for example, 2,5-diaminovaleric acid, 2,6-diaminohexanoic acid, aspartic acid, glutamic acid and the like can be used. Since these amino acids are diamine monocarboxylic acid or monoamine dicarboxylic acid, the number of amino groups is controlled by esterifying the carboxyl group with an alkanolamine such as ethanolamine, or esterifying the carboxyl group with methanol or the like. can do. The resulting amine having an ester group can be converted to a triisocyanate or diisocyanate containing an ester structure by phosgenation or the like.

イソシアヌレート構造を形成する方法としては、触媒を用いる方法がある。イソシアヌレート化触媒としては、特に限定されないが、一般に塩基性を有するものが好ましく、例えば、(1)テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等のテトラアルキルアンモニウムのハイドロオキサイド;その酢酸塩、オクチル酸塩、ミリスチン酸塩、安息香酸塩等の有機弱酸塩、(2)トリメチルヒドロキシエチルアンモニウム、トリメチルヒドロキシプロピルアンモニウム、トリエチルヒドロキシエチルアンモニウム、トリエチルヒドロキシプロピルアンモニウム等のヒドロキシアルキルアンモニウムのハイドロオキサイド;その酢酸塩、オクチル酸塩、ミリスチン酸塩、安息香酸塩等の有機弱酸塩、(3)酢酸、カプロン酸、オクチル酸、ミリスチン酸等のアルキルカルボン酸の錫、亜鉛、鉛等の金属塩、(4)ナトリウム、カリウム等の金属アルコラート、(5)ヘキサメチレンジシラザン等のアミノシリル基含有化合物、(6)マンニッヒ塩基類、(7)第3級アミン類とエポキシ化合物との併用、(8)トリブチルホスフィン等の燐系化合物等が挙げられる。
この中で、不要な副生成物を生じさせにくい観点から、4級アンモニウムの有機弱酸塩が好ましく、さらにテトラアルキルアンモニウムの有機弱酸塩がより好ましい。
As a method for forming the isocyanurate structure, there is a method using a catalyst. The isocyanuration catalyst is not particularly limited, but is preferably a basic one. For example, (1) tetraalkylammonium hydroxides such as tetramethylammonium, tetraethylammonium and tetrabutylammonium; acetates thereof, octyl Organic weak acid salts such as acid salts, myristic acid salts and benzoic acid salts; (2) hydroxyalkyl ammonium hydroxides such as trimethylhydroxyethylammonium, trimethylhydroxypropylammonium, triethylhydroxyethylammonium and triethylhydroxypropylammonium; acetates thereof Organic weak acid salts such as octylate, myristate and benzoate, (3) tin alkyl carboxylate such as acetic acid, caproic acid, octylic acid and myristic acid; Lead, metal salts such as lead, (4) metal alcoholates such as sodium and potassium, (5) aminosilyl group-containing compounds such as hexamethylene disilazane, (6) Mannich bases, (7) tertiary amines and epoxy And (8) phosphorus compounds such as tributylphosphine.
Among them, a quaternary ammonium organic weak acid salt is preferable, and a tetraalkyl ammonium organic weak acid salt is more preferable, from the viewpoint of hardly generating unnecessary by-products.

これらの触媒は、触媒混合性の観点から、溶剤で希釈、もしくは、溶剤とともに添加しても良い。溶剤としては、例えば、1−メチルピロリドン、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、メチルエチルケトン、アセトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、エタノール、メタノール、iso−プロパノール、1−プロパノール、iso−ブタノール、1−ブタノール、2−エチルヘキサノール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、酢酸エチル、酢酸イソプロピル、酢酸ブチル、トルエン、キシレン、ペンタン、iso−ペンタン、ヘキサン、iso−ヘキサン、シクロヘキサン、ソルベントナフサ、ミネラルスピリット、ジメチルホルムアミドなどを挙げることができ、2種以上を併用できる。   These catalysts may be diluted with a solvent or added together with the solvent, from the viewpoint of the mixing property of the catalyst. As the solvent, for example, 1-methylpyrrolidone, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether, methyl ethyl ketone, acetone, methyl isobutyl ketone, Propylene glycol monomethyl ether acetate, ethanol, methanol, iso-propanol, 1-propanol, iso-butanol, 1-butanol, 2-ethylhexanol, cyclohexanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, , 3-butanediol, ethyl acetate, isopropyl acetate, butyl acetate, toluene, xylene, pentane, iso-pentane, hexane, iso-hexane, cyclohexane, solvent naphtha, mineral spirit, dimethylformamide and the like. The above can be used in combination.

イソシアヌレート化反応温度としては、50℃以上120℃以下が好ましく、60℃以上90℃以下がより好ましい。上記上限値以下であることで、着色などを効果的に防止できる傾向にあり、好ましい。
イソシアヌレート化反応は、特に限定されないが、例えば、リン酸、酸性リン酸エステル等の酸性化合物の添加により停止する。
第1−4実施形態のポリイソシアネート組成物の転化率は、1%以上100%以下が好ましく、10%以上80%以下がより好ましく、20%以上70%以下が特に好ましい。上記下限値以上では、硬化性が優れる傾向にあり、上記上限値以下では、粘度が低く作業性が優れる傾向にある。
The isocyanuration reaction temperature is preferably from 50 ° C to 120 ° C, more preferably from 60 ° C to 90 ° C. When the content is not more than the above upper limit, coloring and the like tend to be effectively prevented, which is preferable.
The isocyanuration reaction is not particularly limited, but is stopped by, for example, addition of an acidic compound such as phosphoric acid or acidic phosphate.
The conversion of the polyisocyanate composition of the first to fourth embodiments is preferably 1% or more and 100% or less, more preferably 10% or more and 80% or less, and particularly preferably 20% or more and 70% or less. Above the lower limit, the curability tends to be excellent, and below the upper limit, the viscosity tends to be low and the workability tends to be excellent.

前記転化率はゲルパーミッションクロマトグラフ(以下「GPC」という)を用い、ポリスチレン基準の数平均分子量により、未反応トリイソシアネートよりも数平均分子量の大きなピークの面積割合とした。   The conversion was determined by gel permeation chromatography (hereinafter referred to as "GPC"), and the area ratio of the peak having a number average molecular weight larger than that of the unreacted triisocyanate was determined by the number average molecular weight based on polystyrene.

第1−4実施形態のポリイソシアネート組成物中のポリイソシアネート化合物の含有量は、1質量%以上100質量%以下であることが好ましく、10質量%以上90質量%以下であることがより好ましく、20質量%以上80質量%以下であることがさらに好ましい。上記下限値以上であると、耐候性が優れる傾向にあり、上記上限値以下では、粘度が低く作業性が優れる傾向にある。   The content of the polyisocyanate compound in the polyisocyanate composition of the first to fourth embodiments is preferably from 1% by mass to 100% by mass, more preferably from 10% by mass to 90% by mass, More preferably, it is 20% by mass or more and 80% by mass or less. When it is at least the lower limit, weather resistance tends to be excellent, and when it is at most the upper limit, viscosity tends to be low and workability tends to be excellent.

また、第1−4実施形態のポリイソシアネート組成物には、前記一般式(II)で表されるポリイソシアネート化合物以外に、ウレトジオン構造を有する化合物、アロファネート構造を有する化合物、イミノオキサジアジンジオン構造を有する化合物、ウレタン構造を有する化合物、ビュレット構造を有する化合物が含まれてもよい。
ウレトジオン構造、アロファネート構造、イミノオキサジアジンジオン構造、ウレタン構造、ビュレット構造は、それぞれ次式(VII)、(VIII)、(XI)、(IX)、(X)に示される。中でも複層塗膜の下層への染込み性の観点からアロファネート構造を有する化合物、ウレトジオン構造を有する化合物、イミノオキサジアジンジオンイミノオキサジアジンジオン構造を有する化合物が好ましい。
In addition, in addition to the polyisocyanate compound represented by the general formula (II), the polyisocyanate composition of the first to fourth embodiments includes a compound having an uretdione structure, a compound having an allophanate structure, and an iminooxadiazinedione structure. , A compound having a urethane structure, and a compound having a buret structure.
The uretdione structure, allophanate structure, iminooxadiazinedione structure, urethane structure, and burette structure are represented by the following formulas (VII), (VIII), (XI), (IX), and (X), respectively. Among them, a compound having an allophanate structure, a compound having a uretdione structure, and a compound having an iminooxadiazinedione iminooxadiazinedione structure are preferred from the viewpoint of the ability to penetrate into the lower layer of the multilayer coating film.

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

第1−4実施形態のポリイソシアネート組成物は、ヘキサメチレンジイソシアネートから誘導されるポリイソシアネートと1級アルコールとの反応速度(V)に対する、ポリイソシアネート組成物と1級アルコールとの反応速度(V)の比(V/V)が、5以上13未満であることが好ましい。 The polyisocyanate composition according to the first to fourth embodiments has a reaction rate ( Vh ) between the polyisocyanate composition and the primary alcohol, which is higher than the reaction rate (Vh) between the polyisocyanate derived from hexamethylene diisocyanate and the primary alcohol. the ratio of p) (V h / V p ) is preferably less than 5 or 13.


ヘキサメチレンジイソシアネートから誘導されるポリイソシアネートと1級アルコールとの反応速度(V)に対する、第1−4実施形態のポリイソシアネート組成物と1級アルコールとの反応速度(V)との比(V/V)は、塗膜の乾燥性の観点から1より大きいことが好ましく、5以上がより好ましい。また、塗料の可使時間の観点から15未満が好ましく、13未満がより好ましい。
上記上限値と下限値は任意に組み合わせることができるが、第1−4実施形態においては、5以上13未満であることが好ましい。

Ratio of the reaction rate ( Vp ) of the polyisocyanate derived from hexamethylene diisocyanate and the primary alcohol to the reaction rate ( Vh ) of the polyisocyanate composition of the first to fourth embodiments with the primary alcohol ( Vp ) ( Vh / Vp ) is preferably greater than 1 and more preferably 5 or more from the viewpoint of drying property of the coating film. Further, from the viewpoint of the pot life of the coating material, it is preferably less than 15, more preferably less than 13.
The upper limit and the lower limit can be arbitrarily combined, but are preferably 5 or more and less than 13 in the first to fourth embodiments.

ポリイソシアネート組成物と1級アルコールとの反応速度は、例えば、以下の方法で測定することができる。
ポリイソシアネート組成物のNCO基と1級アルコールのOH基のモル比が1になるよう混合し、70℃で加熱撹拌し、NCO基の残存率を測定し、その減少速度を反応速度とする。NCO基の残存率は、例えばNCO含有率測定で求めることができる。
The reaction rate between the polyisocyanate composition and the primary alcohol can be measured, for example, by the following method.
The polyisocyanate composition is mixed so that the molar ratio of the NCO group to the OH group of the primary alcohol becomes 1, heated and stirred at 70 ° C., the residual rate of the NCO group is measured, and the rate of decrease is defined as the reaction rate. The residual ratio of NCO groups can be determined, for example, by measuring the NCO content.

前記の1級アルコールとしては、例えば、1−ブタノール、iso−ブタノール、2−エチルヘキサノールなどが挙げられる。また、前記のヘキサメチレンジイソシアネートから誘導されるポリイソシアネートとしては、例えば、旭化成社の商品名「デュラネートTKA−100」や「デュラネートTPA−100」などが挙げられる。   Examples of the primary alcohol include 1-butanol, iso-butanol, 2-ethylhexanol and the like. Examples of the polyisocyanate derived from the above hexamethylene diisocyanate include “Duranate TKA-100” and “Duranate TPA-100” (trade names) of Asahi Kasei Corporation.

第1−4実施形態のポリイソシアネート組成物は、例えば、1)前記のトリイソシアネートをイソシアヌレート化して製造する方法の他に、2)前記のトリイソシアネートの0.4から0.6モルのNCO基を、熱解離剤と反応させた後に、イソシアヌレート化を行い、その後、加熱などにより熱解離剤を解離することで製造する方法などがある。前記の熱解離剤は、例えばメチルエチルケトオキシムなどが挙げられる。前記の(2)の製造方法では、ポリイソシアネート組成物と1級アルコールの反応速度が速いポリイソシアネート組成物を得ることができ、塗料の速乾性の観点から好ましい。   The polyisocyanate composition according to the first to fourth embodiments can be prepared, for example, by the following methods: 1) a method of producing the above-mentioned triisocyanate by isocyanuration, and 2) 0.4 to 0.6 mol of NCO of the above-mentioned triisocyanate. There is a method in which a group is produced by reacting a group with a thermal dissociating agent, performing isocyanuration, and then dissociating the thermal dissociating agent by heating or the like. Examples of the thermal dissociating agent include methyl ethyl ketoxime. In the production method (2), a polyisocyanate composition having a high reaction rate between the polyisocyanate composition and the primary alcohol can be obtained, which is preferable from the viewpoint of quick drying of the coating.


第1−4実施形態のポリイソシアネート組成物は、下記一般式(V)−1で示されるトリイソシアネートまたは下記一般式(VI)−1で示されるジイソシアネートをさらに含むことが好ましい。・一般式(V)−1

The polyisocyanate composition of the first to fourth embodiments preferably further contains a triisocyanate represented by the following general formula (V) -1 or a diisocyanate represented by the following general formula (VI) -1. -General formula (V) -1

Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造及び/又はエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子又は炭素数1〜12の1価の炭化水素基である。]
Figure 0006664509
[In the general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]

〔R51、Y

一般式(V)−1中のR51、Yに関する説明は、前記一般式(V)中のR、Yに関する説明と同様である。
ただし、一般式(V)−1においては、Yはエステル構造及び/又はエーテル構造を含んでもよく、含んでいなくてもよい。第1−4実施形態においては、複数あるYの少なくとも1つはエステル構造及び/又はエーテル構造を含むことが好ましい。・一般式(VI)−1
[R 51 , Y 1 ]

The description regarding R 51 and Y 1 in the general formula (V) -1 is the same as the description regarding R 1 and Y 1 in the general formula (V).
However, in the general formula (V) -1, Y 1 may or may not contain an ester structure and / or an ether structure. In the first to fourth embodiments, at least one of the plurality of Y 1 preferably contains an ester structure and / or an ether structure. -General formula (VI) -1

Figure 0006664509
[一般式(VI)−1中、Yはエステル構造を含んでいてもよい炭素数1〜20の2価の炭化水素基である。]〔Y

一般式(VI)−1中のYに関する説明は、前記一般式(VI)中のYに関する説明と同様である。
ただし、一般式(VI)−1においては、Yはエステル構造及び/又はエーテル構造を含んでもよく、含んでいなくてもよい。第1−4実施形態においては、Yはエステル構造及び/又はエーテル構造を含むことが好ましい。
Figure 0006664509
[In general formula (VI) -1, Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain an ester structure. ] [Y 2 ]

Description of the general formula (VI) in -1 Y 2 are the same as the description of Y 2 in the general formula (VI).
However, in the general formula (VI) -1, Y 2 may or may not contain an ester structure and / or an ether structure. In the first to fourth embodiments, Y 2 preferably contains an ester structure and / or an ether structure.

公知のポリイソシアネート組成物をたとえば1,6−ヘキサメチレンジイソシアネート、1,5−ペンタンジイソシアネート、トルエンジイソシアネートもしくはイソホロンジイソシアネートのような揮発性ジイソシアネートから作製する場合、未反応の出発ジイソシアネートをたとえば蒸留により最終生成物からポリイソシアネート組成物の重量に対し2重量%未満、好ましくは1重量%未満の程度まで除去する必要がある。しかしながら第1−4実施形態のポリイソシアネート組成物を製造する場合は、第1−4実施形態に用いるトリイソシアネートのNCO基数が3個のため、第1−4実施形態のポリイソシアネート組成物のポリオールとの架橋能力を低下させず、必ずしも除去する必要がない。
未反応のトリイソシアネートを除去する場合は、薄膜蒸留法や溶剤抽出法などにより、ポリイソシアネート組成物と分離することができる。
When the known polyisocyanate compositions are prepared from volatile diisocyanates such as, for example, 1,6-hexamethylene diisocyanate, 1,5-pentane diisocyanate, toluene diisocyanate or isophorone diisocyanate, the unreacted starting diisocyanate is finally formed, for example by distillation. It is necessary to remove from the product to less than 2% by weight, preferably less than 1% by weight based on the weight of the polyisocyanate composition. However, when producing the polyisocyanate composition of the first to fourth embodiments, since the number of NCO groups of the triisocyanate used in the first to fourth embodiments is 3, the polyol of the polyisocyanate composition of the first to fourth embodiments is used. It does not necessarily reduce the cross-linking ability with the polymer and does not necessarily need to be removed.
When removing unreacted triisocyanate, it can be separated from the polyisocyanate composition by a thin-film distillation method, a solvent extraction method, or the like.

第1−4実施形態のポリイソシアネート組成物の25℃における粘度は、特に制限を受けないが5mPa・s以上2000mPa・s以下であることが好ましく、10mPa・s以上1800mPa・sm以下がより好ましい。上記下限値以上では、硬化性が優れる傾向があり、上記上限値以下では、作業性が優れる傾向がある。粘度は、E型粘度計(トキメック社製)を用いることによって測定することができる。   The viscosity at 25 ° C of the polyisocyanate composition of the first to fourth embodiments is not particularly limited, but is preferably 5 mPa · s to 2000 mPa · s, and more preferably 10 mPa · s to 1800 mPa · sm. Above the lower limit, curability tends to be excellent, and below the upper limit, workability tends to be excellent. The viscosity can be measured by using an E-type viscometer (manufactured by Tokimec).

〔第1−5実施形態〕

第1−5実施形態のポリイソシアネート組成物は、一般式(III)で示されるアロファネート構造を有するポリイソシアネート化合物を含み、該ポリイソシアネート組成物に含まれるイソシアネート基、アロファネート構造、イソシアヌレート構造、ウレトジオン構造、イミノオキサジアジンジオン構造、ウレタン構造、およびビュレット構造に含まれる窒素元素の総数に対して、該アロファネート構造に含まれる窒素元素(ただし、R31、R32に含まれる窒素元素を除く)の数が1.5%以上60%以下である。
[1-5th Embodiment]

The polyisocyanate composition of the first to fifth embodiments contains a polyisocyanate compound having an allophanate structure represented by the general formula (III), and isocyanate groups, allophanate structure, isocyanurate structure, uretdione contained in the polyisocyanate composition. Structure element, iminooxadiazinedione structure, urethane structure, and nitrogen element contained in the allophanate structure with respect to the total number of nitrogen elements contained in the burette structure (excluding the nitrogen element contained in R 31 and R 32 ) Is 1.5% or more and 60% or less.

Figure 0006664509
[一般式(III)中、R32は有機基である。複数あるR32のうち少なくとも1つは、一般式(V)で示される基であり、R32は1価以上のアルコールのヒドロキシル基を除去した残基である。]
Figure 0006664509
[In the general formula (III), R 32 is an organic group. At least one of the plurality of R 32 is a group represented by the general formula (V), and R 32 is a residue obtained by removing a hydroxyl group of a monohydric or higher alcohol. ]


Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。] 以下、一般式(III)および一般式(V)について説明する。

Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. Hereinafter, the general formulas (III) and (V) will be described.

・一般式(III) ・ General formula (III)


Figure 0006664509
一般式(III)で表される化合物は、イソシアネート2分子と、1価以上のアルコールからなるアロファネート構造を有するポリイソシアネート化合物である。
Figure 0006664509
The compound represented by the general formula (III) is a polyisocyanate compound having an allophanate structure composed of two molecules of isocyanate and a monohydric or higher alcohol.

〔R31

一般式(III)中、R31のうち少なくとも1つは前記一般式(V)で表される基である。
[R 31 ]

In the general formula (III), at least one of R 31 is a group represented by the general formula (V).

〔R32

一般式(III)中、R32は1価以上のアルコールのヒドロキシル基を除去した残基である。
[ R32 ]

In the general formula (III), R32 is a residue obtained by removing a hydroxyl group of a monohydric or higher alcohol.

第1−5実施形態に用いることのできる1価以上のアルコールとしては、以下が挙げられる。 1価のアルコールとしては、例えばメタノール、エタノール、1−プロパノール、2−ブロパノール、1−ブタノール、2−ブタノール、iso−ブタノール、1−ペンタノール、2−ペンタノール、イソアミルアルコール、1−ヘキサノール、2−ヘキサノール、1−ヘプタノール、1−オクタノール、2−エチル−1−ヘキサノール、3,3,5−トリメチル−1−ヘキサノール、トリデカノール、ペンタデカノール等の飽和脂肪族アルコール、シクロヘキサノール、シクロペンタノール等の飽和環状脂肪族アルコール、アリルアルコール、ブテノール、ヘキセノール、2−ヒドロキシエチルアクリレート等の不飽和脂肪族アルコール等が挙げられる。   Examples of the monohydric or higher alcohol that can be used in the first to fifth embodiments include the following. Examples of the monohydric alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, 1-pentanol, 2-pentanol, isoamyl alcohol, 1-hexanol, -Saturated aliphatic alcohols such as hexanol, 1-heptanol, 1-octanol, 2-ethyl-1-hexanol, 3,3,5-trimethyl-1-hexanol, tridecanol and pentadecanol, cyclohexanol, cyclopentanol and the like And unsaturated aliphatic alcohols such as allyl alcohol, butenol, hexenol and 2-hydroxyethyl acrylate.

2価のアルコールとしては、例えばエチレングリコール、プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,6−ヘキサンジオール、1,4−ヘキサンジオール、1,6−シクロヘキサンジオール、1,4−シクロヘキサンジオール、メチルペンタンジオール、シクロヘキサンジメタノール、メチルペンタンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、水添ビスフェノールA等が挙げられる。   Examples of the dihydric alcohol include ethylene glycol, propanediol, 1,4-butanediol, 1,3-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,6-cyclohexanediol, , 4-cyclohexanediol, methylpentanediol, cyclohexanedimethanol, methylpentanediol, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, hydrogenated bisphenol A, and the like.

3価のアルコールとしては、例えばグリセリン、2−メチル−2−ヒドロキシメチル−1,3−プロパンジオール、2,4−ヒドロキシ−3−ヒドロキシメチルペンタン、1,2,6−ヘキサントリオール等が挙げられる。   Examples of the trihydric alcohol include glycerin, 2-methyl-2-hydroxymethyl-1,3-propanediol, 2,4-hydroxy-3-hydroxymethylpentane, 1,2,6-hexanetriol, and the like. .

4価のアルコールとしては、例えばエリスロース等のテトリトール、キシリトール等のペンチトール、ソルビトール等のヘキシトールのような糖アルコール等が挙げられる。 フェノール類としては、フェノール、ベンジルフェノール、o−クレゾール、p−クレゾール、カテコール、エチルフェノール、オクチルフェノール、キシレノール、ナフトール、ノニルフェノール、ビスフェノールA等が挙げられる。   Examples of the tetrahydric alcohol include sugar alcohols such as tetritol such as erythrose, pentitol such as xylitol, and hexitol such as sorbitol. Examples of the phenols include phenol, benzylphenol, o-cresol, p-cresol, catechol, ethylphenol, octylphenol, xylenol, naphthol, nonylphenol, bisphenol A and the like.

更に、上記のアルコールを原料としたポリエステルポリオール、ポリプロピレングリコール、ポリエチレングリコール、ポリテトラエチレングリコール等も、本発明の1価以上のアルコールとして適している。また、水酸基を有するアクリルポリオールも1価以上のアルコールとして使用することが出来る。   Further, polyester polyols, polypropylene glycols, polyethylene glycols, polytetraethylene glycols and the like made from the above-mentioned alcohols are also suitable as the mono- or higher-valent alcohol of the present invention. In addition, an acrylic polyol having a hydroxyl group can also be used as a monohydric or higher alcohol.


第1−5実施形態に用いるアルコールは、塗料の速乾性を向上させる観点からは2価以上のアルコールを含むことが好ましい。つまり、一般式(III)中、R32は2価以上のアルコールのヒドロキシル基を除去した残基であることが好ましい。
極性の低い有機溶剤への溶解性を高める観点からは炭素数3〜50であるアルコールを用いることが好ましい。つまり、一般式(III)中、R32は炭素数3〜50であるアルコールのヒドロキシル基を除去した残基であることが好ましい。また、水に分散させたときの分散安定性を高める観点からは炭素数1〜10であって、且つ、1価のアルコールを用いることが好ましい。・一般式(V)

The alcohol used in the first to fifth embodiments preferably contains a dihydric or higher alcohol from the viewpoint of improving the quick drying property of the paint. That is, in the general formula (III), R 32 is preferably a residue obtained by removing a hydroxyl group of a divalent or higher alcohol.
From the viewpoint of increasing the solubility in a low-polarity organic solvent, it is preferable to use an alcohol having 3 to 50 carbon atoms. That is, in formula (III), R 32 is preferably a residue obtained by removing the hydroxyl group of an alcohol having 3 to 50 carbon atoms. From the viewpoint of enhancing the dispersion stability when dispersed in water, it is preferable to use a monohydric alcohol having 1 to 10 carbon atoms.・ General formula (V)

Figure 0006664509
〔Y

一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造[−C(=O)−O−]および/またはエーテル構造(−O−)を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。
エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基としては、−(CHn1−X−(CHn2−で表される基(n1およびn2はそれぞれ独立して、0〜10の整数である。但し、n1およびn2の両方とも0になることはなく、n1、n2のうち、NCOと結合している側は1以上であることが好ましい。Xは、エステル基またはエーテル基である。)が挙げられる。
反応速度を速めたい場合、Xがエステル基であることが好ましい。
n1およびn2は0〜4が好ましく、0〜2がより好ましい。n1およびn2の組み合わせとしては、例えば、n1=0、n2=2の組み合わせ、n1=2、n2=2の組み合わせが好ましい。
Figure 0006664509
[Y 1 ]

In the general formula (V), a plurality of Y 1 are each independently a single bond or a carbon which may contain an ester structure [—C (= O) —O—] and / or an ether structure (—O—). It is a divalent hydrocarbon group of the formulas 1 to 20. A plurality of Y 1 may be the same or different.
Examples of the divalent hydrocarbon group having ester structure and / or carbon atoms which may contain an ether structure 1~20, - (CH 2) n1 -X- (CH 2) n2 - group represented by (n1 and n2 Are each independently an integer from 0 to 10. However, both n1 and n2 do not become 0, and it is preferable that one of n1 and n2 bonded to NCO is 1 or more. X is an ester group or an ether group).
When it is desired to increase the reaction rate, X is preferably an ester group.
n1 and n2 are preferably 0 to 4, and more preferably 0 to 2. As a combination of n1 and n2, for example, a combination of n1 = 0 and n2 = 2, and a combination of n1 = 2 and n2 = 2 are preferable.

〔R51

51は、水素原子、または炭素数1〜12の1価の炭化水素基である。R51における炭化水素基としては、特に限定されず、アルキル基、アルケニル基、アルキニル基等が挙げられる。Rとしては、水素原子が好ましい。
[R 51 ]

R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. The hydrocarbon group for R 51 is not particularly limited, and includes an alkyl group, an alkenyl group, an alkynyl group, and the like. R 1 is preferably a hydrogen atom.

第1−5実施形態における一般式(V)で表される基の元となるトリイソシアネートの分子量は139以上1000以下であることが好ましい。
分子量の下限値は、139以上が好ましく、150以上がより好ましく、180以上がさらに好ましく、200以上が特に好ましい。また分子量の上限値は、1000以下が好ましく、800以下がより好ましく、600以下がさらに好ましく、400以下が特に好ましい。分子量が上記下限値以上であることにより、結晶性を抑制しやすくなる。また、分子量が上記上限値以下であることにより、低粘度化を達成しやすくなる。
It is preferable that the molecular weight of the triisocyanate that is the base of the group represented by the general formula (V) in the first to fifth embodiments is 139 or more and 1000 or less.
The lower limit of the molecular weight is preferably 139 or more, more preferably 150 or more, further preferably 180 or more, and particularly preferably 200 or more. The upper limit of the molecular weight is preferably 1,000 or less, more preferably 800 or less, further preferably 600 or less, and particularly preferably 400 or less. When the molecular weight is equal to or more than the above lower limit, crystallinity is easily suppressed. In addition, when the molecular weight is equal to or less than the above upper limit, lower viscosity can be easily achieved.

第1−5実施形態における一般式(V)で表される基の元となるトリイソシアネートは、低粘度とするため、複数あるY中の炭化水素基が脂肪族基または芳香族基を有することが好ましい。また、Rは水素であることが好ましい。
また、塗料組成物の硬化剤として使用した際の耐候性を良好とするため、複数あるY中の炭化水素基が脂肪族基または脂環族基を有することが好ましい。
また、複数あるYが炭化水素基のみで構成されていることが好ましい。
別途、耐熱性を保持するため、複数あるYのうち少なくとも1つが、エステル基を有することが好ましい。
また、耐加水分解性を保持するためには、複数あるY31のうち少なくとも1つが、エーテル構造を含む炭化水素基、または炭化水素基を有することが好ましい。
The triisocyanate that is the base of the group represented by the general formula (V) in the first to fifth embodiments has a low viscosity, so that a plurality of hydrocarbon groups in Y 1 have an aliphatic group or an aromatic group. Is preferred. Also, R 1 is preferably hydrogen.
Further, in order to improve the weather resistance when used as a curing agent of the coating composition, but preferably the hydrocarbon group in the plurality of Y 1 is an aliphatic group or an alicyclic group.
In addition, it is preferable that a plurality of Y 1 be composed of only a hydrocarbon group.
Separately, in order to maintain heat resistance, at least one of the plurality of Y 1 preferably has an ester group.
In order to maintain hydrolysis resistance, at least one of the plurality of Y 31 preferably has a hydrocarbon group containing an ether structure or a hydrocarbon group.

第1−5実施形態における一般式(V)で表される基の元となるトリイソシアネートとしては、例えば、特公昭63−15264号公報に開示されている4−イソシアネートメチル−1,8−オクタメチレンジイソシアネート(以下、NTIと言う、分子量251)、特開昭57−198760号公報に開示されている1,3,6−ヘキサメチレントリイソシアネート(以下、HTIと言う、分子量209)、特公平4−1033号公報に開示されているビス(2−イソシアナトエチル)2−イソシアナトグルタレート(以下、GTIと言う、分子量311)、特開昭53−135931号公報に開示されているリジントリイソシアネート(以下、LTIと言う、分子量267)等が挙げられる。
これらの中では、イソシアネート基の反応性をより向上できる観点から、NTI、GTIまたはLTIが好ましく、NTIまたはLTIがより好ましく、LTIが特に好ましい。
Examples of the triisocyanate which is a source of the group represented by the general formula (V) in the first to fifth embodiments include 4-isocyanatomethyl-1,8-octaphthalate disclosed in JP-B-63-15264. Methylene diisocyanate (hereinafter referred to as NTI, molecular weight 251), 1,3,6-hexamethylene triisocyanate (hereinafter referred to as HTI, molecular weight 209) disclosed in JP-A-57-198760, Bis (2-isocyanatoethyl) 2-isocyanatoglutarate (hereinafter referred to as GTI, molecular weight 311) disclosed in JP-A-1033, lysine triisocyanate disclosed in JP-A-53-1351931 (Hereinafter referred to as LTI, molecular weight 267).
Among these, NTI, GTI or LTI is preferable, NTI or LTI is more preferable, and LTI is particularly preferable from the viewpoint of further improving the reactivity of the isocyanate group.

また、耐加水分解性を保持するためには、複数あるYのうち少なくとも1つが、エーテル構造を含む炭化水素基を有することが好ましい。Further, in order to maintain hydrolysis resistance, at least one of the plurality of Y 1 preferably has a hydrocarbon group containing an ether structure.

第1−5実施形態における一般式(V)で表される基の元となるトリイソシアネートは、アミノ酸誘導体やエーテルアミン、アルキルトリアミン等のアミンをイソシアネート化して得ることができる。アミノ酸誘導体としては、例えば2,5−ジアミノ吉草酸、2,6−ジアミノヘキサン酸、アスパラギン酸、グルタミン酸等を用いることができる。これらアミノ酸はジアミンモノカルボン酸またはモノアミンジカルボン酸であるので、カルボキシル基を、例えばエタノールアミン等のアルカノールアミンでエステル化、または、カルボキシル基を、例えばメタノール等でエステル化することで、アミノ基数を制御することができる。得られるエステル基を有するアミンはホスゲン化等によりエステル構造を含むトリイソシアネートまたはジイソシアネートとすることができる。
エーテルアミンとしては、例えば、ポリオキシアルキレントリアミンである三井化学ファイン社の商品名「D403」等が挙げられる。これらはトリアミンであり、アミンのホスゲン化等によりエーテル構造を含むトリイソシアネートとすることができる。
アルキルトリアミンとしては、例えば、トリイソシアナトノナン(4−アミノメチル−1,8−オクタンジアミン)等が挙げられる。これはトリアミンであり、アミンのホスゲン化等により炭化水素のみを含むトリイソシアネートとすることができる。
The triisocyanate that is the base of the group represented by the general formula (V) in the first to fifth embodiments can be obtained by isocyanating an amino acid derivative or an amine such as an etheramine or an alkyltriamine. As the amino acid derivative, for example, 2,5-diaminovaleric acid, 2,6-diaminohexanoic acid, aspartic acid, glutamic acid and the like can be used. Since these amino acids are diamine monocarboxylic acid or monoamine dicarboxylic acid, the number of amino groups is controlled by esterifying the carboxyl group with an alkanolamine such as ethanolamine or by esterifying the carboxyl group with methanol or the like. can do. The resulting amine having an ester group can be converted to a triisocyanate or a diisocyanate containing an ester structure by phosgenation or the like.
Examples of the ether amine include “D403”, a product name of Mitsui Chemical Fine Inc., which is a polyoxyalkylene triamine. These are triamines, and can be converted into triisocyanates containing an ether structure by phosgenation of the amine or the like.
Examples of the alkyltriamine include triisocyanatononane (4-aminomethyl-1,8-octanediamine) and the like. This is a triamine, and can be converted to a triisocyanate containing only a hydrocarbon by phosgenation of the amine or the like.

第1−5実施形態において、アロファネート構造に含まれる窒素元素の数は、ポリイソシアネート組成物に含まれるイソシアネート基由来の窒素元素の総数に対して、該アロファネート構造に含まれる窒素元素(ただし、R31、R32に含まれる窒素元素を除く)の数が1.5%以上60%以下である。アロファネート構造に含まれる窒素元素の数をこの範囲とすることで、極性の低い有機溶剤への溶解性、水への分散性を高めるとともに、得られる塗膜の耐候性や耐水性を高いレベルとし、さらに、速乾性を発現させることができる。
窒素元素の範囲は3%以上50%以下であることが好ましく、5%以上40%以下であることがより好ましく、7%以上30%以下であることが特に好ましい。
In the first to fifth embodiments, the number of nitrogen elements contained in the allophanate structure is calculated based on the total number of nitrogen elements derived from isocyanate groups contained in the polyisocyanate composition. 31 , excluding the nitrogen element contained in R 32 ) is 1.5% or more and 60% or less. By setting the number of nitrogen elements contained in the allophanate structure in this range, the solubility in low-polarity organic solvents and the dispersibility in water are improved, and the weather resistance and water resistance of the obtained coating film are set to a high level. In addition, quick drying can be exhibited.
The range of the nitrogen element is preferably 3% or more and 50% or less, more preferably 5% or more and 40% or less, and particularly preferably 7% or more and 30% or less.

ここでイソシアネート基由来の窒素元素とは、イソシアネート基、およびイソシアネート基が反応して生じる、アロファネート構造、イソシアヌレート構造、ウレトジオン構造、イミノオキサジアジンジオン構造、ウレタン構造、ビュレット構造等のイソシアネート同士が反応して生成した部位、あるいは、イソシアネート基と他の官能基が反応して生成した部位を指す。イソシアネート基由来の窒素元素の数と、アロファネート構造に含まれる窒素元素との割合は、13C−NMRにより求めることができる。また、2種類以上の異なるイソシアネート種を含む場合は、適宜、H−NMRでの測定や、液体クロマトグラム等を用いて成分を分離した後に、各成分のNMR測定を行ったりすることで求めることができる。
なお、用いる装置、測定条件、用いる物質によってピーク位置は変わるので、適宜、標準物質等を用いてピーク位置を求め、それぞれの構造の割合を計算することが望ましい。
Here, the nitrogen element derived from the isocyanate group is an isocyanate group, and an isocyanate such as an allophanate structure, an isocyanurate structure, a uretdione structure, an iminooxadiazinedione structure, a urethane structure, and a buret structure, which are generated by reacting the isocyanate group. It refers to the site generated by the reaction or the site generated by the reaction between the isocyanate group and another functional group. The number of nitrogen elements derived from isocyanate groups and the ratio of nitrogen elements contained in the allophanate structure can be determined by 13 C-NMR. In the case where two or more different isocyanate species are contained, they may be determined by appropriately performing H-NMR measurement or NMR measurement of each component after separating the components using a liquid chromatogram or the like. Can be.
Since the peak position varies depending on the device used, the measurement conditions, and the substance used, it is desirable to appropriately determine the peak position using a standard substance or the like and calculate the ratio of each structure.

アロファネート構造を生成する方法として、イソシアネート分子を加熱する方法や、触媒を用いる方法等がある。アロファネート化触媒としては、特に限定されないが、次式(XV)で表されるジルコニル化合物、および次式(XIX)で表されるジルコニウムアルコラートからなる群から選ばれる少なくとも1種類の化合物を使用する。アロファネート構造の生成比率がより高いポリイソシアネート組成物を得るためには、ジルコニル化合物を用いることが好ましい。
ジルコニル化合物とは、次式(XV)の構造を有する化合物である。
As a method of generating an allophanate structure, there are a method of heating isocyanate molecules, a method of using a catalyst, and the like. The allophanate-forming catalyst is not particularly limited, but at least one compound selected from the group consisting of a zirconyl compound represented by the following formula (XV) and a zirconium alcoholate represented by the following formula (XIX) is used. In order to obtain a polyisocyanate composition having a higher generation ratio of the allophanate structure, it is preferable to use a zirconyl compound.
The zirconyl compound is a compound having a structure represented by the following formula (XV).

Figure 0006664509
[一般式(XV)中、R61およびR62は、それぞれ独立に、アルキルカルボニウムオキシ基、アルコキシ基、アルキル基、ハロゲン基、無機酸の水素残基である。]
Figure 0006664509
[In the general formula (XV), R 61 and R 62 each independently represent an alkylcarboniumoxy group, an alkoxy group, an alkyl group, a halogen group, or a hydrogen residue of an inorganic acid. ]

ここで、アルキルカルボニウムオキシ基とは、有機カルボン酸の水素を除いた残基を意味する。つまり、上記式(XV)のR61およびR62がともにアルキルカルボニウムオキシ基の場合、ジルコニウム化合物はジルコニルカルボン酸塩である。有機カルボン酸としては、脂肪族カルボン酸、脂環式カルボン酸、不飽和カルボン酸、水酸基含有カルボン酸、ハロゲン化アルキルカルボン酸等の他、ジカルボン酸、トリカルボン酸等の多塩基酸カルボン酸も含む。Here, the alkylcarboniumoxy group means a residue obtained by removing hydrogen of an organic carboxylic acid. That is, when both R 61 and R 62 in the above formula (XV) are an alkylcarboniumoxy group, the zirconium compound is a zirconyl carboxylate. Organic carboxylic acids include aliphatic carboxylic acids, alicyclic carboxylic acids, unsaturated carboxylic acids, hydroxyl-containing carboxylic acids, halogenated alkyl carboxylic acids, and the like, as well as polybasic carboxylic acids such as dicarboxylic acids and tricarboxylic acids. .

ジルコニル化合物として、具体的には、ハロゲン化ジルコニル、ジルコニルカルボン酸塩、ジアルキルジルコニル、ジルコニルジアルコラート、炭酸ジルコニル、ジルコニル硫酸鉛、ジルコニル硝酸塩等が挙げられる。なかでもジルコニルカルボン酸塩が好ましい。 ジルコニルカルボン酸塩としては、例えば、蟻酸ジルコニル、酢酸ジルコニル、プロピオン酸ジルコニル、ブタン酸ジルコニル、ペンタン酸ジルコニル、ヘキサン酸ジルコニル、カプロン酸ジルコニル、オクタン酸ジルコニル、2−エチルヘキサン酸ジルコニル、デカン酸ジルコニル、ドデカン酸ジルコニル、テトラデカン酸ジルコニル、ペンタデカン酸ジルコニル等の飽和脂肪族カルボン酸塩、シクロヘキサンカルボン酸ジルコニル、シクロペンタンカルボン酸ジルコニル等の飽和環状カルボン酸、ナフテン酸ジルコニル等の上記カルボン酸塩の混合物、オレイン酸ジルコニル、リノール酸ジルコニル、リノレイン酸ジルコニル等の不飽和脂肪族カルボン酸塩、安息香酸ジルコニル、トルイル酸ジルコニル、ジフェニル酢酸ジルコニル等の芳香族カルボン酸塩等が挙げられる。中でも、ナフテン酸ジルコニル、2−エチルヘキサン酸ジルコニル、酢酸ジルコニルは、工業的に入手し易いため特に好ましい。   Specific examples of the zirconyl compound include zirconyl halide, zirconyl carboxylate, dialkyl zirconyl, zirconyl dialcolate, zirconyl carbonate, lead zirconyl sulfate, and zirconyl nitrate. Of these, zirconyl carboxylate is preferred. Examples of zirconyl carboxylate include zirconyl formate, zirconyl acetate, zirconyl propionate, zirconyl butanoate, zirconyl pentanoate, zirconyl hexanoate, zirconyl caproate, zirconyl octanoate, zirconyl 2-ethylhexanoate, zirconyl decanoate, Saturated aliphatic carboxylic acid salts such as zirconyl dodecanoate, zirconyl tetradecanoate, and zirconyl pentadecanoate; saturated cyclic carboxylic acids such as zirconyl cyclohexanecarboxylate and zirconyl cyclopentanecarboxylate; mixtures of the above carboxylate salts such as zirconyl naphthenate; olein Aliphatic zirconyl acid salts, zirconyl linoleate, zirconyl linoleate, etc., zirconyl benzoate, zirconyl toluate, zirconyl diphenylacetate, etc. Aromatic carboxylic acid salts. Among them, zirconyl naphthenate, zirconyl 2-ethylhexanoate and zirconyl acetate are particularly preferable because they are easily available industrially.

ジルコニウムアルコラートとは、次式(XIX)の構造を有する化合物である。   Zirconium alcoholate is a compound having a structure represented by the following formula (XIX).

Figure 0006664509
[一般式(IV)中、R71、R72、R73、およびR74は、それぞれ独立に、アルキル基、アルケン基、アルキン基である。]
Figure 0006664509
[In the general formula (IV), R 71 , R 72 , R 73 , and R 74 are each independently an alkyl group, an alkene group, or an alkyne group. ]

ジルコニウムアルコラートの原料アルコールとしては、例えば、メタノール、エタノール、1−プロパノール、2−ブロパノール、1−ブタノール、2−ブタノール、iso−ブタノール、1−ペンタノール、2−ペンタノール、イソアミルアルコール、1−ヘキサノール、2−ヘキサノール、1−ヘプタノール、1−オクタノール、2−エチル−1−ヘキサノール、3,3,5−トリメチル−1−ヘキサノール、トリデカノール、ペンタデカノール等の飽和脂肪族アルコール、シクロヘキサノール等の飽和環状脂肪族アルコール、エタナール、プロパナール、ブタナール、2−ヒドロキシエチルアクリレート等の不飽和脂肪族アルコール等が挙げられる。また、エチレングリコール、プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,6−ヘキサンジオール、1,4−ヘキサンジオール、1,6−シクロヘキサンジオール、1,4−シクロヘキサンジオール等のジオールや、グリセリン等のトリオール等、多価アルコールを用いることもできる。ジルコニウムアルコラートの中で、テトラ−n−プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウムは、工業的に入手し易いために好ましい。   Examples of the raw material alcohol for zirconium alcoholate include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, 1-pentanol, 2-pentanol, isoamyl alcohol, and 1-hexanol. , 2-hexanol, 1-heptanol, 1-octanol, 2-ethyl-1-hexanol, 3,3,5-trimethyl-1-hexanol, tridecanol, saturated aliphatic alcohols such as pentadecanol, and cyclohexanol and the like Examples include cycloaliphatic alcohols, unsaturated aliphatic alcohols such as ethanal, propanal, butanal, and 2-hydroxyethyl acrylate. Also, ethylene glycol, propanediol, 1,4-butanediol, 1,3-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,6-cyclohexanediol, 1,4-cyclohexanediol, etc. Polyhydric alcohols such as diols and triols such as glycerin can also be used. Among zirconium alcoholates, tetra-n-propoxyzirconium, tetraisopropoxyzirconium, tetra-n-propoxyzirconium, and tetra-n-butoxyzirconium are preferable because they are industrially easily available.

アロファネート化反応温度としては、60℃以上160℃以下が好ましく、70℃以上160℃以下がより好ましく、80℃以上160℃以下が特に好ましい。上記上限値以下であることで、副反応が少なく、また得られるポリイソシアネート組成物の着色を効果的に防止できる等の傾向にあり、好ましい。   The allophanation reaction temperature is preferably from 60 ° C to 160 ° C, more preferably from 70 ° C to 160 ° C, and particularly preferably from 80 ° C to 160 ° C. When the content is equal to or less than the above upper limit, side reactions are less likely to occur, and coloring of the obtained polyisocyanate composition tends to be effectively prevented.

アロファネート化反応は、特に限定されないが、例えば、リン酸酸性化合物、硫酸、硝酸、クロロ酢酸、塩化ベンゾイル、スルホン酸エステル剤等の酸性化合物、あるいはイオン交換樹脂、キレート剤、キレート樹脂等の添加により停止する。
ここで、リン酸酸性化合物としては、リン酸、ピロリン酸、メタリン酸、ポリリン酸、あるいはこれらのアルキルエステル等が挙げられ、本発明ではこれらリン酸酸性化合物の少なくとも1種を停止剤に用いることが好ましい。
The allophanation reaction is not particularly limited, for example, by the addition of an acidic compound such as a phosphoric acid compound, sulfuric acid, nitric acid, chloroacetic acid, benzoyl chloride, a sulfonic acid ester agent, or an ion exchange resin, a chelating agent, a chelating resin or the like. Stop.
Here, examples of the phosphoric acid compound include phosphoric acid, pyrophosphoric acid, metaphosphoric acid, polyphosphoric acid, and alkyl esters thereof. In the present invention, at least one of these phosphoric acid compounds is used as a terminator. Is preferred.

第1−5実施形態のポリイソシアネート組成物中のポリイソシアネート化合物の含有量は、5〜100質量%であることが好ましく、10〜90質量%であることがより好ましく、20〜70質量%であることがさらに好ましい。5質量%以上で速乾性が優れる傾向となり、含有量を100%以下にすることで粘度を低くでき、作業性が強く求められる場合は、ポリイソシアネートの含有量を下げることが好ましい。 The content of the polyisocyanate compound in the polyisocyanate composition of the first to fifth embodiments is preferably 5 to 100% by mass, more preferably 10 to 90% by mass, and more preferably 20 to 70% by mass. It is more preferred that there be. When the content is 5% by mass or more, the quick-drying property tends to be excellent. By setting the content to 100% or less, the viscosity can be reduced, and when workability is strongly required, the content of the polyisocyanate is preferably reduced.

また、第1−5実施形態のポリイソシアネート組成物には、前記一般式(III)で表されるポリイソシアネート化合物以外に、ウレトジオン構造を有する化合物、アロファネート構造を有する化合物、イミノオキサジアジンジオン構造を有する化合物、ウレタン構造を有する化合物、ビュレット構造を有する化合物が含まれてもよい。
ウレトジオン構造、アロファネート構造、イミノオキサジアジンジオン構造、ウレタン構造、ビュレット構造は、それぞれ次式(VII)、(VIII)、(XI)、(IX)、(X)に示される。中でも複層塗膜の下層への染込み性の観点からアロファネート構造を有する化合物、ウレトジオン構造を有する化合物、イミノオキサジアジンジオン構造を有する化合物が好ましい。
Further, in addition to the polyisocyanate compound represented by the general formula (III), the polyisocyanate composition of the first to fifth embodiments has a compound having a uretdione structure, a compound having an allophanate structure, and an iminooxadiazinedione structure. , A compound having a urethane structure, and a compound having a buret structure.
The uretdione structure, allophanate structure, iminooxadiazinedione structure, urethane structure, and burette structure are represented by the following formulas (VII), (VIII), (XI), (IX), and (X), respectively. Among them, a compound having an allophanate structure, a compound having an uretdione structure, and a compound having an iminooxadiazinedione structure are preferred from the viewpoint of the penetration into the lower layer of the multilayer coating film.

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

第1−5実施形態のポリイソシアネート組成物は、下記一般式(V)−1で示されるトリイソシアネートをさらに含んでいてもよい。
・一般式(V)−1
The polyisocyanate composition of the first to fifth embodiments may further contain a triisocyanate represented by the following general formula (V) -1.
-General formula (V) -1

Figure 0006664509
Figure 0006664509

[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。][In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]

公知のポリイソシアネート組成物をたとえば1,6−ヘキサメチレンジイソシアネート、1,5−ペンタンジイソシアネート、トルエンジイソシアネートもしくはイソホロンジイソシアネートのような揮発性ジイソシアネートから作製する場合、未反応の出発ジイソシアネートをたとえば蒸留により最終生成物からポリイソシアネート組成物の重量に対し2重量%未満、好ましくは1重量%未満の程度まで除去する必要がある。しかしながら第1−5実施形態のポリイソシアネート組成物を製造する場合は、第1−5実施形態に用いるトリイソシアネートのNCO基数が3個のため、第1−5実施形態のポリイソシアネート組成物のポリオールとの架橋能力を低下させず、必ずしも除去する必要がない。
未反応のトリイソシアネートを除去する場合は、薄膜蒸留法や溶剤抽出法等により、ポリイソシアネート組成物と分離することができる。
When the known polyisocyanate compositions are prepared from volatile diisocyanates such as, for example, 1,6-hexamethylene diisocyanate, 1,5-pentane diisocyanate, toluene diisocyanate or isophorone diisocyanate, the unreacted starting diisocyanate is finally formed, for example by distillation. It is necessary to remove from the product to less than 2% by weight, preferably less than 1% by weight based on the weight of the polyisocyanate composition. However, when the polyisocyanate composition of the first embodiment is manufactured, since the number of NCO groups of the triisocyanate used in the first embodiment is three, the polyol of the polyisocyanate composition of the first embodiment is used. It does not necessarily reduce the cross-linking ability with the polymer and does not necessarily need to be removed.
When removing unreacted triisocyanate, it can be separated from the polyisocyanate composition by a thin-film distillation method, a solvent extraction method, or the like.

第1−5実施形態のポリイソシアネート組成物の25℃における粘度は、特に制限を受けないが10mPa・s以上300mPa・s以下であることが好ましく、10mPa・s以上200mPa・s以下がより好ましく、10mPa・s以上100mPa・s以下が特に好ましい。上記下限値以上では、硬化性が優れる傾向があり、上記上限値以下では、作業性が優れる傾向がある。粘度は、E型粘度計(トキメック社製)を用いることによって測定することができる。   The viscosity at 25 ° C. of the polyisocyanate composition of the first to fifth embodiments is not particularly limited, but is preferably from 10 mPa · s to 300 mPa · s, more preferably from 10 mPa · s to 200 mPa · s, It is particularly preferably from 10 mPa · s to 100 mPa · s. Above the lower limit, curability tends to be excellent, and below the upper limit, workability tends to be excellent. The viscosity can be measured by using an E-type viscometer (manufactured by Tokimec).

第1−5実施形態のポリイソシアネート組成物は、異なるイソシアネート化合物、およびこれらのイソシアネート化合物より得られるポリイソシアネートと混合して用いることができる。
異なるイソシアネート化合物としては、脂肪族、脂環族、芳香族のイソシアネート基を有するジ−、もしくはポリ−イソシアネートである。前記ジイソシアネートとしては例えば、テトラメチレンジイソシアネート(TMDI)、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、2,2,4−トリメチルヘキサン−1,6−ジイソシアネート、2−メチルペンタン−1,5−ジイソシアネート(MPDI)、1,3−ビス(イソシアナトメチル)−シクロヘキサン(1,3−H6 −XDI)、3(4)−イソシアナトメチル−1−メチル−シクロヘキシルイソアネート(IMCI);イソホロンジイソシアネート(IPDI)、ビス(イソシアナトメチル)−ノルボルナン(NBDI)、、1,3−ビス(イソシアナトメチル)−ベンゼン、1,3−ビス(2−イソシアナトプロピル−2)ベンゼンおよび4,4‘−ジシクロヘキシルメタンジイソシアネート(H12MDI)、LDI等が挙げられる。中でも、耐候性、工業的入手の容易さから、HDI、IPDIが好ましい。これらジイソシアネートは単独で使用してもいいし、2種以上を併用しても構わない。
前記ポリイソシアネートには、分子中にイソシアヌレート構造、ウレトジオン構造、アロファネート構造、イミノオキサジアジンジオン構造、ウレタン構造、ビュレット構造を有するもの等が含まれる。
The polyisocyanate composition of the first to fifth embodiments can be used by mixing with different isocyanate compounds and polyisocyanates obtained from these isocyanate compounds.
The different isocyanate compound is a di- or poly-isocyanate having an aliphatic, alicyclic or aromatic isocyanate group. Examples of the diisocyanate include tetramethylene diisocyanate (TMDI), pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane-1,6-diisocyanate, and 2-methylpentane-1,5. -Diisocyanate (MPDI), 1,3-bis (isocyanatomethyl) -cyclohexane (1,3-H6-XDI), 3 (4) -isocyanatomethyl-1-methyl-cyclohexylisoanate (IMCI); isophorone Diisocyanate (IPDI), bis (isocyanatomethyl) -norbornane (NBDI), 1,3-bis (isocyanatomethyl) -benzene, 1,3-bis (2-isocyanatopropyl-2) benzene and 4,4 '-Dicyclohexyl meta Diisocyanate (H12MDI), LDI, and the like. Among them, HDI and IPDI are preferred from the viewpoint of weather resistance and industrial availability. These diisocyanates may be used alone or in combination of two or more.
Examples of the polyisocyanate include those having an isocyanurate structure, a uretdione structure, an allophanate structure, an iminooxadiazinedione structure, a urethane structure, and a burette structure in the molecule.

〔第1−6実施形態〕

本発明の第1−6実施形態のポリイソシアネート組成物は、一般式(III)で表されるポリイソシアネート化合物を含む。
[1st-6th Embodiment]

The polyisocyanate composition of the first to sixth embodiments of the present invention contains a polyisocyanate compound represented by the general formula (III).


Figure 0006664509
[一般式(III)中、複数あるR31は、それぞれ独立に、有機基であり、複数あるR31のうち少なくとも1つは一般式(V)で表される基、または一般式(VI)で表される基である。複数あるR31は、それぞれ同一であってもよく異なっていてもよい。R32は、1価以上のアルコールから1つのヒドロキシ基を除去した残基である。]
Figure 0006664509
[In general formula (III), a plurality of R 31 are each independently an organic group, and at least one of the plurality of R 31 is a group represented by general formula (V) or a general formula (VI) Is a group represented by A plurality of R 31 may be the same or different. R 32 is a residue obtained by removing one hydroxy group from a monovalent or higher alcohol. ]


Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]


Figure 0006664509
[一般式(VI)中、Yはエステル構造を含む炭素数1〜20の2価の炭化水素基である。波線は結合手を意味する。]
以下、一般式(III)、一般式(V)、および一般式(VI)について説明する。
Figure 0006664509
[In the general formula (VI), Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms including an ester structure. A wavy line indicates a bond. ]
Hereinafter, general formulas (III), (V), and (VI) will be described.

・一般式(III) ・ General formula (III)


Figure 0006664509
一般式(III)で表されるポリイソシアネート化合物は、アロファネート構造を有する。アロファネート構造は2つのイソシアネート基と、1つのヒドロキシ基とからなる結合構造である。
Figure 0006664509
The polyisocyanate compound represented by the general formula (III) has an allophanate structure. The allophanate structure is a bonding structure composed of two isocyanate groups and one hydroxy group.

[R31

一般式(III)において、複数あるR31は、それぞれ独立に、有機基である。複数あるR31は、それぞれ同一であってもよく異なっていてもよい。
第1−6実施形態においては、2つのR31のうち、少なくとも1つは上記一般式(V)で表される基、または上記一般式(VI)で表される基であり、2つのR31が上記一般式(V)で表される基、または上記一般式(VI)で表される基であることが好ましい。
[R 31 ]

In the general formula (III), a plurality of R 31 are each independently an organic group. A plurality of R 31 may be the same or different.
In the first to sixth embodiments, at least one of the two R 31 is a group represented by the general formula (V) or a group represented by the general formula (VI), It is preferred that 31 is a group represented by the general formula (V) or a group represented by the general formula (VI).

31のうち、下記一般式(V)または下記一般式(VI)で表される基以外の基としては、例えば、テトラメチレンジイソシアネート(TMDI)、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、2,2,4−トリメチルヘキサン−1,6−ジイソシアネート、2−メチルペンタン−1,5−ジイソシアネート(MPDI)、1,3−ビス(イソシアナトメチル)−シクロヘキサン(1,3−H6−XDI)、3(4)−イソシアナトメチル−1−メチル−シクロヘキシルイソアネート(IMCI);イソホロンジイソシアネート(IPDI)、ビス(イソシアナトメチル)−ノルボルナン(NBDI)、1,3−ビス(イソシアナトメチル)−ベンゼン、1,3−ビス(2−イソシアナトプロピル−2)ベンゼンおよび4,4‘−ジシクロヘキシルメタンジイソシアネート(H12MDI)から1つのイソシアネート基を除去した残基が挙げられる。Examples of the group other than the group represented by the following general formula (V) or the following general formula (VI) among R 31 include, for example, tetramethylene diisocyanate (TMDI), pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI ), 2,2,4-trimethylhexane-1,6-diisocyanate, 2-methylpentane-1,5-diisocyanate (MPDI), 1,3-bis (isocyanatomethyl) -cyclohexane (1,3-H6- XDI), 3 (4) -isocyanatomethyl-1-methyl-cyclohexyl isocyanate (IMCI); isophorone diisocyanate (IPDI), bis (isocyanatomethyl) -norbornane (NBDI), 1,3-bis (isocyanato Methyl) -benzene, 1,3-bis (2-isocyanatotop Roppyl-2) a residue obtained by removing one isocyanate group from benzene and 4,4′-dicyclohexylmethane diisocyanate (H12MDI).

[R32

一般式(III)において、R32は、1価以上のアルコールから1つのヒドロキシ基を除去した残基である。
32として、より具体的には、例えば、メタノール、エタノール、1−プロパノール、2−ブロパノール、1−ブタノール、2−ブタノール、iso−ブタノール、1−ペンタノール、2−ペンタノール、イソアミルアルコール、1−ヘキサノール、2−ヘキサノール、1−ヘプタノール、1−オクタノール、2−エチル−1−ヘキサノール、3,3,5−トリメチル−1−ヘキサノール、トリデカノール、ペンタデカノール等の飽和脂肪族アルコール、シクロヘキサノール、シクロペンタノール等の飽和環状脂肪族アルコール、アリルアルコール、ブテノール、ヘキセノール、2−ヒドロキシエチルアクリレート等の不飽和脂肪族アルコール等の1価のアルコールから1つのヒドロキシ基を除去した残基である。
[ R32 ]

In the general formula (III), R 32 is a residue obtained by removing one hydroxyl group from monovalent or polyvalent alcohols.
More specifically, R 32 is, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, 1-pentanol, 2-pentanol, isoamyl alcohol, -Saturated aliphatic alcohols such as hexanol, 2-hexanol, 1-heptanol, 1-octanol, 2-ethyl-1-hexanol, 3,3,5-trimethyl-1-hexanol, tridecanol and pentadecanol, cyclohexanol, It is a residue obtained by removing one hydroxy group from a monohydric alcohol such as an unsaturated aliphatic alcohol such as a saturated cyclic aliphatic alcohol such as cyclopentanol, allyl alcohol, butenol, hexenol, or 2-hydroxyethyl acrylate.

例えば、エチレングリコール、プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,6−ヘキサンジオール、1,4−ヘキサンジオール、1,6−シクロヘキサンジオール、1,4−シクロヘキサンジオール、メチルペンタンジオール、シクロヘキサンジメタノール、メチルペンタンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、水添ビスフェノールA等の2価のアルコールから1つのヒドロキシ基を除去した残基である。
例えば、グリセリン、2−メチル−2−ヒドロキシメチル−1,3−プロパンジオール、2,4−ヒドロキシ−3−ヒドロキシメチルペンタン、1,2,6−ヘキサントリオール等の3価のアルコールから1つのヒドロキシ基を除去した残基である。
例えば、エリスロース等のテトリトール、キシリトール等のペンチトール、ソルビトール等のヘキシトールのような糖アルコール等の4価のアルコールから1つのヒドロキシ基を除去した残基である。
例えば、フェノール、ベンジルフェノール、o−クレゾール、p−クレゾール、カテコール、エチルフェノール、オクチルフェノール、キシレノール、ナフトール、ノニルフェノール、ビスフェノールA等のフェノール類から1つのヒドロキシ基を除去した残基である。
例えば、上記のアルコールを原料としたポリエステルポリオール、ポリプロピレングリコール、ポリエチレングリコール、ポリテトラエチレングリコール等のアルコールから1つのヒドロキシ基を除去した残基であってもよい。
例えば、水酸基を有するアクリルポリオールから1つのヒドロキシ基を除去した残基であってもよい。・一般式(V)
For example, ethylene glycol, propanediol, 1,4-butanediol, 1,3-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,6-cyclohexanediol, 1,4-cyclohexanediol, A residue obtained by removing one hydroxy group from a dihydric alcohol such as methylpentanediol, cyclohexanedimethanol, methylpentanediol, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, hydrogenated bisphenol A, etc. .
For example, one hydroxyl group is formed from a trihydric alcohol such as glycerin, 2-methyl-2-hydroxymethyl-1,3-propanediol, 2,4-hydroxy-3-hydroxymethylpentane, 1,2,6-hexanetriol. This is the residue from which the group has been removed.
For example, it is a residue obtained by removing one hydroxy group from a tetrahydric alcohol such as sugar alcohol such as pentitol such as erythrose and pentitol such as xylitol and hexitol such as sorbitol.
For example, it is a residue obtained by removing one hydroxy group from phenols such as phenol, benzylphenol, o-cresol, p-cresol, catechol, ethylphenol, octylphenol, xylenol, naphthol, nonylphenol and bisphenol A.
For example, a residue obtained by removing one hydroxy group from an alcohol such as polyester polyol, polypropylene glycol, polyethylene glycol, or polytetraethylene glycol using the above-mentioned alcohol as a raw material may be used.
For example, it may be a residue obtained by removing one hydroxy group from an acrylic polyol having a hydroxyl group.・ General formula (V)

Figure 0006664509
[Y

一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造[−C(=O)−O−]および/またはエーテル構造(−O−)を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。但し、複数あるYのうち少なくとも1つは、エステル構造を含む。
エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基としては、−(CHn1−X−(CHn2−で表される基(n1およびn2はそれぞれ独立して、0〜10の整数である。但し、n1およびn2の両方とも0になることはなく、n1、n2のうち、NCOと結合している側は1以上であることが好ましい。Xは、エステル基またはエーテル基である。)が挙げられる。
反応速度を速めたい場合、Xがエステル基であることが好ましい。
n1およびn2は0〜4が好ましく、0〜2がより好ましい。n1およびn2の組み合わせとしては、例えば、n1=0、n2=2の組み合わせ、n1=2、n2=2の組み合わせが好ましい。
Figure 0006664509
[Y 1 ]

In the general formula (V), a plurality of Y 1 are each independently a single bond or a carbon which may contain an ester structure [—C (= O) —O—] and / or an ether structure (—O—). It is a divalent hydrocarbon group of the formulas 1 to 20. A plurality of Y 1 may be the same or different. However, at least one of the plurality of Y 1 includes an ester structure.
Examples of the divalent hydrocarbon group having ester structure and / or carbon atoms which may contain an ether structure 1~20, - (CH 2) n1 -X- (CH 2) n2 - group represented by (n1 and n2 Are each independently an integer from 0 to 10. However, both n1 and n2 do not become 0, and it is preferable that one of n1 and n2 bonded to NCO is 1 or more. X is an ester group or an ether group).
When it is desired to increase the reaction rate, X is preferably an ester group.
n1 and n2 are preferably 0 to 4, and more preferably 0 to 2. As a combination of n1 and n2, for example, a combination of n1 = 0 and n2 = 2, and a combination of n1 = 2 and n2 = 2 are preferable.

[R51

51は、水素原子または、炭素数1〜12の1価の炭化水素基である。R51における炭化水素基としては、特に限定されず、アルキル基、アルケニル基、アルキニル基等が挙げられる。R51としては、水素原子が好ましい。
[ R51 ]

R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. The hydrocarbon group for R 51 is not particularly limited, and includes an alkyl group, an alkenyl group, an alkynyl group, and the like. As R 51 , a hydrogen atom is preferable.

第1−6実施形態における一般式(V)で表される基の元となるトリイソシアネートの分子量は139以上1000以下であることが好ましい。
分子量の下限値は、139以上が好ましく、150以上がより好ましく、180以上がさらに好ましく、200以上が特に好ましい。また分子量の上限値は、1000以下が好ましく、800以下がより好ましく、600以下がさらに好ましく、400以下が特に好ましい。分子量が上記下限値以上であることにより、結晶性を抑制しやすくなる。また、分子量が上記上限値以下であることにより、低粘度化を達成しやすくなる。
It is preferable that the molecular weight of the triisocyanate that is the base of the group represented by the general formula (V) in the first to sixth embodiments is 139 or more and 1000 or less.
The lower limit of the molecular weight is preferably 139 or more, more preferably 150 or more, further preferably 180 or more, and particularly preferably 200 or more. The upper limit of the molecular weight is preferably 1,000 or less, more preferably 800 or less, further preferably 600 or less, and particularly preferably 400 or less. When the molecular weight is equal to or more than the above lower limit, crystallinity is easily suppressed. In addition, when the molecular weight is equal to or less than the above upper limit, lower viscosity can be easily achieved.

第1−6実施形態における一般式(V)で表される基の元となるトリイソシアネートは、低粘度とするため、複数あるY中の炭化水素基が脂肪族基または芳香族基を有することが好ましい。また、R51は水素であることが好ましい。
また、塗料組成物の硬化剤として使用した際の耐候性を良好とするため、複数あるY中の炭化水素基が脂肪族基または脂環族基を有することが好ましい。
別途、耐熱性を保持するため、複数あるYのうち少なくとも1つが、エステル基を有することが好ましい。
The triisocyanate that is the base of the group represented by the general formula (V) in the first to sixth embodiments has a low viscosity, so that a plurality of hydrocarbon groups in Y 1 have an aliphatic group or an aromatic group. Is preferred. Also, R 51 is preferably hydrogen.
Further, in order to improve the weather resistance when used as a curing agent of the coating composition, but preferably the hydrocarbon group in the plurality of Y 1 is an aliphatic group or an alicyclic group.
Separately, in order to maintain heat resistance, at least one of the plurality of Y 1 preferably has an ester group.

第1−6実施形態における一般式(V)で表される基の元となるトリイソシアネートとしては、例えば、特公平4−1033号公報に開示されているビス(2−イソシアナトエチル)2−イソシアナトグルタレート(以下、GTIと言う、分子量311)、特開昭53−135931号公報に開示されているリジントリイソシアネート(以下、LTIと言う、分子量267)等が挙げられる。
これらの中では、イソシアネート基の反応性をより向上できる観点から、LTIが特に好ましい。
Examples of the triisocyanate that is a source of the group represented by the general formula (V) in the first to sixth embodiments include bis (2-isocyanatoethyl) 2- disclosed in Japanese Patent Publication No. 4-1033. Examples thereof include isocyanatoglutarate (hereinafter, referred to as GTI, molecular weight 311) and lysine triisocyanate (hereinafter, referred to as LTI, molecular weight 267) disclosed in JP-A-53-135931.
Among these, LTI is particularly preferred from the viewpoint of further improving the reactivity of the isocyanate group.

また、耐加水分解性を保持するためには、複数あるYのうち少なくとも1つが、エーテル構造を含む炭化水素基を有することが好ましい。・一般式(VI)
Further, in order to maintain hydrolysis resistance, at least one of the plurality of Y 1 preferably has a hydrocarbon group containing an ether structure. -General formula (VI)

Figure 0006664509
[Y

一般式(VI)中、Yはエステル構造を含む炭素数1〜20の2価の炭化水素基である。
Figure 0006664509
[Y 2 ]

In the general formula (VI), Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms and containing an ester structure.

第1−6実施形態における一般式(VI)で表される基の元となるジイソシアネートは、塗料組成物の硬化剤として使用した際のイソシアネート基の反応性を高めるため、エステル構造を有する。
また、低粘度とするため、Y中の炭化水素基が構造中に脂肪族基、芳香族基を有することが好ましく、耐熱性を保持するため、Yが、エステル構造を有する炭化水素基を有することが好ましい。
この分類に該当する例としては、リジンジイソシアネート(以下、LDI)等が挙げられる。
The diisocyanate, which is the base of the group represented by the general formula (VI) in the first to sixth embodiments, has an ester structure in order to increase the reactivity of the isocyanate group when used as a curing agent for the coating composition.
Further, the hydrocarbon group in Y 2 preferably has an aliphatic group or an aromatic group in the structure in order to have a low viscosity. In order to maintain heat resistance, Y 2 is a hydrocarbon group having an ester structure. It is preferable to have
Examples of this category include lysine diisocyanate (hereinafter, LDI).

第1−6実施形態における一般式(V)で表される基の元となるトリイソシアネートまたは一般式(VI)で表される基の元となるジイソシアネートは、アミノ酸誘導体等のアミンをイソシアネート化して得ることができる。アミノ酸誘導体としては、例えば2,5−ジアミノ吉草酸、2,6−ジアミノヘキサン酸、アスパラギン酸、グルタミン酸等を用いることができる。これらアミノ酸はジアミンモノカルボン酸またはモノアミンジカルボン酸であるので、カルボキシル基を、例えばエタノールアミン等のアルカノールアミンでエステル化、または、カルボキシル基を、例えばメタノール等でエステル化することで、アミノ基数を制御することができる。得られるエステル基を有するアミンはホスゲン化等によりエステル構造を含むトリイソシアネートまたはジイソシアネートとすることができる。   In the first to sixth embodiments, the triisocyanate as the base of the group represented by the general formula (V) or the diisocyanate as the base of the group represented by the general formula (VI) is obtained by converting an amine such as an amino acid derivative into isocyanate. Obtainable. As the amino acid derivative, for example, 2,5-diaminovaleric acid, 2,6-diaminohexanoic acid, aspartic acid, glutamic acid and the like can be used. Since these amino acids are diamine monocarboxylic acid or monoamine dicarboxylic acid, the number of amino groups is controlled by esterifying the carboxyl group with an alkanolamine such as ethanolamine or by esterifying the carboxyl group with methanol or the like. can do. The resulting amine having an ester group can be converted to a triisocyanate or a diisocyanate containing an ester structure by phosgenation or the like.

アロファネート構造を生成する方法として、加熱する方法や、触媒を用いる方法等がある。アロファネート化触媒としては、特に限定されないが、下記一般式(XV)で表されるジルコニル化合物、および下記一般式(XIX)で表されるジルコニウムアルコラートからなる群から選ばれる少なくとも1種類の化合物を使用する。アロファネート基の生成比率がより高いポリイソシアネート組成物を得るためには、ジルコニル化合物を用いることが好ましい。
ジルコニル化合物とは、下記一般式(XV)の構造を有する化合物である。
As a method for generating the allophanate structure, there are a heating method, a method using a catalyst, and the like. The allophanate-forming catalyst is not particularly limited, and uses at least one compound selected from the group consisting of a zirconyl compound represented by the following general formula (XV) and a zirconium alcoholate represented by the following general formula (XIX) I do. In order to obtain a polyisocyanate composition having a higher generation ratio of allophanate groups, it is preferable to use a zirconyl compound.
The zirconyl compound is a compound having a structure represented by the following general formula (XV).

Figure 0006664509
Figure 0006664509

[一般式(XV)中、R61およびR62は、それぞれ独立に、アルキルカルボニウムオキシ基、アルコキシ基、アルキル基、ハロゲン基、無機酸の水素残基である。][In the general formula (XV), R 61 and R 62 each independently represent an alkylcarboniumoxy group, an alkoxy group, an alkyl group, a halogen group, or a hydrogen residue of an inorganic acid. ]

本明細書において、「アルキルカルボニウムオキシ基」とは、有機カルボン酸の水素を除いた残基を意味する。すなわち、上記一般式(XV)のR61およびR62がともにアルキルカルボニウムオキシ基の場合、ジルコニウム化合物はジルコニルカルボン酸塩である。
前記有機カルボン酸としては、例えば、脂肪族カルボン酸、脂環式カルボン酸、不飽和カルボン酸、水酸基含有カルボン酸、ハロゲン化アルキルカルボン酸等の他、ジカルボン酸、トリカルボン酸等の多塩基酸カルボン酸も含む。
In the present specification, the “alkylcarboniumoxy group” means a residue obtained by removing hydrogen of an organic carboxylic acid. That is, when both R 61 and R 62 in the general formula (XV) are alkylcarboniumoxy groups, the zirconium compound is a zirconyl carboxylate.
Examples of the organic carboxylic acid include, for example, aliphatic carboxylic acids, alicyclic carboxylic acids, unsaturated carboxylic acids, hydroxyl-containing carboxylic acids, halogenated alkyl carboxylic acids, and the like, as well as dicarboxylic acids, tricarboxylic acids, and other polybasic carboxylic acids. Also includes acids.

ジルコニル化合物として、具体的には、ハロゲン化ジルコニル、ジルコニルカルボン酸塩、ジアルキルジルコニル、ジルコニルジアルコラート、炭酸ジルコニル、ジルコニル硫酸鉛、ジルコニル硝酸塩等が挙げられる。中でもジルコニルカルボン酸塩が好ましい。 ジルコニルカルボン酸塩としては、例えば、蟻酸ジルコニル、酢酸ジルコニル、プロピオン酸ジルコニル、ブタン酸ジルコニル、ペンタン酸ジルコニル、ヘキサン酸ジルコニル、カプロン酸ジルコニル、オクタン酸ジルコニル、2−エチルヘキサン酸ジルコニル、デカン酸ジルコニル、ドデカン酸ジルコニル、テトラデカン酸ジルコニル、ペンタデカン酸ジルコニル等の飽和脂肪族カルボン酸塩、シクロヘキサンカルボン酸ジルコニル、シクロペンタンカルボン酸ジルコニル等の飽和環状カルボン酸、ナフテン酸ジルコニル等の上記カルボン酸塩の混合物、オレイン酸ジルコニル、リノール酸ジルコニル、リノレイン酸ジルコニル等の不飽和脂肪族カルボン酸塩、安息香酸ジルコニル、トルイル酸ジルコニル、ジフェニル酢酸ジルコニル等の芳香族カルボン酸塩等が挙げられる。中でも、ジルコニル化合物としては、工業的に入手し易い観点から、ナフテン酸ジルコニル、2−エチルヘキサン酸ジルコニル、酢酸ジルコニルが特に好ましい。   Specific examples of the zirconyl compound include zirconyl halide, zirconyl carboxylate, dialkyl zirconyl, zirconyl dialcolate, zirconyl carbonate, lead zirconyl sulfate, and zirconyl nitrate. Among them, zirconyl carboxylate is preferred. Examples of zirconyl carboxylate include zirconyl formate, zirconyl acetate, zirconyl propionate, zirconyl butanoate, zirconyl pentanoate, zirconyl hexanoate, zirconyl caproate, zirconyl octanoate, zirconyl 2-ethylhexanoate, zirconyl decanoate, Saturated aliphatic carboxylic acid salts such as zirconyl dodecanoate, zirconyl tetradecanoate, and zirconyl pentadecanoate; saturated cyclic carboxylic acids such as zirconyl cyclohexanecarboxylate and zirconyl cyclopentanecarboxylate; mixtures of the above carboxylate salts such as zirconyl naphthenate; olein Aliphatic zirconyl acid salts, zirconyl linoleate, zirconyl linoleate, etc., zirconyl benzoate, zirconyl toluate, zirconyl diphenylacetate, etc. Aromatic carboxylic acid salts. Among them, zirconyl compounds, zirconyl naphthenate, zirconyl 2-ethylhexanoate, and zirconyl acetate are particularly preferable from the viewpoint of industrial availability.

ジルコニウムアルコラートとは、下記一般式(XIX)の構造を有する化合物である。   Zirconium alcoholate is a compound having a structure represented by the following general formula (XIX).

Figure 0006664509
Figure 0006664509

[一般式(XIX)中、R71、R72、R73およびR74は、それぞれ独立に、アルキル基、アルケン基、アルキン基である。][In the general formula (XIX), R 71 , R 72 , R 73 and R 74 are each independently an alkyl group, an alkene group, or an alkyne group. ]

ジルコニウムアルコラートの原料となるアルコールとしては、例えば、メタノール、エタノール、1−プロパノール、2−ブロパノール、1−ブタノール、2−ブタノール、iso−ブタノール、1−ペンタノール、2−ペンタノール、イソアミルアルコール、1−ヘキサノール、2−ヘキサノール、1−ヘプタノール、1−オクタノール、2−エチル−1−ヘキサノール、3,3,5−トリメチル−1−ヘキサノール、トリデカノール、ペンタデカノール等の飽和脂肪族アルコール、シクロヘキサノール等の飽和環状脂肪族アルコール、エタナール、プロパナール、ブタナール、2−ヒドロキシエチルアクリレート等の不飽和脂肪族アルコール等が挙げられる。また、エチレングリコール、プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,6−ヘキサンジオール、1,4−ヘキサンジオール、1,6−シクロヘキサンジオール、1,4−シクロヘキサンジオール等のジオールや、グリセリン等のトリオール等、多価アルコールを用いることもできる。
中でも、ジルコニウムアルコラートとしては、工業的に入手し易い観点から、テトラ−n−プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウムが好ましい。
Examples of the alcohol used as a raw material of zirconium alcoholate include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, 1-pentanol, 2-pentanol, isoamyl alcohol, -Saturated aliphatic alcohols such as hexanol, 2-hexanol, 1-heptanol, 1-octanol, 2-ethyl-1-hexanol, 3,3,5-trimethyl-1-hexanol, tridecanol and pentadecanol, cyclohexanol and the like And unsaturated aliphatic alcohols such as ethanal, propanal, butanal and 2-hydroxyethyl acrylate. Also, ethylene glycol, propanediol, 1,4-butanediol, 1,3-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,6-cyclohexanediol, 1,4-cyclohexanediol, etc. Polyhydric alcohols such as diols and triols such as glycerin can also be used.
Among them, as the zirconium alcoholate, tetra-n-propoxyzirconium, tetraisopropoxyzirconium, tetra-n-propoxyzirconium, and tetra-n-butoxyzirconium are preferable from the viewpoint of industrial availability.

アロファネート化反応温度としては、60℃以上160℃以下が好ましく、70℃以上160℃以下がより好ましく、80℃以上160℃以下がさらに好ましい。上記上限値以下であることで、副反応が少なく、また得られるポリイソシアネート組成物の着色を効果的に防止できる等の傾向にあり、好ましい。
アロファネート化反応は、特に限定されないが、例えば、リン酸酸性化合物、硫酸、硝酸、クロロ酢酸、塩化ベンゾイル、スルホン酸エステル剤等の酸性化合物、あるいはイオン交換樹脂、キレート剤、キレート樹脂等の添加により停止する。
ここで、リン酸酸性化合物としては、例えば、リン酸、ピロリン酸、メタリン酸、ポリリン酸、あるいはこれらのアルキルエステル等が挙げられ、第1−6実施形態ではこれらリン酸酸性化合物の少なくとも1種を停止剤に用いることが好ましい。
第1−6実施形態のポリイソシアネート組成物の転化率は、1%以上100%以下が好ましく、10%以上80%以下がより好ましく、20%以上70%以下が特に好ましい。上記下限値以上では、硬化性が優れる傾向にあり、上記上限値以下では、粘度が低く作業性が優れる傾向にある。
The allophanation reaction temperature is preferably from 60 ° C to 160 ° C, more preferably from 70 ° C to 160 ° C, even more preferably from 80 ° C to 160 ° C. When the content is equal to or less than the above upper limit, side reactions are less likely to occur, and coloring of the obtained polyisocyanate composition tends to be effectively prevented.
The allophanation reaction is not particularly limited, for example, by the addition of an acidic compound such as a phosphoric acid compound, sulfuric acid, nitric acid, chloroacetic acid, benzoyl chloride, a sulfonic acid ester agent, or an ion exchange resin, a chelating agent, a chelating resin or the like. Stop.
Here, examples of the phosphoric acid compound include phosphoric acid, pyrophosphoric acid, metaphosphoric acid, polyphosphoric acid, and alkyl esters thereof. In the first to sixth embodiments, at least one kind of these phosphoric acid compounds is used. Is preferably used as a terminator.
The conversion of the polyisocyanate composition of the first to sixth embodiments is preferably 1% or more and 100% or less, more preferably 10% or more and 80% or less, and particularly preferably 20% or more and 70% or less. Above the lower limit, the curability tends to be excellent, and below the upper limit, the viscosity tends to be low and the workability tends to be excellent.

前記転化率はゲルパーミッションクロマトグラフ(以下「GPC」という)を用い、ポリスチレン基準の数平均分子量により、未反応トリイソシアネートよりも数平均分子量の大きなピークの面積割合とした。   The conversion was determined by gel permeation chromatography (hereinafter referred to as "GPC"), and the area ratio of the peak having a number average molecular weight larger than that of the unreacted triisocyanate was determined by the number average molecular weight based on polystyrene.

第1−6実施形態のポリイソシアネート組成物中のポリイソシアネート化合物の含有量は、1質量%以上100質量%以下であることが好ましく、10質量%以上90質量%以下であることがより好ましく、20質量%以上80質量%以下であることがさらに好ましい。上記下限値以上であると、乾燥性が優れる傾向にあり、上記上限値以下では、粘度が低く作業性が優れる傾向にある。   The content of the polyisocyanate compound in the polyisocyanate composition of the first to sixth embodiments is preferably from 1% by mass to 100% by mass, more preferably from 10% by mass to 90% by mass, More preferably, it is 20% by mass or more and 80% by mass or less. When it is at least the above lower limit, drying properties tend to be excellent, and when it is at most the above upper limit, viscosity tends to be low and workability tends to be excellent.

また、第1−6実施形態のポリイソシアネート組成物には、前記一般式(III)で表されるポリイソシアネート化合物以外に、イソシアヌレート構造を有する化合物、ウレトジオン構造を有する化合物、イミノオキサジアジンジオン構造を有する化合物、ウレタン構造を有する化合物、ビュレット構造を有する化合物が含まれてもよい。
イソシアヌレート構造、ウレトジオン構造、イミノオキサジアジンジオン構造、ウレタン構造、ビュレット構造は、それぞれ次式(XII)、(VII)、(XI)、(IX)、(X)に示される。中でも塗膜硬度の観点からイソシアヌレート構造を有する化合物、ウレトジオン構造を有する化合物、またはイミノオキサジアジンジオン構造を有する化合物が好ましい。
Further, in addition to the polyisocyanate compound represented by the formula (III), a compound having an isocyanurate structure, a compound having a uretdione structure, an iminooxadiazinedione, A compound having a structure, a compound having a urethane structure, and a compound having a buret structure may be included.
The isocyanurate structure, uretdione structure, iminooxadiazinedione structure, urethane structure, and burette structure are represented by the following formulas (XII), (VII), (XI), (IX), and (X), respectively. Among them, a compound having an isocyanurate structure, a compound having a uretdione structure, or a compound having an iminooxadiazinedione structure is preferable from the viewpoint of coating film hardness.

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

Figure 0006664509
Figure 0006664509

第1−6実施形態のポリイソシアネート組成物に含まれる、ポリイソシアネート化合物の、アロファネート構造、ウレトジオン構造、イミノオキサジアジンジオン構造、イソシアヌレート構造、ウレタン構造、ビュレット構造の各モル比率をa、b、c、d、e、fとしたとき、アロファネート構造のモル比率(a/(a+b+c+d+e+f))が、0.02以上0.95以下であることが好ましい。
当該比率の下限値は、低極性有機溶剤への溶解性の観点から、0.02以上が好ましく、0.05以上がより好ましく、0.10以上が特に好ましい。また当該比率の上限値は、乾燥性の観点から、0.95以下が好ましく、0.90以下がより好ましい。
In the polyisocyanate compound contained in the polyisocyanate composition of Embodiment 1-6, the molar ratios of the allophanate structure, the uretdione structure, the iminooxadiazinedione structure, the isocyanurate structure, the urethane structure, and the buret structure are represented by a and b. , C, d, e, and f, the molar ratio of the allophanate structure (a / (a + b + c + d + e + f)) is preferably 0.02 or more and 0.95 or less.
From the viewpoint of solubility in low-polarity organic solvents, the lower limit of the ratio is preferably 0.02 or more, more preferably 0.05 or more, and particularly preferably 0.10 or more. The upper limit of the ratio is preferably 0.95 or less, more preferably 0.90 or less, from the viewpoint of drying properties.

第1−6実施形態のポリイソシアネート組成物は、ヘキサメチレンジイソシアネートから誘導されるポリイソシアネートと1級アルコールとの反応速度(V)に対する、ポリイソシアネート組成物と1級アルコールとの反応速度(V)の比(V/V)が、5以上13未満であることが好ましい。 The polyisocyanate composition of the first to sixth embodiments has a reaction rate ( Vh ) between the polyisocyanate composition and the primary alcohol, which is higher than the reaction rate (Vh) between the polyisocyanate derived from hexamethylene diisocyanate and the primary alcohol. the ratio of p) (V h / V p ) is preferably less than 5 or 13.


ヘキサメチレンジイソシアネートから誘導されるポリイソシアネートと1級アルコールとの反応速度(V)に対する、第1−6実施形態のポリイソシアネート組成物と1級アルコールとの反応速度(V)との比(V/V)は、塗膜の乾燥性の観点から1より大きいことが好ましく、5以上がより好ましい。また、塗料の可使時間の観点から15未満が好ましく、13未満がより好ましい。
上記上限値と下限値は任意に組み合わせることができるが、第1−6実施形態においては、5以上13未満であることが好ましい。

Ratio of the reaction rate (V p ) between the polyisocyanate composition of the first to sixth embodiments and the primary alcohol (V p ) to the reaction rate (V h ) between the polyisocyanate derived from hexamethylene diisocyanate and the primary alcohol ( ( Vh / Vp ) is preferably greater than 1 and more preferably 5 or more from the viewpoint of drying property of the coating film. Further, from the viewpoint of the pot life of the coating material, it is preferably less than 15, more preferably less than 13.
The upper limit and the lower limit can be arbitrarily combined, but are preferably 5 or more and less than 13 in the first to sixth embodiments.

ポリイソシアネート組成物と1級アルコールとの反応速度は、例えば、以下の方法で測定することができる。
ポリイソシアネート組成物のNCO基と1級アルコールのOH基のモル比が1になるよう混合し、70℃で加熱撹拌し、NCO基の残存率を測定し、その減少速度を反応速度とする。NCO基の残存率は、例えばNCO含有率測定で求めることができる。
The reaction rate between the polyisocyanate composition and the primary alcohol can be measured, for example, by the following method.
The polyisocyanate composition is mixed so that the molar ratio of the NCO group to the OH group of the primary alcohol becomes 1, heated and stirred at 70 ° C., the residual rate of the NCO group is measured, and the rate of decrease is defined as the reaction rate. The residual ratio of NCO groups can be determined, for example, by measuring the NCO content.

前記の1級アルコールとしては、例えば、1−ブタノール、iso−ブタノール、2−エチルヘキサノール等が挙げられる。また、前記のヘキサメチレンジイソシアネートから誘導されるポリイソシアネートとしては、例えば、旭化成社の商品名「デュラネートTKA−100」や「デュラネートTPA−100」等が挙げられる。   Examples of the primary alcohol include 1-butanol, iso-butanol, 2-ethylhexanol and the like. Examples of the polyisocyanate derived from hexamethylene diisocyanate include “Duranate TKA-100” and “Duranate TPA-100” (trade names) of Asahi Kasei Corporation.

第1−6実施形態のポリイソシアネート組成物は、例えば、1)前記のトリイソシアネートをイソシアヌレート化して製造する方法の他に、2)前記のトリイソシアネートの0.4から0.6モルのNCO基を、熱解離剤と反応させた後に、イソシアヌレート化を行い、その後、加熱等により熱解離剤を解離することで製造する方法等がある。前記の熱解離剤は、例えばメチルエチルケトオキシム等が挙げられる。前記の(2)の製造方法では、ポリイソシアネート組成物と1級アルコールの反応速度が速いポリイソシアネート組成物を得ることができ、塗料の速乾性の観点から好ましい。   The polyisocyanate composition according to the first to sixth embodiments can be prepared, for example, by the following method: 1) a method of producing the above-mentioned triisocyanate by isocyanuration; There is a method in which a group is produced by reacting a group with a thermal dissociating agent, performing isocyanuration, and then dissociating the thermal dissociating agent by heating or the like. Examples of the thermal dissociating agent include methyl ethyl ketoxime. In the production method (2), a polyisocyanate composition having a high reaction rate between the polyisocyanate composition and the primary alcohol can be obtained, which is preferable from the viewpoint of quick drying of the coating.


第1−6実施形態のポリイソシアネート組成物は、下記一般式(V)−1で示されるトリイソシアネートまたは下記一般式(VI)−1で示されるジイソシアネートをさらに含むことが好ましい。・一般式(V)−1

The polyisocyanate composition of the first to sixth embodiments preferably further contains a triisocyanate represented by the following general formula (V) -1 or a diisocyanate represented by the following general formula (VI) -1. -General formula (V) -1

Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。]〔R51、Y
Figure 0006664509
[In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ] [R 51, Y 1]

一般式(V)−1中のR51、Yに関する説明は、前記一般式(V)中のR51、Yに関する説明と同様である。
ただし、一般式(V)−1においては、Yはエステル構造および/またはエーテル構造を含んでもよく、含んでいなくてもよい。第1−6実施形態においては、複数あるY21の少なくとも1つはエステル構造および/またはエーテル構造を含むことが好ましい。
また、一般式(V)−1中のR51、Yは、前記一般式(V)中のR51、Yと同一であってもよく異なっていてもよい。・一般式(VI)−1
Description of the general formula (V) R 51, Y 1 in the -1 is the same as the description of R 51, Y 1 in the general formula (V).
However, in the general formula (V) -1, Y 1 may or may not contain an ester structure and / or an ether structure. In the first to sixth embodiments, at least one of the plurality of Y 21 preferably contains an ester structure and / or an ether structure.
In general formula (V) R 51, Y 1 in the -1, R 51, Y 1 and may be different may be the same in the general formula (V). -General formula (VI) -1

Figure 0006664509
[一般式(VI)−1中、Yはエステル構造を含んでいてもよい炭素数1〜20の2価の炭化水素基である。]〔Y

一般式(VI)−1中のYに関する説明は、前記一般式(VI)中のYに関する説明と同様である。
ただし、一般式(VI)−1においては、Yはエステル構造および/またはエーテル構造を含んでもよく、含んでいなくてもよい。第1−6実施形態においては、Yはエステル構造および/またはエーテル構造を含むことが好ましい。
また、一般式(VI)−1中のYは、前記一般式(VI)中のYと同一であってもよく異なっていてもよい。
Figure 0006664509
[In general formula (VI) -1, Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain an ester structure. ] [Y 2 ]

Description of the general formula (VI) in -1 Y 2 are the same as the description of Y 2 in the general formula (VI).
However, in the general formula (VI) -1, Y 2 may or may not contain an ester structure and / or an ether structure. In the first to sixth embodiments, Y 2 preferably contains an ester structure and / or an ether structure.
Further, Y 2 in the general formula (VI) -1 may be the same as or different from Y 2 in the general formula (VI).

公知のポリイソシアネート組成物、例えば1,6−ヘキサメチレンジイソシアネート、1,5−ペンタンジイソシアネート、トルエンジイソシアネートもしくはイソホロンジイソシアネートのような揮発性ジイソシアネートから作製する場合、未反応の出発ジイソシアネートを例えば蒸留により最終生成物からポリイソシアネート組成物の重量に対し2重量%未満、好ましくは1重量%未満の程度まで除去する必要がある。しかしながら第1−6実施形態のポリイソシアネート組成物を製造する場合は、第1−6実施形態に用いるトリイソシアネートのNCO基数が3個のため、第1−6実施形態のポリイソシアネート組成物のポリオールとの架橋能力を低下させず、必ずしも除去する必要がない。
未反応のトリイソシアネートを除去する場合は、薄膜蒸留法や溶剤抽出法等により、ポリイソシアネート組成物と分離することができる。
When made from known polyisocyanate compositions, for example volatile diisocyanates such as 1,6-hexamethylene diisocyanate, 1,5-pentane diisocyanate, toluene diisocyanate or isophorone diisocyanate, the unreacted starting diisocyanate is finally formed, for example by distillation. It is necessary to remove from the product to less than 2% by weight, preferably less than 1% by weight based on the weight of the polyisocyanate composition. However, when the polyisocyanate composition of the first embodiment is manufactured, since the number of NCO groups of the triisocyanate used in the first embodiment is 3, the polyol of the polyisocyanate composition of the first embodiment is used. It does not necessarily reduce the cross-linking ability with the polymer and does not necessarily need to be removed.
When removing unreacted triisocyanate, it can be separated from the polyisocyanate composition by a thin-film distillation method, a solvent extraction method, or the like.

第1−6実施形態のポリイソシアネート組成物の25℃における粘度は、特に制限を受けないが10mPa・s以上1000mPa・s以下であることが好ましく、10mPa・s以上500mPa・sm以下がより好ましく、10mPa・s以上90mPa・sm以下が特に好ましい。上記下限値以上では、硬化性が優れる傾向があり、上記上限値以下では、作業性が優れる傾向がある。粘度は、E型粘度計(トキメック社製)を用いることによって測定することができる。   The viscosity at 25 ° C. of the polyisocyanate composition of the first to sixth embodiments is not particularly limited, but is preferably from 10 mPa · s to 1,000 mPa · s, more preferably from 10 mPa · s to 500 mPa · sm, It is particularly preferably from 10 mPa · s to 90 mPa · sm. Above the lower limit, curability tends to be excellent, and below the upper limit, workability tends to be excellent. The viscosity can be measured by using an E-type viscometer (manufactured by Tokimec).

<ブロックポリイソシアネート組成物>

本発明のポリイソシアネート組成物は、ブロック剤によってイソシアネート基を保護し、ブロックポリイソシアネート組成物とすることができる。ブロック剤としては、例えば、アルコール系、アルキルフェノール系、フェノール系、活性メチレン、メルカプタン系、酸アミド系、酸イミド系、イミダゾール系、尿素系、オキシム系、アミン系、イミド系、ピラゾール系化合物等が挙げられる。より具体的なブロック剤の例を下記に示す。(1)アルコール系;メタノール、エタノール、2−プロパノール、n−ブタノール、sec−ブタノール、2−エチル−1−ヘキサノール、2−メトキシエタノール、2−エトカシエタノール、2−ブトキシエタノール等のアルコール類、
(2)アルキルフェノール系;炭素原子数4以上のアルキル基を置換基として有するモノおよびジアルキルフェノール類であって、例えばn−プロピルフェノール、iso−プロピルフェノール、n−ブチルフェノール、sec−ブチルフェノール、t−ブチルフェノール、n−ヘキシルフェノール、2−エチルヘキシルフェノール、n−オクチルフェノール、n−ノニルフェノール等のモノアルキルフェノール類、ジ−n−プロピルフェノール、ジイソプロピルフェノール、イソプロピルクレゾール、ジ−n−ブチルフェノール、ジ−t−ブチルフェノール、ジ−sec−ブチルフェノール、ジ−n−オクチルフェノール、ジ−2−エチルヘキシルフェノール、ジ−n−ノニルフェノール等のジアルキルフェノール類、
(3)フェノール系;フェノール、クレゾール、エチルフェノール、スチレン化フェノール、ヒドロキシ安息香酸エステル等、
<Block polyisocyanate composition>

The polyisocyanate composition of the present invention can be a blocked polyisocyanate composition by protecting an isocyanate group with a blocking agent. Examples of the blocking agent include alcohols, alkylphenols, phenols, active methylene, mercaptans, acid amides, acid imides, imidazoles, ureas, oximes, amines, imides, and pyrazole compounds. No. Examples of more specific blocking agents are shown below. (1) alcohols: alcohols such as methanol, ethanol, 2-propanol, n-butanol, sec-butanol, 2-ethyl-1-hexanol, 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol;
(2) Alkylphenols: mono- and dialkylphenols having an alkyl group having 4 or more carbon atoms as a substituent, for example, n-propylphenol, iso-propylphenol, n-butylphenol, sec-butylphenol, t-butylphenol , N-hexylphenol, 2-ethylhexylphenol, n-octylphenol, monoalkylphenols such as n-nonylphenol, di-n-propylphenol, diisopropylphenol, isopropylcresol, di-n-butylphenol, di-t-butylphenol, Dialkylphenols such as -sec-butylphenol, di-n-octylphenol, di-2-ethylhexylphenol, and di-n-nonylphenol;
(3) phenol type; phenol, cresol, ethyl phenol, styrenated phenol, hydroxybenzoate, etc.

(4)活性メチレン系;マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等、
(5)メルカプタン系;ブチルメルカプタン、ドデシルメルカプタン等、
(6)酸アミド系;アセトアニリド、酢酸アミド、ε−カプロラクタム、δ−バレロラクタム、γ−ブチロラクタム等、
(7)酸イミド系;コハク酸イミド、マレイン酸イミド等、
(8)イミダゾール系;イミダゾール、2−メチルイミダゾール等、
(9)尿素系;尿素、チオ尿素、エチレン尿素等、
(10)オキシム系;ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等、
(11)アミン系;ジフェニルアミン、アニリン、カルバゾール、ジーn−プロピルアミン、ジイソプロピルアミン、イソプロピルエチルアミン等、
(12)イミン系;エチレンイミン、ポリエチレンイミン等、
(13)重亜硫酸塩;重亜硫酸ソーダ等、
(14)ピラゾール系;ピラゾール、3−メチルピラゾール、3,5−ジメチルピラゾール等、
(15)トリアゾール系;3,5−ジメチル−1,2,4−トリアゾール等、がある。
(4) Active methylene type: dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, acetylacetone, etc.
(5) mercaptans; butyl mercaptan, dodecyl mercaptan, etc.
(6) acid amides; acetanilide, acetate amide, ε-caprolactam, δ-valerolactam, γ-butyrolactam, etc.
(7) acid imides; succinimide, maleic imide, etc.
(8) imidazoles; imidazole, 2-methylimidazole, etc.
(9) Urea type: urea, thiourea, ethylene urea, etc.
(10) oxime type: formaldoxime, acetoaldoxime, acetoxime, methyl ethyl ketoxime, cyclohexanone oxime, etc.
(11) amine type: diphenylamine, aniline, carbazole, di-n-propylamine, diisopropylamine, isopropylethylamine, etc.
(12) imines; ethyleneimine, polyethyleneimine, etc.
(13) bisulfite; sodium bisulfite, etc.
(14) pyrazoles; pyrazole, 3-methylpyrazole, 3,5-dimethylpyrazole, etc.
(15) Triazole type: 3,5-dimethyl-1,2,4-triazole and the like.

ポリイソシアネート組成物とブロック剤とのブロック化反応は溶剤の存在の有無に関わらず行うことができる。溶剤を用いる場合、イソシアネート基に対して不活性な溶剤を用いる必要がある。ブロック化反応に際して、錫、亜鉛、鉛等の有機金属塩および3級アミン系化合物、ナトリウム等のアルカリ金属のアルコラート等を触媒として用いてもよい。反応は、一般に−20℃以上150℃以下で行うことが出来るが、30℃以上100℃以下が好ましい。上記下限値以上では、反応速度が速くなる傾向にあり、上記上限値以下では、副反応を起こさない傾向にある。   The blocking reaction between the polyisocyanate composition and the blocking agent can be performed regardless of the presence or absence of a solvent. When a solvent is used, it is necessary to use a solvent inert to isocyanate groups. At the time of the blocking reaction, an organic metal salt such as tin, zinc or lead, a tertiary amine compound, an alcoholate of an alkali metal such as sodium or the like may be used as a catalyst. The reaction can be generally carried out at -20 ° C to 150 ° C, but preferably at 30 ° C to 100 ° C. Above the lower limit, the reaction rate tends to increase, and below the upper limit, side reactions do not tend to occur.

上述したブロック剤の中でも、入手容易性並びに製造したブロックポリイソシアネート組成物の粘度、反応温度、および反応時間の観点から、オキシム系化合物、酸アミド系化合物、アミン系化合物、活性メチレン系化合物、およびピラゾール系化合物からなる群より選ばれる少なくとも1種を含むことが好ましく、メチルエチルケトオキシム、ε−カプロラクタム、マロン酸ジエチル、アセト酢酸エチル、ジイソプロピルアミン、または3,5−ジメチルピラゾールがより好ましく、メチルエチルケトオキシム、ジイソプロピルアミン、または3,5−ジメチルピラゾールがさらに好ましく、3,5−ジメチルピラゾールが、低温硬化性とポリオールとの相溶性が両立する観点から、特に好ましい。熱解離性ブロック剤は、単独でまたは2種以上を組み合わせて用いてもよい。   Among the above-mentioned blocking agents, from the viewpoints of availability and viscosity of the manufactured blocked polyisocyanate composition, reaction temperature, and reaction time, oxime compounds, acid amide compounds, amine compounds, active methylene compounds, and It preferably contains at least one member selected from the group consisting of pyrazole compounds, more preferably methyl ethyl ketoxime, ε-caprolactam, diethyl malonate, ethyl acetoacetate, diisopropylamine, or 3,5-dimethylpyrazole, and methyl ethyl ketoxime. Diisopropylamine or 3,5-dimethylpyrazole is more preferred, and 3,5-dimethylpyrazole is particularly preferred from the viewpoint of achieving both low-temperature curability and compatibility with the polyol. The heat dissociable blocking agents may be used alone or in combination of two or more.

<親水性ポリイソシアネート組成物>

本発明のポリイソシアネート組成物は、活性水素基と親水性基を含有する化合物(親水性基含有化合物)とイソシアネート基を反応させ、親水性基を付加した親水性ポリイソシアネート組成物とすることができる。
<Hydrophilic polyisocyanate composition>

The polyisocyanate composition of the present invention is obtained by reacting a compound containing an active hydrogen group and a hydrophilic group (hydrophilic group-containing compound) with an isocyanate group to form a hydrophilic polyisocyanate composition having a hydrophilic group added. it can.

イソシアネート基と反応できる親水性基含有化合物としては、特に限定されないが、例えば、ノニオン性、カチオン性、アニオン性等の親水性基を含有する化合物が挙げられる。
ノニオン性親水性基を導入する化合物としては、特に限定されないが、例えば、メタノール、エタノール、ブタノール、エチレングリコール、ジエチレングリコール等のアルコールの水酸基にエチレンオキサイドを付加した化合物等が挙げられる。これらはイソシアネート基と反応する活性水素を有する。これらの中で、少ない使用量で親水性ポリイソシアネート組成物の水分散性を向上できるモノアルコールが好ましい。エチレンオキサイドの付加数としては、4以上30以下が好ましく、4以上20以下がより好ましい。エチレンオキサイドの付加数が4以上であることにより、水性化が確保しやすい傾向にある。また、エチレンオキサイドの付加数が30以下であることにより、低温貯蔵時に親水性ポリイソシアネート組成物の析出物が発生しにくい傾向にある。
The hydrophilic group-containing compound capable of reacting with the isocyanate group is not particularly limited, and examples thereof include compounds containing a nonionic, cationic, anionic or other hydrophilic group.
The compound for introducing a nonionic hydrophilic group is not particularly limited, and examples thereof include a compound in which ethylene oxide is added to a hydroxyl group of an alcohol such as methanol, ethanol, butanol, ethylene glycol, and diethylene glycol. These have active hydrogens that react with isocyanate groups. Among these, monoalcohols that can improve the water dispersibility of the hydrophilic polyisocyanate composition with a small amount of use are preferable. The number of added ethylene oxides is preferably 4 or more and 30 or less, more preferably 4 or more and 20 or less. When the number of additions of ethylene oxide is 4 or more, it tends to be easily made aqueous. Further, when the number of added ethylene oxide is 30 or less, a precipitate of the hydrophilic polyisocyanate composition tends to hardly occur during low-temperature storage.

カチオン性親水性基の導入は、カチオン性基と、イソシアネート基と反応する水素を有する官能基と、を併せ持つ化合物を利用する方法や、予め、イソシアネート基に例えば、グリシジル基等の官能基を付加し、その後、この官能基と、スルフィド、ホスフィン等の特定化合物とを反応させる方法等がある。このなかでも、カチオン性基とイソシアネート基と反応する水素を併せ持つ化合物を利用する方法が容易である。   The introduction of the cationic hydrophilic group can be performed by a method using a compound having both a cationic group and a functional group having hydrogen which reacts with the isocyanate group, or by adding a functional group such as a glycidyl group to the isocyanate group in advance. Then, there is a method of reacting this functional group with a specific compound such as sulfide or phosphine. Among them, a method using a compound having both a cationic group and hydrogen reacting with an isocyanate group is easy.

上記イソシアネート基と反応する水素を有する官能基としては、特に限定されないが、例えば、水酸基、チオール基等が挙げられる。上記カチオン性親水基と、イソシアネート基と反応する水素を有する官能基と、を併せ持つ化合物としては、特に限定されないが、例えば、ジメチルエタノールアミン、ジエチルエタノールアミン、ジエタノールアミン、メチルジエタノールアミン、N,N−ジメチルアミノヘキサノール、N,N−ジメチルアミノエトキシエタノール、N,N−ジメチルアミノエトキシエトキシエタノール、N,N,N‘−トリメチルアミノエチルエタノールアミン、N−メチル−N−(ジメチルアミノプロピル)アミノエタノール等が挙げられる。また、水性ブロックポリイソシアネートに導入された三級アミノ基(カチオン性親水性基)は、硫酸ジメチル、硫酸ジエチル等で四級化することもできる。
中でも、カチオン性親水性基としては三級アミノ基が好ましい。親水性ポリイソシアネート組成物が三級アミノ基を有する場合には、後述する中和に用いるアニオン性化合物等の化合物が加熱で揮散しやすく、その結果、耐水性がより向上する傾向にある。
カチオン性親水性基の導入は溶剤の存在下で行うことができる。この場合の溶剤はイソシアネート基と反応しうる官能基を含まないものが好ましい。これら溶剤としては、特に限定されないが、例えば、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールジメチルエーテル等が挙げられる。
The functional group having hydrogen that reacts with the isocyanate group is not particularly limited, and examples thereof include a hydroxyl group and a thiol group. The compound having both the cationic hydrophilic group and a functional group having a hydrogen that reacts with an isocyanate group is not particularly limited. For example, dimethylethanolamine, diethylethanolamine, diethanolamine, methyldiethanolamine, N, N-dimethyl Aminohexanol, N, N-dimethylaminoethoxyethanol, N, N-dimethylaminoethoxyethoxyethanol, N, N, N'-trimethylaminoethylethanolamine, N-methyl-N- (dimethylaminopropyl) aminoethanol No. Further, the tertiary amino group (cationic hydrophilic group) introduced into the aqueous blocked polyisocyanate can be quaternized with dimethyl sulfate, diethyl sulfate or the like.
Among them, a tertiary amino group is preferable as the cationic hydrophilic group. When the hydrophilic polyisocyanate composition has a tertiary amino group, compounds such as an anionic compound used for neutralization described later are easily volatilized by heating, and as a result, the water resistance tends to be further improved.
The introduction of the cationic hydrophilic group can be performed in the presence of a solvent. In this case, the solvent preferably does not contain a functional group capable of reacting with an isocyanate group. These solvents are not particularly restricted but include, for example, ethyl acetate, propylene glycol monomethyl ether acetate, dipropylene glycol dimethyl ether and the like.

親水性ポリイソシアネート組成物に導入されたカチオン性親水性基はアニオン基を有する化合物で中和されることが好ましい。
このアニオン基とは、特に限定されないが、例えば、カルボキシル基、スルホン酸基、燐酸基、ハロゲン基、硫酸基等が挙げられる。
上記カルボキシル基を有する化合物としては、特に限定されないが、例えば、蟻酸、酢酸、プロピオン酸、酪酸、乳酸等が挙げられる。
また、上記スルホン基を有する化合物としては、特に限定されないが、例えば、エタンスルホン酸等が挙げられる。
また、上記燐酸基を有する化合物としては、特に限定されないが、例えば、燐酸、酸性燐酸エステル等が挙げられる。
また、上記ハロゲン基を有する化合物としては、特に限定されないが、例えば、塩酸等が挙げられる。
また、上記硫酸基を有する化合物としては特に限定されないが、例えば、硫酸等が挙げられる。
中でも、アニオン基を有する化合物としては、カルボキシル基を1つ有する化合物が好ましく、酢酸、プロピオン酸、または酪酸がより好ましい。
It is preferable that the cationic hydrophilic group introduced into the hydrophilic polyisocyanate composition is neutralized by a compound having an anionic group.
The anionic group is not particularly limited, and examples thereof include a carboxyl group, a sulfonic group, a phosphoric group, a halogen group, and a sulfate group.
The compound having a carboxyl group is not particularly limited, and examples thereof include formic acid, acetic acid, propionic acid, butyric acid, and lactic acid.
The compound having a sulfone group is not particularly limited, but includes, for example, ethanesulfonic acid.
The compound having a phosphate group is not particularly limited, and examples thereof include phosphoric acid and acidic phosphates.
Further, the compound having a halogen group is not particularly limited, and examples thereof include hydrochloric acid.
The compound having a sulfate group is not particularly limited, and examples thereof include sulfuric acid.
Among them, as the compound having an anionic group, a compound having one carboxyl group is preferable, and acetic acid, propionic acid, or butyric acid is more preferable.

アニオン性親水性基としては、特に限定されないが、例えば、カルボン酸基、スルホン酸基、燐酸基、ハロゲン基、硫酸基等が挙げられる。アニオン性親水性基を有するブロックポリイソシアネートは、例えば、イソシアネート基と反応する活性水素とアニオン基をともに有する化合物の活性水素と、前駆体ポリイソシアネート組成物のイソシアネート基とを反応させることにより、得ることができる。   Although it does not specifically limit as an anionic hydrophilic group, For example, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a halogen group, a sulfate group, etc. are mentioned. The blocked polyisocyanate having an anionic hydrophilic group is obtained, for example, by reacting active hydrogen of a compound having both an anionic group and an active hydrogen that reacts with an isocyanate group, with an isocyanate group of a precursor polyisocyanate composition. be able to.

活性水素とカルボン酸基とを有する化合物としては、特に限定されないが、例えば、1−ヒドロキシ酢酸、3−ヒドロキシプロパン酸、12−ヒドロキシ−9−オクタデカン酸、ヒドロキシピバル酸、乳酸等のモノヒドロキシカルボン酸;ジメチロール酢酸、2,2−ジメチロール酪酸、2,2−ジメチロールペンタン酸、ジヒドロキシコハク酸、ジメチロールプロピオン酸等のポリヒドロキシカルボン酸が挙げられる。中でも、活性水素とカルボン酸基とを有する化合物としては、ヒドロキシピバル酸、またはジメチロールプロピオン酸が好ましい。   Examples of the compound having an active hydrogen and a carboxylic acid group include, but are not particularly limited to, monohydroxy acids such as 1-hydroxyacetic acid, 3-hydroxypropanoic acid, 12-hydroxy-9-octadecanoic acid, hydroxypivalic acid, and lactic acid. Carboxylic acids; polyhydroxycarboxylic acids such as dimethylolacetic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolpentanoic acid, dihydroxysuccinic acid and dimethylolpropionic acid. Of these, hydroxypivalic acid or dimethylolpropionic acid is preferred as the compound having active hydrogen and a carboxylic acid group.

活性水素とカルボン酸基とを有する化合物としては、特に限定されないが、例えば、イセチオン酸等が挙げられる。   The compound having active hydrogen and a carboxylic acid group is not particularly limited, and examples thereof include isethionic acid.

親水性ポリイソシアネート組成物に導入されたアニオン性親水性基は、特に限定されないが、例えば、塩基性物質であるアミン系化合物で中和することができる。
このアミン系化合物としては、特に限定されないが、例えば、アンモニア、水溶性アミノ化合物が挙げられる。
水溶性アミノ化合物としては、特に限定されないが、例えば、モノエタノールアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、イソプロピルアミン、ジイソプロピルアミン、トリエタノールアミン、ブチルアミン、ジブチルアミン、2−エチルヘキシルアミン、エチレンジアミン、プロピレンジアミン、メチルエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モルホリン等の第1級アミンまたは第2級アミン;トリエチルアミン、ジメチルエタノールアミン等の第3級アミン等が挙げられる。
The anionic hydrophilic group introduced into the hydrophilic polyisocyanate composition is not particularly limited, but can be neutralized with, for example, an amine compound which is a basic substance.
Examples of the amine compound include, but are not particularly limited to, ammonia and a water-soluble amino compound.
Examples of the water-soluble amino compound include, but are not limited to, monoethanolamine, ethylamine, dimethylamine, diethylamine, triethylamine, propylamine, dipropylamine, isopropylamine, diisopropylamine, triethanolamine, butylamine, dibutylamine, and the like. -Primary or secondary amines such as ethylhexylamine, ethylenediamine, propylenediamine, methylethanolamine, dimethylethanolamine, diethylethanolamine and morpholine; and tertiary amines such as triethylamine and dimethylethanolamine.

本発明のポリイソシアネート組成物は、異なるイソシアネート化合物と混合して用いることができる。
本発明のイソシアネート化合物としては、脂肪族、脂環族、芳香族のイソシアネート基を有するジ−イソシアネート、またはポリ−イソシアネートである。前記ジイソシアネートとしては、例えば、テトラメチレンジイソシアネート(TMDI)、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、2,2,4−トリメチルヘキサン−1,6−ジイソシアネート、2−メチルペンタン−1,5−ジイソシアネート(MPDI)、1,3−ビス(イソシアナトメチル)−シクロヘキサン(1,3−H6−XDI)、3(4)−イソシアナトメチル−1−メチル−シクロヘキシルイソアネート(IMCI);イソホロンジイソシアネート(IPDI)、ビス(イソシアナトメチル)−ノルボルナン(NBDI)、1,3−ビス(イソシアナトメチル)−ベンゼン、1,3−ビス(2−イソシアナトプロピル−2)ベンゼンおよび4,4‘−ジシクロヘキシルメタンジイソシアネート(H12MDI)、リジンジイソシアネート(LDI)等が挙げられる。中でも、耐候性、工業的入手の容易さから、HDI、またはIPDIが好ましい。これらジイソシアネートは単独で使用してもいいし、2種以上を併用しても構わない。
前記ポリイソシアネートとは、触媒を用いたり、加熱をすることにより、前記ジイソシアネートを重合したものであり、分子中にイソシアヌレート構造、ウレトジオン構造、アロファネート構造、イミノオキサジアジンジオン構造、ウレタン構造、ビュレット構造等が含まれる。中でも、耐候性の観点からイソシアヌレート構造を有するものが好ましい。
The polyisocyanate composition of the present invention can be used by mixing with different isocyanate compounds.
The isocyanate compound of the present invention is a di-isocyanate or a poly-isocyanate having an aliphatic, alicyclic, or aromatic isocyanate group. Examples of the diisocyanate include tetramethylene diisocyanate (TMDI), pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane-1,6-diisocyanate, 2-methylpentane-1, 5-diisocyanate (MPDI), 1,3-bis (isocyanatomethyl) -cyclohexane (1,3-H6-XDI), 3 (4) -isocyanatomethyl-1-methyl-cyclohexylisoanate (IMCI); Isophorone diisocyanate (IPDI), bis (isocyanatomethyl) -norbornane (NBDI), 1,3-bis (isocyanatomethyl) -benzene, 1,3-bis (2-isocyanatopropyl-2) benzene and 4,4 '-Dicyclohexyl meta And diisocyanate (H12MDI) and lysine diisocyanate (LDI). Among them, HDI or IPDI is preferable from the viewpoint of weather resistance and industrial availability. These diisocyanates may be used alone or in combination of two or more.
The polyisocyanate is obtained by polymerizing the diisocyanate by using a catalyst or by heating, and has an isocyanurate structure, a uretdione structure, an allophanate structure, an iminooxadiazinedione structure, a urethane structure, a buret in a molecule. The structure is included. Among them, those having an isocyanurate structure are preferable from the viewpoint of weather resistance.

<その他の化合物>

本発明のポリイソシアネート組成物は、不飽和結合含有化合物、不活性化合物、金属原子 、塩基性アミノ化合物、および二酸化炭素からなる群から選ばれる1種以上の化合物を、ポリイソシアネート化合物を基準に1.0質量ppm以上1.0×10質量ppm以下含むことが、長期保存時の着色防止および長期保存安定性向上の観点から好ましい。当該含有量の範囲の下限値は、3.0質量ppm以上であることがより好ましく、5.0質量ppm以上であることがさらに好ましく、10質量ppm以上であることがよりさらに好ましく、含有量の範囲の上限値は、5.0×10質量ppm以下であることがより好ましく、3.0×10質量ppm以下であることがさらに好ましく、1.0×10質量ppm以下であることがよりさらに好ましい。
<Other compounds>

The polyisocyanate composition of the present invention comprises at least one compound selected from the group consisting of an unsaturated bond-containing compound, an inert compound, a metal atom, a basic amino compound, and carbon dioxide, based on the polyisocyanate compound. It is preferably contained in an amount of not less than 0.0 ppm by mass and not more than 1.0 × 10 4 ppm by mass from the viewpoint of preventing coloring during long-term storage and improving long-term storage stability. The lower limit of the range of the content is more preferably 3.0 mass ppm or more, still more preferably 5.0 mass ppm or more, even more preferably 10 mass ppm or more. Is more preferably 5.0 × 10 3 mass ppm or less, further preferably 3.0 × 10 3 mass ppm or less, and more preferably 1.0 × 10 3 mass ppm or less. Is even more preferred.

本発明の不飽和結合含有化合物は、好ましくは、その不飽和結合が、炭素−炭素間の不飽和結合、炭素−窒素間の不飽和結合、または炭素−酸素間の不飽和結合である化合物である。化合物の安定性の観点から、不飽和結合は、二重結合である化合物が好ましく、炭素−炭素間の二重結合(C=C)または炭素−酸素間の二重結合(C=O)がより好ましい。また、該化合物を構成する炭素原子は3つ以上の原子と結合していることが好ましい。
一般的に、炭素−炭素間の二重結合は芳香環を構成する炭素−炭素間の二重結合である場合もあるが、本発明の不飽和結合含有化合物に含まれる不飽和結合は、芳香環を構成する炭素−炭素間の二重結合を含まない。
炭素−酸素間の二重結合を有する化合物としては、例えば、炭酸誘導体等を挙げることができる。炭酸誘導体としては、例えば、尿素化合物、炭酸エステル、N−無置換カルバミン酸エステル、N−置換カルバミン酸エステル等が挙げられる。
The unsaturated bond-containing compound of the present invention is preferably a compound in which the unsaturated bond is a carbon-carbon unsaturated bond, a carbon-nitrogen unsaturated bond, or a carbon-oxygen unsaturated bond. is there. From the viewpoint of the stability of the compound, the unsaturated bond is preferably a compound having a double bond, and a carbon-carbon double bond (C = C) or a carbon-oxygen double bond (C = O) is preferred. More preferred. Further, the carbon atom constituting the compound is preferably bonded to three or more atoms.
In general, the carbon-carbon double bond may be a carbon-carbon double bond constituting an aromatic ring, but the unsaturated bond contained in the unsaturated bond-containing compound of the present invention may be an aromatic bond. It does not include the carbon-carbon double bond constituting the ring.
Examples of the compound having a carbon-oxygen double bond include a carbonic acid derivative. Examples of the carbonic acid derivative include a urea compound, a carbonic acid ester, an N-unsubstituted carbamic acid ester, an N-substituted carbamic acid ester, and the like.

本発明の不活性化合物は、下記化合物A〜化合物Gに分類される。
炭化水素化合物は化合物Aおよび化合物Bに、エーテル化合物およびスルフィド化合物は下記化合物C〜Eに、ハロゲン化炭化水素化合物は下記化合物Fに、含ケイ素炭化水素化合物、含ケイ素エーテル化合物、および含ケイ素スルフィド化合物は下記化合物Gにそれぞれ分類される。なお、ここに挙げる化合物A〜化合物Gは芳香族環以外に不飽和結合を含まず、上記した不飽和結合を有する化合物は含まれない。
化合物A:直鎖状、分岐鎖状又は環状構造を有する脂肪族炭化水素化合物。
化合物B:脂肪族炭化水素基で置換されていてもよい芳香族炭化水素化合物。
化合物C:エーテル結合またはスルフィド結合と、脂肪族炭化水素基とを有する化合物であり、同種又は異種の脂肪族炭化水素化合物が、エーテル結合またはスルフィド結合を介して結合した化合物。
化合物D:エーテル結合またはスルフィド結合と、芳香族炭化水素基とを有する化合物であり、同種又は異種の芳香族炭化水素化合物が、エーテル結合またはスルフィド結合を介して結合した化合物。
化合物E:エーテル結合またはスルフィド結合と、脂肪族炭化水素基と、芳香族炭化水素基とを有する化合物。
化合物F:脂肪族炭化水素化合物を構成する少なくとも1つの水素原子、または芳香族炭化水素化合物を構成する少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化物。
化合物G:上記化合物A〜化合物Eの炭素原子の一部又は全部がケイ素原子に置換された化合物。
The inactive compounds of the present invention are classified into the following compounds A to G.
The hydrocarbon compounds are compounds A and B, the ether compounds and sulfide compounds are compounds CE below, the halogenated hydrocarbon compounds are compounds F below, silicon-containing hydrocarbon compounds, silicon-containing ether compounds, and silicon-containing sulfides. The compounds are classified into the following compounds G, respectively. The compounds A to G described herein do not contain an unsaturated bond other than the aromatic ring, and do not include the above-mentioned compounds having an unsaturated bond.
Compound A: an aliphatic hydrocarbon compound having a linear, branched or cyclic structure.
Compound B: an aromatic hydrocarbon compound which may be substituted with an aliphatic hydrocarbon group.
Compound C: a compound having an ether bond or a sulfide bond and an aliphatic hydrocarbon group, wherein the same or different aliphatic hydrocarbon compounds are bonded via an ether bond or a sulfide bond.
Compound D: a compound having an ether bond or a sulfide bond and an aromatic hydrocarbon group, wherein the same or different aromatic hydrocarbon compounds are bonded via an ether bond or a sulfide bond.
Compound E: a compound having an ether bond or a sulfide bond, an aliphatic hydrocarbon group, and an aromatic hydrocarbon group.
Compound F: a halide in which at least one hydrogen atom constituting an aliphatic hydrocarbon compound or at least one hydrogen atom constituting an aromatic hydrocarbon compound is substituted with a halogen atom.
Compound G: a compound in which some or all of the carbon atoms of Compounds A to E have been substituted with silicon atoms.

本発明の金属原子は、金属イオンとして存在していても、金属原子単体として存在していてもよい。1種の金属原子であってもよいし、複数の種類の金属原子を組み合わせても構わない。金属原子としては、2価ないし4価の原子価をとりうる金属原子が好ましく、中でも、鉄、コバルト、ニッケル、亜鉛、スズ、銅、およびチタンから選ばれる1種または複数種の金属がより好ましい。   The metal atom of the present invention may exist as a metal ion or as a single metal atom. One kind of metal atom may be used, or a plurality of kinds of metal atoms may be combined. As the metal atom, a metal atom which can have a divalent to tetravalent valence is preferable, and among them, one or more metals selected from iron, cobalt, nickel, zinc, tin, copper, and titanium are more preferable. .

本発明の塩基性アミノ化合物は、アンモニアの誘導体で、アルキル基やアリール基でその水素が一つ置換された化合物(第一級)、二つ置換された化合物(第二級)、および三つとも置換された化合物(第三級)がある。本発明で好ましく使用できる塩基性アミノ化合物は、二級、三級のアミノ化合物であり、脂肪族アミン、芳香族アミン、複素環式アミン、塩基性アミノ酸が好ましく使用できる。   The basic amino compound of the present invention is a derivative of ammonia, a compound in which one hydrogen is substituted by an alkyl group or an aryl group (primary), a compound in which two hydrogens are substituted (secondary), and three Are also substituted (tertiary) compounds. Basic amino compounds that can be preferably used in the present invention are secondary and tertiary amino compounds, and aliphatic amines, aromatic amines, heterocyclic amines, and basic amino acids can be preferably used.

二酸化炭素は、常圧でのポリイソシアネート溶存分でも構わないし、圧力容器に入れて加圧状態で溶存させても構わない。水分を含んでいる二酸化炭素を使用するとポリイソシアネート化合物の加水分解を引き起こす場合があるので、二酸化炭素に含有される水分量は必要に応じて管理することが好ましい。   Carbon dioxide may be dissolved in polyisocyanate at normal pressure, or may be dissolved in a pressurized state in a pressure vessel. Since the use of carbon dioxide containing water may cause hydrolysis of the polyisocyanate compound, the amount of water contained in carbon dioxide is preferably controlled as necessary.

本発明のポリイソシアネート組成物のハロゲン原子含有量は、1.0×10質量ppm以下であることが着色防止の観点から好ましい。ハロゲン原子は、特に限定されないが、塩素および/または臭素が好ましく、塩素イオン、臭素イオン、加水分解性塩素、および加水分解性臭素から選択される、少なくとも1種のイオンおよび/または化合物であることがより好ましい。加水分解塩素としては、例えば、イソシアネート基に塩化水素が付加したカルバモイルクロリド化合物、加水分解性臭素としては、イソシアネート基に臭化水素が付加したカルバモイルブロミド化合物等が挙げられる。The halogen atom content of the polyisocyanate composition of the present invention is preferably 1.0 × 10 2 mass ppm or less from the viewpoint of preventing coloring. The halogen atom is not particularly limited, but is preferably chlorine and / or bromine, and is at least one ion and / or compound selected from chloride ion, bromine ion, hydrolysable chlorine, and hydrolysable bromine. Is more preferred. Examples of the hydrolyzed chlorine include a carbamoyl chloride compound in which hydrogen chloride is added to an isocyanate group, and examples of the hydrolyzable bromine include a carbamoyl bromide compound in which hydrogen bromide is added to an isocyanate group.

<塗料組成物>

本発明のポリイソシアネート組成物は、塗料組成物の硬化剤等として好適に用いることもできる。すなわち、本発明のポリイソシアネート組成物を含有する塗料組成物とすることができる。その塗料組成物の樹脂成分として、イソシアネート基との反応性を有する活性水素を分子内に2個以上有する化合物を含有することが好ましい。活性水素を分子内に2個以上有する化合物としては、例えば、ポリオール、ポリアミン、ポリチオール等が挙げられる。これらの中でも、ポリオールが好ましい。ポリオールの具体例としては、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、ポリオレフィンポリオール、フッ素ポリオール等が挙げられる。
<Coating composition>

The polyisocyanate composition of the present invention can also be suitably used as a curing agent or the like for a coating composition. That is, a coating composition containing the polyisocyanate composition of the present invention can be obtained. As a resin component of the coating composition, it is preferable to include a compound having two or more active hydrogens having a reactivity with an isocyanate group in a molecule. Examples of the compound having two or more active hydrogens in the molecule include a polyol, a polyamine, and a polythiol. Among these, polyols are preferred. Specific examples of the polyol include polyester polyol, polyether polyol, acrylic polyol, polyolefin polyol, and fluorine polyol.

本発明のポリイソシアネート組成物を用いた塗料組成物は、溶剤ベース、水系ベースどちらにも使用可能である。
溶剤ベースの塗料組成物とした場合には、活性水素を分子内に2個以上有する化合物を含有する樹脂、あるいはその溶剤希釈物に、必要に応じて他の樹脂、触媒、顔料、レベリング剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、界面活性剤等の添加剤を加えたものに、本発明のポリイソシアネート組成物を硬化剤として添加し、必要に応じて、更に溶剤を添加して、粘度を調整した後、手攪拌、あるいはマゼラー等の攪拌機器を用いて攪拌することによって、溶剤ベースの塗料組成物を得ることができる。
The coating composition using the polyisocyanate composition of the present invention can be used both in a solvent base and an aqueous base.
In the case of a solvent-based coating composition, a resin containing a compound having two or more active hydrogens in the molecule, or a solvent dilution thereof, if necessary, other resins, catalysts, pigments, leveling agents, Antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, to those to which additives such as surfactants are added, the polyisocyanate composition of the present invention is added as a curing agent, and if necessary, a solvent is further added. After adding and adjusting the viscosity, the mixture can be stirred manually or with a stirrer such as Magellar to obtain a solvent-based coating composition.

水系ベースの塗料組成物とした場合には、活性水素を分子内に2個以上有する化合物を含有する樹脂の水分散体、または水溶物に、必要に応じて他の樹脂、触媒、顔料、レベリング剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、界面活性剤等の添加剤を加えたものに、本発明のポリイソシアネート組成物を硬化剤として添加し、必要に応じて、水や溶剤を更に添加した後、攪拌機器により強制攪拌することによって、水系ベースの塗料組成物を得ることができる。   When a water-based coating composition is used, an aqueous dispersion of a resin containing a compound having two or more active hydrogens in a molecule or a water-soluble substance may be added to another resin, a catalyst, a pigment, and a leveling agent as necessary. Agents, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, additives such as surfactants, to the added polyisocyanate composition of the present invention as a curing agent, if necessary, water After further adding a solvent and a solvent, the mixture is forcibly stirred by a stirrer to obtain a water-based coating composition.

ポリエステルポリオールとしては、例えば、コハク酸、アジピン酸、ダイマー酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸、1,4−シクロヘキサンジカルボン酸等のカルボン酸等の二塩基酸等の単独または混合物と、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、トリメチルペンタンジオール、シクロヘキサンジオール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、2−メチロールプロパンジオール、エトキシ化トリメチロールプロパン等の多価アルコールの単独または混合物とを、縮合反応させることによって得ることができる。例えば、上記の成分を一緒にし、そして約160〜220℃で加熱することによって、縮合反応を行うことができる。さらに、例えば、ε−カプロラクトン等のラクトン類を、多価アルコールを用いて開環重合して得られるようなポリカプロラクトン類等もポリエステルポリオールとして用いることができる。これらのポリエステルポリオールは、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート、およびこれらから得られるポリイソシアネートを用いて変性させることができる。この場合、特に脂肪族ジイソシアネート、脂環族ジイソシアネート、およびこれらから得られるポリイソシアネートが、耐候性および耐黄変性等の観点から好ましい。水系ベース塗料として用いる場合には、一部残した二塩基酸等の一部のカルボン酸を残存させておき、アミン、アンモニア等の塩基で中和することで、水溶性、あるいは水分散性の樹脂とすることができる。   Examples of the polyester polyol include, for example, succinic acid, adipic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, and dibasic acids such as carboxylic acids such as 1,4-cyclohexanedicarboxylic acid alone or Mixture with ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, trimethylpentanediol, cyclohexanediol, trimethylolpropane, glycerin, pentaerythritol, 2-methylolpropanediol , Or a mixture of polyhydric alcohols such as ethoxylated trimethylolpropane, alone or in a mixture. For example, a condensation reaction can be performed by combining the above components and heating at about 160-220 ° C. Further, for example, polycaprolactones and the like obtained by ring-opening polymerization of lactones such as ε-caprolactone using a polyhydric alcohol can also be used as the polyester polyol. These polyester polyols can be modified with aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and polyisocyanates obtained therefrom. In this case, aliphatic diisocyanates, alicyclic diisocyanates, and polyisocyanates obtained therefrom are particularly preferred from the viewpoints of weather resistance, yellowing resistance and the like. When used as an aqueous base paint, a part of the remaining carboxylic acid such as dibasic acid is left and partially neutralized with a base such as an amine or ammonia to obtain a water-soluble or water-dispersible material. It can be a resin.

ポリエーテルポリオールとしては、例えば、多価ヒドロキシ化合物の単独または混合物に、例えば水酸化物(リチウム、ナトリウム、カリウム等)、強塩基性触媒(アルコラート、アルキルアミン等)、複合金属シアン化合物錯体(金属ポルフィリン、ヘキサシアノコバルト酸亜鉛錯体等)等を使用して、アルキレンオキシド(エチレンオキシド、プロピレンオキシド、ブチレンオキシド、シクロヘキセンオキシド、スチレンオキシド等)の単独または混合物を、多価ヒドロキシ化合物にランダムまたはブロック付加して、得られるポリエーテルポリオール類;ポリアミン化合物(エチレンジアミン類等)にアルキレンオキシドを反応させて得られるポリエーテルポリオール類;およびこれらポリエーテルポリオール類を媒体としてアクリルアミド等を重合して得られる、いわゆるポリマーポリオール類等が挙げられる。   Examples of polyether polyols include, for example, hydroxides (lithium, sodium, potassium, etc.), strong basic catalysts (alcoholates, alkylamines, etc.), composite metal cyanide complexes (metals) Porphyrin, zinc hexacyanocobaltate complex, etc.) or the like, by random or block addition of an alkylene oxide (ethylene oxide, propylene oxide, butylene oxide, cyclohexene oxide, styrene oxide, etc.) or a mixture thereof to a polyhydroxy compound. And polyether polyols obtained; polyether polyols obtained by reacting polyamine compounds (such as ethylenediamines) with alkylene oxides; and acrylics using these polyether polyols as a medium. Obtained by polymerizing bromide or the like, so-called polymer polyols, and the like.

上記多価ヒドロキシ化合物としては、(i)例えば、ジグリセリン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等、(ii)例えば、エリトリトール、D−トレイトール、L−アラビニトール、リビトール、キシリトール、ソルビトール、マンニトール、ガラクチトール、ラムニトール等の糖アルコール系化合物、(iii)例えば、アラビノース、リボース、キシロース、グルコース、マンノース、ガラクトース、フルクトース、ソルボース、ラムノース、フコース、リボデソース等の単糖類、(iv)例えば、トレハロース、ショ糖、マルトース、セロビオース、ゲンチオビオース、ラクトース、メリビオース等の二糖類、(v)例えば、ラフィノース、ゲンチアノース、メレチトース等の三糖類、(vi)例えば、スタキオース等の四糖類、等が挙げられる。   Examples of the polyvalent hydroxy compound include (i) diglycerin, ditrimethylolpropane, pentaerythritol, dipentaerythritol and the like, (ii) e.g. erythritol, D-threitol, L-arabinitol, ribitol, xylitol, sorbitol, Sugar alcohol compounds such as mannitol, galactitol, and rhamnitol; (iii) monosaccharides such as arabinose, ribose, xylose, glucose, mannose, galactose, fructose, sorbose, rhamnose, fucose, ribodeose; and (iv) trehalose, for example. Disaccharides such as sucrose, maltose, cellobiose, gentiobiose, lactose and melibiose; (v) trisaccharides such as raffinose, gentianose and meletitose; i) For example, tetrasaccharides such as stachyose, and the like.

アクリルポリオールは、例えば、一分子中に1個以上の活性水素を有する重合性モノマーと、当該重合性モノマーと共重合可能な他のモノマーとを、共重合させることによって得ることができる。   The acrylic polyol can be obtained, for example, by copolymerizing a polymerizable monomer having one or more active hydrogens in one molecule and another monomer copolymerizable with the polymerizable monomer.

アクリルポリオールは、例えば、活性水素を有するアクリル酸エステル類(アクリル酸−2−ヒドロキシエチル、アクリル酸−2−ヒドロキシプロピル、アクリル酸−2−ヒドロキシブチル等)、または活性水素を有するメタクリル酸エステル類(メタクリル酸−2−ヒドロキシエチル、メタクリル酸−2−ヒドロキシプロピル、メタクリル酸−2−ヒドロキシブチル、メタクリル酸−3−ヒドロキシプロピル、メタクリル酸−4−ヒドロキシブチル等)、グリセリンやトリメチロールプロパン等のトリオールの(メタ)アクリル酸モノエステル等の多価活性水素を有する(メタ)アクリル酸エステル類;ポリエーテルポリオール類(ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等)と上記の活性水素を有する(メタ)アクリル酸エステル類とのモノエーテル;グリシジル(メタ)アクリレートと酢酸、プロピオン酸、p−tert−ブチル安息香酸等の一塩基酸との付加物;上記の活性水素を有する(メタ)アクリル酸エステル類の活性水素にラクトン類(ε−カプロラクタム、γ−バレロラクトン等)を開環重合させることにより得られる付加物からなる群より選ばれる1種以上を必須成分として、必用に応じて(メタ)アクリル酸エステル類(アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸−n−ブチル、アクリル酸−2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸−n−ブチル、メタクリル酸イソブチル、メタクリル酸−n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸グリシジル等)、不飽和カルボン酸類(アクリル酸、メタクリル酸、マレイン酸、イタコン酸等)、不飽和アミド類(アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド等)、または加水分解性シリル基を有するビニルモノマー類(ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ−(メタ)アクリロプロピルトリメトキシシラン等)、その他の重合性モノマー(スチレン、ビニルトルエン、酢酸ビニル、アクリルニトリル、フマル酸ジブチル等)からなる群より選ばれる1種以上を、常法により共重合させて得ることができる。   The acrylic polyol is, for example, an acrylate having active hydrogen (such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, or 2-hydroxybutyl acrylate), or a methacrylate having active hydrogen. (Such as 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 3-hydroxypropyl methacrylate, and 4-hydroxybutyl methacrylate), and glycerin and trimethylolpropane. (Meth) acrylic acid esters having polyvalent active hydrogen such as triol (meth) acrylic acid monoester; polyether polyols (polyethylene glycol, polypropylene glycol, polybutylene glycol, etc.) and the above active hydrogen Monoether with (meth) acrylic acid ester; adduct of glycidyl (meth) acrylate with monobasic acid such as acetic acid, propionic acid, p-tert-butylbenzoic acid; having the above active hydrogen (meth) One or more selected from the group consisting of adducts obtained by ring-opening polymerization of lactones (ε-caprolactam, γ-valerolactone, etc.) with the active hydrogen of acrylates as essential components, if necessary. (Meth) acrylates (methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, methacrylic acid-n -Butyl, isobutyl methacrylate, n-hexyl methacrylate, methacrylic acid Cyclohexyl acid, lauryl methacrylate, glycidyl methacrylate, etc.), unsaturated carboxylic acids (acrylic acid, methacrylic acid, maleic acid, itaconic acid, etc.), unsaturated amides (acrylamide, N-methylol acrylamide, diacetone acrylamide, etc.), Or vinyl monomers having a hydrolyzable silyl group (vinyltrimethoxysilane, vinylmethyldimethoxysilane, γ- (meth) acrylopropyltrimethoxysilane, etc.), and other polymerizable monomers (styrene, vinyltoluene, vinyl acetate, One or more selected from the group consisting of acrylonitrile, dibutyl fumarate and the like can be obtained by copolymerization in a conventional manner.

例えば、上記の単量体成分を、公知の過酸化物やアゾ化合物等のラジカル重合開始剤の存在下で溶液重合し、必要に応じて有機溶剤等で希釈することによって、アクリルポリオールを得ることができる。水系ベースアクリルポリオールを得る場合には、オレフィン性不飽和化合物を溶液重合し、水層に転換する方法や乳化重合等の公知の方法で製造することができる。その場合、アクリル酸、メタアクリル酸等のカルボン酸含有モノマーやスルホン酸含有モノマー等の酸性部分をアミンやアンモニアで中和することによって水溶性、あるいは水分散性を付与することができる。   For example, an acrylic polyol is obtained by performing solution polymerization of the above monomer component in the presence of a radical polymerization initiator such as a known peroxide or an azo compound, and diluting with an organic solvent or the like as necessary. Can be. When the aqueous base acrylic polyol is obtained, it can be produced by a known method such as a method of polymerizing a solution of an olefinically unsaturated compound and converting it into an aqueous layer or an emulsion polymerization. In this case, water solubility or water dispersibility can be imparted by neutralizing an acidic portion such as a carboxylic acid-containing monomer such as acrylic acid or methacrylic acid or a sulfonic acid-containing monomer with an amine or ammonia.

フッ素ポリオールとは、分子内にフッ素を含むポリオールであり、例えば、特開昭57−34107号公報、特開昭61−215311号公報等で開示されているフルオロオレフィン、シクロビニルエーテル、ヒドロキシアルキルビニルエーテル、モノカルボン酸ビニルエステル等の共重合体等が挙げられる。   The fluorine polyol is a polyol containing fluorine in the molecule, for example, a fluoroolefin, a cyclovinyl ether, a hydroxyalkyl vinyl ether disclosed in JP-A-57-34107, JP-A-61-215311 and the like. Copolymers such as vinyl monocarboxylate and the like can be mentioned.

上記ポリオールの水酸基価は、特に限定されないが、10mgKOH/g以上200mgKOH/g以下であることが好ましい。その中でも、下限値は20mgKOH/gであることがより好ましく、30mgKOH/gであることが特に好ましい。ポリオールの酸価は、0mgKOH/g以上30mgKOH/g以下であることが好ましい。水酸基価および酸価は、JIS K1557に準拠して測定することができる。   The hydroxyl value of the polyol is not particularly limited, but is preferably from 10 mgKOH / g to 200 mgKOH / g. Among them, the lower limit is more preferably 20 mgKOH / g, and particularly preferably 30 mgKOH / g. The acid value of the polyol is preferably from 0 mgKOH / g to 30 mgKOH / g. The hydroxyl value and the acid value can be measured according to JIS K1557.

上記の中でも、ポリオールとしては、耐候性、耐薬品性、および硬度の観点から、アクリルポリオールが好ましく、機械強度、および耐油性の観点から、ポリエステルポリオールが好ましい。   Among the above, as the polyol, an acrylic polyol is preferable from the viewpoint of weather resistance, chemical resistance, and hardness, and a polyester polyol is preferable from the viewpoint of mechanical strength and oil resistance.

上記した活性水素を分子内に2個以上有する化合物の水酸基に対する、本発明のポリイソシアネート組成物のイソシアネート基の当量比(NCO/OH比)は、0.2以上5.0以下が好ましく、0.4以上3.0以下がより好ましく、0.5以上2.0以下が特に好ましい。当該当量比が上記下限値以上であると、一層強靱な塗膜を得ることが可能となる。当該当量比が上記上限値以下であると、塗膜の平滑性を一層向上させることができる。
塗料組成物には、必要に応じて完全アルキル型、メチロール型アルキル、イミノ基型アルキル等のメラミン系硬化剤を添加することができる。
The equivalent ratio (NCO / OH ratio) of the isocyanate group of the polyisocyanate composition of the present invention to the hydroxyl group of the compound having two or more active hydrogens in the molecule is preferably 0.2 or more and 5.0 or less. It is more preferably from 0.4 to 3.0, and particularly preferably from 0.5 to 2.0. When the equivalent ratio is equal to or more than the above lower limit, a tougher coating film can be obtained. When the equivalent ratio is equal to or less than the upper limit, the smoothness of the coating film can be further improved.
If necessary, a melamine-based curing agent such as a complete alkyl type, a methylol type alkyl, or an imino group type alkyl can be added to the coating composition.

上記活性水素を分子内に2個以上有する化合物、本発明のポリイソシアネート組成物および塗料組成物は、いずれも、有機溶剤と混合して使用できる。有機溶剤としては、水酸基およびイソシアネート基と反応する官能基を有していない方が好ましい。また、ポリイソシアネート組成物と相溶する方が好ましい。このような有機溶剤としては、一般に塗料溶剤として用いられているエステル化合物、エーテル化合物、ケトン化合物、芳香族化合物、エチレングリコールジアルキルエーテル系の化合物、ポリエチレングリコールジカルボキシレート系の化合物、炭化水素系溶剤、芳香族系溶剤等が挙げられる。   The compound having two or more active hydrogens in the molecule, the polyisocyanate composition and the coating composition of the present invention can be used as a mixture with an organic solvent. It is preferable that the organic solvent does not have a functional group that reacts with a hydroxyl group and an isocyanate group. Further, it is preferable that the compound is compatible with the polyisocyanate composition. Such organic solvents include ester compounds, ether compounds, ketone compounds, aromatic compounds, ethylene glycol dialkyl ether-based compounds, polyethylene glycol dicarboxylate-based compounds, and hydrocarbon solvents generally used as paint solvents. And aromatic solvents.

上記活性水素を分子内に2個以上有する化合物、本発明のポリイソシアネート組成物および塗料組成物は、いずれも、その目的や用途に応じて、本発明の効果を損なわない範囲で、触媒、顔料、レベリング剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、界面活性剤、塗膜表面親水剤等の当該技術分野で使用されている各種添加剤を混合して使用することもできる。   The compound having two or more active hydrogens in the molecule, the polyisocyanate composition and the coating composition of the present invention may be any of catalysts and pigments according to the purpose and use within a range that does not impair the effects of the present invention. Various additives used in the art, such as a leveling agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a plasticizer, a surfactant, and a hydrophilic agent for the surface of a coating film, may be used in combination. .

硬化促進用の触媒の例としては、ジブチルスズジラウレート、2−エチルヘキサン酸スズ、2−エチルヘキサン酸亜鉛、コバルト塩、等の金属塩;トリエチルアミン、ピリジン、メチルピリジン、ベンジルジメチルアミン、N,N−ジメチルシクロヘキシルアミン、N−メチルピペリジン、ペンタメチルジエチレントリアミン、N,N’−エンドエチレンピペラジン、N,N’−ジメチルピペラジン、等の3級アミン類等が挙げられる。   Examples of catalysts for promoting curing include metal salts such as dibutyltin dilaurate, tin 2-ethylhexanoate, zinc 2-ethylhexanoate, and cobalt salts; triethylamine, pyridine, methylpyridine, benzyldimethylamine, N, N- Tertiary amines such as dimethylcyclohexylamine, N-methylpiperidine, pentamethyldiethylenetriamine, N, N'-endoethylenepiperazine, N, N'-dimethylpiperazine and the like.

塗膜表面親水剤の例としては、シリケート化合物が好ましい。例えば、下記式(XX)で表される化合物、すなわち、テトラアルコキシシラン、テトラアルコキシシランの縮合物、およびテトラアルコキシシランの誘導体から選ばれる少なくとも1種類のシリケート化合物等が挙げられる。シリケート化合物を含有することによって、主剤ポリオールと組み合わせて塗膜を作製した場合に、塗膜表面を親水性にし、耐雨筋汚染性が発現する。   As an example of the coating film surface hydrophilic agent, a silicate compound is preferable. For example, a compound represented by the following formula (XX), that is, at least one kind of silicate compound selected from tetraalkoxysilane, a condensate of tetraalkoxysilane, and a derivative of tetraalkoxysilane is exemplified. By containing a silicate compound, when a coating film is produced in combination with the base polyol, the coating film surface is made hydrophilic and rain streak stain resistance is exhibited.

Figure 0006664509
Figure 0006664509

[一般式(XX)中、複数あるR81は、それぞれ独立に、炭素数1〜10のアルキル基、またはアリール基である。複数あるR81は、それぞれ同一であってもよく異なっていてもよい。][In the general formula (XX), a plurality of R 81 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group. A plurality of R 81 may be the same or different. ]

[R81

81は、それぞれ独立に、炭素数1〜10のアルキル基、またはアリール基である。R81における炭素数1〜10のアルキル基としては、直鎖状のものでも分岐鎖状のものでもよく、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、n−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、n−ヘプチル基、2−メチルヘキシル基、3−メチルヘキシル基、2,2−ジメチルペンチル基、2,3−ジメチルペンチル基、2,4−ジメチルペンチル基、3,3−ジメチルペンチル基、3−エチルペンチル基、2,2,3−トリメチルブチル基、n−オクチル基、イソオクチル基、2−エチルヘキシル基、ノニル基、デシル基等が挙げられる。
81におけるアリール基としては、例えば、例えば、フェニレン基、ペンタレニレン基、インデニレン基、ナフチレン基、アントラセニレン基、ヘプタレニレン基、オクタレニレン基、アズレニレン基等が挙げられ、さらに、これら芳香族炭化水素基の1個以上の水素原子が、ハロゲン原子、水酸基、または炭素数1〜10のアルキル基で置換されたものが挙げられる。ここで、水素原子を置換する炭素数1〜10のアルキル基としては、R51における炭素数1〜10のアルキル基として例示した上記のものが挙げられる。
[ R81 ]

R 81 is each independently an alkyl group having 1 to 10 carbon atoms or an aryl group. The alkyl group having 1 to 10 carbon atoms in R 81 may be linear or branched, and specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl Group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methyl Pentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl Group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 3-ethylpentyl group, 2,2,3-trimethylbutyl group, n-octyl group, a Examples include a sooctyl group, a 2-ethylhexyl group, a nonyl group, and a decyl group.
Examples of the aryl group for R 81 include, for example, a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an anthracenylene group, a heptalenylene group, an octalenylene group, an azulenylene group, and the like. Examples include those in which at least two hydrogen atoms have been substituted with a halogen atom, a hydroxyl group, or an alkyl group having 1 to 10 carbon atoms. The alkyl group having 1 to 10 carbon atoms substituting hydrogen atoms include the above exemplified as the alkyl group having 1 to 10 carbon atoms in R 51.

<塗膜>
本発明のポリイソシアネート組成物を硬化剤として用いた塗料組成物は、ロール塗装、カーテンフロー塗装、スプレー塗装、ベル塗装、静電塗装等の塗料として用いることができる。例えば、金属(鋼板、表面処理鋼板等)、プラスチック、木材、フィルム、無機材料等の素材に対するプライマーや上中塗り塗料として有用である。また、防錆鋼板を含むプレコートメタル、自動車塗装等に美粧性、耐候性、耐酸性、防錆性、耐チッピング性等を付与するための塗料としても有用である。また、接着剤、粘着剤、エラストマー、フォーム、表面処理剤等のウレタン原料としても有用である。
<Coating>
The coating composition using the polyisocyanate composition of the present invention as a curing agent can be used as a coating such as roll coating, curtain flow coating, spray coating, bell coating, electrostatic coating and the like. For example, it is useful as a primer or top coat for materials such as metals (steel plates, surface-treated steel plates, etc.), plastics, woods, films, and inorganic materials. It is also useful as a paint for imparting aesthetics, weather resistance, acid resistance, rust resistance, chipping resistance, etc. to pre-coated metal including rust-proof steel plates, automotive coatings and the like. It is also useful as a urethane raw material for adhesives, pressure-sensitive adhesives, elastomers, foams, surface treatment agents and the like.

<水分散体>

本発明の水分散体は、本発明のポリイソシアネート組成物、ブロックポリイソシアネート組成物、または親水性ポリイソシアネート組成物と、水と、を含む水分散体である。
本発明のポリイソシアネート組成物、ブロックポリイソシアネート組成物、または親水性ポリイソシアネート組成物は水分散性が高いため、水にも容易に分散できる。
本発明の水分散体は、水以外の溶媒を含んでいてもよい。 前記の水以外の溶媒は20質量%まで含むことができる。この場合の溶剤の例としては、特に限定されないが、例えば、1−メチルピロリドン、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、3−メトキシ−3−メチル−1−ブタノール、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、メチルエチルケトン、アセトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、エタノール、メタノール、iso−プロパノール、1−プロパノール、iso−ブタノール、1−ブタノール、2−エチルヘキサノール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、酢酸エチル、酢酸イソプロピル、酢酸ブチル、トルエン、キシレン、ペンタン、iso−ペンタン、ヘキサン、iso−ヘキサン、シクロヘキサン、ソルベントナフサ、ミネラルスピリット等を挙げることができる。これら溶剤は、1種単独で用いても、2種以上を併用してもよい。水への分散性の観点から、溶剤としては、水への溶解度が5質量%以上のものが好ましく、具体的には、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテルが好ましい。
<Water dispersion>

The aqueous dispersion of the present invention is an aqueous dispersion containing the polyisocyanate composition, the blocked polyisocyanate composition, or the hydrophilic polyisocyanate composition of the present invention, and water.
Since the polyisocyanate composition, the blocked polyisocyanate composition, or the hydrophilic polyisocyanate composition of the present invention has high water dispersibility, it can be easily dispersed in water.
The aqueous dispersion of the present invention may contain a solvent other than water. The solvent other than the water can contain up to 20% by mass. Examples of the solvent in this case are not particularly limited, for example, 1-methylpyrrolidone, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl Ether, 3-methoxy-3-methyl-1-butanol, ethylene glycol diethyl ether, diethylene glycol diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, propylene glycol dimethyl ether, methyl ethyl ketone, acetone, methyl isobutyl ketone, propylene glycol mono Met Ether acetate, ethanol, methanol, iso-propanol, 1-propanol, iso-butanol, 1-butanol, 2-ethylhexanol, cyclohexanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,4 -Butanediol, 1,3-butanediol, ethyl acetate, isopropyl acetate, butyl acetate, toluene, xylene, pentane, iso-pentane, hexane, iso-hexane, cyclohexane, solvent naphtha, mineral spirit and the like. These solvents may be used alone or in combination of two or more. From the viewpoint of dispersibility in water, the solvent is preferably one having a solubility in water of 5% by mass or more, and specifically, dipropylene glycol dimethyl ether and dipropylene glycol monomethyl ether are preferred.

以下、具体的な実施例および比較例を挙げて本発明の実施形態をより具体的に説明するが、本発明の実施形態はその要旨を超えない限り、以下の実施例および比較例によって何ら限定されるものではない。   Hereinafter, embodiments of the present invention will be described more specifically with reference to specific examples and comparative examples.However, the embodiments of the present invention are not limited by the following examples and comparative examples unless they exceed the gist thereof. It is not something to be done.


実施例(1−1)−1〜(1−1)−28および比較例(1−1)−1〜(1−1)−10における、ポリイソシアネート組成物の物性は、以下のとおり測定した。なお、特に明記しない場合は、「部」および「%」は、「質量部」および質量%」を意味する。

The physical properties of the polyisocyanate composition in Examples (1-1) -1 to (1-1) -28 and Comparative Examples (1-1) -1 to (1-1) -10 were measured as follows. . Unless otherwise specified, “parts” and “%” mean “parts by mass” and “% by mass”.

<粘度>

粘度は、E型粘度計(トキメック社製)を用いて25℃で測定した。測定に際しては、標準ローター(1°34’×R24)を用いた。回転数は、以下の通り。
100rpm (128mPa・s未満の場合)
50rpm (128mPa・s〜256mPa・sの場合)
20rpm (256mPa・s〜640mPa・sの場合)
10rpm (640mPa・s〜1280mPa・sの場合)
5rpm (1280mPa・s〜2560mPa・sの場合)
<Viscosity>

The viscosity was measured at 25 ° C. using an E-type viscometer (manufactured by Tokimec). In the measurement, a standard rotor (1 ° 34 ′ × R24) was used. The rotation speed is as follows.
100rpm (less than 128mPa · s)
50 rpm (128 mPa · s to 256 mPa · s)
20 rpm (in the case of 256 mPa · s to 640 mPa · s)
10 rpm (for 640 mPa · s to 1280 mPa · s)
5 rpm (for 1280 mPa · s to 2560 mPa · s)

<NCO含有率>

NCO含有率(質量%)は、測定試料中のイソシアネート基を過剰の2Nアミンで中和した後、1N塩酸による逆滴定によって求めた。
<NCO content>

The NCO content (% by mass) was determined by back titration with 1N hydrochloric acid after neutralizing the isocyanate group in the measurement sample with an excess of 2N amine.

<計算NCO含有率>

ブロックポリイソシアネート組成物合成時に用いたポリイソシアネート組成物のNCO含有率を上記の方法で求め、仕込んだポリイソシアネート組成物からNCO含有質量を求める[A]。
次式により、計算NCO含有率を求めた。
計算NCO含有率(質量%)=100×[A]/全仕込み質量
<Calculated NCO content>

The NCO content of the polyisocyanate composition used in the synthesis of the blocked polyisocyanate composition is determined by the above method, and the NCO content mass is determined from the charged polyisocyanate composition [A].
The calculated NCO content was determined by the following equation.
Calculated NCO content (% by mass) = 100 × [A] / total charged mass

<転化率>

転化率は、下記の装置を用いたGPC測定によるポリスチレン基準の数平均分子量により、未反応トリイソシアネートよりも数平均分子量の大きなピークの面積割合とした。
装置:東ソー社製「HLC−8120GPC」(商品名)
カラム:東ソー社製「TSKgel SuperH1000」(商品名)×1本
「TSKgel SuperH2000」(商品名)×1本
「TSKgel SuperH3000」(商品名)×1本
キャリアー:テトラハイドロフラン
検出方法:示差屈折計
試料濃度:5wt/vol%、
流出量:0.6mL/min、
カラム温度:30℃。
<Conversion rate>

The conversion was defined as the area ratio of the peak having a number average molecular weight larger than that of the unreacted triisocyanate, based on the number average molecular weight based on polystyrene by GPC measurement using the following apparatus.
Apparatus: "HLC-8120GPC" (trade name) manufactured by Tosoh Corporation
Column: Tosoh “TSKgel SuperH1000” (trade name) x 1
"TSKgel SuperH2000" (product name) x 1
"TSKgel SuperH3000" (trade name) x 1 Carrier: tetrahydrofuran Detection method: differential refractometer Sample concentration: 5 wt / vol%,
Outflow rate: 0.6 mL / min,
Column temperature: 30 ° C.

<イソシアヌレート構造に対するイミノオキサジアジンジオン構造のモル比率定量方法>
Bruker(ブルカー)社製Biospin Avance600(商品名)を用いて、13C−NMRを測定し、イミノオキサジアジンジオン構造、およびイソシアヌレート構造のモル比率を求めた。

具体的な測定条件は以下の通りであった。
13C−NMR装置:AVANCE600(ブルカー社製)
クライオプローブ(ブルカー社製)
Cryo Probe
CPDUL
600S3−C/H−D−05Z
共鳴周波数:150MHz
濃度:60wt/vol%
シフト基準:CDCl(77ppm)
積算回数:10000回
パルスプログラム:zgpg30(プロトン完全デカップリング法、待ち時間2sec)
<Method for determining molar ratio of iminooxadiazinedione structure to isocyanurate structure>
Using Bruker (Bruker) Co. Biospin AVANCE 600 (trade name), 13 to measure the C-NMR, it was determined iminooxadiazinedione structure, and the molar ratio of isocyanurate structures.

Specific measurement conditions were as follows.
13 C-NMR apparatus: AVANCE600 (manufactured by Bruker)
Cryoprobe (Bruker)
Cryo Probe
CPDUL
600S3-C / HD-05Z
Resonant frequency: 150MHz
Concentration: 60 wt / vol%
Shift standard: CDCl 3 (77 ppm)
Number of integration: 10000 times Pulse program: zgpg30 (proton complete decoupling method, waiting time 2 sec)

以下のシグナルの積分値を、測定している炭素の数で除し、その値から各モル比率を求めた。
イミノオキサジアジンジオン構造:144.5ppm付近:積分値÷1
イソシアヌレート構造:148.5ppm付近:積分値÷3
次いで、得られたイミノオキサジアジンジオン構造、およびイソシアヌレート構造のモル比率からイソシアヌレート構造に対するイミノオキサジアジンジオン構造のモル比率を求めた。
The integral value of the following signal was divided by the number of measured carbons, and each molar ratio was determined from the value.
Iminooxadiazinedione structure: around 144.5 ppm: integral value ÷ 1
Isocyanurate structure: around 148.5 ppm: integral value ÷ 3
Next, the molar ratio of the iminooxadiazinedione structure to the isocyanurate structure was determined from the obtained iminooxadiazinedione structure and the molar ratio of the isocyanurate structure.

<ポリイソシアネート組成物の低粘度化度(1)>

ポリイソシアネート混合物の粘度測定結果から、1000mPa・s/25℃未満の場合を○、1000mPa・s/25℃以上の場合を×とした。
<Degree of viscosity reduction of polyisocyanate composition (1)>

From the result of the viscosity measurement of the polyisocyanate mixture, a case where the viscosity was less than 1000 mPa · s / 25 ° C. was evaluated as “○”, and a case where the viscosity was 1000 mPa · s / 25 ° C. or higher was evaluated as “x”.

<ポリイソシアネート組成物の乾燥性評価方法(1)>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ポリイソシアネート組成物の各々を、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるように調整した。調整した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、23℃/50%RHで硬化させた。特定時間経過後、その塗膜上にコットンボール(直径2.5cm、高さ2.0cmの円柱型)を置き、その上に100gの分銅を60秒間置いた。その後、分銅とコットンを取り除き、塗膜上に残ったコットン跡を観察した。跡が全く見えなくなった時間が8時間以内であった場合を◎、8時間超9時間以内あった場合を〇、9時間超10時間以内であった場合を△、10時間超であった場合を×とした。
<Method for evaluating dryness of polyisocyanate composition (1)>

An acrylic polyol (trade name “SETALUX1753” of Nuplex Resin, resin concentration 70%, hydroxyl value 138.6 mgKOH / g) and each of the polyisocyanate compositions were blended at an equivalent ratio of isocyanate group / hydroxyl group of 1.0. And butyl acetate to adjust the solid content to 50% by mass. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 23 ° C./50% RH. After a lapse of a specific time, a cotton ball (a cylindrical shape having a diameter of 2.5 cm and a height of 2.0 cm) was placed on the coating film, and a weight of 100 g was placed thereon for 60 seconds. Thereafter, the weight and cotton were removed, and the trace of cotton remaining on the coating film was observed. ◎ when the time when the mark disappeared completely was within 8 hours, Δ when it was more than 8 hours and less than 9 hours, △ when it was more than 9 hours and less than 10 hours, and 場合 when it was more than 10 hours Is indicated by x.

<ブロックポリイソシアネート組成物の低粘度化度(1)>

ブロックポリイソシアネート組成物の粘度測定結果から、1000mPa・s/25℃未満の場合を○、1000mPa・s/25℃以上の場合を×とした。
<Low viscosity degree of block polyisocyanate composition (1)>

From the results of the viscosity measurement of the blocked polyisocyanate composition, the case where the viscosity was less than 1000 mPa · s / 25 ° C. was evaluated as “○”, and the case where the viscosity was 1000 mPa · s / 25 ° C. or higher was evaluated as “X”.

<ブロックポリイソシアネート組成物の乾燥性評価方法(1)>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ブロックポリイソシアネート組成物の各々を、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるように調整した。調整した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、100℃30分で硬化させた。その塗膜上にコットンボール(直径2.5cm、高さ2.0cmの円柱型)を置き、その上に100gの分銅を60秒間置いた。その後、分銅とコットンを取り除き、塗膜上に残ったコットン跡を観察した。跡が全く見えなくなった場合を○、跡がわずかに見えた場合を△、明らかな跡が見えた場合を×とした。
<Method for evaluating dryness of blocked polyisocyanate composition (1)>

Acrylic polyol (trade name “SETALUX1753” of Nuplex Resin, resin concentration 70%, hydroxyl value 138.6 mgKOH / g) and each of the blocked polyisocyanate compositions are mixed at an isocyanate group / hydroxyl equivalent ratio of 1.0. Then, the solid content was adjusted to 50% by mass with butyl acetate. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 100 ° C. for 30 minutes. A cotton ball (a cylindrical shape having a diameter of 2.5 cm and a height of 2.0 cm) was placed on the coating film, and a 100 g weight was placed thereon for 60 seconds. Thereafter, the weight and cotton were removed, and the trace of cotton remaining on the coating film was observed. The case where the trace was completely invisible was rated as 跡, the case where the trace was slightly visible was rated as △, and the case where a clear trace was seen was rated as x.

<(ブロック)ポリイソシアネート組成物の下地隠ぺい性評価方法>

アクリルポリオールであるDIC社製アクリディック(登録商標)A−801−P(樹脂分濃度50%、水酸基価50.0mgKOH/樹脂g)と、実施例、および比較例と同様の組成を有する(ブロック)ポリイソシアネート組成物の各々とを、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50%になるように調整した。その後、株式会社スタンダートテストピース社のカチオン電着塗装板(黒色)上に、溶媒の加減によって樹脂固形分を50%に調整し、樹脂膜厚40μmになるようにアプリケーターによって塗布した。塗布後、室温で30分静置した後、140℃のオーブン内に30分静置した。その後、冷却して、塗膜が23℃になったことを確認した後に、下記装置を用いて下記条件により算術平均粗さRa値を測定した。このRa値が小さいほど、下地隠ぺい性が良好であることを示す。
測定装置:Zygo社製の走査型白色干渉顕微鏡、商品名「NewView600s」 倍率 :2.5倍
測定方法:Ra値を測定(センターラインからの算術偏差)
Ra値が0.025μm以下である場合は、下地隠ぺい性が良好であると判断して◎と表し、0.025μm超0.04μm以下である場合は、下地隠ぺい性がほぼ良好であると判断して○と表し、0.04μm超である場合は、下地隠ぺい性が不良であると判断して×と表した。
<Method for Evaluating Opacity of Underlayer of (Block) Polyisocyanate Composition>

Acrylic (registered trademark) A-801-P (resin content: 50%, hydroxyl value: 50.0 mgKOH / g resin) manufactured by DIC, which is an acrylic polyol, and has the same composition as in Examples and Comparative Examples (block ) Each of the polyisocyanate compositions was blended at an isocyanate group / hydroxyl group equivalent ratio of 1.0 and adjusted to 50% solids with butyl acetate. Thereafter, the resin solid content was adjusted to 50% by adding or subtracting a solvent to a cationic electrodeposition coated plate (black) manufactured by Standard Test Piece Co., Ltd., and applied by an applicator so as to have a resin film thickness of 40 μm. After the application, it was allowed to stand at room temperature for 30 minutes, and then left in an oven at 140 ° C. for 30 minutes. Then, after cooling and confirming that the coating film reached 23 ° C., the arithmetic average roughness Ra value was measured using the following apparatus under the following conditions. The smaller the Ra value is, the better the background concealing property is.
Measuring device: Scanning white interference microscope manufactured by Zygo, brand name "NewView600s" Magnification: 2.5 times Measurement method: Ra value is measured (arithmetic deviation from center line)
When the Ra value is 0.025 μm or less, it is judged that the background opacity is good, and the result is indicated by ◎. When the Ra value is more than 0.025 μm and 0.04 μm or less, it is judged that the background opacity is almost good. When it was more than 0.04 μm, it was judged that the undercoat opacity was poor, and was indicated by X.

<(ブロック)ポリイソシアネート組成物の下地塗膜への密着性評価方法>

軟鋼鈑にアクリルポリオール(樹脂固形分濃度55%、水酸基価30mgKOH/樹脂g)を樹脂膜厚40マイクロメーターになるように塗装した。室温30分放置後、アクリルポリオール(Nuplex Resin社の製品名、Setalux1903、樹脂固形分濃度75%、水酸基価150mgKOH/樹脂g)と実施例、および比較例と同様の組成を有する(ブロック)ポリイソシアネート組成物の各々とを、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで塗料粘度がフォードカップNo.4で20秒になるように塗料組成物を調整した。得られた塗料組成物を樹脂膜厚30マイクロメーターになるように塗装した。室温で15分放置後、140℃のオーブン内に30分硬化させた。この塗膜の密着性試験をJIS K5600−5−6に準じて行った。剥離塗膜無しを◎、剥離塗膜が0%超25%以下の場合を○、剥離塗膜が25%超50%以下の場合を△、剥離塗膜が50%超の場合を×として示した。
<Method of evaluating adhesion of (block) polyisocyanate composition to base coat>

A mild steel plate was coated with acrylic polyol (resin solid content concentration 55%, hydroxyl value 30 mg KOH / g resin) so that the resin film thickness became 40 micrometers. After leaving at room temperature for 30 minutes, a (block) polyisocyanate having the same composition as the acrylic polyol (product name of Nuplex Resin, Setalux 1903, resin solids concentration 75%, hydroxyl value 150 mgKOH / resin g), Examples and Comparative Examples Each of the compositions was blended in an isocyanate group / hydroxyl group equivalent ratio of 1.0, and butyl acetate was used to adjust the paint viscosity of Ford Cup No. 5 4 and the coating composition was adjusted to 20 seconds. The obtained coating composition was applied so as to have a resin film thickness of 30 micrometers. After being left at room temperature for 15 minutes, it was cured in an oven at 140 ° C. for 30 minutes. The adhesion test of this coating film was performed according to JIS K5600-5-6. No release coating is shown as 、, release coating is more than 0% and 25% or less, 、, release coating is more than 25% and 50% or less Δ, and release coating is more than 50% as ×. Was.

<親水性ポリイソシアネート組成物の低粘度化度(1)>

親水性ポリイソシアネート組成物の粘度測定結果から、1000mPa・s/25℃未満の場合を○、1000mPa・s/25℃以上の場合を×とした。
<Low viscosity degree of hydrophilic polyisocyanate composition (1)>

From the result of the viscosity measurement of the hydrophilic polyisocyanate composition, a case where the viscosity was less than 1000 mPa · s / 25 ° C. was evaluated as “○”, and a case where the viscosity was 1000 mPa · s / 25 ° C. or higher was evaluated as “x”.

<親水性ポリイソシアネート組成物の乾燥性評価方法>

アクリルディスパージョン(Nuplex Resin社の商品名「SETAQUA6510」樹脂分濃度42%、水酸基濃度4.2%(樹脂基準))と、親水性ポリイソシアネート組成物の各々を、イソシアネート基/水酸基の当量比1.0で配合し、水で固形分40質量%になるように調整した。調整した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、23℃/50%RHで硬化させた。特定時間経過後、その塗膜上にコットンボール(直径2.5cm、高さ2.0cmの円柱型)を置き、その上に100gの分銅を60秒間置いた。その後、分銅とコットンを取り除き、塗膜上に残ったコットン跡を観察した。跡が全く見えなくなった時間が9時間以内であった場合を◎、9時間超10時間以内であった場合を○、10時間超であった場合を×とした。
<Method for evaluating dryness of hydrophilic polyisocyanate composition>

An acrylic dispersion (trade name “SETAQUA6510” of Nuplex Resin, resin concentration 42%, hydroxyl group concentration 4.2% (based on resin)) and an equivalent ratio of isocyanate group / hydroxyl group of each of the hydrophilic polyisocyanate compositions of 1 And adjusted with water to a solid content of 40% by mass. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 23 ° C./50% RH. After a lapse of a specific time, a cotton ball (a cylindrical shape having a diameter of 2.5 cm and a height of 2.0 cm) was placed on the coating film, and a weight of 100 g was placed thereon for 60 seconds. Thereafter, the weight and cotton were removed, and the trace of cotton remaining on the coating film was observed. The case where the time when the trace was completely invisible was within 9 hours, ◎, the case where it was more than 9 hours and within 10 hours, and the case where it was more than 10 hours was x.

<親水性ポリイソシアネート組成物の下地隠ぺい性評価方法>

アクリルディスパージョン(Nuplex Resin社の商品名「SETAQUA6510」樹脂分濃度42%、水酸基濃度4.2%(樹脂基準))と、実施例、および比較例と同様の組成を有する親水性ポリイソシアネート組成物の各々とを、イソシアネート基/水酸基の当量比1.0で配合し、イオン交換水で固形分40%になるように調整した。その後、株式会社スタンダートテストピース社のカチオン電着塗装板(黒色)上に、溶媒の加減によって樹脂固形分を50%に調整し、樹脂膜厚40μmになるようにアプリケーターによって塗布した。塗布後、室温で30分静置した後、120℃のオーブン内に30分静置した。その後、冷却して、塗膜が23℃になったことを確認した後に、下記装置を用いて下記条件により算術平均粗さRa値を測定した。このRa値が小さいほど、下地隠ぺい性が良好であることを示す。
測定装置:Zygo社製の走査型白色干渉顕微鏡、商品名「NewView600s」 倍率 :2.5倍
測定方法:Ra値を測定(センターラインからの算術偏差)
Ra値が0.025μm以下である場合は、下地隠ぺい性が良好であると判断して◎と表し、0.025μm超0.04μm以下である場合は、下地隠ぺい性がほぼ良好であると判断して○と表し、0.04μm超である場合は、下地隠ぺい性が不良であると判断して×と表した。
<Method for Evaluating Opacity of Underlayer of Hydrophilic Polyisocyanate Composition>

Hydrophilic polyisocyanate composition having an acrylic dispersion (trade name “SETAQUA6510” of Nuplex Resin Co., resin concentration 42%, hydroxyl group concentration 4.2% (based on resin)), and the same composition as in Examples and Comparative Examples Were mixed at an equivalent ratio of isocyanate group / hydroxyl group of 1.0, and adjusted to a solid content of 40% with ion-exchanged water. Thereafter, the resin solid content was adjusted to 50% by adding or subtracting a solvent to a cationic electrodeposition coated plate (black) manufactured by Standard Test Piece Co., Ltd., and applied by an applicator so as to have a resin film thickness of 40 μm. After the application, it was allowed to stand at room temperature for 30 minutes, and then allowed to stand in an oven at 120 ° C. for 30 minutes. Then, after cooling and confirming that the coating film reached 23 ° C., the arithmetic average roughness Ra value was measured using the following apparatus under the following conditions. The smaller the Ra value is, the better the background concealing property is.
Measuring device: Scanning white interference microscope manufactured by Zygo, brand name "NewView600s" Magnification: 2.5 times Measurement method: Ra value is measured (arithmetic deviation from center line)
When the Ra value is 0.025 μm or less, it is judged that the background opacity is good, and the result is indicated by ◎. When the Ra value is more than 0.025 μm and 0.04 μm or less, it is judged that the background opacity is almost good. When it was more than 0.04 μm, it was judged that the undercoat opacity was poor, and was indicated by X.

<親水性ポリイソシアネート組成物の下地塗膜への密着性評価方法>

軟鋼鈑にアクリルポリオール(樹脂固形分濃度55%,水酸基価30mgKOH/樹脂g)を樹脂膜厚40マイクロメーターになるように塗装した。室温30分放置後、アクリルディスパージョン(Nuplex Resin社の商品名「SETAQUA6510」樹脂分濃度42%、水酸基濃度4.2%(樹脂基準))と実施例、および比較例と同様の組成を有する(ブロック)ポリイソシアネート組成物の各々とを、イソシアネート基/水酸基の当量比1.0で配合し、イオン交換水で塗料粘度がフォードカップNo.4で40秒になるように塗料組成物を調整した。得られた塗料組成物を樹脂膜厚30マイクロメーターになるように塗装した。室温で15分放置後、140℃のオーブン内に30分硬化させた。この塗膜の密着性試験をJIS K5600−5−6に準じて行った。剥離塗膜無しを◎、剥離塗膜が0%超25%以下の場合を○、剥離塗膜が25%超50%以下の場合を△、剥離塗膜が50%超の場合を×として示した。
<Method of evaluating adhesion of hydrophilic polyisocyanate composition to base coat>

A mild steel plate was coated with acrylic polyol (resin solid content concentration 55%, hydroxyl value 30 mg KOH / resin g) so as to have a resin film thickness of 40 micrometers. After standing at room temperature for 30 minutes, it has the same composition as the acrylic dispersion (42% resin concentration, 4.2% hydroxyl group concentration (based on resin), trade name of "SETAQUA6510" manufactured by Nuplex Resin) (resin standard) (Examples and Comparative Examples). Block) with each of the polyisocyanate compositions at an equivalent ratio of isocyanate groups / hydroxyl groups of 1.0, and the viscosity of the paint in Ford Cup No. 1 with ion-exchanged water. 4 and the coating composition was adjusted to 40 seconds. The obtained coating composition was applied so as to have a resin film thickness of 30 micrometers. After being left at room temperature for 15 minutes, it was cured in an oven at 140 ° C. for 30 minutes. The adhesion test of this coating film was performed according to JIS K5600-5-6. No release coating is shown as 、, release coating is more than 0% and 25% or less, 、, release coating is more than 25% and 50% or less Δ, and release coating is more than 50% as ×. Was.

<貯蔵安定性評価方法>

ポリイソシアネート組成物300gを、500mLの容器に入れ、窒素置換して23℃で300日貯蔵した。
数平均分子量の変化(貯蔵後/貯蔵前)が1.5未満であった場合、貯蔵安定性良好と判断した。
<Storage stability evaluation method>

300 g of the polyisocyanate composition was placed in a 500 mL container, replaced with nitrogen, and stored at 23 ° C. for 300 days.
When the change in the number average molecular weight (after storage / before storage) was less than 1.5, it was judged that the storage stability was good.

〔合成例(1−1)−1〕
NTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内に4−アミノメチル−1,8−オクタメチレンジアミン(以下、「トリアミン」と称する場合がある。)1060gをメタノー ル1500gに溶かし、これに35%濃塩酸1800mLを冷却しながら徐々に滴下した。減圧下にてメタノールおよび水を除去して濃縮し、60℃/5mmHgにて 24時間乾燥したところ、白色固体のトリアミン塩酸塩が得られた。得られたトリアミン塩酸塩650gを微粉末としてo−ジクロルベンゼン5000gに懸濁させ、かきまぜながら反応液を昇温し、100℃に達した時点でホスゲンを200g/Hrの速度にて吹込みはじめ、さらに昇温を続けて180℃に保持し、12時間ホスゲンを吹込み続けた。減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点161〜163℃/1.2mmHgの無色透明な4−イソシアネートメチル−1,8−オクタンメチレンジイソシアネート(以下、「NTI」と称する場合がある。)420gが得られた。このもののNCO含有率50.0重量%であった。
[Synthesis Example (1-1) -1]
Synthesis of NTI

In a four-necked flask equipped with a stirrer, a thermometer, and a gas inlet tube, 1,060 g of 4-aminomethyl-1,8-octamethylenediamine (hereinafter sometimes referred to as "triamine") was added to 1500 g of methanol. The solution was dissolved, and 1800 mL of 35% concentrated hydrochloric acid was gradually added dropwise while cooling. After removing methanol and water under reduced pressure, the mixture was concentrated, and dried at 60 ° C./5 mmHg for 24 hours to obtain triamine hydrochloride as a white solid. The obtained triamine hydrochloride (650 g) was suspended as fine powder in 5000 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 100 ° C., phosgene was started to be blown at a rate of 200 g / Hr. Then, the temperature was further increased and maintained at 180 ° C., and phosgene was continuously blown in for 12 hours. After distilling out the dissolved phosgene and the solvent under reduced pressure, the residue was distilled under vacuum to obtain a colorless and transparent 4-isocyanatomethyl-1,8-octanemethylene diisocyanate having a boiling point of 161 to 163 ° C./1.2 mmHg (hereinafter referred to as “NTI”). ) Was obtained.) 420 g was obtained. Its NCO content was 50.0% by weight.

〔合成例(1−1)−2〕
LTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内にエタノールアミン122.2g、o−ジクロロベンゼン100mL、トルエン420mLを入れ、氷冷化塩化水素ガスを導入し、エタノールアミンを塩酸塩に転換した。次に、リジン塩酸塩182.5gを添加し、反応液を80℃に加熱し、エタノールアミン塩酸塩を溶解させ、塩化水素ガスを導入してリジン二塩酸塩とした。さらに塩化水素ガスを20〜30mL/分で通過させ、反応液を116℃に加熱し、水が留出しなくなるまでこの温度を維持した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してリジンβ−アミノエチルエステル三塩酸塩165gを得た。このリジンβ−アミノエチルエステル三塩酸塩100gを微粉末としてo−ジクロロベンゼン1200mLに懸濁させ、かきまぜながら反応液を昇温し、120℃に達した時点でホスゲンを0.4モル/時間の速度にて吹込みはじめ、10時間保持し、その後150℃に昇温した。懸濁液はほとんど溶解した。冷却後ろ過し、減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点155〜157℃/0.022mmHgの無色透明なLTI80.4gが得られた。このもののNCO含有率は47.1重量%であった。
[Synthesis Example (1-1) -2]
Synthesis of LTI

122.2 g of ethanolamine, 100 mL of o-dichlorobenzene, and 420 mL of toluene were placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas introduction tube, and ice-cooled hydrogen chloride gas was introduced. Converted to salt. Next, 182.5 g of lysine hydrochloride was added, the reaction solution was heated to 80 ° C. to dissolve ethanolamine hydrochloride, and hydrogen chloride gas was introduced to obtain lysine dihydrochloride. Further, hydrogen chloride gas was passed at a rate of 20 to 30 mL / min, and the reaction solution was heated to 116 ° C. and maintained at this temperature until no more water distilled. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 165 g of lysine β-aminoethyl ester trihydrochloride. 100 g of this lysine β-aminoethyl ester trihydrochloride was suspended as fine powder in 1200 mL of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 120 ° C., phosgene was added at a rate of 0.4 mol / hour. Blowing was started at a constant speed and maintained for 10 hours, and then the temperature was raised to 150 ° C. The suspension almost dissolved. After cooling and filtration, the dissolved phosgene and the solvent were distilled off under reduced pressure, followed by vacuum distillation to obtain 80.4 g of a colorless and transparent LTI having a boiling point of 155 to 157 ° C / 0.022 mmHg. Its NCO content was 47.1% by weight.

〔実施例(1−1)−1〕
P(1−1)−1の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてNTI50gを仕込み、温度を60℃、2時間保持した。その後、n−ブタノールを95質量%含む触媒テトラメチルアンモニウムフルオリド四水和物を5mg加え、反応を行い、転化率が41%になった時点でジブチルリン酸を添加し反応を停止し、ポリイソシアネートP(1−1)−1を得た。得られたポリイソシアネートP(1−1)−1の粘度は39mPa・s/25℃で、NCO含有率は42.8質量%で、イソシアヌレート構造に対するイミノオキサジアジンジオン構造のモル比率は0.25あった。
さらに、ポリイソシアネート組成物P(1−1)−1の低粘度化度は○、乾燥性評価結果は○、下地隠ぺい性評価結果は◎、下地塗膜への密着性評価結果は◎であった。これらの結果を表(1−1)−1に記載した。
[Example (1-1) -1]
Synthesis of P (1-1) -1

The inside of the four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen blowing tube was set to a nitrogen atmosphere, 50 g of NTI was charged as a monomer, and the temperature was maintained at 60 ° C. for 2 hours. Thereafter, 5 mg of a catalyst tetramethylammonium fluoride tetrahydrate containing 95% by mass of n-butanol was added, and the reaction was carried out. When the conversion reached 41%, dibutylphosphoric acid was added to stop the reaction. P (1-1) -1 was obtained. The viscosity of the obtained polyisocyanate P (1-1) -1 was 39 mPa · s / 25 ° C., the NCO content was 42.8% by mass, and the molar ratio of the iminooxadiazinedione structure to the isocyanurate structure was 0. .25.
Further, the degree of viscosity reduction of the polyisocyanate composition P (1-1) -1 was ○, the evaluation result of dryness was ○, the evaluation result of base opacity was ◎, and the evaluation result of adhesion to the base coating film was ◎. Was. These results are shown in Table (1-1) -1.

〔実施例(1−1)−2〜(1−1)−8、比較例(1−1)−1〜(1−1)−2〕
P(1−1)−2〜P(1−1)−8、P(1−1)−10、P(1−1)−11の合成

モノマー、触媒、触媒希釈溶剤(濃度)、および転化率を表(1−1)−1に記載の通りとした以外は実施例(1−1)−1と同様に実施した。また、得られたポリイソシアネート組成物の粘度、NCO含有率、イソシアヌレート構造に対するイミノオキサジアジンジオン構造のモル比率、低粘度化度、乾燥性評価結果、下地隠ぺい性評価結果、下地塗膜への密着性評価結果を表(1−1)−1に記載した。
[Examples (1-1) -2 to (1-1) -8, Comparative examples (1-1) -1 to (1-1) -2]
Synthesis of P (1-1) -2 to P (1-1) -8, P (1-1) -10, P (1-1) -11

The procedure was performed in the same manner as in Example (1-1) -1 except that the monomer, the catalyst, the catalyst diluting solvent (concentration), and the conversion were as shown in Table (1-1) -1. In addition, the viscosity of the obtained polyisocyanate composition, the NCO content, the molar ratio of the iminooxadiazinedione structure to the isocyanurate structure, the degree of low viscosity, the drying property evaluation result, the base opacity evaluation result, and the base coating film Are shown in Table (1-1) -1.

〔実施例(1−1)−9〕
P(1−1)−9の合成

モノマー、触媒、触媒希釈溶剤(濃度)、および転化率を表(1−1)−1に記載の通りとし、触媒の添加量を10mgに変更したこと以外は実施例(1−1)−1と同様に実施した。
また、得られたポリイソシアネート組成物の粘度、NCO含有率、イソシアヌレート構造に対するイミノオキサジアジンジオン構造のモル比率、低粘度化度、乾燥性評価結果、下地隠ぺい性評価結果、下地塗膜への密着性評価結果を表(1−1)−1に記載した。
[Example (1-1) -9]
Synthesis of P (1-1) -9

Example (1-1) -1 except that the monomer, the catalyst, the catalyst diluting solvent (concentration), and the conversion were as shown in Table (1-1) -1, and the amount of the catalyst was changed to 10 mg. Was performed in the same manner as described above.
In addition, the viscosity of the obtained polyisocyanate composition, the NCO content, the molar ratio of the iminooxadiazinedione structure to the isocyanurate structure, the degree of low viscosity, the drying property evaluation result, the base opacity evaluation result, and the base coating film Are shown in Table (1-1) -1.

〔比較例(1−1)−3〕
P(1−1)−12の合成

比較例(1−1)−2で得られた反応液を薄膜蒸発缶にフィードし、未反応のHDIを除去し、ポリイソシアネート組成物P(1−1)−12を得た。得られたポリイソシアネート組成物P(1−1)−12の粘度は2300mPa・s/25℃で、NCO含有率は21.5質量%で、イソシアヌレート構造に対するイミノオキサジアジンジオン構造のモル比率は0.03あった。
さらに、ポリイソシアネート組成物P(1−1)−12の低粘度化度は×、乾燥性評価結果は○、下地隠ぺい性評価結果は×、下地塗膜への密着性評価結果は○であった。これらの結果を表(1−1)−1に記載した。
[Comparative Example (1-1) -3]
Synthesis of P (1-1) -12

The reaction solution obtained in Comparative Example (1-1) -2 was fed to a thin film evaporator to remove unreacted HDI, thereby obtaining a polyisocyanate composition P (1-1) -12. The viscosity of the obtained polyisocyanate composition P (1-1) -12 is 2300 mPa · s / 25 ° C., the NCO content is 21.5% by mass, and the molar ratio of iminooxadiazinedione structure to isocyanurate structure Was 0.03.
Further, the degree of viscosity reduction of the polyisocyanate composition P (1-1) -12 was ×, the evaluation result of dryness was ○, the evaluation result of base opacity was ×, and the evaluation result of adhesion to the base coating film was ○. Was. These results are shown in Table (1-1) -1.

〔比較例(1−1)−4〕

合成例(1−1)−1で合成したNTIモノマーを単独で用いた。NTIの低粘度化度は○、乾燥性評価結果は○、下地隠ぺい性評価結果は◎、下地塗膜への密着性評価結果は×であった。これらの結果を表(1−1)−1に記載した。
[Comparative Example (1-1) -4]

The NTI monomer synthesized in Synthesis Example (1-1) -1 was used alone. The degree of viscosity reduction of NTI was 低, the result of evaluation of dryness was ○, the result of evaluation of opacity of the underlayer was ◎, and the result of evaluation of adhesion to the undercoat film was ×. These results are shown in Table (1-1) -1.

Figure 0006664509
Figure 0006664509

上記表(1−1)−1中、略語で記載した触媒および触媒希釈溶剤はそれぞれ以下の材料を意味する。
C(1−1)−1:テトラメチルアンモニウムフルオリド四水和物
C(1−1)−2:テトラブチルホスホニウム水素ジフルオリド
C(1−1)−3:テトラメチルアンモニウムカプリエート
C(1−1)−4:ベンジルトリメチルアンモニウムヒドロキサイド
PMA:プロピレングリコールモノメチルエーテルアセテート
In the above Table (1-1) -1, the catalyst and catalyst diluent described in abbreviations respectively mean the following materials.
C (1-1) -1: tetramethylammonium fluoride tetrahydrate C (1-1) -2: tetrabutylphosphonium hydrogen difluoride C (1-1) -3: tetramethylammonium capryate C (1- 1) -4: benzyltrimethylammonium hydroxide PMA: propylene glycol monomethyl ether acetate

〔実施例(1−1)−10〕
ブロックポリイソシアネート組成物の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−1)−1で得られたポリイソシアネート組成物P(1−1)−1を20g、酢酸ブチルを16.4g仕込み、温度を70℃に加熱した、その後、撹拌しながら3,5−ジメチルピラゾール20.2gを添加し、70℃を保持し、1時間撹拌した結果、NCO含有率0.0%となり、ブロックポリイソシアネート組成物を得た。得られたブロックポリイソシアネート組成物の粘度は195mPa・s/25℃で、計算NCO含有率は15.1質量%あった。
さらに、得られたブロックポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、下地隠ぺい性評価結果は○、下地塗膜への密着性評価結果は◎であった。これらの結果を表(1−1)−2に記載した。
[Example (1-1) -10]
Synthesis of blocked polyisocyanate composition

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate composition P (1-1) obtained in Example (1-1) -1 was obtained. 20 g of -1 and 16.4 g of butyl acetate were charged, and the temperature was heated to 70 ° C. Thereafter, 20.2 g of 3,5-dimethylpyrazole was added with stirring, the temperature was maintained at 70 ° C, and the mixture was stirred for 1 hour. , NCO content became 0.0%, and a blocked polyisocyanate composition was obtained. The viscosity of the obtained blocked polyisocyanate composition was 195 mPa · s / 25 ° C., and the calculated NCO content was 15.1% by mass.
Further, the degree of viscosity reduction of the obtained blocked polyisocyanate composition was ○, the evaluation result of drying property was ○, the evaluation result of opacity of the undercoat was ○, and the evaluation result of adhesion to the undercoat film was ◎. These results are shown in Table (1-1) -2.

〔実施例(1−1)−11〜(1−1)−17、比較例(1−1)−5〜(1−1)−7〕
ブロックポリイソシアネート組成物の合成

3,5−ジメチルピラゾール添加量、酢酸ブチル添加量、およびポリイソシアネート組成物の種類を表(1−1)−2に記載の通りにした以外は実施例(1−1)−10と同様に実施した。また、得られたブロックポリイソシアネート組成物の粘度、計算NCO含有率、低粘度化度、乾燥性評価結果、下地隠ぺい性評価結果、下地塗膜への密着性評価結果を表(1−1)−2に記載した。
[Examples (1-1) -11 to (1-1) -17, Comparative Examples (1-1) -5 to (1-1) -7]
Synthesis of blocked polyisocyanate composition

Same as Example (1-1) -10, except that 3,5-dimethylpyrazole addition amount, butyl acetate addition amount, and type of polyisocyanate composition were as described in Table (1-1) -2. Carried out. Table (1-1) shows the viscosity of the obtained blocked polyisocyanate composition, the calculated NCO content, the degree of reduction in viscosity, the evaluation result of drying property, the evaluation result of base opacity, and the evaluation result of adhesion to the base coating film. -2.

Figure 0006664509
Figure 0006664509

〔実施例(1−1)−18)
親水性ポリイソシアネート組成物の合成

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施41で得られたポリイソシアネート組成物P(1−1)−1を20g、親水性化合物であるポリエチレンオキサイド(日本乳化剤株式会社製、商品名「MPG−130」数平均分子量=420)8.6gを仕込み、100℃に加熱撹拌しながら4時間保持し、親水性ポリイソシアネートを得た。得られた親水性ポリイソシアネート組成物の粘度は49mPa・s/25℃で、NCO含有率は26.9質量%あった。
さらに、低粘度化度は○、乾燥性評価結果は○、下地隠ぺい性評価結果は◎、下地塗膜への密着性評価結果は◎であった。
[Example (1-1) -18]
Synthesis of hydrophilic polyisocyanate composition

In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube, a nitrogen atmosphere was introduced, and 20 g of the polyisocyanate composition P (1-1) -1 obtained in Example 41 was obtained. 8.6 g of polyethylene oxide (manufactured by Nippon Emulsifier Co., Ltd., trade name: “MPG-130” number average molecular weight = 420) was charged and kept at 100 ° C. for 4 hours while heating and stirring to obtain a hydrophilic polyisocyanate. The viscosity of the obtained hydrophilic polyisocyanate composition was 49 mPa · s / 25 ° C., and the NCO content was 26.9% by mass.
Further, the degree of viscosity reduction was ○, the result of evaluation of dryness was ○, the result of evaluation of opacity of the underlayer was ◎, and the result of evaluation of adhesion to the undercoat film was ◎.

〔実施例(1−1)−19〜(1−1)−25、比較例(1−1)−8〜(1−1)−10)〕
親水性ポリイソシアネート組成物の合成

MPG−130添加量およびポリイソシアネート組成物の種類を表(1−1)−3に記載の通りにした以外は実施例(1−1)−18と同様に実施した。また、得られた親水性ポリイソシアネート組成物の粘度、NCO含有率、低粘度化度、乾燥性評価結果、下地隠ぺい性評価結果、下地塗膜への密着性評価結果は表(1−1)−3に記載した。
[Examples (1-1) -19 to (1-1) -25, Comparative Examples (1-1) -8 to (1-1) -10)]
Synthesis of hydrophilic polyisocyanate composition

It carried out like Example (1-1) -18 except having added the amount of MPG-130 and the kind of polyisocyanate composition as described in Table (1-1) -3. In addition, the viscosity, NCO content, degree of viscosity reduction, dryness evaluation result, base opacity evaluation result, and adhesion evaluation result to the base coating film of the obtained hydrophilic polyisocyanate composition are shown in Table (1-1). -3.

Figure 0006664509
Figure 0006664509

〔実施例(1−1)−26〕

実施例(1−1)−1で得られたポリイソシアネート組成物P(1−1)−1:300gに2,2,4−トリメチルペンタンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、下地隠ぺい性評価結果は◎、下地塗膜への密着性評価結果は◎、貯蔵安定性評価結果は良好であった。
[Example (1-1) -26]

0.03 g of 2,2,4-trimethylpentane was added to 300 g of the polyisocyanate composition P (1-1) -1 obtained in Example (1-1) -1.
The degree of viscosity reduction of this polyisocyanate composition was ○, the evaluation result of dryness was ○, the evaluation result of base opacity was ◎, the evaluation result of adhesion to the base coating film was ◎, and the storage stability evaluation result was good. .

〔実施例(1−1)−27〕

実施例(1−1)−1で得られたポリイソシアネート組成物P(1−1)−1:300gにヘキサデカンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、下地隠ぺい性評価結果は◎、下地塗膜への密着性評価結果は◎、貯蔵安定性評価結果は良好であった。
[Example (1-1) -27]

0.03 g of hexadecane was added to 300 g of the polyisocyanate composition P (1-1) -1 obtained in Example (1-1) -1.
The degree of viscosity reduction of this polyisocyanate composition was ○, the evaluation result of dryness was ○, the evaluation result of base opacity was ◎, the evaluation result of adhesion to the base coating film was ◎, and the storage stability evaluation result was good. .

〔合成例(1−1)−3〕
D(1−1)−1の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、NTIを20g仕込み、60℃に加熱し、メタノールを7.7g添加し、撹拌しながら4時間保持し、N−置換カルバミン酸エステルD(1−1)−1を得た。
[Synthesis Example (1-1) -3]
Synthesis of D (1-1) -1

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet tube was set to a nitrogen atmosphere, 20 g of NTI was charged, heated to 60 ° C., 7.7 g of methanol was added, and stirring was continued. After holding for a time, an N-substituted carbamic acid ester D (1-1) -1 was obtained.

〔実施例(1−1)−28〕

実施例(1−1)−1で得られたポリイソシアネート組成物P(1−1)−1:300gにN−置換カルバミン酸エステルD(1−1)−1を0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、下地隠ぺい性評価結果は◎、下地塗膜への密着性評価結果は◎、貯蔵安定性評価結果は良好であった。
[Example (1-1) -28]

0.03 g of N-substituted carbamic acid ester D (1-1) -1 was added to 300 g of the polyisocyanate composition P (1-1) -1 obtained in Example (1-1) -1.
The degree of viscosity reduction of this polyisocyanate composition was ○, the evaluation result of dryness was ○, the evaluation result of base opacity was ◎, the evaluation result of adhesion to the base coating film was ◎, and the storage stability evaluation result was good. .

以上より、各実施例のポリイソシアネート組成物、ブロックポリイソシアネート組成物、または親水性ポリイソシアネート組成物は、低粘度であり、かつ、乾燥性、下地隠ぺい性、および下地塗膜への密着性に優れることが確認された。   As described above, the polyisocyanate composition, the blocked polyisocyanate composition, or the hydrophilic polyisocyanate composition of each Example has a low viscosity, and has excellent drying properties, concealing properties for the base, and adhesion to the base coating film. It was confirmed that it was excellent.


実施例(1−1)−29〜(1−1)−43および比較例(1−1)−11〜(1−1)−18における、ポリイソシアネート組成物の物性は、以下のとおり測定した。なお、特に明記しない場合は、「部」および「%」は、「質量部」および質量%」を意味する。

The physical properties of the polyisocyanate composition in Examples (1-1) -29 to (1-1) -43 and Comparative Examples (1-1) -11 to (1-1) -18 were measured as follows. . Unless otherwise specified, “parts” and “%” mean “parts by mass” and “% by mass”.

<粘度>
上述のとおりである。
<Viscosity>
As described above.

<NCO含有率>

上述のとおりである。
<NCO content>

As described above.

<計算NCO含有率>
上述のとおりである。
<Calculated NCO content>
As described above.

<理論反応率>

理論反応率は、すべての多量体が3量体であると仮定したときの反応率としてあらわされるものである。理論反応率c(%)は、合成したポリイソシアネート組成物のNCO%(x%)、使用したトリイソシアネートのNCO%(a%)(下記式[B]参照)、およびトリイソシアネート3量体のNCO%(b%)(下記式[C]参照)から、下記式[D]により求められる。
使用したトリイソシアネートのNCO%:(a)=(NCOの分子量/使用したトリイソシアネートの分子量)×100(%)[B]
トリイソシアネート3量体のNCO%:(b)=(NCOの分子量/トリイソシアネート3量体の分子量)×100(%)[C]
理論反応率c(%)=[(x-a)/(b-a)]×100 (%)[D]
<Theoretical reaction rate>

The theoretical conversion is expressed as a conversion assuming that all multimers are trimers. The theoretical reaction rate c (%) is calculated based on the NCO% (x%) of the synthesized polyisocyanate composition, the NCO% (a%) of the used triisocyanate (see the following formula [B]), and the triisocyanate trimer. From NCO% (b%) (see the following formula [C]), it can be obtained by the following formula [D].
NCO% of used triisocyanate: (a) = (molecular weight of NCO / molecular weight of used triisocyanate) × 100 (%) [B]
NCO% of triisocyanate trimer: (b) = (molecular weight of NCO / molecular weight of triisocyanate trimer) × 100 (%) [C]
Theoretical reaction rate c (%) = [(xa) / (ba)] x 100 (%) [D]

<ポリイソシアネート組成物の低粘度化度(2)>

ポリイソシアネート混合物の粘度測定結果から、100mPa・s/25℃以下の場合を〇、100mPa・s/25℃超1000mPa・s/25℃以下の場合を△、1000mPa・s/25℃超の場合を×とした。
<Low viscosity of polyisocyanate composition (2)>

From the viscosity measurement results of the polyisocyanate mixture, the case where the temperature is 100 mPa · s / 25 ° C. or less is Δ, the case where the temperature is more than 100 mPa · s / 25 ° C. and 1000 mPa · s / 25 ° C. or less, and the case where the temperature is more than 1000 mPa · s / 25 ° C. X.

<ブロックポリイソシアネート組成物の低粘度化度(2)>

ブロックポリイソシアネート組成物の粘度測定結果から、400mPa・s/25℃未満の場合を〇、400mPa・s/25℃以上1000mPa・s/25℃未満の場合を△、1000mPa・s/25℃以上の場合を×とした。
<Low viscosity (2) of blocked polyisocyanate composition>

From the viscosity measurement results of the blocked polyisocyanate composition, the case where 400 mPa · s / 25 ° C. or less is Δ, the case where it is 400 mPa · s / 25 ° C. or more and less than 1000 mPa · s / 25 ° C., or 1000 mPa · s / 25 ° C. or more The case was evaluated as x.

<親水性ポリイソシアネート組成物の低粘度化度(2)>

親水性ポリイソシアネート組成物の粘度測定結果から、100mPa・s/25℃未満の場合を〇、100mPa・s/25℃以上1000mPa・s/25℃未満の場合を△、1000mPa・s/25℃以上の場合を×とした。
<Low viscosity (2) of hydrophilic polyisocyanate composition>

From the viscosity measurement results of the hydrophilic polyisocyanate composition, the case where the viscosity is less than 100 mPa · s / 25 ° C is Δ, the case where the viscosity is 100 mPa · s / 25 ° C or more and less than 1000 mPa · s / 25 ° C, or 1000 mPa · s / 25 ° C or more. Was evaluated as x.

<親水性ポリイソシアネート組成物の水分散性評価方法>

アクリルディスパージョン(Nuplex Resin社の商品名「SETAQUA6510」樹脂分濃度42%、水酸基濃度4.2%(樹脂基準))と、ポリイソシアネート組成物の各々を、イソシアネート基/水酸基の当量比1.0で配合し、水で固形分40質量%になるように調製した。前記塗料組成物を調製した際に、攪拌はねにゲル状物質が全く付着しない物を○、わずかに付着が認められるものを△、大量に付着が認められるものを×とした。
<Method for evaluating water dispersibility of hydrophilic polyisocyanate composition>

Acrylic dispersion (trade name “SETAQUA6510” manufactured by Nuplex Resin Co., Ltd., resin content concentration 42%, hydroxyl group concentration 4.2% (based on resin)) and polyisocyanate composition were each treated with an equivalent ratio of isocyanate group / hydroxyl group of 1.0. And prepared with water to have a solid content of 40% by mass. When the above-mentioned coating composition was prepared, a substance to which no gel-like substance was attached at all upon stirring was rated as ○, a substance with slight adhesion was rated as Δ, and a substance with large adhesion was rated as x.

<極性ポリオールとの相溶性評価方法>

ポリカーボネートジオールである旭化成社製デュラノール(登録商標)T−5652と、ポリイソシアネート組成物の各々を、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるように調製した。調製した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、80℃30分で硬化さ、塗膜のヘイズ値を以下の機器で測定した。
装置:スガ試験機社製 直読ヘイズコンピューター「HGM−2DP」(商品名)
標準板:厚さ2mmガラス板
塗膜のヘイズ値が0.1未満の場合を◎、0.1以上0.5未満の場合を○、0.5以上1.0未満の場合を△、1.0以上の場合を×とした。
<Compatibility evaluation method with polar polyol>

Asahi Kasei Corporation's Duranol (registered trademark) T-5652, which is a polycarbonate diol, and each of the polyisocyanate compositions are blended at an equivalent ratio of isocyanate group / hydroxyl group of 1.0 so that butyl acetate has a solid content of 50% by mass. Was prepared. After coating the prepared coating composition on a glass plate so as to have a dry film thickness of 40 μm, the coating composition was cured at 80 ° C. for 30 minutes, and the haze value of the coating film was measured with the following equipment.
Apparatus: Direct reading haze computer "HGM-2DP" (trade name) manufactured by Suga Test Instruments Co., Ltd.
Standard plate: 2 mm thick glass plate, haze value of less than 0.1 is ◎, 0.1 to less than 0.5 is 、, 0.5 to less than 1.0 is Δ1, And 0.0 or more was evaluated as x.

<塗膜の耐クラック性(湿熱繰り返し試験)>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ポリイソシアネート組成物またはブロックポリイソシアネート組成物の各々を、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるように調製した。調製した塗料組成物をクリアー塗膜上(Nuplex Resin社の商品名「SETALUX1753」と旭化成株式会社性、HDI系ポリイソシアネート「TKA−100」をイソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるように調製し、調製した塗料組成物をアルミ板上に乾燥膜厚50μmとなるように塗布して、100℃60分で硬化させて得たクリア塗膜)に乾燥膜厚40μmになるように塗装した後、100℃30分で硬化させた。得られた塗膜サンプルで、「60℃/90%RH/6時間→60℃/30%RH/6時間→10℃/90%RH/6時間→10℃/30%RH/6時間」を1サイクルとするサイクル試験(60サイクル)を行い、サイクル試験後の塗膜の状態を観察し、全くクラックが発生していない物を○、部分的に発生しているものを△、前面に多数発生していているものを×とした。
<Crack resistance of coating film (wet heat repetition test)>

Equivalent ratio of isocyanate group / hydroxyl group to each of an acrylic polyol (trade name “SETALUX1753” of Nuplex Resin, resin concentration 70%, hydroxyl value 138.6 mgKOH / g) and polyisocyanate composition or block polyisocyanate composition 1.0 and prepared with butyl acetate to a solid content of 50% by mass. The prepared coating composition was blended on a clear coating film (Nplex Resin's trade name "SETALUX1753" and Asahi Kasei Corporation HDI-based polyisocyanate "TKA-100" in an isocyanate group / hydroxyl group equivalent ratio of 1.0, A clear coating film obtained by preparing a coating composition having a solid content of 50% by mass with butyl acetate, applying the prepared coating composition to an aluminum plate so as to have a dry film thickness of 50 μm, and curing at 100 ° C. for 60 minutes. ) Was applied to a dry film thickness of 40 μm, and then cured at 100 ° C. for 30 minutes. In the obtained coating film sample, “60 ° C./90% RH / 6 hours → 60 ° C./30% RH / 6 hours → 10 ° C./90% RH / 6 hours → 10 ° C./30% RH / 6 hours” A cycle test (60 cycles) was performed with one cycle, and the state of the coating film after the cycle test was observed. What occurred was marked as x.

<貯蔵安定性評価方法>

上述のとおりである。
<Storage stability evaluation method>

As described above.

〔合成例(1−1)−4〕
LTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内にエタノールアミン122.2g、o−ジクロロベンゼン100mL、トルエン420mLを入れ、氷冷化塩化水素ガスを導入し、エタノールアミンを塩酸塩に転換した。次に、リジン塩酸塩182.5gを添加し、反応液を80℃に加熱し、エタノールアミン塩酸塩を溶解させ、塩化水素ガスを導入してリジン二塩酸塩とした。さらに塩化水素ガスを20〜30mL/分で通過させ、反応液を116℃に加熱し、水が留出しなくなるまでこの温度を維持した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してリジンβ−アミノエチルエステル三塩酸塩165gを得た。このリジンβ−アミノエチルエステル三塩酸塩100gを微粉末としてo−ジクロロベンゼン1200mLに懸濁させ、かきまぜながら反応液を昇温し、120℃に達した時点でホスゲンを0.4モル/時間の速度にて吹込みはじめ、10時間保持し、その後150℃に昇温した。懸濁液はほとんど溶解した。冷却後ろ過し、減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点155〜157℃/0.022mmHgの無色透明なLTI80.4gが得られた。このもののNCO含有率は47.1重量%であった。
[Synthesis Example (1-1) -4]
Synthesis of LTI

122.2 g of ethanolamine, 100 mL of o-dichlorobenzene, and 420 mL of toluene were placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas introduction tube, and ice-cooled hydrogen chloride gas was introduced. Converted to salt. Next, 182.5 g of lysine hydrochloride was added, the reaction solution was heated to 80 ° C. to dissolve ethanolamine hydrochloride, and hydrogen chloride gas was introduced to obtain lysine dihydrochloride. Further, hydrogen chloride gas was passed at a rate of 20 to 30 mL / min, and the reaction solution was heated to 116 ° C. and maintained at this temperature until no more water distilled. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 165 g of lysine β-aminoethyl ester trihydrochloride. 100 g of this lysine β-aminoethyl ester trihydrochloride was suspended as fine powder in 1200 mL of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 120 ° C., phosgene was added at a rate of 0.4 mol / hour. Blowing was started at a constant speed and maintained for 10 hours, and then the temperature was raised to 150 ° C. The suspension almost dissolved. After cooling and filtration, the dissolved phosgene and the solvent were distilled off under reduced pressure, followed by vacuum distillation to obtain 80.4 g of a colorless and transparent LTI having a boiling point of 155 to 157 ° C / 0.022 mmHg. Its NCO content was 47.1% by weight.

〔合成例(1−1)−5〕
NTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内に4−アミノメチル−1,8−オクタメチレンジアミン(以下、「トリアミン」と称する場合がある。)1060gをメタノー ル1500gに溶かし、これに35%濃塩酸1800mLを冷却しながら徐々に滴下した。減圧下にてメタノールおよび水を除去して濃縮し、60℃/5mmHgにて 24時間乾燥したところ、白色固体のトリアミン塩酸塩が得られた。得られたトリアミン塩酸塩650gを微粉末としてo−ジクロルベンゼン5000gに懸濁させ、かきまぜながら反応液を昇温し、100℃に達した時点でホスゲンを200g/Hrの速度にて吹込みはじめ、さらに昇温を続けて180℃に保持し、12時間ホスゲンを吹込み続けた。減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点161〜163℃/1.2mmHgの無色透明な4−イソシアネートメチル−1,8−オクタンメチレンジイソシアネート(以下、「NTI」と称する場合がある。)420gが得られた。このもののNCO含有率50.0重量%であった。
[Synthesis Example (1-1) -5]
Synthesis of NTI

In a four-necked flask equipped with a stirrer, a thermometer, and a gas inlet tube, 1,060 g of 4-aminomethyl-1,8-octamethylenediamine (hereinafter sometimes referred to as "triamine") was added to 1500 g of methanol. The solution was dissolved, and 1800 mL of 35% concentrated hydrochloric acid was gradually added dropwise while cooling. After removing methanol and water under reduced pressure, the mixture was concentrated, and dried at 60 ° C./5 mmHg for 24 hours to obtain triamine hydrochloride as a white solid. The obtained triamine hydrochloride (650 g) was suspended as fine powder in 5000 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 100 ° C., phosgene was started to be blown at a rate of 200 g / Hr. Then, the temperature was further increased and maintained at 180 ° C., and phosgene was continuously blown in for 12 hours. After distilling out the dissolved phosgene and the solvent under reduced pressure, the residue was distilled under vacuum to obtain a colorless and transparent 4-isocyanatomethyl-1,8-octanemethylene diisocyanate having a boiling point of 161 to 163 ° C./1.2 mmHg (hereinafter referred to as “NTI”). ) Was obtained.) 420 g was obtained. Its NCO content was 50.0% by weight.

〔実施例(1−1)−29〕
P(1−1)−13の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてNTI50g、仕込み、温度を80℃、2時間保持した。その後、イソシアヌレート化触媒ベンジルトリメチルアンモニウムカプリン酸を10mgをイソブタノール50mgに溶解したものを加え、イソシアヌレート化反応を行い、NCO%が47.7%になった時点でジブチルリン酸の25%NTI溶液を26mg添加し反応を停止した。反応液を更に120℃、15分保持し、ポリイソシアネート組成物P(1−1)−13を得た。ポリイソシアネート組成物P(1−1)−13の粘度は13mPa・s/25℃で、理論反応率は15.0%であった。
さらに、ポリイソシアネート組成物P(1−1)−13の低粘度化度、極性ポリオールとの相溶性評価、塗膜の耐クラック性評価結果を表(1−1)−4に記載した。
[Example (1-1) -29]
Synthesis of P (1-1) -13

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, charged with 50 g of NTI as a monomer, and kept at 80 ° C. for 2 hours. Thereafter, a solution prepared by dissolving 10 mg of benzyltrimethylammonium capric acid in 50 mg of isobutanol, which is a catalyst for isocyanuration, was added, and an isocyanuration reaction was carried out. When the NCO% became 47.7%, a 25% NTI solution of dibutylphosphoric acid was used. Was added to terminate the reaction. The reaction liquid was further kept at 120 ° C. for 15 minutes to obtain a polyisocyanate composition P (1-1) -13. The viscosity of the polyisocyanate composition P (1-1) -13 was 13 mPa · s / 25 ° C., and the theoretical conversion was 15.0%.
Furthermore, Table (1-1) -4 shows the results of the evaluation of the degree of viscosity reduction of the polyisocyanate composition P (1-1) -13, the compatibility with the polar polyol, and the evaluation of the crack resistance of the coating film.

〔実施例(1−1)−30〜(1−1)−36、比較例(1−1)−11〜(1−1)−14〕
P(1−1)−13〜P(1−1)−24の合成

モノマー、触媒、停止剤、反応温度、および反応を停止する時点のNCO%を表(1−1)−4に記載の通りとした以外は実施例(1−1)−29と同様に実施した。また、得られたポリイソシアネート組成物の粘度、理論反応率、低粘度化度、極性ポリオールとの相溶性評価、および塗膜の耐クラック性評価結果を表(1−1)−4に記載した。
[Examples (1-1) -30 to (1-1) -36, Comparative Examples (1-1) -11 to (1-1) -14]
Synthesis of P (1-1) -13 to P (1-1) -24

The procedure was performed in the same manner as in Example (1-1) -29, except that the monomer, the catalyst, the terminator, the reaction temperature, and the NCO% at the time of stopping the reaction were as described in Table (1-1) -4. . In addition, Table (1-1) -4 shows the viscosity, theoretical reaction rate, degree of viscosity reduction, evaluation of compatibility with polar polyol, and evaluation of crack resistance of the coating film of the obtained polyisocyanate composition. .

Figure 0006664509
Figure 0006664509

上記表(1−1)−4中、略語で記載した触媒および停止剤はそれぞれ以下の材料を意味する。
BTMA−H:ベンジルトリメチルアンモニウムヒドロキシド。
BTMA−A:ベンジルトリメチルアンモニウムカプリン酸。
TMA−A:テトラメチルアンモニウムカプリン酸。
DBP:ジブチルリン酸。
D2EHP:ジ(2−エチルヘキシル)リン酸。
In the above Table (1-1) -4, the catalyst and the terminator described in the abbreviations respectively mean the following materials.
BTMA-H: benzyltrimethylammonium hydroxide.
BTMA-A: benzyltrimethylammonium capric acid.
TMA-A: tetramethylammonium capric acid.
DBP: dibutyl phosphoric acid.
D2EHP: di (2-ethylhexyl) phosphoric acid.

〔実施例(1−1)−37〕
ブロックポリイソシアネート組成物の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−1)−33で得られたポリイソシアネート組成物P(1−1)−17を20g、酢酸ブチルを16.4g仕込み、温度を70℃に加熱した、その後、撹拌しながら3,5−ジメチルピラゾール20.2gを添加し、70℃を保持し、1時間撹拌した結果、NCO含有率0.0%となり、ブロックポリイソシアネート組成物を得た。得られたブロックポリイソシアネート組成物の粘度は290mPa・s/25℃で、計算NCO含有率は15.2質量%であった。
さらに、得られたブロックポリイソシアネート組成物の低粘度化度、極性ポリオールとの相溶性、および塗膜の耐クラック性評価結果を表(1−1)−5に記載した。
[Example (1-1) -37]
Synthesis of blocked polyisocyanate composition

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate composition P (1-1) obtained in Example (1-1) -33 was obtained. -20 g of -17 and 16.4 g of butyl acetate were charged, and the temperature was heated to 70 ° C. Thereafter, 20.2 g of 3,5-dimethylpyrazole was added with stirring, the temperature was maintained at 70 ° C, and the mixture was stirred for 1 hour. , NCO content became 0.0%, and a blocked polyisocyanate composition was obtained. The viscosity of the obtained blocked polyisocyanate composition was 290 mPa · s / 25 ° C., and the calculated NCO content was 15.2% by mass.
Furthermore, Table (1-1) -5 shows the degree of viscosity reduction of the obtained blocked polyisocyanate composition, the compatibility with polar polyols, and the results of evaluating the crack resistance of the coating film.

〔実施例(1−1)−38、比較例(1−1)−15、(1−1)−16〕
ブロックポリイソシアネート組成物の合成

3,5−ジメチルピラゾール添加量、酢酸ブチル添加量、および使用するポリイソシアネート組成物の種類を表(1−1)−5に記載の通りにした以外は実施例(1−1)−37と同様に実施した。また、得られたブロックポリイソシアネート組成物の粘度、計算NCO含有率、低粘度化度、極性ポリオールとの相溶性、および塗膜の耐クラック性評価結果を表(1−1)−5に記載した。
[Example (1-1) -38, Comparative example (1-1) -15, (1-1) -16]
Synthesis of blocked polyisocyanate composition

Example (1-1) -37 except that the amount of 3,5-dimethylpyrazole added, the amount of butyl acetate added, and the type of the polyisocyanate composition used were as described in Table (1-1) -5. The same was done. Table (1-1) -5 shows the viscosity of the obtained blocked polyisocyanate composition, the calculated NCO content, the degree of viscosity reduction, the compatibility with polar polyols, and the evaluation results of the crack resistance of the coating film. did.

Figure 0006664509
Figure 0006664509

〔実施例(1−1)−39〕
親水性ポリイソシアネート組成物の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施41で得られたポリイソシアネート組成物P(1−1)−9を20g、親水性化合物であるポリエチレンオキサイド(日本乳化剤株式会社製、商品名「MPG−130」数平均分子量=420)8.6gを仕込み、100℃に加熱撹拌しながら4時間保持し、親水性ポリイソシアネートを得た。得られた親水性ポリイソシアネート組成物の粘度は49mPa・s/25℃で、NCO含有率は26.9質量%あった。
さらに、低粘度化度は○、乾燥性評価結果は○、下地隠ぺい性評価結果は◎、下地塗膜への密着性評価結果は◎であった。
[Example (1-1) -39]
Synthesis of hydrophilic polyisocyanate composition

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and 20 g of the polyisocyanate composition P (1-1) -9 obtained in Example 41 was obtained. 8.6 g of polyethylene oxide as a compound (manufactured by Nippon Emulsifier Co., Ltd., trade name “MPG-130” number average molecular weight = 420) was charged, and kept at 100 ° C. with stirring for 4 hours to obtain a hydrophilic polyisocyanate. . The viscosity of the obtained hydrophilic polyisocyanate composition was 49 mPa · s / 25 ° C., and the NCO content was 26.9% by mass.
Further, the degree of viscosity reduction was ○, the result of evaluation of dryness was ○, the result of evaluation of opacity of the underlayer was ◎, and the result of evaluation of adhesion to the undercoat film was ◎.

〔実施例(1−1)−40、比較例(1−1)−17、(1−1)−18〕
親水性ポリイソシアネート組成物の合成

MPG−130添加量および使用するポリイソシアネート組成物の種類を表(1−1)−6に記載の通りにした以外は実施例(1−1)−39と同様に実施した。また、得られた親水性ポリイソシアネート組成物の粘度、低粘度化度、水分散性評価結果は表(1−1)−6に記載した。
[Example (1-1) -40, Comparative example (1-1) -17, (1-1) -18]
Synthesis of hydrophilic polyisocyanate composition

It carried out like Example (1-1) -39 except having added MPG-130 and the kind of polyisocyanate composition to be used as described in Table (1-1) -6. The results of evaluation of the viscosity, degree of viscosity reduction, and water dispersibility of the obtained hydrophilic polyisocyanate composition are shown in Table (1-1) -6.

Figure 0006664509
Figure 0006664509

〔実施例(1−1)−41〕

実施例(1−1)−29で得られたポリイソシアネート組成物P(1−1)−13:300gに2,2,4−トリメチルペンタンを0.03g添加した。
このポリイソシアネート組成物の各評価結果は実施例(1−1)−29と同様であり、貯蔵安定性評価結果は良好であった。
[Example (1-1) -41]

0.03 g of 2,2,4-trimethylpentane was added to 300 g of the polyisocyanate composition P (1-1) -13 obtained in Example (1-1) -29.
Each evaluation result of this polyisocyanate composition was the same as that of Example (1-1) -29, and the storage stability evaluation result was good.

〔実施例(1−1)−42〕

実施例(1−1)−29で得られたポリイソシアネート組成物P(1−1)−13:300gにヘキサデカンを0.03g添加した。
このポリイソシアネート組成物の各評価結果は実施例(1−1)−29と同様であり、貯蔵安定性評価結果は良好であった。
[Example (1-1) -42]

0.03 g of hexadecane was added to 300 g of the polyisocyanate composition P (1-1) -13 obtained in Example (1-1) -29.
Each evaluation result of this polyisocyanate composition was the same as that of Example (1-1) -29, and the storage stability evaluation result was good.

〔合成例(1−1)−6〕
C(1−1)−5の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、NTIを20g仕込み、60℃に加熱し、メタノールを7.7g添加し、撹拌しながら4時間保持し、N−置換カルバミン酸エステルC(1−1)−5を得た。
[Synthesis Example (1-1) -6]
Synthesis of C (1-1) -5

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet tube was set to a nitrogen atmosphere, 20 g of NTI was charged, heated to 60 ° C., 7.7 g of methanol was added, and stirring was continued. After holding for a while, an N-substituted carbamic acid ester C (1-1) -5 was obtained.

〔実施例(1−1)−43〕

実施例(1−1)−29で得られたポリイソシアネート組成物P(1−1)−13:300gにN−置換カルバミン酸エステルC(1−1)−5を0.03g添加した。
このポリイソシアネート組成物の各評価結果は実施例(1−1)−29と同様であり、貯蔵安定性評価結果は良好であった。
[Example (1-1) -43]

0.03 g of N-substituted carbamic acid ester C (1-1) -5 was added to 300 g of the polyisocyanate composition P (1-1) -13 obtained in Example (1-1) -29.
Each evaluation result of this polyisocyanate composition was the same as that of Example (1-1) -29, and the storage stability evaluation result was good.

以上より、本発明を適用した各実施例のポリイソシアネート組成物、ブロックポリイソシアネート組成物、または親水性ポリイソシアネート組成物は、低粘度であり、かつ、極性ポリオールとの相溶性、塗膜の耐クラック性、および水分散性に優れることが確認された。   As described above, the polyisocyanate composition, the blocked polyisocyanate composition, or the hydrophilic polyisocyanate composition of each of the examples to which the present invention is applied has a low viscosity, and is compatible with a polar polyol, and has an excellent coating resistance. It was confirmed that it had excellent cracking properties and water dispersibility.


実施例(1−1)−44〜(1−1)−58および比較例(1−1)−19〜(1−1)−26における、ポリイソシアネート組成物の物性は、以下のとおり測定した。なお、特に明記しない場合は、「部」および「%」は、「質量部」および質量%」を意味する。

The physical properties of the polyisocyanate composition in Examples (1-1) -44 to (1-1) -58 and Comparative Examples (1-1) -19 to (1-1) -26 were measured as follows. . Unless otherwise specified, “parts” and “%” mean “parts by mass” and “% by mass”.

<粘度> 上述のとおりである。
<Viscosity> As described above.

<NCO含有率>
上述のとおりである。
<NCO content>
As described above.

<計算NCO含有率>
上述のとおりである。
<Calculated NCO content>
As described above.

<理論反応率>
上述のとおりである。
<Theoretical reaction rate>
As described above.

<ポリイソシアネート組成物の乾燥性評価方法(2)>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ポリイソシアネート組成物の各々とを、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分40質量%になるように調製した。調製した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、23℃/50%RHで硬化させた。特定時間経過後、その塗膜上にコットンボール(直径2.5cm、高さ2.0cmの円柱型)を置き、その上に100gの分銅を60秒間置いた。その後、分銅とコットンを取り除き、塗膜上に残ったコットン跡を観察した。跡が全く見えなくなった時間が7時間以内であった場合を◎、7時間超〜8時間以内であった場合を〇、8時間超〜10時間以内であった場合を△、10時間超であった場合を×とした。
<Method for evaluating dryness of polyisocyanate composition (2)>

Acrylic polyol (trade name "SETALUX1753" of Nuplex Resin, resin concentration: 70%, hydroxyl value: 138.6 mgKOH / g) and each of the polyisocyanate compositions are mixed at an isocyanate group / hydroxyl equivalent ratio of 1.0. Then, the solid content was adjusted to 40% by mass with butyl acetate. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 23 ° C./50% RH. After a lapse of a specific time, a cotton ball (a cylindrical shape having a diameter of 2.5 cm and a height of 2.0 cm) was placed on the coating film, and a weight of 100 g was placed thereon for 60 seconds. Thereafter, the weight and cotton were removed, and the trace of cotton remaining on the coating film was observed. ◎ when the time when the mark disappeared completely was within 7 hours, Δ when it was more than 7 hours to 8 hours, Δ when it was more than 8 hours to less than 10 hours, and more than 10 hours. When there was, it was evaluated as x.

<ポリイソシアネート組成物塗膜の硬度評価>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ポリイソシアネート組成物の各々とを、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分40質量%になるように調製した。調製した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、23℃/50%RHで15分、120℃/1時間で硬化させた。
硬化した塗膜の塗膜硬度を鉛筆硬度試験機(荷重500g、鉛筆硬度=HB、鉛筆の確度45度)を用いて測定し、相対評価を行った。傷または厚痕を確認し、全く傷がつかないものを◎、わずかに筋跡が残るものを○、削れがみられるが、削れが基材まで到達していないものを△、基材まで削れが到達しているものを×とした。
<Hardness evaluation of polyisocyanate composition coating film>

Acrylic polyol (trade name "SETALUX1753" of Nuplex Resin, resin concentration: 70%, hydroxyl value: 138.6 mgKOH / g) and each of the polyisocyanate compositions are mixed at an isocyanate group / hydroxyl equivalent ratio of 1.0. Then, the solid content was adjusted to 40% by mass with butyl acetate. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 23 ° C./50% RH for 15 minutes and 120 ° C./1 hour.
The coating film hardness of the cured coating film was measured using a pencil hardness tester (load: 500 g, pencil hardness = HB, pencil accuracy: 45 degrees), and relative evaluation was performed. Check for scratches or thick marks, ◎ for no scratches, ○ for slight streaks, ○ Was reached as x.

<ブロックポリイソシアネート組成物塗膜の硬度評価>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ブロックポリイソシアネート組成物の各々とを、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分40質量%になるように調製した。調製した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、150℃30分で硬化させた。
硬化した塗膜の塗膜硬度を鉛筆硬度試験機(荷重500g、鉛筆硬度=HB、鉛筆の確度45度)を用いて測定し、相対評価を行った。傷または厚痕を確認し、全く傷がつかないものを◎、わずかに筋跡が残るものを○、削れがみられるが、削れが基材まで到達していないものを△、基材まで削れが到達しているものを×とした。
<Evaluation of hardness of coated film of blocked polyisocyanate composition>

An acrylic polyol (trade name “SETALUX1753” of Nuplex Resin, resin content concentration 70%, hydroxyl value 138.6 mgKOH / g) and each of the blocked polyisocyanate compositions were converted to an isocyanate group / hydroxyl equivalent ratio of 1.0. It was blended and adjusted to a solid content of 40% by mass with butyl acetate. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 150 ° C. for 30 minutes.
The coating film hardness of the cured coating film was measured using a pencil hardness tester (load: 500 g, pencil hardness = HB, pencil accuracy: 45 degrees), and relative evaluation was performed. Check for scratches or thick marks, ◎ for no scratches, ○ for slight streaks, ○ Was reached as x.

<親水性ポリイソシアネート組成物の乾燥性評価方法>

上述のとおりである。
<Method for evaluating dryness of hydrophilic polyisocyanate composition>

As described above.

<ポリイソシアネート組成物塗膜の耐水性評価>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ブロックポリイソシアネート組成物の各々とを、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分40質量%になるように調製した。調製した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、150℃30分で硬化させた。硬化した塗膜を、水中に浸漬し、室温にて3日間放置し、塗膜の状態を目視で観察した。塗膜の白化もしくはブリスター現象(ガラス板と塗膜間で、ぶつぶつ状に剥離した状況)等、何らかの塗膜異常が全面に見られる場合を×、塗膜の異常が部分的もしくはわずかに見られる場合を△、全く見られない場合を○とした。
<Evaluation of water resistance of polyisocyanate composition coating film>

An acrylic polyol (trade name “SETALUX1753” of Nuplex Resin, resin content concentration 70%, hydroxyl value 138.6 mgKOH / g) and each of the blocked polyisocyanate compositions were converted to an isocyanate group / hydroxyl equivalent ratio of 1.0. It was blended and adjusted to a solid content of 40% by mass with butyl acetate. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 150 ° C. for 30 minutes. The cured coating film was immersed in water and left at room temperature for 3 days, and the state of the coating film was visually observed. X: If any coating abnormality such as whitening or blistering of the coating film (stripping between the glass plate and the coating film) is observed on the entire surface, the coating film is partially or slightly abnormal. The case was marked with △, and the case where none was seen was marked with ○.

<貯蔵安定性評価方法>

上述のとおりである。
<Storage stability evaluation method>

As described above.

〔合成例(1−1)−7〕
LTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内にエタノールアミン122.2g、o−ジクロロベンゼン100mL、トルエン420mLを入れ、氷冷化塩化水素ガスを導入し、エタノールアミンを塩酸塩に転換した。次に、リジン塩酸塩182.5gを添加し、反応液を80℃に加熱し、エタノールアミン塩酸塩を溶解させ、塩化水素ガスを導入してリジン二塩酸塩とした。さらに塩化水素ガスを20〜30mL/分で通過させ、反応液を116℃に加熱し、水が留出しなくなるまでこの温度を維持した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してリジンβ−アミノエチルエステル三塩酸塩165gを得た。このリジンβ−アミノエチルエステル三塩酸塩100gを微粉末としてo−ジクロロベンゼン1200mLに懸濁させ、かきまぜながら反応液を昇温し、120℃に達した時点でホスゲンを0.4モル/時間の速度にて吹込みはじめ、10時間保持し、その後150℃に昇温した。懸濁液はほとんど溶解した。冷却後ろ過し、減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点155〜157℃/0.022mmHgの無色透明なLTI80.4gが得られた。このもののNCO含有率は47.1重量%であった。
[Synthesis Example (1-1) -7]
Synthesis of LTI

122.2 g of ethanolamine, 100 mL of o-dichlorobenzene, and 420 mL of toluene were placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas introduction tube, and ice-cooled hydrogen chloride gas was introduced. Converted to salt. Next, 182.5 g of lysine hydrochloride was added, the reaction solution was heated to 80 ° C. to dissolve ethanolamine hydrochloride, and hydrogen chloride gas was introduced to obtain lysine dihydrochloride. Further, hydrogen chloride gas was passed at a rate of 20 to 30 mL / min, and the reaction solution was heated to 116 ° C. and maintained at this temperature until no more water distilled. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 165 g of lysine β-aminoethyl ester trihydrochloride. 100 g of this lysine β-aminoethyl ester trihydrochloride was suspended as fine powder in 1200 mL of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 120 ° C., phosgene was added at a rate of 0.4 mol / hour. Blowing was started at a constant speed and maintained for 10 hours, and then the temperature was raised to 150 ° C. The suspension almost dissolved. After cooling and filtration, the dissolved phosgene and the solvent were distilled off under reduced pressure, followed by vacuum distillation to obtain 80.4 g of a colorless and transparent LTI having a boiling point of 155 to 157 ° C / 0.022 mmHg. Its NCO content was 47.1% by weight.

〔合成例(1−1)−8〕
NTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内に4−アミノメチル−1,8−オクタメチレンジアミン(以下、「トリアミン」と称する場合がある。)1060gをメタノー ル1500gに溶かし、これに35%濃塩酸1800mLを冷却しながら徐々に滴下した。減圧下にてメタノールおよび水を除去して濃縮し、60℃/5mmHgにて 24時間乾燥したところ、白色固体のトリアミン塩酸塩が得られた。得られたトリアミン塩酸塩650gを微粉末としてo−ジクロルベンゼン5000gに懸濁させ、かきまぜながら反応液を昇温し、100℃に達した時点でホスゲンを200g/Hrの速度にて吹込みはじめ、さらに昇温を続けて180℃に保持し、12時間ホスゲンを吹込み続けた。減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点161〜163℃/1.2mmHgの無色透明な4−イソシアネートメチル−1,8−オクタンメチレンジイソシアネート(以下、「NTI」と称する場合がある。)420gが得られた。このもののNCO含有率50.0重量%であった。
[Synthesis Example (1-1) -8]
Synthesis of NTI

In a four-necked flask equipped with a stirrer, a thermometer, and a gas inlet tube, 1,060 g of 4-aminomethyl-1,8-octamethylenediamine (hereinafter sometimes referred to as "triamine") was added to 1500 g of methanol. The solution was dissolved, and 1800 mL of 35% concentrated hydrochloric acid was gradually added dropwise while cooling. After removing methanol and water under reduced pressure, the mixture was concentrated, and dried at 60 ° C./5 mmHg for 24 hours to obtain triamine hydrochloride as a white solid. The obtained triamine hydrochloride (650 g) was suspended as fine powder in 5000 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 100 ° C., phosgene was started to be blown at a rate of 200 g / Hr. Then, the temperature was further increased and maintained at 180 ° C., and phosgene was continuously blown in for 12 hours. After distilling out the dissolved phosgene and the solvent under reduced pressure, the residue was distilled under vacuum to obtain a colorless and transparent 4-isocyanatomethyl-1,8-octanemethylene diisocyanate having a boiling point of 161 to 163 ° C./1.2 mmHg (hereinafter referred to as “NTI”). ) Was obtained.) 420 g was obtained. Its NCO content was 50.0% by weight.

〔実施例(1−1)−44〕

P(1−1)−21の合成
撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてNTI50g、仕込み、温度を80℃、2時間保持した。その後、イソシアヌレート化触媒ベンジルトリメチルアンモニウムカプリン酸を10mgをイソブタノール50mgに溶解したものを加え、イソシアヌレート化反応を行い、NCO%が47.7%になった時点でジブチルリン酸の25%NTI溶液を26mg添加し反応を停止した。反応液を更に120℃、15分保持し、ポリイソシアネート組成物P(1−1)−25を得た。ポリイソシアネート組成物P(1−1)−25の理論反応率は22.3質%であった。
さらに、ポリイソシアネート組成物P(1−1)−25、乾燥性評価と、塗膜の硬度、耐水性性評価結果を表(1−1)−7に記載した。
[Example (1-1) -44]

Synthesis of P (1-1) -21 A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet tube was set to a nitrogen atmosphere, charged with 50 g of NTI as a monomer, and charged at 80 ° C. for 2 hours. Held. Thereafter, a solution prepared by dissolving 10 mg of benzyltrimethylammonium capric acid in 50 mg of isobutanol, which is a catalyst for isocyanuration, was added, and an isocyanuration reaction was carried out. When the NCO% became 47.7%, a 25% NTI solution of dibutylphosphoric acid was used. Was added to terminate the reaction. The reaction liquid was further kept at 120 ° C. for 15 minutes to obtain a polyisocyanate composition P (1-1) -25. The theoretical conversion of the polyisocyanate composition P (1-1) -25 was 22.3% by mass.
Further, Table (1-1) -7 shows the results of evaluation of the polyisocyanate composition P (1-1) -25, drying property, and hardness and water resistance of the coating film.

〔実施例(1−1)−45〜(1−1)−51、比較例(1−1)−19〜(1−1)−22〕
P(1−1)−26〜P(1−1)−37の合成

モノマー、触媒、停止剤、反応温度、および反応を停止する時点のNCO%を表(1−1)−7に記載の通りとした以外は実施例(1−1)−44と同様に実施した。また、得られたポリイソシアネート組成物の乾燥性評価理論反応率、塗膜の硬度、および耐水性評価結果を表(1−1)−7に記載した。
[Examples (1-1) -45 to (1-1) -51, Comparative Examples (1-1) -19 to (1-1) -22]
Synthesis of P (1-1) -26 to P (1-1) -37

The procedure was performed in the same manner as in Example (1-1) -44, except that the monomer, the catalyst, the terminator, the reaction temperature, and the NCO% at the time of stopping the reaction were as described in Table (1-1) -7. . Table (1-1) -7 shows the theoretical reactivity of the obtained polyisocyanate composition for evaluation of the drying property, the hardness of the coating film, and the water resistance evaluation result.

Figure 0006664509
Figure 0006664509

上記表(1−1)−7中、略語で記載した触媒および停止剤はそれぞれ以下の材料を意味する。
BTMA−H:ベンジルトリメチルアンモニウムヒドロキシド。
BTMA−A:ベンジルトリメチルアンモニウムカプリン酸。
TMA−A:テトラメチルアンモニウムカプリン酸。
DBP:ジブチルリン酸。
D2EHP:ジ(2−エチルヘキシル)リン酸。
In the above Table (1-1) -7, the catalyst and the terminator described in the abbreviations respectively mean the following materials.
BTMA-H: benzyltrimethylammonium hydroxide.
BTMA-A: benzyltrimethylammonium capric acid.
TMA-A: tetramethylammonium capric acid.
DBP: dibutyl phosphoric acid.
D2EHP: di (2-ethylhexyl) phosphoric acid.

〔実施例(1−1)−52〕

ブロックポリイソシアネート組成物の合成
撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−1)−48で得られたポリイソシアネート組成物P(1−1)−30を30g、酢酸ブチルを25g仕込み、温度を70℃に加熱した、その後、撹拌しながら3,5−ジメチルピラゾール15gを添加し、70℃を保持し、1時間撹拌した結果、NCO含有率0.0%となり、ブロックポリイソシアネート組成物を得た。得られたブロックポリイソシアネート組成物の、計算NCO含有率は9.1質量%であった。
さらに、得られたブロックポリイソシアネート組成物、塗膜の硬度、および耐水性評価結果を表(1−1)−8に記載した。
[Example (1-1) -52]

Synthesis of Blocked Polyisocyanate Composition A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing pipe was set to a nitrogen atmosphere, and the polyisocyanate composition obtained in Example (1-1) -48 was obtained. 30 g of product P (1-1) -30 and 25 g of butyl acetate were charged, and the temperature was heated to 70 ° C. Thereafter, 15 g of 3,5-dimethylpyrazole was added with stirring, and the temperature was maintained at 70 ° C for 1 hour. As a result of stirring, the NCO content became 0.0%, and a blocked polyisocyanate composition was obtained. The calculated NCO content of the obtained blocked polyisocyanate composition was 9.1% by mass.
Furthermore, the obtained block polyisocyanate composition, hardness of the coating film, and the results of water resistance evaluation are shown in Table (1-1) -8.

〔実施例(1−1)−53、比較例(1−1)−23、(1−1)−24〕
ブロックポリイソシアネート組成物の合成

3,5−ジメチルピラゾール添加量、酢酸ブチル添加量、および使用するポリイソシアネート組成物の種類を表(1−1)−8に記載の通りにした以外は実施例(1−1)−52と同様に実施した。また、得られたブロックポリイソシアネート組成物の塗膜の硬度、および耐水性評価結果を表(1−1)−8に記載した。
[Example (1-1) -53, Comparative examples (1-1) -23, (1-1) -24]
Synthesis of blocked polyisocyanate composition

Examples (1-1) -52 and 3,5-dimethylpyrazole addition amount, butyl acetate addition amount, and the type of polyisocyanate composition used were as described in Table (1-1) -8. The same was done. In addition, Table (1-1) -8 shows the hardness and water resistance evaluation results of the coating film of the obtained blocked polyisocyanate composition.

Figure 0006664509
Figure 0006664509

〔実施例(1−1)−54〕

親水性ポリイソシアネート組成物の合成
撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−1)−48で得られたポリイソシアネート組成物P(1−1)−30を30g、親水性化合物であるポリエチレンオキサイド(日本乳化剤株式会社製、商品名「MPG−130」数平均分子量=420)9.6gを仕込み、100℃に加熱撹拌しながら4時間保持し、親水性ポリイソシアネートを得た。得られた親水性ポリイソシアネート組成物の粘度は、NCO含有率は12.9質量%あった。
得られたポリイソシアネート組成物の乾燥性評価、塗膜の硬度、および耐水性性評価結果を表(1−1)−9に記載した。
[Example (1-1) -54]

Synthesis of hydrophilic polyisocyanate composition A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate obtained in Example (1-1) -48. 30 g of the composition P (1-1) -30 and 9.6 g of a hydrophilic compound, polyethylene oxide (manufactured by Nippon Emulsifier Co., Ltd., trade name "MPG-130", number average molecular weight = 420) were charged and heated to 100 ° C. The mixture was kept for 4 hours while stirring to obtain a hydrophilic polyisocyanate. Regarding the viscosity of the obtained hydrophilic polyisocyanate composition, the NCO content was 12.9% by mass.
Table (1-1) -9 shows the evaluation results of the drying property, the hardness of the coating film, and the water resistance of the obtained polyisocyanate composition.

〔実施例(1−1)−55、比較例(1−1)−25、(1−1)−26〕
親水性ポリイソシアネート組成物の合成

MPG−130添加量および使用するポリイソシアネート組成物の種類を表(1−1)−9に記載の通りにした以外は実施例(1−1)−54と同様に実施した。また、得られた親水性ポリイソシアネート組成物の乾燥性評価、塗膜の硬度、および耐水性評価結果を表(1−1)−9に記載した。
[Example (1-1) -55, Comparative examples (1-1) -25, (1-1) -26]
Synthesis of hydrophilic polyisocyanate composition

It carried out like Example (1-1) -54 except having added the amount of MPG-130 and the kind of polyisocyanate composition to be used as described in Table (1-1) -9. In addition, Table (1-1) -9 shows the evaluation results of the dryness, the hardness of the coating film, and the water resistance of the obtained hydrophilic polyisocyanate composition.

Figure 0006664509
Figure 0006664509

〔実施例(1−1)−56〕

実施例(1−1)−44で得られたポリイソシアネート組成物P(1−1)−26:300gに2,2,4−トリメチルペンタンを0.03g添加した。
このポリイソシアネート組成物の各評価結果は実施例(1−1)−30と同様であり、貯蔵安定性評価結果は良好であった。
[Example (1-1) -56]

0.03 g of 2,2,4-trimethylpentane was added to 300 g of the polyisocyanate composition P (1-1) -26 obtained in Example (1-1) -44.
Each evaluation result of this polyisocyanate composition was the same as that of Example (1-1) -30, and the storage stability evaluation result was good.

〔実施例(1−1)−57〕

実施例(1−1)−44で得られたポリイソシアネート組成物P(1−1)−26:300gにヘキサデカンを0.03g添加した。
このポリイソシアネート組成物の各評価結果は実施例(1−1)−44と同様であり、貯蔵安定性評価結果は良好であった。
[Example (1-1) -57]

0.03 g of hexadecane was added to 300 g of the polyisocyanate composition P (1-1) -26 obtained in Example (1-1) -44.
Each evaluation result of this polyisocyanate composition was the same as that of Example (1-1) -44, and the storage stability evaluation result was good.

〔合成例(1−1)−9〕
C(1−1)−6の合成

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、NTIを20g仕込み、60℃に加熱し、メタノールを7.7g添加し、撹拌しながら4時間保持し、N−置換カルバミン酸エステルC(1−1)−6を得た。
[Synthesis Example (1-1) -9]
Synthesis of C (1-1) -6

The inside of the four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen blowing tube was set to a nitrogen atmosphere, charged with 20 g of NTI, heated to 60 ° C., added with 7.7 g of methanol, and stirred for 4 hours. Retained to give N-substituted carbamic acid ester C (1-1) -6.

〔実施例(1−1)−58〕

実施例(1−1)−44で得られたポリイソシアネート組成物P(1−1)−26:300gにN−置換カルバミン酸エステルC(1−1)−6を0.03g添加した。
このポリイソシアネート組成物の各評価結果は実施例(1−1)−44と同様であり、貯蔵安定性評価結果は良好であった。
[Example (1-1) -58]

0.03 g of N-substituted carbamic acid ester C (1-1) -6 was added to 300 g of the polyisocyanate composition P (1-1) -26 obtained in Example (1-1) -44.
Each evaluation result of this polyisocyanate composition was the same as that of Example (1-1) -44, and the storage stability evaluation result was good.

以上より、本発明を適用した各実施例のポリイソシアネート組成物、ブロックポリイソシアネート組成物、または親水性ポリイソシアネート組成物は、乾燥性、塗膜の硬度、および耐水性に優れることが確認された。   From the above, it was confirmed that the polyisocyanate composition, the blocked polyisocyanate composition, or the hydrophilic polyisocyanate composition of each Example to which the present invention was applied was excellent in drying property, hardness of a coating film, and water resistance. .


実施例(1−1)−59〜(1−1)−68および比較例(1−1)−27〜(1−1)−29における、ポリイソシアネート組成物の物性は、以下のとおり測定した。なお、特に明記しない場合は、「部」および「%」は、「質量部」および質量%」を意味する。

Physical properties of the polyisocyanate composition in Examples (1-1) -59 to (1-1) -68 and Comparative Examples (1-1) -27 to (1-1) -29 were measured as follows. . Unless otherwise specified, “parts” and “%” mean “parts by mass” and “% by mass”.

<NCO含有率>
上述のとおりである。
<NCO content>
As described above.

<転化率、ポリイソシアネート化合物比率、3量体比率>

転化率は、下記の装置を用いたGPC測定によるポリスチレン基準の数平均分子量により、未反応トリイソシアネートよりも数平均分子量の大きなピークの面積割合とした。 ポリイソシアネート比率は、下記の装置を用いたGPC測定によるポリスチレン基準の数平均分子量により、トリイソシアネートよりも数平均分子量の大きなピークの面積割合とした(なお、反応後ポリイソシアネート組成物中から原料モノマーを除去しない場合には、転化率=ポリイソシアネート比率となる)。
3量体比率は、下記の装置を用いたGPC測定によるポリスチレン基準の数平均分子量により、トリイソシアネート3量体に相当するポリイソシアネートピークの面積割合とした。
装置:東ソー社製「HLC−8320GPC」(商品名)
カラム:東ソー社製「TSKgel SuperH1000」(商品名)×1本
「TSKgel SuperH2000」(商品名)×1本
「TSKgel SuperH3000」(商品名)×1本
キャリアー:テトラハイドロフラン
検出方法:示差屈折計
試料濃度:5wt/vol%
流出量:0.6mL/min
カラム温度:30℃。
解析ソフト:東ソー株式会社製、EcoSEC−WS Version1.06
(解析条件)
検出感度 : 3.0mV/min
ベース判定値 : 0.1mV/min
排除面積 : 10mV×sec
排除高さ : 0mV
排除半値幅 : 0sec
<Conversion rate, polyisocyanate compound ratio, trimer ratio>

The conversion was defined as the area ratio of the peak having a number average molecular weight larger than that of the unreacted triisocyanate, based on the number average molecular weight based on polystyrene by GPC measurement using the following apparatus. The polyisocyanate ratio was determined as the area ratio of the peak having a number average molecular weight larger than that of triisocyanate, based on the number average molecular weight based on polystyrene by GPC measurement using the following apparatus. If not removed, the conversion will be the polyisocyanate ratio).
The trimer ratio was defined as an area ratio of a polyisocyanate peak corresponding to a triisocyanate trimer, based on a polystyrene-based number average molecular weight measured by GPC using the following apparatus.
Equipment: "HLC-8320GPC" (trade name) manufactured by Tosoh Corporation
Column: Tosoh “TSKgel SuperH1000” (trade name) x 1
"TSKgel SuperH2000" (product name) x 1
"TSKgel SuperH3000" (trade name) x 1 Carrier: tetrahydrofuran Detection method: differential refractometer Sample concentration: 5 wt / vol%
Outflow rate: 0.6 mL / min
Column temperature: 30 ° C.
Analysis software: Tosoh Corporation, EcoSEC-WS Version1.06
(Analysis conditions)
Detection sensitivity: 3.0mV / min
Base judgment value: 0.1 mV / min
Excluded area: 10mV × sec
Excluded height: 0mV
Exclusion half width: 0 sec

<ポリイソシアネート組成物の乾燥性評価方法(2)>

上述のとおりである。
<Method for evaluating dryness of polyisocyanate composition (2)>

As described above.

<ポリイソシアネート組成物の下地塗膜への密着性評価方法>

軟鋼鈑にアクリルポリオール(樹脂固形分濃度55%,水酸基価30mgKOH/樹脂g)を樹脂膜厚40マイクロメーターになるように塗装し、室温30分放置後、アクリルポリオール(Nuplex Resin社の製品名、Setalux1903、樹脂固形分濃度75%、水酸基価150mgKOH/樹脂g)と(ブロック)ポリイソシアネート組成物の各々を、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで塗料粘度がフォードカップNo.4で20秒になるように調整した塗料組成物を樹脂膜厚30マイクロメーターになるように塗装した。室温で15分放置後、140℃のオーブン内にて30分硬化させた。
得られた塗膜サンプルで、「60℃/90%/12時間⇔10℃/25%/12時間」を1サイクルとするサイクル試験(30サイクル)を行い、サイクル試験後の塗膜の密着性試験をJIS K5600−5−6に準じて行った。剥離塗膜無しを◎、半分未満の剥離塗膜ありを○、半分以上剥離ありを×として示した。
<Method of evaluating adhesion of polyisocyanate composition to base coat>

Acrylic polyol (resin solid content concentration: 55%, hydroxyl value: 30 mg KOH / resin g) was coated on a mild steel plate so as to have a resin film thickness of 40 micrometers, left at room temperature for 30 minutes, and then acrylic polyol (a product name of Nuplex Resin, Setalux 1903, resin solids concentration 75%, hydroxyl value 150 mg KOH / resin g) and each of the (block) polyisocyanate compositions are blended at an isocyanate group / hydroxyl equivalent ratio of 1.0, and the paint viscosity is reduced with butyl acetate to a Ford cup. No. The coating composition adjusted to 20 seconds at 4 was applied so as to have a resin film thickness of 30 micrometers. After being left at room temperature for 15 minutes, it was cured in an oven at 140 ° C. for 30 minutes.
The obtained coating film sample was subjected to a cycle test (30 cycles) with one cycle of “60 ° C./90%/12 hours ℃ 10 ° C./25%/12 hours”, and the adhesion of the coating film after the cycle test The test was performed according to JIS K5600-5-6.無 し indicates that there was no release coating, ○ indicates that less than half of the release coating was present, and X indicates that half or more of the release coatings were present.

<貯蔵安定性評価方法>

上述のとおりである。
<Storage stability evaluation method>

As described above.

〔合成例(1−1)−10〕
NTIの合成

撹拌機、温度計、ガス導入管を取り付けた4ツ口フラスコ内に4−アミノメチル−1,8−オクタメチレンジアミン(以下トリアミンと称す)1530gをメタノー ル2250gに溶かし、これに35%濃塩酸2700mlを冷却しながら徐々に滴下した。減圧下にてメタノール及び水を除去して濃縮し、60℃/5mmHgにて 24時間乾燥したところ、白色固体のトリアミン塩酸塩が得られた。得られたトリアミン塩酸塩975gを微粉末としてo−ジクロルベンゼン7500gに懸濁させ、かきまぜながら反応液を昇温し、100℃に達した時点でホスゲンを300g/Hrの速度にて吹込みはじめ、さらに昇温を続けて180℃に保持し、12時間ホスゲンを吹込み続けた。減圧下にて溶存ホスゲン及び溶媒を留去したのち、真空蒸留することにより、沸点161〜163℃/1.2mmHgの無色透明な4−イソシアネートメチル−1,8−オクタメチレンジイソシアネート(以下「NTI」という」630gが得られた。このもののNCO含有率50.0重量%であった。
[Synthesis Example (1-1) -10]
Synthesis of NTI

In a four-necked flask equipped with a stirrer, a thermometer and a gas inlet tube, 1530 g of 4-aminomethyl-1,8-octamethylenediamine (hereinafter referred to as triamine) was dissolved in 2250 g of methanol, and 35% concentrated hydrochloric acid was added thereto. 2700 ml was gradually added dropwise while cooling. After removing methanol and water under reduced pressure, the mixture was concentrated, and dried at 60 ° C./5 mmHg for 24 hours to obtain triamine hydrochloride as a white solid. 975 g of the obtained triamine hydrochloride was suspended as fine powder in 7500 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 100 ° C., phosgene was introduced at a rate of 300 g / Hr. The temperature was further raised to 180 ° C., and phosgene was blown in for 12 hours. After distilling out the dissolved phosgene and the solvent under reduced pressure, vacuum distillation is performed to obtain colorless and transparent 4-isocyanatomethyl-1,8-octamethylene diisocyanate having a boiling point of 161 to 163 ° C./1.2 mmHg (hereinafter “NTI”). 630 g, which had an NCO content of 50.0% by weight.

〔実施例(1−1)−59〕
P(1−1)−38の合成

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてNTI500g、イソブタノール0.5gを仕込み、温度を80℃、2時間保持した。その後、イソシアヌレート化触媒ベンジルトリメチルアンモニウムヒドロキシドを50mg加え、イソシアヌレート化反応を行い、収率が3%になった時点でジブチルリン酸を添加後、反応液を120℃、15分保持し反応を停止した。反応停止時の反応液のNCO含有率は、48.8%であった。薄膜蒸留装置により得られた反応液から未反応のNTIを除去し、ポリイソシアネートP(1−1)−38を得た。得られたポリイソシアネートP(1−1)−38の物性(NCO含有率、官能価、ポリイソシアネート比率、3量体比率)並びに、ポリイソシアネート組成物の乾燥性評価結果および下地塗膜への密着性評価結果を表(1−1)−10に記載した。
[Example (1-1) -59]
Synthesis of P (1-1) -38

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, 500 g of NTI and 0.5 g of isobutanol were charged as monomers, and the temperature was maintained at 80 ° C. for 2 hours. Thereafter, 50 mg of benzyltrimethylammonium hydroxide, an isocyanurate-forming catalyst, was added, and an isocyanurate-forming reaction was performed. When the yield became 3%, dibutyl phosphoric acid was added, and the reaction solution was kept at 120 ° C. for 15 minutes to carry out the reaction. Stopped. When the reaction was stopped, the NCO content of the reaction solution was 48.8%. Unreacted NTI was removed from the reaction solution obtained by the thin film distillation apparatus to obtain polyisocyanate P (1-1) -38. Physical properties (NCO content, functionality, polyisocyanate ratio, trimer ratio) of the obtained polyisocyanate P (1-1) -38, evaluation results of dryness of the polyisocyanate composition, and adhesion to the undercoat film The results of the sex evaluation are shown in Table (1-1) -10.

〔実施例(1−1)−60〜(1−1)−65〕

表(1−1)−10のモノマー、開始剤、停止剤、転化率を記載の通りとした以外は実施例(1−1)−59と同様に実施した。また、得られたポリイソシアネート組成物の物性(NCO含有率、官能価、ポリイソシアネート比率、3量体比率)並びに、ポリイソシアネート組成物の乾燥性評価結果および下地塗膜への密着性評価結果を表(1−1)−10に記載した。
[Examples (1-1) -60 to (1-1) -65]

It carried out like Example (1-1) -59 except having set the monomer, the initiator, the terminator, and the conversion of Table (1-1) -10 as described. In addition, the physical properties (NCO content, functionality, polyisocyanate ratio, trimer ratio) of the obtained polyisocyanate composition, the results of evaluating the dryness of the polyisocyanate composition, and the results of evaluating the adhesion to the undercoat film are described. The results are shown in Table (1-1) -10.

〔比較例(1−1)−27〕

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてNTI500g、イソブタノール0.5gを仕込み、温度を80℃、2時間保持した。その後、イソシアヌレート化触媒ベンジルトリメチルアンモニウムヒドロキシドを50mg加え、イソシアヌレート化反応を行い、収率が38.5%になった時点でジブチルリン酸を添加後、反応液を120℃、15分保持し反応を停止し、ポリイソシアネートP(1−1)−45を得た。ポリイソシアネートP(1−1)−45のNCO含有率は、48.8%であった。得られたポリイソシアネートP(1−1)−45の物性(NCO含有率、官能価、ポリイソシアネート比率、3量体比率)並びに、ポリイソシアネート組成物の乾燥性評価結果および下地塗膜への密着性評価結果を表(1−1)−10に記載した。
[Comparative Example (1-1) -27]

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, 500 g of NTI and 0.5 g of isobutanol were charged as monomers, and the temperature was maintained at 80 ° C. for 2 hours. Thereafter, 50 mg of benzyltrimethylammonium hydroxide, an isocyanurate-forming catalyst, was added, and an isocyanurate-forming reaction was performed. When the yield reached 38.5%, dibutyl phosphoric acid was added, and the reaction solution was kept at 120 ° C. for 15 minutes. The reaction was stopped to obtain polyisocyanate P (1-1) -45. The NCO content of polyisocyanate P (1-1) -45 was 48.8%. Physical properties (NCO content, functionality, polyisocyanate ratio, trimer ratio) of the obtained polyisocyanate P (1-1) -45, the dryness evaluation result of the polyisocyanate composition, and adhesion to the undercoat film The results of the sex evaluation are shown in Table (1-1) -10.

〔比較例(1−1)−27〕

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてHDI500g、イソブタノール0.5gを仕込み、温度を80℃、2時間保持した。その後、イソシアヌレート化触媒ベンジルトリメチルアンモニウムヒドロキシドを50mg加え、イソシアヌレート化反応を行い、収率が40.0%になった時点でジブチルリン酸を添加後、反応液を120℃、15分保持し反応を停止し、ポリイソシアネートP(1−1)−46を得た。ポリイソシアネートP(1−1)−46のNCO含有率は、42.4%であった。得られたポリイソシアネートP(1−1)−46の物性(NCO含有率、官能価、ポリイソシアネート比率、3量体比率)並びに、ポリイソシアネート組成物の乾燥性評価結果および下地塗膜への密着性評価結果を表(1−1)−10に記載した。
[Comparative Example (1-1) -27]

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, 500 g of HDI and 0.5 g of isobutanol were charged as monomers, and the temperature was maintained at 80 ° C. for 2 hours. Thereafter, 50 mg of benzyltrimethylammonium hydroxide, an isocyanuration catalyst, was added, and an isocyanuration reaction was performed. When the yield reached 40.0%, dibutyl phosphoric acid was added, and the reaction solution was kept at 120 ° C. for 15 minutes. The reaction was stopped to obtain polyisocyanate P (1-1) -46. The NCO content of polyisocyanate P (1-1) -46 was 42.4%. Physical properties (NCO content, functionality, polyisocyanate ratio, trimer ratio) of the obtained polyisocyanate P (1-1) -46, evaluation results of dryness of the polyisocyanate composition, and adhesion to the undercoat film The results of the sex evaluation are shown in Table (1-1) -10.

〔比較例(1−1)−29〕

比較例(1−1)−28で得られた反応液を薄膜蒸発缶にフィードし、未反応のHDIを除去し、ポリイソシアネート組成物P(1−1)−47を得た。得られたポリイソシアネート組成物P(1−1)−47のNCO含有率は23.0質量%であった。
さらに、ポリイソシアネート組成物P(1−1)−47の物性(NCO含有率、官能価、ポリイソシアネート比率、3量体比率)並びに、ポリイソシアネート組成物の乾燥性評価結果および下地塗膜への密着性評価結果を表(1−1)−10に記載した。
[Comparative Example (1-1) -29]

The reaction solution obtained in Comparative Example (1-1) -28 was fed to a thin film evaporator to remove unreacted HDI, to obtain a polyisocyanate composition P (1-1) -47. The NCO content of the obtained polyisocyanate composition P (1-1) -47 was 23.0% by mass.
Furthermore, the physical properties (NCO content, functionality, polyisocyanate ratio, trimer ratio) of the polyisocyanate composition P (1-1) -47, the dryness evaluation results of the polyisocyanate composition, and the The results of the adhesion evaluation are shown in Table (1-1) -10.

Figure 0006664509
Figure 0006664509

表(1−1)−10中、略語で記載した各材料は以下の材料を意味する。
・BTMA−H:ベンジルトリメチルアンモニウムヒドロキシド
・BTMA−A:ベンジルトリメチルアンモニウムカプリン酸
・TMA−A:テトラメチルアンモニウムカプリン酸
・DBP:ジブチルリン酸
In Table (1-1) -10, each material described in abbreviations means the following materials.
・ BTMA-H: benzyltrimethylammonium hydroxide ・ BTMA-A: benzyltrimethylammonium capric acid ・ TMA-A: tetramethylammonium capric acid ・ DBP: dibutylphosphoric acid

〔実施例(1−1)−66〕

実施例(1−1)−59で得られたポリイソシアネート組成物P(1−1)−38:300gに2,2,4−トリメチルペンタンを0.03g添加した。
このポリイソシアネート組成物の各評価結果は実施例(1−1)−59と同様であり、貯蔵安定性評価結果は良好であった。
[Example (1-1) -66]

0.03 g of 2,2,4-trimethylpentane was added to 300 g of the polyisocyanate composition P (1-1) -38 obtained in Example (1-1) -59.
Each evaluation result of this polyisocyanate composition was the same as that of Example (1-1) -59, and the storage stability evaluation result was good.

〔実施例(1−1)−67〕

実施例(1−1)−59で得られたポリイソシアネート組成物P(1−1)−38:300gにヘキサデカンを0.03g添加した。
このポリイソシアネート組成物の各評価結果は実施例(1−1)−59と同様であり、貯蔵安定性評価結果は良好であった。
[Example (1-1) -67]

0.03 g of hexadecane was added to 300 g of the polyisocyanate composition P (1-1) -38 obtained in Example (1-1) -59.
Each evaluation result of this polyisocyanate composition was the same as that of Example (1-1) -59, and the storage stability evaluation result was good.

〔合成例(1−1)−11〕

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、NTIを20g仕込み、60℃に加熱し、メタノールを7.7g添加し、撹拌しながら4時間保持し、N−置換カルバミン酸エステルC(1−1)−7を得た。
[Synthesis Example (1-1) -11]

The inside of the four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen blowing tube was set to a nitrogen atmosphere, charged with 20 g of NTI, heated to 60 ° C., added with 7.7 g of methanol, and stirred for 4 hours. Retained to give N-substituted carbamic acid ester C (1-1) -7.

〔実施例(1−1)−68〕

実施例(1−1)−59で得られたポリイソシアネート組成物P(1−1)−38:300gにN−置換カルバミン酸エステルC(1−1)−7を0.03g添加した。
このポリイソシアネート組成物の各評価結果は実施例(1−1)−59と同様であり、貯蔵安定性評価結果は良好であった。
[Example (1-1) -68]

0.03 g of N-substituted carbamic acid ester C (1-1) -7 was added to 300 g of the polyisocyanate composition P (1-1) -38 obtained in Example (1-1) -59.
Each evaluation result of this polyisocyanate composition was the same as that of Example (1-1) -59, and the storage stability evaluation result was good.


実施例(1−2)−1〜(1−2)−21および比較例(1−2)−1〜(1−2)−15における、ポリイソシアネート組成物の物性は、以下のとおり測定した。なお、特に明記しない場合は、「部」および「%」は、「質量部」および質量%」を意味する。

The physical properties of the polyisocyanate composition in Examples (1-2) -1 to (1-2) -21 and Comparative examples (1-2) -1 to (1-2) -15 were measured as follows. . Unless otherwise specified, “parts” and “%” mean “parts by mass” and “% by mass”.

<粘度>

上述のとおりである。
<Viscosity>

As described above.

<NCO含有率>

上述のとおりである。
<NCO content>

As described above.

<計算NCO含有率>

上述の通りである。
<Calculated NCO content>

As described above.

<転化率>

上述のとおりである。
<Conversion rate>

As described above.

<イソシアヌレート構造とアロファネート構造とのモル比測定方法>

ポリイソシアネート組成物中のイソシアヌレート構造とアロファネート構造とは、以下の方法で求めた。
機器として、Bruker社製Biospin Avance600(商品名)を用いて、13C−NMRの測定により、イソシアヌレート構造およびアロファネート構造のモル比率を求めた。各官能基、構造のピーク位置に関してはNTIの物を示したが、トリイソシアネートによりピーク位置が変わるため、適宜、標準物質等を用いて校正した。
具体的な測定条件は以下の通りであった。
13C−NMR装置:AVANCE600(ブルカー社製)
クライオプローブ(ブルカー社製)
Cryo Probe
CPDUL
600S3−C/H−D−05Z
共鳴周波数:150MHz
濃度:60wt/vol%
シフト基準:CDCl(77ppm)
積算回数:10000回
パルスプログラム:zgpg30(プロトン完全デカップリング法、待ち時間2sec)
<Method of measuring molar ratio between isocyanurate structure and allophanate structure>

The isocyanurate structure and the allophanate structure in the polyisocyanate composition were determined by the following method.
The molar ratio of the isocyanurate structure and the allophanate structure was determined by 13 C-NMR measurement using a Biospin Avance 600 (trade name) manufactured by Bruker as an instrument. The peak position of each functional group and structure is shown for NTI. However, since the peak position is changed by triisocyanate, calibration was performed using a standard substance or the like as appropriate.
Specific measurement conditions were as follows.
13 C-NMR apparatus: AVANCE600 (manufactured by Bruker)
Cryoprobe (Bruker)
Cryo Probe
CPDUL
600S3-C / HD-05Z
Resonant frequency: 150MHz
Concentration: 60 wt / vol%
Shift standard: CDCl 3 (77 ppm)
Number of integration: 10000 times Pulse program: zgpg30 (proton complete decoupling method, waiting time 2 sec)

以下のシグナルの積分値を、測定している炭素の数で除し、その値から各モル比を求めた。
イソシアヌレート構造:148.6ppm付近:積分値÷3
アロファネート構造:154ppm付近:積分値÷1
次いで、得られたイソシアヌレート構造およびアロファネート構造のモル比率からイソシアヌレート構造とアロファネート構造とのモル比率を求めた。
The integral value of the following signal was divided by the number of measured carbons, and each molar ratio was determined from the value.
Isocyanurate structure: around 148.6 ppm: integral value ÷ 3
Allophanate structure: around 154 ppm: integrated value ÷ 1
Next, the molar ratio between the isocyanurate structure and the allophanate structure was determined from the obtained molar ratio between the isocyanurate structure and the allophanate structure.

<ポリイソシアネート組成物の低粘度化度(3)>

ポリイソシアネート混合物の粘度測定結果から、250mPa・s/25℃以下の場合を〇、250mPa・s/25℃超2000mPa・s/25℃以下の場合を△、2000mPa・s/25℃超の場合を×とした。
<Low viscosity of polyisocyanate composition (3)>

From the viscosity measurement results of the polyisocyanate mixture, the case where the temperature is 250 mPa · s / 25 ° C. or less is Δ, the case where the temperature is more than 250 mPa · s / 25 ° C. and 2000 mPa · s / 25 ° C. or less, and the case where the temperature is more than 2000 mPa · s / 25 ° C. X.

<ポリイソシアネート組成物のシリケート相溶性評価方法>

ポリイソシアネート組成物を5g、シリケート化合物「MKCシリケート MS58B30」(商品名、ブチル変性メチルシリケートの縮合物、三菱化学株式会社製)を1g、酢酸ブチルを4g配合し、十分に混合後、23℃の環境下で2時間静置した。静置後に、クリアであれば○、微白濁であれば△、白濁・沈殿等が生じていれば×とした。
<Method for evaluating silicate compatibility of polyisocyanate composition>

After mixing 5 g of the polyisocyanate composition, 1 g of the silicate compound “MKC silicate MS58B30” (trade name, condensate of butyl-modified methyl silicate, manufactured by Mitsubishi Chemical Corporation) and 4 g of butyl acetate, thoroughly mix the mixture at 23 ° C. It was left still for 2 hours under the environment. After standing, it was evaluated as ○ if clear, △ if slightly turbid, and × if turbid or precipitated.

<ポリイソシアネート組成物の乾燥性評価方法(1)>

上述のとおりである。
<Method for evaluating dryness of polyisocyanate composition (1)>

As described above.

<ポリイソシアネート組成物を用いた塗料組成物による塗膜のリコート密着性評価方法>
軟鋼鈑にアクリルポリオール(樹脂固形分濃度55%,水酸基価30mgKOH/樹脂g)とポリイソシアネート組成物とを水酸基とイソシアネート基との当量比率が1:1になるように配合後、酢酸ブチルで塗料粘度がフォードカップNo.4で20秒になるようにして塗料組成物を調製した。次いで、調製した塗料組成物を樹脂膜厚30マイクロメーターになるように塗装した。さらに、23℃、湿度50%の条件で72時間放置した。この塗膜の密着性試験をJIS K5600−5−6に準じて行った。剥離塗膜無しを◎、カット部に一部浮きありを○、半分以下だが剥離ありを△、半分以上剥離塗膜ありを×として示した。
<Method for evaluating recoat adhesion of coating film using coating composition using polyisocyanate composition>
Acrylic polyol (resin solids concentration 55%, hydroxyl value 30 mg KOH / resin g) and a polyisocyanate composition are mixed with mild steel plate so that the equivalent ratio of hydroxyl group to isocyanate group becomes 1: 1 and then coated with butyl acetate. The viscosity is Ford Cup No. The coating composition was prepared in such a manner as to be 20 seconds at 4. Next, the prepared coating composition was applied so as to have a resin film thickness of 30 micrometers. Further, it was left for 72 hours at 23 ° C. and 50% humidity. The adhesion test of this coating film was performed according to JIS K5600-5-6.無 し indicates no peeling coating film, ○ indicates partial floating in the cut portion, Δ indicates half or less peeling, and × indicates half or more peeling coating.

<ポリイソシアネート組成物を用いた塗料組成物による塗膜の耐擦り傷性試験評価方法>
アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ポリイソシアネート組成物の各々とを、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるようにして塗料組成物を調製した。調製した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、100℃×30分で硬化させて塗膜を得た。耐擦り傷性試験は、得られた塗膜に対し、ラビングテスター(太平理化工業社製)を用いて以下の方法で行った。

予め塗面の20°光沢を測定した。クレンザー(商品名マルゼンクレンザー、株式会社マルゼンクレンザー製)と水を3:2で混合し、研磨剤とした。研磨剤をラビングテスターのスポンジに約1g付着させ、200gの荷重をかけ試験板の塗膜を往復20回こすりつけた。
その後、塗面を流水で洗浄し、自然乾燥後、その塗面の20°光沢を測定した。次式によって20°光沢保持率を計算し、その値を耐擦り傷性の評価値とする。
20°光沢保持率=(試験後の20°光沢/試験前の20°光沢)×100
20°光沢保持率が90%以上であれば◎、90%未満から80%以上であれば○、80%未満から50%以上であれば△、50%未満であれば×とした。
<Evaluation method for abrasion resistance test of coating film by coating composition using polyisocyanate composition>
Acrylic polyol (trade name “SETALUX1753” of Nuplex Resin, resin concentration 70%, hydroxyl value 138.6 mgKOH / g) and each of the polyisocyanate compositions are blended at an isocyanate group / hydroxyl equivalent ratio of 1.0. Then, a coating composition was prepared with butyl acetate so as to have a solid content of 50% by mass. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 100 ° C. for 30 minutes to obtain a coating film. The abrasion resistance test was performed on the obtained coating film using a rubbing tester (manufactured by Taihei Rika Kogyo Co., Ltd.) by the following method.

The 20 ° gloss of the coated surface was measured in advance. A cleanser (trade name: Marzen Cleanser, manufactured by Maruzen Cleanser Co., Ltd.) and water were mixed at a ratio of 3: 2 to obtain an abrasive. About 1 g of the abrasive was adhered to a sponge of a rubbing tester, and a load of 200 g was applied thereto to rub the coating film of the test plate back and forth 20 times.
Thereafter, the coated surface was washed with running water and air-dried, and then the coated surface was measured for 20 ° gloss. The 20 ° gloss retention is calculated by the following equation, and the value is used as the evaluation value of the scratch resistance.
20 ° gloss retention = (20 ° gloss after test / 20 ° gloss before test) × 100
If the 20 ° gloss retention was 90% or more, it was rated as ◎, from less than 90% to 80% or more, ○, from less than 80% to 50% or more, and で あ れ ば if less than 50%.

<ブロックポリイソシアネート組成物の低粘度化度(1)>

上述のとおりである。
<Low viscosity degree of block polyisocyanate composition (1)>

As described above.

<ブロックポリイソシアネート組成物を用いた塗料組成物による塗膜の耐擦り傷性試験評価方法>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ブロックポリイソシアネート組成物の各々とを、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるようにして塗料組成物を調製した。調製した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、140℃×30分で硬化させて塗膜を得た。耐擦り傷性試験は、得られた塗膜に対し、ラビングテスター(太平理化工業社製)を用いて以下の方法で行った。
予め塗面の20°光沢を測定した。クレンザー(商品名マルゼンクレンザー、株式会社マルゼンクレンザー製)と水を3:2で混合し、研磨剤とした。研磨剤をラビングテスターのスポンジに約1g付着させ、200gの荷重をかけ試験板の塗膜を往復20回こすりつけた。
その後、塗面を流水で洗浄し、自然乾燥後、その塗面の20°光沢を測定した。次式によって20°光沢保持率を計算し、その値を耐擦り傷性の評価値とする。
20°光沢保持率=(試験後の20°光沢/試験前の20°光沢)×100
20°光沢保持率が90%以上であれば◎、90%未満から80%以上であれば○、80%未満から50%以上であれば△、50%未満であれば×とした。
<Evaluation method for abrasion resistance test of coating film by coating composition using blocked polyisocyanate composition>

Acrylic polyol (trade name “SETALUX1753” of Nuplex Resin, resin concentration: 70%, hydroxyl value: 138.6 mgKOH / g) and each of the blocked polyisocyanate compositions were obtained at an isocyanate group / hydroxyl equivalent ratio of 1.0. The coating composition was prepared by mixing and mixing with butyl acetate to a solid content of 50% by mass. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 140 ° C. for 30 minutes to obtain a coating film. The abrasion resistance test was performed on the obtained coating film using a rubbing tester (manufactured by Taihei Rika Kogyo Co., Ltd.) by the following method.
The 20 ° gloss of the coated surface was measured in advance. A cleanser (trade name: Marzen Cleanser, manufactured by Maruzen Cleanser Co., Ltd.) and water were mixed at a ratio of 3: 2 to obtain an abrasive. About 1 g of the abrasive was adhered to a sponge of a rubbing tester, and a load of 200 g was applied thereto to rub the coating film of the test plate back and forth 20 times.
Thereafter, the coated surface was washed with running water and air-dried, and then the coated surface was measured for 20 ° gloss. The 20 ° gloss retention is calculated by the following equation, and the value is used as the evaluation value of the scratch resistance.
20 ° gloss retention = (20 ° gloss after test / 20 ° gloss before test) × 100
If the 20 ° gloss retention was 90% or more, it was rated as ◎, from less than 90% to 80% or more, ○, from less than 80% to 50% or more, and で あ れ ば if less than 50%.

<親水性ポリイソシアネート組成物を用いた塗料組成物による塗膜の耐擦り傷性試験評価方法>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、親水性ポリイソシアネート組成物の各々とを、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるようにして塗料組成物を調製した。調製した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、100℃×30分で硬化させて塗膜を得た。耐擦り傷性試験は、得られた塗膜に対し、ラビングテスター(太平理化工業社製)を用いて以下の方法で行った。
予め塗面の20°光沢を測定した。クレンザー(商品名マルゼンクレンザー、株式会社マルゼンクレンザー製)と水を3:2で混合し、研磨剤とした。研磨剤をラビングテスターのスポンジに約1g付着させ、200gの荷重をかけ試験板の塗膜を往復20回こすりつけた。
その後、塗面を流水で洗浄し、自然乾燥後、その塗面の20°光沢を測定した。次式によって20°光沢保持率を計算し、その値を耐擦り傷性の評価値とする。
20°光沢保持率=(試験後の20°光沢/試験前の20°光沢)×100
20°光沢保持率が90%以上であれば◎、90%未満から80%以上であれば○、80%未満から50%以上であれば△、50%未満であれば×とした。
<Evaluation method for abrasion resistance test of coating film using coating composition using hydrophilic polyisocyanate composition>

An acrylic polyol (trade name “SETALUX1753” manufactured by Nuplex Resin, resin content concentration 70%, hydroxyl value 138.6 mgKOH / g) and each of the hydrophilic polyisocyanate compositions were mixed at an isocyanate group / hydroxyl equivalent ratio of 1.0. And a coating composition was prepared by adjusting the solid content to 50% by mass with butyl acetate. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 100 ° C. for 30 minutes to obtain a coating film. The abrasion resistance test was performed on the obtained coating film using a rubbing tester (manufactured by Taihei Rika Kogyo Co., Ltd.) by the following method.
The 20 ° gloss of the coated surface was measured in advance. A cleanser (trade name: Marzen Cleanser, manufactured by Maruzen Cleanser Co., Ltd.) and water were mixed at a ratio of 3: 2 to obtain an abrasive. About 1 g of the abrasive was adhered to a sponge of a rubbing tester, and a load of 200 g was applied thereto to rub the coating film of the test plate back and forth 20 times.
Thereafter, the coated surface was washed with running water and air-dried, and then the coated surface was measured for 20 ° gloss. The 20 ° gloss retention is calculated by the following equation, and the value is used as the evaluation value of the scratch resistance.
20 ° gloss retention = (20 ° gloss after test / 20 ° gloss before test) × 100
If the 20 ° gloss retention was 90% or more, it was rated as ◎, from less than 90% to 80% or more, ○, from less than 80% to 50% or more, and で あ れ ば if less than 50%.

<貯蔵安定性評価方法>

上述のとおりである。
<Storage stability evaluation method>

As described above.

〔合成例(1−2)−1〕
LTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内にエタノールアミン122.2g、o−ジクロロベンゼン100mL、トルエン420mLを入れ、氷冷化塩化水素ガスを導入し、エタノールアミンを塩酸塩に転換した。次に、リジン塩酸塩182.5gを添加し、反応液を80℃に加熱し、エタノールアミン塩酸塩を溶解させ、塩化水素ガスを導入してリジン二塩酸塩とした。さらに塩化水素ガスを20〜30mL/分で通過させ、反応液を116℃に加熱し、水が留出しなくなるまでこの温度を維持した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してリジンβ−アミノエチルエステル三塩酸塩165gを得た。このリジンβ−アミノエチルエステル三塩酸塩100gを微粉末としてo−ジクロロベンゼン1200mLに懸濁させ、かきまぜながら反応液を昇温し、120℃に達した時点でホスゲンを0.4モル/時間の速度にて吹込みはじめ、10時間保持し、その後150℃に昇温した。懸濁液はほとんど溶解した。冷却後ろ過し、減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点155〜157℃/0.022mmHgの無色透明なLTI80.4gが得られた。このもののNCO含有率は47.1重量%であった。
[Synthesis Example (1-2) -1]
Synthesis of LTI

122.2 g of ethanolamine, 100 mL of o-dichlorobenzene, and 420 mL of toluene were placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas introduction tube, and ice-cooled hydrogen chloride gas was introduced. Converted to salt. Next, 182.5 g of lysine hydrochloride was added, the reaction solution was heated to 80 ° C. to dissolve ethanolamine hydrochloride, and hydrogen chloride gas was introduced to obtain lysine dihydrochloride. Further, hydrogen chloride gas was passed at a rate of 20 to 30 mL / min, and the reaction solution was heated to 116 ° C. and maintained at this temperature until no more water distilled. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 165 g of lysine β-aminoethyl ester trihydrochloride. 100 g of this lysine β-aminoethyl ester trihydrochloride was suspended as fine powder in 1200 mL of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 120 ° C., phosgene was added at a rate of 0.4 mol / hour. Blowing was started at a constant speed and maintained for 10 hours, and then the temperature was raised to 150 ° C. The suspension almost dissolved. After cooling and filtration, the dissolved phosgene and the solvent were distilled off under reduced pressure, followed by vacuum distillation to obtain 80.4 g of a colorless and transparent LTI having a boiling point of 155 to 157 ° C / 0.022 mmHg. Its NCO content was 47.1% by weight.

〔合成例(1−2)−2〕
GTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内にグルタミン酸塩酸塩275g、エタノールアミン塩酸塩800g、トルエン150mlを入れ、塩化水素ガスを吹き込みながら、水が共沸しなくなるまで110℃にて24時間加熱還流した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してビス(2−アミノエチル)グルタメート三塩酸塩270gを得た。このビス(2−アミノエチル)グルタメート三塩酸塩85gをo−ジクロロベンゼン680gに懸濁させ、かきまぜながら反応液を昇温し、135℃に達した時点でホスゲンを0.8モル/時間の速度にて吹込みはじめ、13時間保持し、反応生成物をろ過後、減圧濃縮し、さらに薄膜蒸発缶で精製することにより、GTI、54gが得られた。NCO含有率は39.8重量%であった。
[Synthesis Example (1-2) -2]
Synthesis of GTI

275 g of glutamate hydrochloride, 800 g of ethanolamine hydrochloride, and 150 ml of toluene are placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas inlet tube. The mixture was heated at reflux at 24 ° C. for 24 hours. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 270 g of bis (2-aminoethyl) glutamate trihydrochloride. 85 g of this bis (2-aminoethyl) glutamate trihydrochloride was suspended in 680 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 135 ° C., phosgene was added at a rate of 0.8 mol / hour. The reaction product was filtered, concentrated under reduced pressure, and purified by a thin-film evaporator to obtain 54 g of GTI. The NCO content was 39.8% by weight.

〔合成例(1−2)−3〕
NTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内に4−アミノメチル−1,8−オクタメチレンジアミン(以下、「トリアミン」と称する場合がある。)1060gをメタノー ル1500gに溶かし、これに35%濃塩酸1800mLを冷却しながら徐々に滴下した。減圧下にてメタノールおよび水を除去して濃縮し、60℃/5mmHgにて 24時間乾燥したところ、白色固体のトリアミン塩酸塩が得られた。得られたトリアミン塩酸塩650gを微粉末としてo−ジクロルベンゼン5000gに懸濁させ、かきまぜながら反応液を昇温し、100℃に達した時点でホスゲンを200g/Hrの速度にて吹込みはじめ、さらに昇温を続けて180℃に保持し、12時間ホスゲンを吹込み続けた。減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点161〜163℃/1.2mmHgの無色透明な4−イソシアネートメチル−1,8−オクタンメチレンジイソシアネート(以下、「NTI」と称する場合がある。)420gが得られた。このもののNCO含有率50.0重量%であった。
[Synthesis Example (1-2) -3]
Synthesis of NTI

In a four-necked flask equipped with a stirrer, a thermometer, and a gas inlet tube, 1,060 g of 4-aminomethyl-1,8-octamethylenediamine (hereinafter sometimes referred to as "triamine") was added to 1500 g of methanol. The solution was dissolved, and 1800 mL of 35% concentrated hydrochloric acid was gradually added dropwise while cooling. After removing methanol and water under reduced pressure, the mixture was concentrated, and dried at 60 ° C./5 mmHg for 24 hours to obtain triamine hydrochloride as a white solid. The obtained triamine hydrochloride (650 g) was suspended as fine powder in 5000 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 100 ° C., phosgene was started to be blown at a rate of 200 g / Hr. Then, the temperature was further increased and maintained at 180 ° C., and phosgene was continuously blown in for 12 hours. After distilling out the dissolved phosgene and the solvent under reduced pressure, the residue was distilled under vacuum to obtain a colorless and transparent 4-isocyanatomethyl-1,8-octanemethylene diisocyanate having a boiling point of 161 to 163 ° C./1.2 mmHg (hereinafter referred to as “NTI”). ) Was obtained.) 420 g was obtained. Its NCO content was 50.0% by weight.

〔実施例(1−2)−1〕
P(1−2)−1の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてNTI100g、メタノール0.2gを仕込み、温度を80℃、2時間保持した。その後、イソシアヌレート化触媒ベンジルトリメチルアンモニウムヒドロキシドを0.01g加え、イソシアヌレート化反応を行い、転化率が50%になった時点でジブチルリン酸を添加し反応を停止した。反応液を更に120℃、15分保持し、ポリイソシアネート組成物P(1−2)−1を得た。ポリイソシアネート組成物P(1−2)−1の粘度は110mPa・s/25℃で、NCO含有率は41.0質量%であった。
さらに、ポリイソシアネート組成物P(1−2)−1の低粘度化度は○、シリケート相溶性は△、乾燥性は○、リコート密着性は◎、耐擦り傷性は○であった。これらの結果を表(1−2)−1に記載した。
[Example (1-2) -1]
Synthesis of P (1-2) -1

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, 100 g of NTI and 0.2 g of methanol were charged as monomers, and the temperature was maintained at 80 ° C. for 2 hours. Thereafter, 0.01 g of benzyltrimethylammonium hydroxide, an isocyanurate-forming catalyst, was added, and an isocyanurate-forming reaction was performed. When the conversion reached 50%, dibutylphosphoric acid was added to stop the reaction. The reaction liquid was further kept at 120 ° C. for 15 minutes to obtain a polyisocyanate composition P (1-2) -1. The viscosity of the polyisocyanate composition P (1-2) -1 was 110 mPa · s / 25 ° C., and the NCO content was 41.0% by mass.
Further, the degree of viscosity reduction of the polyisocyanate composition P (1-2) -1 was ○, the silicate compatibility was △, the drying property was ○, the recoat adhesion was ◎, and the scratch resistance was ○. These results are shown in Table (1-2) -1.

〔実施例(1−2)−2〜(1−2)−6、比較例(1−2)−1〜(1−2)−5)
P(1−2)−2〜P(1−2)−6、S(1−2)−1〜S(1−2)−5の合成

モノマー、触媒、停止剤、反応温度、および転化率を表(1−2)−1に記載の通りとした以外は実施例(1−2)−1と同様に実施した。また、得られたポリイソシアネート組成物の粘度、NCO含有率、低粘度化度、シリケート相溶性、乾燥性、リコート密着性、および耐擦り傷性、の評価結果を表(1−2)−1に記載した。
[Examples (1-2) -2 to (1-2) -6, Comparative Examples (1-2) -1 to (1-2) -5)
Synthesis of P (1-2) -2 to P (1-2) -6, S (1-2) -1 to S (1-2) -5

It carried out similarly to Example (1-2) -1 except having set the monomer, the catalyst, the terminator, the reaction temperature, and the conversion as described in Table (1-2) -1. In addition, Table (1-2) -1 shows the evaluation results of the viscosity, NCO content, degree of viscosity reduction, silicate compatibility, drying property, recoat adhesion, and abrasion resistance of the obtained polyisocyanate composition. Described.

Figure 0006664509
Figure 0006664509

上記表(1−2)−1中、略語で記載した触媒および停止剤はそれぞれ以下の材料を意味する。
BTMA−H:ベンジルトリメチルアンモニウムヒドロキシド。
BTMA−A:ベンジルトリメチルアンモニウムカプリン酸。
TMA−A:テトラメチルアンモニウムカプリン酸。
DBP:ジブチルリン酸。
DOP:ジ(2−エチルヘキシル)リン酸。
In the above Table (1-2) -1, the catalyst and the terminator described in the abbreviations respectively mean the following materials.
BTMA-H: benzyltrimethylammonium hydroxide.
BTMA-A: benzyltrimethylammonium capric acid.
TMA-A: tetramethylammonium capric acid.
DBP: dibutyl phosphoric acid.
DOP: di (2-ethylhexyl) phosphoric acid.

〔実施例(1−2)−7〕
ブロックポリイソシアネート組成物P(1−2)−7の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、ポリイソシアネート組成物P(1−2)−1を20g、酢酸ブチルを17.0g仕込み、温度を70℃に加熱した、その後、撹拌しながら3,5−ジメチルピラゾール19.7gを添加し、70℃を保持し、1時間撹拌した結果、NCO含有率0.0%となり、ブロックポリイソシアネート組成物を得た。得られたブロックポリイソシアネート組成物の粘度は520mPa・s/25℃で、計算NCO含有率は14.5質量%であった。 さらに、得られたブロックポリイソシアネート組成物の低粘度化度は○、耐擦り傷性は△であった。これらの結果を表(1−2)−2に記載した。
[Example (1-2) -7]
Synthesis of Block Polyisocyanate Composition P (1-2) -7

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and 20 g of the polyisocyanate composition P (1-2) -1 and 17.0 g of butyl acetate were charged. The temperature was heated to 70 ° C., and then 19.7 g of 3,5-dimethylpyrazole was added with stirring, the temperature was maintained at 70 ° C., and the mixture was stirred for 1 hour. A composition was obtained. The viscosity of the obtained blocked polyisocyanate composition was 520 mPa · s / 25 ° C., and the calculated NCO content was 14.5% by mass. Further, the degree of viscosity reduction of the obtained blocked polyisocyanate composition was ○, and the scratch resistance was △. These results are shown in Table (1-2) -2.

〔実施例(1−2)−8〜(1−2)−12、比較例(1−2)−6〜(1−2)−10〕
P(1−2)−8〜P(1−2)−12、S(1−2)−6〜S(1−2)−10の合成

3,5−ジメチルピラゾール添加量、酢酸ブチル添加量、および使用したポリイソシアネート組成物の種類を表(1−2)−2に記載の通りにした以外は実施例(1−2)−7と同様に実施した。また、得られたブロックポリイソシアネート組成物の粘度、計算NCO含有率、低粘度化度、耐擦り傷性の評価結果を表(1−2)−2に記載した。
[Examples (1-2) -8 to (1-2) -12, Comparative Examples (1-2) -6 to (1-2) -10]
Synthesis of P (1-2) -8 to P (1-2) -12, S (1-2) -6 to S (1-2) -10

Example (1-2) -7, except that 3,5-dimethylpyrazole addition amount, butyl acetate addition amount, and type of polyisocyanate composition used were as described in Table (1-2) -2. The same was done. In addition, Table (1-2) -2 shows the evaluation results of the viscosity, the calculated NCO content, the degree of viscosity reduction, and the scratch resistance of the obtained blocked polyisocyanate composition.

Figure 0006664509
Figure 0006664509

(実施例(1−2)−13)親水性ポリイソシアネート組成物(P(1−2)−13)の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−2)−4で得られたポリイソシアネート組成物P(1−2)−4を20g、親水性化合物であるポリエチレンオキサイド(日本乳化剤株式会社製、商品名「MPG−130」数平均分子量=420)8.2gを仕込み、100℃に加熱撹拌しながら4時間保持し、親水性ポリイソシアネートを得た。得られた親水性ポリイソシアネート組成物の粘度は240mPa・s/25℃で、NCO含有率は26.2質量%あった。
さらに、低粘度化度は○、耐擦り傷性は△であった。
(Example (1-2) -13) Synthesis of hydrophilic polyisocyanate composition (P (1-2) -13)

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate composition P (1-2) obtained in Example (1-2) -4 was obtained. -4 g (20 g) and 8.2 g of a hydrophilic compound polyethylene oxide (manufactured by Nippon Emulsifier Co., Ltd., trade name "MPG-130" number average molecular weight = 420), and the mixture was heated and stirred at 100 ° C. for 4 hours. A hydrophilic polyisocyanate was obtained. The viscosity of the obtained hydrophilic polyisocyanate composition was 240 mPa · s / 25 ° C., and the NCO content was 26.2% by mass.
Further, the degree of viscosity reduction was ○, and the scratch resistance was △.

〔実施例(1−2)−14〜(1−2)−18、比較例(1−2)−11〜(1−2)−15〕
P(1−2)−14〜P(1−2)−18、S(1−2)−11〜S(1−2)−15の合成

MPG−130添加量および使用したポリイソシアネート組成物の種類を表(1−2)−3に記載の通りにした以外は実施例(1−2)−13と同様に実施した。また、得られた親水性ポリイソシアネート組成物の粘度、NCO含有率、低粘度化度、耐擦り傷性の評価結果は表(1−2)−3に記載した。
[Examples (1-2) -14 to (1-2) -18, Comparative Examples (1-2) -11 to (1-2) -15]
Synthesis of P (1-2) -14 to P (1-2) -18, S (1-2) -11 to S (1-2) -15

The procedure was performed in the same manner as in Example (1-2) -13, except that the amount of MPG-130 added and the type of the polyisocyanate composition used were as described in Table (1-2) -3. The results of evaluation of the viscosity, NCO content, degree of viscosity reduction, and scratch resistance of the obtained hydrophilic polyisocyanate composition are shown in Table (1-2) -3.

Figure 0006664509
Figure 0006664509

〔実施例(1−2)−19〕

実施例(1−2)−1で得られたポリイソシアネート組成物P(1−2)−1:300gに2,2,4−トリメチルペンタンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、シリケート相溶性は△、乾燥性は○、リコート密着性は◎、耐擦り傷性は○、貯蔵安定性評価結果は良好であった。
[Example (1-2) -19]

0.03 g of 2,2,4-trimethylpentane was added to 300 g of the polyisocyanate composition P (1-2) -1 obtained in Example (1-2) -1.
The degree of viscosity reduction of this polyisocyanate composition was ○, silicate compatibility was △, drying was ○, recoat adhesion was ◎, abrasion resistance was ○, and storage stability evaluation results were good.

〔実施例(1−2)−20〕

実施例(1−2)−1で得られたポリイソシアネート組成物P(1−2)−1:300gにヘキサデカンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、シリケート相溶性は△、乾燥性は○、リコート密着性は◎、耐擦り傷性は○、貯蔵安定性評価結果は良好であった。
[Example (1-2) -20]

0.03 g of hexadecane was added to 300 g of the polyisocyanate composition P (1-2) -1 obtained in Example (1-2) -1.
The degree of viscosity reduction of this polyisocyanate composition was ○, silicate compatibility was △, drying was ○, recoat adhesion was ◎, abrasion resistance was ○, and storage stability evaluation results were good.

〔合成例(1−2)−4〕

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、NTIを20g仕込み、60℃に加熱し、メタノールを7.7g添加し、撹拌しながら4時間保持し、N−置換カルバミン酸エステルC(1−2)−1を得た。
[Synthesis Example (1-2) -4]

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet tube was set to a nitrogen atmosphere, 20 g of NTI was charged, heated to 60 ° C., 7.7 g of methanol was added, and stirring was continued. After holding for a time, an N-substituted carbamic acid ester C (1-2) -1 was obtained.

〔実施例(1−2)−21〕

実施例(1−2)−1で得られたポリイソシアネート組成物P(1−2)−1:300gにN−置換カルバミン酸エステルC(1−2)−1を0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、シリケート相溶性は△、乾燥性は○、リコート密着性は◎、耐擦り傷性は○、貯蔵安定性評価結果は良好であった。
[Example (1-2) -21]

0.03 g of N-substituted carbamic acid ester C (1-2) -1 was added to 300 g of the polyisocyanate composition P (1-2) -1 obtained in Example (1-2) -1.
The degree of viscosity reduction of this polyisocyanate composition was ○, silicate compatibility was △, drying was ○, recoat adhesion was ◎, abrasion resistance was ○, and storage stability evaluation results were good.

以上より、本発明を適用した各実施例のポリイソシアネート組成物は、低粘度であり、シリケート相溶性に優れ、本発明のポリイソシアネート組成物を使用した塗料組成物は、乾燥性、およびリコート密着性に優れる。また上記塗料組成物を用いて作製した塗膜は、良好な耐擦り傷性を持つ。さらに、本発明のポリイソシアネート組成物から作製した、ブロックポリイソシアネート組成物、または親水性ポリイソシアネート組成物は、低粘度であり、塗膜に良好な耐擦り傷性を付与する事が確認された。   As described above, the polyisocyanate compositions of the respective examples to which the present invention was applied had low viscosity and excellent silicate compatibility, and the coating compositions using the polyisocyanate compositions of the present invention exhibited drying properties and recoat adhesion. Excellent in nature. Further, a coating film produced using the above-mentioned coating composition has good scratch resistance. Furthermore, it was confirmed that the blocked polyisocyanate composition or the hydrophilic polyisocyanate composition produced from the polyisocyanate composition of the present invention had low viscosity and imparted good scratch resistance to the coating film.


実施例(1−3)−1〜(1−3)−16および比較例(1−3)−1〜(1−3)−6における、ポリイソシアネート組成物の物性は、以下のとおり測定した。なお、特に明記しない場合は、「部」および「%」は、「質量部」および質量%」を意味する。

The physical properties of the polyisocyanate composition in Examples (1-3) -1 to (1-3) -16 and Comparative Examples (1-3) -1 to (1-3) -6 were measured as follows. . Unless otherwise specified, “parts” and “%” mean “parts by mass” and “% by mass”.

<粘度>

上述のとおりである。
<Viscosity>

As described above.

<NCO含有率>

上述のとおりである。
<NCO content>

As described above.

<計算NCO含有率>

上述のとおりである。
<Calculated NCO content>

As described above.

<転化率>

上述のとおりである。
<Conversion rate>

As described above.

<イソシアヌレート構造に対するウレトジオン構造のモル比率定量方法>
Bruker(ブルカー)社製Biospin Avance600(商品名)を用いて、13C−NMRを測定し、ウレトジオン構造、およびイソシアヌレート構造のモル比率を求めた。

具体的な測定条件は以下の通りであった。
13C−NMR装置:AVANCE600(ブルカー社製)
クライオプローブ(ブルカー社製)
Cryo Probe
CPDUL
600S3−C/H−D−05Z
共鳴周波数:150MHz
濃度:60wt/vol%
シフト基準:CDCl(77ppm)
積算回数:10000回
パルスプログラム:zgpg30(プロトン完全デカップリング法、待ち時間2sec)
<Method for determining molar ratio of uretdione structure to isocyanurate structure>
Using Bruker (Bruker) Co. Biospin AVANCE 600 (trade name), was measured 13 C-NMR, it was determined molar ratio of uretdione structures, and isocyanurate structures.

Specific measurement conditions were as follows.
13 C-NMR apparatus: AVANCE600 (manufactured by Bruker)
Cryoprobe (Bruker)
Cryo Probe
CPDUL
600S3-C / HD-05Z
Resonant frequency: 150MHz
Concentration: 60 wt / vol%
Shift standard: CDCl 3 (77 ppm)
Number of integration: 10000 times Pulse program: zgpg30 (proton complete decoupling method, waiting time 2 sec)

以下のシグナルの積分値を、測定している炭素の数で除し、その値から各モル比率を求めた。
ウレトジオン構造:157.3ppm付近:積分値÷2
イソシアヌレート構造:148.5ppm付近:積分値÷3
次いで、得られたウレトジオン構造、およびイソシアヌレート構造のモル比率からイソシアヌレート構造に対するウレトジオン構造のモル比率を求めた。
The integral value of the following signal was divided by the number of measured carbons, and each molar ratio was determined from the value.
Uretdione structure: around 157.3 ppm: integral value ÷ 2
Isocyanurate structure: around 148.5 ppm: integral value ÷ 3
Next, the molar ratio of the uretdione structure to the isocyanurate structure was determined from the obtained uretdione structure and the molar ratio of the isocyanurate structure.

<ポリイソシアネート組成物の低粘度化度(1)>

上述のとおりである。
<Degree of viscosity reduction of polyisocyanate composition (1)>

As described above.

<ポリイソシアネート組成物の乾燥性評価方法(1)>

上述のとおりである。
<Method for evaluating dryness of polyisocyanate composition (1)>

As described above.

<ブロックポリイソシアネート組成物の低粘度化度(1)>

上述のとおりである。
<Low viscosity degree of block polyisocyanate composition (1)>

As described above.

<ブロックポリイソシアネート組成物の乾燥性評価方法(2)>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ブロックポリイソシアネート組成物の各々を、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるように調整した。調整した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、120℃30分で硬化させた。その塗膜上にコットンボール(直径2.5cm、高さ2.0cmの円柱型)を置き、その上に100gの分銅を60秒間置いた。その後、分銅とコットンを取り除き、塗膜上に残ったコットン跡を観察した。跡が全く見えなくなった場合を○、跡が見えた場合を×とした。
<Method for evaluating dryness of blocked polyisocyanate composition (2)>

Acrylic polyol (trade name “SETALUX1753” of Nuplex Resin, resin concentration 70%, hydroxyl value 138.6 mgKOH / g) and each of the blocked polyisocyanate compositions are mixed at an isocyanate group / hydroxyl equivalent ratio of 1.0. Then, the solid content was adjusted to 50% by mass with butyl acetate. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 120 ° C. for 30 minutes. A cotton ball (a cylindrical shape having a diameter of 2.5 cm and a height of 2.0 cm) was placed on the coating film, and a 100 g weight was placed thereon for 60 seconds. Thereafter, the weight and cotton were removed, and the trace of cotton remaining on the coating film was observed. The case where no trace was seen was evaluated as ○, and the case where a trace was seen was evaluated as ×.

<(ブロック)ポリイソシアネート組成物の下地塗膜への密着性評価方法>

上述のとおりである。
<Method of evaluating adhesion of (block) polyisocyanate composition to base coat>

As described above.

<親水性ポリイソシアネート組成物の低粘度化度(1)>

上述のとおりである。
<Low viscosity degree of hydrophilic polyisocyanate composition (1)>

As described above.

<親水性ポリイソシアネート組成物の乾燥性評価方法>

上述のとおりである。
<Method for evaluating dryness of hydrophilic polyisocyanate composition>

As described above.

<親水性ポリイソシアネート組成物の下地塗膜への密着性評価方法>

上述のとおりである。
<Method of evaluating adhesion of hydrophilic polyisocyanate composition to base coat>

As described above.

<貯蔵安定性評価方法>

上述のとおりである。
<Storage stability evaluation method>

As described above.

〔合成例(1−3)−1〕
NTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内に4−アミノメチル−1,8−オクタメチレンジアミン(以下、「トリアミン」と称する場合がある。)1060gをメタノー ル1500gに溶かし、これに35%濃塩酸1800mLを冷却しながら徐々に滴下した。減圧下にてメタノールおよび水を除去して濃縮し、60℃/5mmHgにて 24時間乾燥したところ、白色固体のトリアミン塩酸塩が得られた。得られたトリアミン塩酸塩650gを微粉末としてo−ジクロルベンゼン5000gに懸濁させ、かきまぜながら反応液を昇温し、100℃に達した時点でホスゲンを200g/Hrの速度にて吹込みはじめ、さらに昇温を続けて180℃に保持し、12時間ホスゲンを吹込み続けた。減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点161〜163℃/1.2mmHgの無色透明な4−イソシアネートメチル−1,8−オクタンメチレンジイソシアネート(以下、「NTI」と称する場合がある。)420gが得られた。このもののNCO含有率50.0重量%であった。
[Synthesis Example (1-3) -1]
Synthesis of NTI

In a four-necked flask equipped with a stirrer, a thermometer, and a gas inlet tube, 1,060 g of 4-aminomethyl-1,8-octamethylenediamine (hereinafter sometimes referred to as "triamine") was added to 1500 g of methanol. The solution was dissolved, and 1800 mL of 35% concentrated hydrochloric acid was gradually added dropwise while cooling. After removing methanol and water under reduced pressure, the mixture was concentrated, and dried at 60 ° C./5 mmHg for 24 hours to obtain triamine hydrochloride as a white solid. The obtained triamine hydrochloride (650 g) was suspended as fine powder in 5000 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 100 ° C., phosgene was started to be blown at a rate of 200 g / Hr. Then, the temperature was further increased and maintained at 180 ° C., and phosgene was continuously blown in for 12 hours. After distilling out the dissolved phosgene and the solvent under reduced pressure, the residue was distilled under vacuum to obtain a colorless and transparent 4-isocyanatomethyl-1,8-octanemethylene diisocyanate having a boiling point of 161 to 163 ° C./1.2 mmHg (hereinafter referred to as “NTI”). ) Was obtained.) 420 g was obtained. Its NCO content was 50.0% by weight.

〔合成例(1−3)−2〕
LTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内にエタノールアミン122.2g、o−ジクロロベンゼン100mL、トルエン420mLを入れ、氷冷化塩化水素ガスを導入し、エタノールアミンを塩酸塩に転換した。次に、リジン塩酸塩182.5gを添加し、反応液を80℃に加熱し、エタノールアミン塩酸塩を溶解させ、塩化水素ガスを導入してリジン二塩酸塩とした。さらに塩化水素ガスを20〜30mL/分で通過させ、反応液を116℃に加熱し、水が留出しなくなるまでこの温度を維持した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してリジンβ−アミノエチルエステル三塩酸塩165gを得た。このリジンβ−アミノエチルエステル三塩酸塩100gを微粉末としてo−ジクロロベンゼン1200mLに懸濁させ、かきまぜながら反応液を昇温し、120℃に達した時点でホスゲンを0.4モル/時間の速度にて吹込みはじめ、10時間保持し、その後150℃に昇温した。懸濁液はほとんど溶解した。冷却後ろ過し、減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点155〜157℃/0.022mmHgの無色透明なLTI80.4gが得られた。このもののNCO含有率は47.1重量%であった。
[Synthesis Example (1-3) -2]
Synthesis of LTI

122.2 g of ethanolamine, 100 mL of o-dichlorobenzene, and 420 mL of toluene were placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas introduction tube, and ice-cooled hydrogen chloride gas was introduced. Converted to salt. Next, 182.5 g of lysine hydrochloride was added, the reaction solution was heated to 80 ° C. to dissolve ethanolamine hydrochloride, and hydrogen chloride gas was introduced to obtain lysine dihydrochloride. Further, hydrogen chloride gas was passed at a rate of 20 to 30 mL / min, and the reaction solution was heated to 116 ° C. and maintained at this temperature until no more water distilled. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 165 g of lysine β-aminoethyl ester trihydrochloride. 100 g of this lysine β-aminoethyl ester trihydrochloride was suspended as fine powder in 1200 mL of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 120 ° C., phosgene was added at a rate of 0.4 mol / hour. Blowing was started at a constant speed and maintained for 10 hours, and then the temperature was raised to 150 ° C. The suspension almost dissolved. After cooling and filtration, the dissolved phosgene and the solvent were distilled off under reduced pressure, followed by vacuum distillation to obtain 80.4 g of a colorless and transparent LTI having a boiling point of 155 to 157 ° C / 0.022 mmHg. Its NCO content was 47.1% by weight.

〔合成例(1−3)−3〕
NTIのウレトジオン体(NTI−UD)の合成
撹拌機、温度計、冷却管を取り付けた四ッ口フラスコにNTIを50g仕込み、60℃、撹拌下、トリスジエチルアミノホスフィン0.5gを加えた。60℃で反応を進行させ、反応液のイソシアネート含有率および屈折率測定により、ポリイソシアネートへの転化率が43%になった時点で、リン酸0.4gを添加し反応を停止した。リン酸添加後、数分で失活触媒が結晶として析出した。その後、さらに60℃で1時間加熱を続け、常温に冷却した。析出物を濾過により除去し、NTIのウレトジオン体を得た。このもののNCO%含有率は42.0質量%であった。また、ウレトジオン構造体とイソシアヌレート構造体のモル比は、96:4であった。
[Synthesis Example (1-3) -3]
Synthesis of NTI Uretdione Form (NTI-UD) 50 g of NTI was charged into a four-necked flask equipped with a stirrer, thermometer, and cooling tube, and 0.5 g of tris-diethylaminophosphine was added at 60 ° C. with stirring. The reaction was allowed to proceed at 60 ° C., and when the conversion to polyisocyanate became 43% by measuring the isocyanate content and the refractive index of the reaction solution, 0.4 g of phosphoric acid was added to stop the reaction. A few minutes after phosphoric acid addition, the deactivated catalyst was precipitated as crystals. Thereafter, heating was further continued at 60 ° C. for 1 hour and cooled to room temperature. The precipitate was removed by filtration to obtain a uretdione of NTI. The NCO% content of this product was 42.0% by mass. The molar ratio between the uretdione structure and the isocyanurate structure was 96: 4.

〔合成例(1−3)−4〕
LTIのウレトジオン体(LTI−UD)の合成
撹拌機、温度計、冷却管を取り付けた四ッ口フラスコにLTIを50g仕込み、60℃、撹拌下、トリスジエチルアミノホスフィン0.5gを加えた。60℃で反応を進行させ、反応液のイソシアネート含有率および屈折率測定により、ポリイソシアネートへの転化率が43%になった時点で、リン酸0.4gを添加し反応を停止した。リン酸添加後、数分で失活触媒が結晶として析出した。その後、さらに60℃で1時間加熱を続け、常温に冷却した。析出物を濾過により除去し、NTIのウレトジオン体を得た。このもののNCO%含有率は39.5質量%であった。また、ウレトジオン構造体とイソシアヌレート構造体のモル比は、95:5であった。
[Synthesis Example (1-3) -4]
Synthesis of uretdione form of LTI (LTI-UD)
50 g of LTI was charged into a four-necked flask equipped with a stirrer, thermometer, and cooling tube, and 0.5 g of tris-diethylaminophosphine was added at 60 ° C. while stirring. The reaction was allowed to proceed at 60 ° C., and when the conversion to polyisocyanate became 43% by measuring the isocyanate content and the refractive index of the reaction solution, 0.4 g of phosphoric acid was added to stop the reaction. A few minutes after phosphoric acid addition, the deactivated catalyst was precipitated as crystals. Thereafter, heating was further continued at 60 ° C. for 1 hour and cooled to room temperature. The precipitate was removed by filtration to obtain a uretdione of NTI. The NCO% content of this product was 39.5% by mass. The molar ratio between the uretdione structure and the isocyanurate structure was 95: 5.

〔合成例(1−3)−5〕
HDIのウレトジオン体(HDI−UD)の合成
撹拌機、温度計、冷却管を取り付けた四ッ口フラスコにHDIを50g仕込み、60℃、撹拌下、トリスジエチルアミノホスフィン0.5gを加えた。60℃で反応を進行させ、反応液のイソシアネート含有率および屈折率測定により、ポリイソシアネートへの転化率が43%になった時点で、リン酸0.4gを添加し反応を停止した。リン酸添加後、数分で失活触媒が結晶として析出した。その後、さらに60℃で1時間加熱を続け、常温に冷却した。析出物を濾過により除去した後、流下式薄膜蒸発装置を用いて、1回目0.3Tor./155℃、2回目0.2tor./145℃で未反応のHDIを除去した。得られたウレトジオン体を含む生成物のイソシアネート基含有率は23.4%であった。また、この時のウレトジオン構造とイソシアヌレート構造のモル比は、97:3であった。
[Synthesis Example (1-3) -5]
Synthesis of uretdione derivative of HDI (HDI-UD) 50 g of HDI was charged into a four-necked flask equipped with a stirrer, a thermometer, and a cooling tube, and 0.5 g of tris-diethylaminophosphine was added at 60 ° C. with stirring. The reaction was allowed to proceed at 60 ° C., and when the conversion to polyisocyanate became 43% by measuring the isocyanate content and the refractive index of the reaction solution, 0.4 g of phosphoric acid was added to stop the reaction. A few minutes after phosphoric acid addition, the deactivated catalyst was precipitated as crystals. Thereafter, heating was further continued at 60 ° C. for 1 hour and cooled to room temperature. After the precipitates were removed by filtration, the first 0.3 torr. / 155 ° C, 0.2 tor. Unreacted HDI was removed at / 145 ° C. The resulting product containing the uretdione derivative had an isocyanate group content of 23.4%. At this time, the molar ratio of the uretdione structure to the isocyanurate structure was 97: 3.

〔実施例(1−3)−1〕
P(1−3)−1の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてNTI50gを仕込み、温度を80℃、2時間保持した。その後、i−ブタノールを95質量%含む触媒テトラメチルアンモニウムフルオリド四水和物を5mg加え、反応を行い、転化率が43%になった時点でジブチルリン酸を添加し反応を停止し、ポリイソシアネートP(1−3)−1を得た。得られたポリイソシアネートP(1−3)−1の粘度は59mPa・s/25℃で、NCO含有率は41.6質量%であった。
さらに、ポリイソシアネート組成物P(1−3)−1の低粘度化度は○、乾燥性評価結果は○、下地塗膜への密着性評価結果は○であった。これらの結果を表(1−3)−1に記載した。〔実施例(1−3)−5〕
P(1−3)−5の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてLTI50gを仕込み、温度を60℃、2時間保持した。その後、n−ブタノールを95質量%含む触媒テトラメチルアンモニウムフルオリド四水和物を5mg加え、反応を行い、転化率が42%になった時点でジブチルリン酸を添加し反応を停止し、ポリイソシアネートP(1−3)−5を得た。得られたポリイソシアネートP(1−3)−5の粘度は105mPa・s/25℃で、NCO含有率は39.5質量%であった。
さらに、ポリイソシアネート組成物P(1−3)−5の低粘度化度は○、乾燥性評価結果は◎、下地塗膜への密着性評価結果は○であった。これらの結果を表(1−3)−1に記載した。
[Example (1-3) -1]
Synthesis of P (1-3) -1

The inside of the four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen blowing tube was set to a nitrogen atmosphere, 50 g of NTI was charged as a monomer, and the temperature was maintained at 80 ° C. for 2 hours. Thereafter, 5 mg of a catalyst tetramethylammonium fluoride tetrahydrate containing 95% by mass of i-butanol was added, and the reaction was carried out. When the conversion reached 43%, dibutyl phosphoric acid was added to stop the reaction, and the polyisocyanate was added. P (1-3) -1 was obtained. The viscosity of the obtained polyisocyanate P (1-3) -1 was 59 mPa · s / 25 ° C., and the NCO content was 41.6% by mass.
Further, the degree of viscosity reduction of the polyisocyanate composition P (1-3) -1 was ○, the evaluation result of dryness was ○, and the evaluation result of adhesion to the undercoat film was ○. The results are shown in Table (1-3) -1. [Example (1-3) -5]
Synthesis of P (1-3) -5

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, 50 g of LTI was charged as a monomer, and the temperature was maintained at 60 ° C. for 2 hours. Thereafter, 5 mg of a catalyst tetramethylammonium fluoride tetrahydrate containing 95% by mass of n-butanol was added, and the reaction was carried out. When the conversion reached 42%, dibutyl phosphoric acid was added to stop the reaction. P (1-3) -5 was obtained. The viscosity of the obtained polyisocyanate P (1-3) -5 was 105 mPa · s / 25 ° C., and the NCO content was 39.5% by mass.
Further, the degree of viscosity reduction of the polyisocyanate composition P (1-3) -5 was ○, the evaluation result of dryness was ◎, and the evaluation result of adhesion to the undercoat film was ○. The results are shown in Table (1-3) -1.

〔実施例(1−3)−2〜(1−3)−4、(1−3)−6〜(1−3)−7、比較例(1−3)−1〜(1−3)−2〕
P(1−3)−2〜P(1−3)−4、P(1−3)−6〜P(1−3)−9の調整
P(1−3)−1、P(1−3)−5に対して、合成例(1−3)−3〜(1−3)−5に示したウレトジオン体、および、NTI、LTIを表(1−3)−1に示す割合で混合することで、各種ポリイソシアネート組成物を得た。

そのポリイソシアネート組成物の物性は、表(1−3)−1に記載の通りであった。
[Examples (1-3) -2 to (1-3) -4, (1-3) -6 to (1-3) -7, Comparative examples (1-3) -1 to (1-3) -2]
Adjustment of P (1-3) -2 to P (1-3) -4, P (1-3) -6 to P (1-3) -9 P (1-3) -1, P (1- 3) -5, the uretdione derivative shown in Synthesis Examples (1-3) -3 to (1-3) -5, and NTI and LTI were mixed at the ratio shown in Table (1-3) -1. Thus, various polyisocyanate compositions were obtained.

Physical properties of the polyisocyanate composition were as described in Table (1-3) -1.

Figure 0006664509
Figure 0006664509

〔実施例(1−3)−8〕
ブロックポリイソシアネート組成物の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−3)−1で得られたポリイソシアネート組成物P(1−3)−1を20g、酢酸ブチルを16.2g仕込み、温度を70℃に加熱した、その後、撹拌しながら3,5−ジメチルピラゾール19.6gを添加し、70℃を保持し、1時間撹拌した結果、NCO含有率0.0%となり、ブロックポリイソシアネート組成物を得た。得られたブロックポリイソシアネート組成物の計算NCO含有率は14.9質量%であった。
さらに、得られたブロックポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、下地塗膜への密着性評価結果は○であった。これらの結果を表(1−3)−2に記載した。
[Example (1-3) -8]
Synthesis of blocked polyisocyanate composition

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate composition P (1-3) obtained in Example (1-3) -1 was obtained. 20 g of -1 and 16.2 g of butyl acetate were charged, and the temperature was heated to 70 ° C. Thereafter, 19.6 g of 3,5-dimethylpyrazole was added with stirring, the temperature was maintained at 70 ° C, and the mixture was stirred for 1 hour. , NCO content became 0.0%, and a blocked polyisocyanate composition was obtained. The calculated NCO content of the obtained blocked polyisocyanate composition was 14.9% by mass.
Further, the degree of viscosity reduction of the obtained blocked polyisocyanate composition was ○, the evaluation result of dryness was ○, and the evaluation result of adhesion to the undercoat film was ○. These results are shown in Table (1-3) -2.

〔実施例(1−3)−9〜(1−3)−10、比較例(1−3)−3〜(1−3)−4〕
ブロックポリイソシアネート組成物の合成

3,5−ジメチルピラゾール添加量、酢酸ブチル添加量、およびポリイソシアネート組成物の種類を表(1−3)−2に記載の通りにした以外は実施例(1−3)−8と同様に実施した。また、得られたブロックポリイソシアネート組成物の計算NCO含有率、低粘度化度、乾燥性評価結果、下地塗膜への密着性評価結果を表(1−3)−2に記載した。
[Examples (1-3) -9 to (1-3) -10, Comparative Examples (1-3) -3 to (1-3) -4]
Synthesis of blocked polyisocyanate composition

Same as Example (1-3) -8, except that 3,5-dimethylpyrazole addition amount, butyl acetate addition amount, and type of polyisocyanate composition were as described in Table (1-3) -2. Carried out. Table (1-3) -2 shows the calculated NCO content of the obtained blocked polyisocyanate composition, the degree of viscosity reduction, the results of evaluation of dryness, and the results of evaluation of adhesion to a base coating film.

Figure 0006664509
Figure 0006664509

〔実施例(1−3)−11)
親水性ポリイソシアネート組成物の合成

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−3)−1で得られたポリイソシアネート組成物P(1−3)−1を20g、親水性化合物であるポリエチレンオキサイド(日本乳化剤株式会社製、商品名「MPG−130」数平均分子量=420)8.4gを仕込み、100℃に加熱撹拌しながら4時間保持し、親水性ポリイソシアネートを得た。得られた親水性ポリイソシアネート組成物のNCO含有率は29.3質量%あった。
さらに、低粘度化度は○、乾燥性評価結果は○、下地塗膜への密着性評価結果は○であった。
[Example (1-3) -11]
Synthesis of hydrophilic polyisocyanate composition

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate composition P (1-3)-obtained in Example (1-3) -1 was obtained. 1 g, and 8.4 g of a hydrophilic compound polyethylene oxide (manufactured by Nippon Emulsifier Co., Ltd., trade name: “MPG-130” number average molecular weight = 420), and the mixture was heated and stirred at 100 ° C. for 4 hours. A reactive polyisocyanate was obtained. The NCO content of the obtained hydrophilic polyisocyanate composition was 29.3% by mass.
Further, the degree of viscosity reduction was ○, the evaluation result of dryness was ○, and the evaluation result of adhesion to the undercoat film was ○.

〔実施例(1−3)−12〜(1−3)−13、比較例(1−3)−5〜(1−3)−6)〕
親水性ポリイソシアネート組成物の合成

MPG−130添加量およびポリイソシアネート組成物の種類を表(1−3)−3に記載の通りにした以外は実施例(1−3)−11と同様に実施した。また、得られた親水性ポリイソシアネート組成物のNCO含有率、低粘度化度、乾燥性評価結果、下地塗膜への密着性評価結果は表(1−3)−3に記載した。
[Examples (1-3) -12 to (1-3) -13, Comparative Examples (1-3) -5 to (1-3) -6)]
Synthesis of hydrophilic polyisocyanate composition

It carried out like Example (1-3) -11 except having added the MPG-130 addition amount and the kind of polyisocyanate composition as described in Table (1-3) -3. In addition, the NCO content, the degree of viscosity reduction, the evaluation result of dryness, and the evaluation result of adhesion to the undercoat film of the obtained hydrophilic polyisocyanate composition are shown in Table (1-3) -3.

Figure 0006664509
Figure 0006664509

〔実施例(1−3)−14〕

実施例(1−3)−3で得られたポリイソシアネート組成物P(1−3)−3:300gに2,2,4−トリメチルペンタンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性は○、下地塗膜への密着性は○、貯蔵安定性評価結果は良好であった。
[Example (1-3) -14]

0.03 g of 2,2,4-trimethylpentane was added to 300 g of the polyisocyanate composition P (1-3) -3 obtained in Example (1-3) -3.
The degree of viscosity reduction of the polyisocyanate composition was ○, the drying property was ○, the adhesion to the undercoat film was ○, and the storage stability evaluation result was good.

〔実施例(1−3)−15〕

実施例(1−3)−3で得られたポリイソシアネート組成物P(1−3)−3:300gにヘキサデカンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性は○、下地塗膜への密着性は○、貯蔵安定性評価結果は良好であった。
[Example (1-3) -15]

0.03 g of hexadecane was added to 300 g of the polyisocyanate composition P (1-3) -3 obtained in Example (1-3) -3.
The degree of viscosity reduction of the polyisocyanate composition was ○, the drying property was ○, the adhesion to the undercoat film was ○, and the storage stability evaluation result was good.

〔合成例(1−3)−6〕

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、NTIを20g仕込み、60℃に加熱し、メタノールを7.7g添加し、撹拌しながら4時間保持し、N−置換カルバミン酸エステルC(1−3)−1を得た。
[Synthesis Example (1-3) -6]

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet tube was set to a nitrogen atmosphere, 20 g of NTI was charged, heated to 60 ° C., 7.7 g of methanol was added, and stirring was continued. After holding for a while, an N-substituted carbamic acid ester C (1-3) -1 was obtained.

〔実施例(1−3)−16〕

実施例(1−3)−3で得られたポリイソシアネート組成物P(1−3)−3:300gにN−置換カルバミン酸エステルC(1−3)−1を0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性は○、下地塗膜への密着性は○、貯蔵安定性評価結果は良好であった。
[Example (1-3) -16]

0.03 g of N-substituted carbamic acid ester C (1-3) -1 was added to 300 g of the polyisocyanate composition P (1-3) -3 obtained in Example (1-3) -3.
The degree of viscosity reduction of the polyisocyanate composition was ○, the drying property was ○, the adhesion to the undercoat film was ○, and the storage stability evaluation result was good.

以上より、本発明を適用した各実施例のポリイソシアネート組成物は、低粘度であり、本発明のポリイソシアネート組成物を使用した塗料組成物は、乾燥性、下地塗膜への密着性が良好である。さらに、本発明のポリイソシアネート組成物から作製した、ブロックポリイソシアネート組成物、または親水性ポリイソシアネート組成物は、低粘度であり、該組成物を使用した塗料組成物は、乾燥性、下地塗膜への密着性が良好であることが確認された。   As described above, the polyisocyanate compositions of the examples to which the present invention is applied have low viscosity, and the coating compositions using the polyisocyanate compositions of the present invention have good drying properties and good adhesion to the undercoat film. It is. Furthermore, the block polyisocyanate composition or the hydrophilic polyisocyanate composition prepared from the polyisocyanate composition of the present invention has a low viscosity, and the coating composition using the composition has a drying property, It was confirmed that the adhesiveness to the film was good.


実施例(1−4)−1〜(1−4)−16および比較例(1−4)−1〜(1−4)−10における、ポリイソシアネート組成物の物性は、以下のとおり測定した。なお、特に明記しない場合は、「部」および「%」は、「質量部」および質量%」を意味する。

Physical properties of the polyisocyanate composition in Examples (1-4) -1 to (1-4) -16 and Comparative Examples (1-4) -1 to (1-4) -10 were measured as follows. . Unless otherwise specified, “parts” and “%” mean “parts by mass” and “% by mass”.

<粘度>

上述のとおりである。
5rpm (1280mPa・s〜2560mPa・sの場合)
<Viscosity>

As described above.
5 rpm (for 1280 mPa · s to 2560 mPa · s)

<NCO含有率>

上述のとおりである。
<NCO content>

As described above.

<計算NCO含有率>

上述のとおりである。
<Calculated NCO content>

As described above.

<転化率>

上述のとおりである。
<Conversion rate>

As described above.

<ポリイソシアネート組成物の低粘度化度(4)>

ポリイソシアネート混合物の粘度測定結果から、250mPa・s/25℃未満の場合を〇、350mPa・s/25℃以上2000mPa・s/25℃未満の場合を△、2000mPa・s/25℃以上の場合を×とした。
<Low viscosity of polyisocyanate composition (4)>

From the viscosity measurement results of the polyisocyanate mixture, the case where the temperature is less than 250 mPa · s / 25 ° C is Δ, the case where the temperature is 350 mPa · s / 25 ° C or more and less than 2000 mPa · s / 25 ° C, and the case where the temperature is 2000 mPa · s / 25 ° C or more. X.

<ポリイソシアネート組成物の乾燥性評価方法(3)>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ポリイソシアネート組成物の各々を、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるように調整した。調整した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、23℃/50%RHで硬化させた。特定時間経過後、その塗膜上にコットンボール(直径2.5cm、高さ2.0cmの円柱型)を置き、その上に100gの分銅を60秒間置いた。その後、分銅とコットンを取り除き、塗膜上に残ったコットン跡を観察した。跡が全く見えなくなった時間が7時間以内であった場合を◎、7時間超〜8時間以内であった場合を〇、8時間超〜10時間以内であった場合を△、10時間超であった場合を×とした。
<Method for evaluating dryness of polyisocyanate composition (3)>

An acrylic polyol (trade name “SETALUX1753” of Nuplex Resin, resin concentration 70%, hydroxyl value 138.6 mgKOH / g) and each of the polyisocyanate compositions were blended at an equivalent ratio of isocyanate group / hydroxyl group of 1.0. And butyl acetate to adjust the solid content to 50% by mass. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 23 ° C./50% RH. After a lapse of a specific time, a cotton ball (a cylindrical shape having a diameter of 2.5 cm and a height of 2.0 cm) was placed on the coating film, and a weight of 100 g was placed thereon for 60 seconds. Thereafter, the weight and cotton were removed, and the trace of cotton remaining on the coating film was observed. ◎ when the time when the mark disappeared completely was within 7 hours, Δ when it was more than 7 hours to 8 hours, Δ when it was more than 8 hours to less than 10 hours, and more than 10 hours. When there was, it was evaluated as x.

<ポリイソシアネート組成物と1級アルコールとの反応速度>

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、旭化成社製デュラネート(登録商標)TKA−100を50gと2−エチルヘキサノール33.6g、酢酸ブチル83.6gを仕込み、70℃に昇温する。70℃到達時からのNCO含有率を測定し、NCO基の減少速度(=反応速度)を求める(A)。さらに、別の撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、ポリイソシアネート組成物のNCO基と2−エチルヘキサノールのOH基のモル比が1となるように混合し、ポリイソシアネート組成物と2−エチルヘキサノールとを合わせた質量の酢酸ブチルを加え、70℃に昇温する。70℃到達時からのNCO含有率を測定し、NCO基の減少速度(=反応速度)を求める(B)。
(B)/(A)が5以上13未満の場合を◎、1超5未満または13超15未満の場合を○、1以下または15以上の場合を×とした。
<Reaction rate between polyisocyanate composition and primary alcohol>

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and 50 g of Duranate (registered trademark) TKA-100 manufactured by Asahi Kasei Corporation, 33.6 g of 2-ethylhexanol, and butyl acetate were used. 83.6 g is charged and the temperature is raised to 70 ° C. The NCO content after reaching 70 ° C. is measured, and the rate of decrease in NCO groups (= reaction rate) is determined (A). Further, the inside of the four-necked flask equipped with another stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the molar ratio of the NCO group of the polyisocyanate composition to the OH group of 2-ethylhexanol was 1 Then, butyl acetate having a combined mass of the polyisocyanate composition and 2-ethylhexanol is added, and the temperature is raised to 70 ° C. The NCO content after reaching 70 ° C. is measured, and the rate of reduction of NCO groups (= reaction rate) is determined (B).
The case where (B) / (A) was 5 or more and less than 13 was evaluated as ◎, the case where more than 1 and less than 5 or more than 13 and less than 15 was evaluated as ○, and the case where 1 or less or 15 or more was evaluated as x.

<ブロックポリイソシアネート組成物の低粘度化度(1)>

上述のとおりである。
<Low viscosity degree of block polyisocyanate composition (1)>

As described above.

<ブロックポリイソシアネート組成物の乾燥性評価方法(1)>

上述のとおりである。
<Method for evaluating dryness of blocked polyisocyanate composition (1)>

As described above.

<親水性ポリイソシアネート組成物の低粘度化度(1)>

上述のとおりである。
<Low viscosity degree of hydrophilic polyisocyanate composition (1)>

As described above.

<親水性ポリイソシアネート組成物の乾燥性評価方法>

上述のとおりである。
<Method for evaluating dryness of hydrophilic polyisocyanate composition>

As described above.

<極性ポリオールとの相溶性評価方法>

ポリカーボネートジオールである旭化成社製デュラノール(登録商標)T−5652と、ポリイソシアネート組成物の各々を、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるように調整した。調整した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、80℃30分で硬化さ、塗膜のヘイズ値を以下の機器で測定した。
装置:スガ試験機社製 直読ヘイズコンピューター「HGM−2DP」(商品名)
標準板:厚さ2mmガラス板
塗膜のヘイズ値が0.0の場合を○、0.1以上0.5未満の場合を△、0.5以上の場合を×とした。
<Compatibility evaluation method with polar polyol>

Asahi Kasei Corporation's Duranol (registered trademark) T-5652, which is a polycarbonate diol, and each of the polyisocyanate compositions are blended at an equivalent ratio of isocyanate group / hydroxyl group of 1.0 so that butyl acetate has a solid content of 50% by mass. Was adjusted. After the prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, it was cured at 80 ° C. for 30 minutes, and the haze value of the coating film was measured by the following equipment.
Apparatus: Direct reading haze computer "HGM-2DP" (trade name) manufactured by Suga Test Instruments Co., Ltd.
Standard plate: The case where the haze value of the coating film of the glass plate having a thickness of 2 mm was 0.0 was 0.0, the case where the haze value was 0.1 or more and less than 0.5 was Δ, and the case where it was 0.5 or more was X.

<貯蔵安定性評価方法>重複

上述のとおりである。
<Storage stability evaluation method>

As described above.

〔合成例(1−4)−1〕
LTIの合成

撹拌機、温度計、ガス導入管を取り付けた4ツ口フラスコ内にエタノールアミン122.2g、o−ジクロロベンゼン100ml、トルエン420mlを入れ、氷冷化塩化水素ガスを導入し、エタノールアミンを塩酸塩に転換した。次に、リジン塩酸塩182.5gを添加し、反応液を80℃に加熱し、エタノールアミン塩酸塩を溶解させ、塩化水素ガスを導入してリジン二塩酸塩とした。さらに塩化水素ガスを20から30ml/分で通過させ、反応液を116℃に加熱し、水が留出しなくなるまでこの温度を維持した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してリジンβ−アミノエチルエステル三塩酸塩165gを得た。このリジンβ−アミノエチルエステル三塩酸塩100gを微粉末としてo−ジクロロベンゼン1200mlに懸濁させ、かきまぜながら反応液を昇温し、120℃に達した時点でホスゲンを0.4モル/時間の速度にて吹込みはじめ、10時間保持し、その後150℃に昇温した。懸濁液はほとんど溶解した。冷却後ろ過し、減圧下にて溶存ホスゲン及び溶媒を留去したのち、真空蒸留することにより、沸点155〜157℃/0.022mmHgの無色透明なLTI、80.4gが得られた。このもののNCO含有率は47.1重量%であった。
[Synthesis Example (1-4) -1]
Synthesis of LTI

122.2 g of ethanolamine, 100 ml of o-dichlorobenzene, and 420 ml of toluene were placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas introduction tube, and ice-cooled hydrogen chloride gas was introduced. Turned into Next, 182.5 g of lysine hydrochloride was added, the reaction solution was heated to 80 ° C. to dissolve ethanolamine hydrochloride, and hydrogen chloride gas was introduced to obtain lysine dihydrochloride. Further, hydrogen chloride gas was passed at a rate of 20 to 30 ml / min, and the reaction solution was heated to 116 ° C. and maintained at this temperature until no more water distilled. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 165 g of lysine β-aminoethyl ester trihydrochloride. 100 g of this lysine β-aminoethyl ester trihydrochloride was suspended as fine powder in 1200 ml of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 120 ° C., phosgene was added at a rate of 0.4 mol / hour. Blowing was started at a constant speed and maintained for 10 hours, and then the temperature was raised to 150 ° C. The suspension almost dissolved. After cooling, the mixture was filtered, the dissolved phosgene and the solvent were distilled off under reduced pressure, and then vacuum distillation was performed to obtain 80.4 g of a colorless and transparent LTI having a boiling point of 155 to 157 ° C / 0.022 mmHg. Its NCO content was 47.1% by weight.

〔合成例(1−4)−2〕
GTIの合成

撹拌機、温度計、ガス導入管を取り付けた4ツ口フラスコ内にグルタミン酸塩酸塩275g、エタノールアミン塩酸塩800g、トルエン150mlを入れ、塩化水素ガスを吹き込みながら、水が共沸しなくなるまで110℃にて24時間加熱還流した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してビス(2−アミノエチル)グルタメート三塩酸塩270gを得た。このビス(2−アミノエチル)グルタメート三塩酸塩85gをo−ジクロロベンゼン680gに懸濁させ、かきまぜながら反応液を昇温し、135℃に達した時点でホスゲンを0.8モル/時間の速度にて吹込みはじめ、13時間保持し、反応生成物をろ過後、減圧濃縮し、さらに薄膜蒸発缶で精製することにより、GTI、54gが得られた。NCO含有率は39.8重量%であった。
[Synthesis Example (1-4) -2]
Synthesis of GTI

275 g of glutamate hydrochloride, 800 g of ethanolamine hydrochloride, and 150 ml of toluene are placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas inlet tube. At reflux for 24 hours. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 270 g of bis (2-aminoethyl) glutamate trihydrochloride. 85 g of this bis (2-aminoethyl) glutamate trihydrochloride was suspended in 680 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 135 ° C., phosgene was added at a rate of 0.8 mol / hour. The reaction product was filtered, concentrated under reduced pressure, and purified by a thin-film evaporator to obtain 54 g of GTI. The NCO content was 39.8% by weight.

〔合成例(1−4)−3〕
NTIの合成

撹拌機、温度計、ガス導入管を取り付けた4ツ口フラスコ内に4−アミノメチル−1,8−オクタメチレンジアミン(以下トリアミンと称す)1060gをメタノー ル1500gに溶かし、これに35%濃塩酸1800mlを冷却しながら徐々に滴下した。減圧下にてメタノール及び水を除去して濃縮し、60℃/5mmHgにて 24時間乾燥したところ、白色固体のトリアミン塩酸塩が得られた。得られたトリアミン塩酸塩650gを微粉末としてo−ジクロルベンゼン5000gに懸濁させ、かきまぜながら反応液を昇温し、100℃に達した時点でホスゲンを200g/Hrの速度にて吹込みはじめ、さらに昇温を続けて180℃に保持し、12時間ホスゲンを吹込み続けた。減圧下にて溶存ホスゲン及び溶媒を留去したのち、真空蒸留することにより、沸点161〜163℃/1.2mmHgの無色透明なNTI、420gが得られた。このもののNCO含有率50.0重量%であった。
[Synthesis Example (1-4) -3]
Synthesis of NTI

In a four-necked flask equipped with a stirrer, thermometer and gas inlet tube, 1,060 g of 4-aminomethyl-1,8-octamethylenediamine (hereinafter referred to as triamine) was dissolved in 1500 g of methanol, and 35% concentrated hydrochloric acid was added thereto. 1800 ml was gradually added dropwise while cooling. After removing methanol and water under reduced pressure, the mixture was concentrated, and dried at 60 ° C./5 mmHg for 24 hours to obtain triamine hydrochloride as a white solid. The obtained triamine hydrochloride (650 g) was suspended as fine powder in 5000 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 100 ° C., phosgene was started to be blown at a rate of 200 g / Hr. Then, the temperature was further increased and maintained at 180 ° C., and phosgene was continuously blown in for 12 hours. After distilling out the dissolved phosgene and the solvent under reduced pressure, vacuum distillation was performed to obtain 420 g of colorless and transparent NTI having a boiling point of 161 to 163 ° C / 1.2 mmHg. Its NCO content was 50.0% by weight.

〔実施例(1−4)−1〕
P(1−4)−1の合成

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてLTI50g、イソブタノール0.05gを仕込み、温度を80℃、2時間保持した。その後、イソシアヌレート化触媒ベンジルトリメチルアンモニウムヒドロキシドを5mg加え、イソシアヌレート化反応を行い、転化率が12%になった時点でジブチルリン酸を添加し反応を停止した。反応液を更に120℃、15分保持し、ポリイソシアネート組成物P(1−4)−1を得た。ポリイソシアネート組成物P(1−4)−1の粘度は37mPa・s/25℃で、NCO含有率は45.4質量%であった。
さらに、ポリイソシアネート組成物P(1−4)−1の低粘度化度は○、乾燥性評価結果は△、ポリイソシアネート組成物と1級アルコールの反応速度結果は○、極性ポリオールとの相溶性評価結果は○であった。これらの結果を表(1−4)−1に記載した。
[Example (1-4) -1]
Synthesis of P (1-4) -1

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, 50 g of LTI and 0.05 g of isobutanol were charged as monomers, and the temperature was maintained at 80 ° C. for 2 hours. Thereafter, 5 mg of benzyltrimethylammonium hydroxide, an isocyanurate-forming catalyst, was added, and an isocyanurate-forming reaction was performed. When the conversion reached 12%, dibutylphosphoric acid was added to stop the reaction. The reaction liquid was further kept at 120 ° C. for 15 minutes to obtain a polyisocyanate composition P (1-4) -1. The viscosity of the polyisocyanate composition P (1-4) -1 was 37 mPa · s / 25 ° C., and the NCO content was 45.4% by mass.
Further, the degree of viscosity reduction of the polyisocyanate composition P (1-4) -1 is ○, the evaluation result of dryness is △, the result of the reaction rate between the polyisocyanate composition and the primary alcohol is ○, the compatibility with the polar polyol The evaluation result was ○. These results are shown in Table (1-4) -1.

〔実施例(1−4)−2〜(1−4)−8、比較例(1−4)−1、(1−4)−2〕

表(1−4)−1のモノマー、触媒、停止剤、反応温度、転化率を記載の通りとした以外は実施例(1−4)−1と同様に実施した。また、得られたポリイソシアネート組成物の粘度、NCO含有率、低粘度化度、乾燥性評価結果、極性ポリオールとの相溶性評価結果を表(1−4)−1に記載した。
[Examples (1-4) -2 to (1-4) -8, Comparative Examples (1-4) -1, (1-4) -2]

It carried out similarly to Example (1-4) -1 except having set the monomer, the catalyst, the terminator, the reaction temperature, and the conversion of Table (1-4) -1 as described. In addition, Table (1-4) -1 shows the viscosity, NCO content, degree of viscosity reduction, results of evaluation of dryness, and results of evaluation of compatibility with polar polyols of the obtained polyisocyanate composition.

〔比較例(1−4)−3〕

比較例(1−4)−2で得られた反応液を薄膜蒸発缶にフィードし、未反応のHDIを除去し、ポリイソシアネート組成物P(1−4)−12を得た。得られたポリイソシアネート組成物P(1−4)−12の粘度は2300mPa・s/25℃で、NCO含有率は21.5質量%であった。
さらに、ポリイソシアネート組成物P(1−4)−12の低粘度化度は×、乾燥性評価結果は○、ポリイソシアネート組成物と1級アルコールの反応速度結果は×、極性ポリオールとの相溶性評価結果は×であった。これらの結果を表(1−4)−1に記載した。
[Comparative Example (1-4) -3]

The reaction solution obtained in Comparative Example (1-4) -2 was fed to a thin film evaporator, and unreacted HDI was removed to obtain a polyisocyanate composition P (1-4) -12. The viscosity of the obtained polyisocyanate composition P (1-4) -12 was 2300 mPa · s / 25 ° C., and the NCO content was 21.5% by mass.
Further, the degree of viscosity reduction of the polyisocyanate composition P (1-4) -12 was ×, the evaluation result of dryness was ○, the result of the reaction rate between the polyisocyanate composition and the primary alcohol was ×, and the compatibility with the polar polyol was The evaluation result was x. These results are shown in Table (1-4) -1.

〔比較例(1−4)−4〕

合成例(1−4)−1で合成したLTIを単独で用いた。LTIの低粘度化度は○、乾燥性評価結果は×、ポリイソシアネート組成物と1級アルコールの反応速度結果は○、極性ポリオールとの相溶性評価結果は○であった。これらの結果を表(1−4)−1に記載した。
[Comparative Example (1-4) -4]

The LTI synthesized in Synthesis Example (1-4) -1 was used alone. The degree of viscosity reduction of the LTI was ○, the evaluation result of dryness was ×, the result of the reaction rate between the polyisocyanate composition and the primary alcohol was ○, and the evaluation result of compatibility with the polar polyol was ○. These results are shown in Table (1-4) -1.

〔実施例(1−4)−9〕

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてLTI50gを仕込み、温度を50℃に加熱した、その後、撹拌しながらメチルエチルケトオキシム29.3gを滴下し、50℃1時間保持した。次にイソブタノール0.05gを仕込み、温度を80℃、2時間保持した。その後、イソシアヌレート化触媒テトラメチルアンモニウムカプリン酸を5mg加え、イソシアヌレート化反応を行い、転化率が40%になった時点でリン酸を添加し反応を停止した。その後、150℃に昇温し、真空蒸留することで、メチルエチルケトオキシムを留出させ、ポリイソシアネート組成物P(1−4)−9を得た。得られたP(1−4)−9の粘度は123mPa・s/25℃で、NCO含有率は42.1質量%であった。
さらに、ポリイソシアネート組成物P(1−4)−9の低粘度化度は○、乾燥性評価結果は◎、ポリイソシアネート組成物と1級アルコールの反応速度結果は◎、極性ポリオールとの相溶性評価結果は○であった。
[Example (1-4) -9]

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, 50 g of LTI was charged as a monomer, the temperature was heated to 50 ° C., and then 29.3 g of methyl ethyl ketoxime was stirred. Was added dropwise and kept at 50 ° C. for 1 hour. Next, 0.05 g of isobutanol was charged, and the temperature was maintained at 80 ° C. for 2 hours. Thereafter, 5 mg of isocyanurate-forming catalyst tetramethylammonium capric acid was added, and an isocyanurate-forming reaction was performed. When the conversion reached 40%, phosphoric acid was added to stop the reaction. Thereafter, the temperature was raised to 150 ° C., and methyl ethyl ketoxime was distilled off by vacuum distillation to obtain a polyisocyanate composition P (1-4) -9. The viscosity of the obtained P (1-4) -9 was 123 mPa · s / 25 ° C., and the NCO content was 42.1% by mass.
Further, the degree of viscosity reduction of the polyisocyanate composition P (1-4) -9 was ○, the evaluation result of dryness was ◎, the result of the reaction rate between the polyisocyanate composition and the primary alcohol was ◎, and the compatibility with the polar polyol was The evaluation result was ○.

Figure 0006664509
Figure 0006664509

上記表(1−4)−1中、略語で記載した触媒及び停止剤はそれぞれ以下の材料を意味する。
BTMA−H:ベンジルトリメチルアンモニウムヒドロキシド。
BTMA−A:ベンジルトリメチルアンモニウムカプリン酸。
TMA−A:テトラメチルアンモニウムカプリン酸。
DBP:ジブチルリン酸。
In the above Table (1-4) -1, the catalyst and the terminator described in the abbreviations respectively mean the following materials.
BTMA-H: benzyltrimethylammonium hydroxide.
BTMA-A: benzyltrimethylammonium capric acid.
TMA-A: tetramethylammonium capric acid.
DBP: dibutyl phosphoric acid.

〔実施例(1−4)−10〕

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−4)−4で得られたポリイソシアネート組成物P(1−4)−4を20g、酢酸ブチルを16.1g仕込み、温度を70℃に加熱した、その後、撹拌しながら3,5−ジメチルピラゾール19.5gを添加し、70℃を保持し、1時間撹拌した結果、NCO含有率0.0%となり、ブロックポリイソシアネート組成物を得た。得られたブロックポリイソシアネート組成物の粘度は540mPa・s/25℃で、計算NCO含有率は14.9質量%であった。
さらに、得られたブロックポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、極性ポリオールとの相溶性評価結果は○であった。これらの結果を表(1−4)−2に記載した。
[Example (1-4) -10]

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate composition P (1-4)-obtained in Example (1-4) -4. 4, 20 g of butyl acetate and 16.1 g of butyl acetate were added, and the temperature was heated to 70 ° C. Thereafter, 19.5 g of 3,5-dimethylpyrazole was added with stirring, the temperature was maintained at 70 ° C, and the mixture was stirred for 1 hour. The NCO content became 0.0%, and a blocked polyisocyanate composition was obtained. The viscosity of the obtained blocked polyisocyanate composition was 540 mPa · s / 25 ° C., and the calculated NCO content was 14.9% by mass.
Further, the obtained blocked polyisocyanate composition had a degree of viscosity reduction of ○, a dryness evaluation result of ○, and a compatibility evaluation result with a polar polyol of ○. These results are shown in Table (1-4) -2.

〔実施例(1−4)−11、比較例(1−4)−5〜(1−4)−7)

表(1−4)−2の3,5−ジメチルピラゾール添加量、酢酸ブチル添加量を記載の通りにした以外は実施例(1−4)−10と同様に実施した。また、得られたブロックポリイソシアネート組成物の粘度、計算NCO含有率、低粘度化度、乾燥性評価結果、極性ポリオールとの相溶性評価結果を表(1−4)−2に記載した。
[Example (1-4) -11, Comparative examples (1-4) -5 to (1-4) -7]

The procedure was performed in the same manner as in Example (1-4) -10, except that the addition amount of 3,5-dimethylpyrazole and the addition amount of butyl acetate in Table (1-4) -2 were as described. Table (1-4) -2 shows the viscosity, calculated NCO content, reduced viscosity, dryness evaluation result, and compatibility evaluation result with the polar polyol of the obtained blocked polyisocyanate composition.

Figure 0006664509
Figure 0006664509

〔実施例(1−4)−12〕

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−4)−4で得られたポリイソシアネート組成物P(1−4)−4を20g、親水性化合物であるポリエチレンオキサイド(日本乳化剤株式会社製、商品名「MPG−130」数平均分子量=420)8.3gを仕込み、100℃に加熱撹拌しながら4時間保持し、親水性ポリイソシアネートを得た。得られた親水性ポリイソシアネート組成物の粘度は110mPa・s/25℃で、NCO含有率は26.3質量%あった。
さらに、低粘度化度は○、乾燥性評価結果は○であった。
[Example (1-4) -12]

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate composition P (1-4)-obtained in Example (1-4) -4. 20 g, and 8.3 g of a hydrophilic compound, polyethylene oxide (manufactured by Nippon Emulsifier Co., Ltd., trade name: “MPG-130”, number average molecular weight = 420), and kept at 100 ° C. for 4 hours while heating and stirring. A reactive polyisocyanate was obtained. The viscosity of the obtained hydrophilic polyisocyanate composition was 110 mPa · s / 25 ° C., and the NCO content was 26.3% by mass.
Further, the degree of viscosity reduction was ○, and the evaluation result of dryness was ○.

〔実施例(1−4)−13、比較例(1−4)−8〜(1−4)−10〕

表(1−4)−3のMPG−130添加量を記載の通りにした以外は実施例(1−4)−9と同様に実施した。また、得られた親水性ポリイソシアネート組成物の粘度、NCO含有率、低粘度化度、乾燥性評価結果は表(1−4)−3に記載した。
[Example (1-4) -13, Comparative examples (1-4) -8 to (1-4) -10]

The operation was carried out in the same manner as in Example (1-4) -9, except that the amount of MPG-130 added in Table (1-4) -3 was as described. In addition, the viscosity, NCO content, degree of viscosity reduction, and dryness evaluation results of the obtained hydrophilic polyisocyanate composition are described in Table (1-4) -3.

Figure 0006664509
Figure 0006664509

〔実施例(1−4)−14〕

実施例(1−4)−1で得られたポリイソシアネート組成物P(1−4)−1:300gに2,2,4−トリメチルペンタンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は△、ポリイソシアネート組成物と1級アルコールの反応速度結果は○、極性ポリオールとの相溶性評価結果は○、貯蔵安定性評価結果は良好であった。
[Example (1-4) -14]

0.03 g of 2,2,4-trimethylpentane was added to 300 g of the polyisocyanate composition P (1-4) -1 obtained in Example (1-4) -1.
The degree of viscosity reduction of this polyisocyanate composition is ○, the result of evaluation of dryness is △, the result of reaction rate between polyisocyanate composition and primary alcohol is ○, the result of compatibility evaluation with polar polyol is ○, storage stability evaluation The results were good.

〔実施例(1−4)−15〕

実施例(1−4)−1で得られたポリイソシアネート組成物P(1−4)−1:300gにヘキサデカンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は△、ポリイソシアネート組成物と1級アルコールの反応速度結果は○、極性ポリオールとの相溶性評価結果は○、貯蔵安定性評価結果は良好であった。
[Example (1-4) -15]

0.03 g of hexadecane was added to 300 g of the polyisocyanate composition P (1-4) -1 obtained in Example (1-4) -1.
The degree of viscosity reduction of this polyisocyanate composition is ○, the result of evaluation of dryness is △, the result of reaction rate between polyisocyanate composition and primary alcohol is ○, the result of compatibility evaluation with polar polyol is ○, storage stability evaluation The results were good.

〔合成例(1−4)−4〕

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、LTIを20g仕込み、60℃に加熱し、メタノールを7.2g添加し、撹拌しながら4時間保持し、N−置換カルバミン酸エステルC(1−4)−1を得た。
[Synthesis Example (1-4) -4]

The inside of the four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen blowing tube was set to a nitrogen atmosphere, 20 g of LTI was charged, heated to 60 ° C., 7.2 g of methanol was added, and stirring was continued for 4 hours. Retained to obtain N-substituted carbamic acid ester C (1-4) -1.

〔実施例(1−4)−16〕

実施例(1−4)−1で得られたポリイソシアネート組成物P(1−4)−1:300gにN−置換カルバミン酸エステルC(1−4)−1を0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は△、ポリイソシアネート組成物と1級アルコールの反応速度結果は○、極性ポリオールとの相溶性評価結果は○、貯蔵安定性評価結果は良好であった。
[Example (1-4) -16]

0.03 g of N-substituted carbamic acid ester C (1-4) -1 was added to 300 g of the polyisocyanate composition P (1-4) -1 obtained in Example (1-4) -1.
The degree of viscosity reduction of this polyisocyanate composition is ○, the result of evaluation of dryness is △, the result of reaction rate between polyisocyanate composition and primary alcohol is ○, the result of compatibility evaluation with polar polyol is ○, storage stability evaluation The results were good.

以上より、本発明を適用した各実施例のポリイソシアネート組成物、ブロックポリイソシアネート組成物、または親水性ポリイソシアネート組成物は、低粘度であり、かつ、乾燥性、極性ポリオールとの相溶性に優れることが確認された。   As described above, the polyisocyanate composition, the blocked polyisocyanate composition, or the hydrophilic polyisocyanate composition of each of the examples to which the present invention is applied has a low viscosity, and has excellent drying properties and compatibility with a polar polyol. It was confirmed that.


実施例(1−5)−1〜(1−5)−13および比較例(1−5)−1〜(1−5)−3における、ポリイソシアネート組成物の物性は、以下のとおり測定した。なお、特に明記しない場合は、「部」および「%」は、「質量部」および質量%」を意味する。

Physical properties of the polyisocyanate composition in Examples (1-5) -1 to (1-5) -13 and Comparative Examples (1-5) -1 to (1-5) -3 were measured as follows. . Unless otherwise specified, “parts” and “%” mean “parts by mass” and “% by mass”.

<イソシアネート基由来、およびアロファネート構造に含まれる窒素元素の数>

Bruker社製Biospin Avance600(商品名)を用いた、13C−NMRの測定によって、イソシアネート基由来の構造、およびアロファネート構造に近接する炭素元素の比率をそれぞれ求め、これよりそれぞれの構造に含まれる窒素元素の数を計算して求めた。各官能基、構造のピーク位置に関してはNTIの物を示したが、トリイソシアネートによりピーク位置が変わるため、適宜、標準物質等を用いて校正した。
なお、ここでイソシアネート基由来の構造とは、イソシアネート基、アロファネート構造、イソシアヌレート構造、ウレトジオン構造、イミノオキサジアジンジオン構造、ウレタン構造、およびビュレット構造を示す。
<Number of nitrogen elements derived from isocyanate group and contained in allophanate structure>

By 13 C-NMR measurement using Biospin Avance 600 (trade name) manufactured by Bruker, the ratio of the carbon element adjacent to the isocyanate group-derived structure and the allophanate structure was determined, and the nitrogen contained in each structure was determined from this. The number of elements was calculated and determined. The peak position of each functional group and structure is shown for NTI. However, since the peak position is changed by triisocyanate, calibration was performed using a standard substance or the like as appropriate.
Here, the structure derived from the isocyanate group means an isocyanate group, an allophanate structure, an isocyanurate structure, a uretdione structure, an iminooxadiazinedione structure, a urethane structure, and a burette structure.

具体的な測定条件は以下の通りであった。
13C−NMR装置:AVANCE600(ブルカー社製)
クライオプローブ(ブルカー社製)
Cryo Probe
CPDUL
600S3−C/H−D−05Z
共鳴周波数:150MHz
濃度:60wt/vol%
シフト基準:CDCl(77ppm)
積算回数:10000回
パルスプログラム:zgpg30(プロトン完全デカップリング法、待ち時間2sec) 以下のシグナルの積分値を、測定している炭素の数で除し、構造内に含む窒素数を掛け、その値から窒素元素数の比を求めた。
イソシアネート基:121.5ppm付近:積分値÷1×1
ウレトジオン構造:157.5ppm付近:積分値÷2×2
イミノオキサジアジンジオン構造:144.5ppm付近:積分値÷1×3
イソシアヌレート構造:148.5ppm付近:積分値÷3×3
アロファネート構造:154ppm付近:積分値÷1×2
ウレタン構造 :156.3ppm付近:積分値÷1×1
ビュレット構造 :156.1ppm付近:積分値÷2×3
Specific measurement conditions were as follows.
13 C-NMR apparatus: AVANCE600 (manufactured by Bruker)
Cryoprobe (Bruker)
Cryo Probe
CPDUL
600S3-C / HD-05Z
Resonant frequency: 150MHz
Concentration: 60 wt / vol%
Shift standard: CDCl 3 (77 ppm)
Number of integration: 10000 times Pulse program: zgpg30 (proton complete decoupling method, waiting time 2 sec) The integrated value of the signal below is divided by the number of carbons being measured, multiplied by the number of nitrogen contained in the structure, and the value is multiplied. Was used to determine the ratio of the number of nitrogen elements.
Isocyanate group: around 121.5 ppm: integrated value ÷ 1 × 1
Uretdione structure: around 157.5 ppm: integral value ÷ 2 × 2
Iminooxadiazinedione structure: around 144.5 ppm: integrated value ÷ 1 × 3
Isocyanurate structure: around 148.5 ppm: integrated value ÷ 3 × 3
Allophanate structure: around 154 ppm: integrated value ÷ 1 × 2
Urethane structure: around 156.3 ppm: integral value ÷ 1 × 1
Bullet structure: around 156.1 ppm: integral value ÷ 2 × 3

<粘度>
粘度は、E型粘度計(トキメック社製)を用いて25℃で測定した。測定に際しては、標準ローター(1°34’×R24)を用いた。回転数は、以下の通り。
100rpm (128mPa・s未満の場合)
50rpm (128mPa・s〜256mPa・sの場合)
20rpm (256mPa・s〜640mPa・sの場合)
10rpm (640mPa・s〜1280mPa・sの場合)
5rpm (1280mPa・s〜2560mPa・sの場合)
なお、後述する各実施例および各比較例で作製したポリイソシアネート組成物の不揮発分を以下に記載の方法によって調べ、その値が98質量%以上であったものは、そのまま測定した。
<Viscosity>
The viscosity was measured at 25 ° C. using an E-type viscometer (manufactured by Tokimec). In the measurement, a standard rotor (1 ° 34 ′ × R24) was used. The rotation speed is as follows.
100rpm (less than 128mPa · s)
50 rpm (128 mPa · s to 256 mPa · s)
20 rpm (in the case of 256 mPa · s to 640 mPa · s)
10 rpm (for 640 mPa · s to 1280 mPa · s)
5 rpm (for 1280 mPa · s to 2560 mPa · s)
In addition, the nonvolatile content of the polyisocyanate compositions produced in each of the following Examples and Comparative Examples was examined by the method described below, and those having a value of 98% by mass or more were measured as they were.

<NCO含有率>

上述のとおりである。
<NCO content>

As described above.

<転化率>

上述のとおりである。
<Conversion rate>

As described above.

<ポリイソシアネート組成物の低粘度化度(5)>

ポリイソシアネート混合物の粘度測定結果から、100mPa・s/25℃以下の場合を〇、100mPa・s/25℃超300mPa・s/25℃以下の場合を△、300mPa・s/25℃を超える場合を×とした。
<Degree of viscosity reduction of polyisocyanate composition (5)>

From the viscosity measurement results of the polyisocyanate mixture, the case of 100 mPa · s / 25 ° C or less is Δ, the case of more than 100 mPa · s / 25 ° C is 300 mPa · s / 25 ° C or less, and the case of exceeding 300 mPa · s / 25 ° C. X.

<ポリイソシアネート組成物の乾燥性評価方法(4)>

アクリルポリオール(Nuplex Resin社の商品名「SETALUX1753」、樹脂分濃度70%、水酸基価138.6mgKOH/g)と、ポリイソシアネート組成物の各々を、イソシアネート基/水酸基の当量比1.0で配合し、酢酸ブチルで固形分50質量%になるように調整した。調整した塗料組成物をガラス板上に乾燥膜厚40μmになるように塗装した後、23℃/50%RHで硬化させた。特定時間経過後、その塗膜上にコットンボール(直径2.5cm、高さ2.0cmの円柱型)を置き、その上に100gの分銅を60秒間置いた。その後、分銅とコットンを取り除き、塗膜上に残ったコットン跡を観察した。跡が全く見えなくなった時間が11時間以内であった場合を〇、11時間超〜13時間以内であった場合を△、13時間超であった場合を×とした。
<Method for evaluating dryness of polyisocyanate composition (4)>

An acrylic polyol (trade name “SETALUX1753” of Nuplex Resin, resin concentration 70%, hydroxyl value 138.6 mgKOH / g) and each of the polyisocyanate compositions were blended at an equivalent ratio of isocyanate group / hydroxyl group of 1.0. And butyl acetate to adjust the solid content to 50% by mass. The prepared coating composition was applied on a glass plate so as to have a dry film thickness of 40 μm, and then cured at 23 ° C./50% RH. After a lapse of a specific time, a cotton ball (a cylindrical shape having a diameter of 2.5 cm and a height of 2.0 cm) was placed on the coating film, and a weight of 100 g was placed thereon for 60 seconds. Thereafter, the weight and cotton were removed, and the trace of cotton remaining on the coating film was observed. The case where the time when the trace was completely invisible was within 11 hours, the case where it was more than 11 hours to 13 hours, and the case where it was more than 13 hours was x.

<ブロックポリイソシアネート組成物の低粘度化度(3)>

ブロックポリイソシアネート組成物の粘度測定結果から、500mPa・s/25℃未満の場合を〇、500mPa・s/25℃以上の場合を×とした。
<Lower viscosity of blocked polyisocyanate composition (3)>

From the results of the viscosity measurement of the blocked polyisocyanate composition, the case where the viscosity was less than 500 mPa · s / 25 ° C. was evaluated as Δ, and the case where the viscosity was 500 mPa · s / 25 ° C. or more was evaluated as x.

<ブロックポリイソシアネート組成物の乾燥性評価方法(1)>

上述のとおりである。
<Method for evaluating dryness of blocked polyisocyanate composition (1)>

As described above.

<親水性ポリイソシアネート組成物の低粘度化度(3)>

親水性ポリイソシアネート組成物の粘度測定結果から、200mPa・s/25℃以下の場合を〇、200mPa・s/25℃超の場合を×とした。
<Low viscosity of hydrophilic polyisocyanate composition (3)>

From the results of the viscosity measurement of the hydrophilic polyisocyanate composition, the case where the viscosity was 200 mPa · s / 25 ° C. or less was evaluated as Δ, and the case where the viscosity exceeded 200 mPa · s / 25 ° C. was evaluated as ×.

<親水性ポリイソシアネート組成物の乾燥性評価方法>

上述のとおりである。
<Method for evaluating dryness of hydrophilic polyisocyanate composition>

As described above.

<低極性有機溶剤への溶解性(1)>

23℃にて、ポリイソシアネート組成物100gに対して、HAWS:アニリン点15℃)100gを加え、12時間放置後の状態を観察し、均一透明であれば溶解していると判断した。均一になっている場合を○、分離、または白濁した場合を×、わずかに白濁したものを△とした。
<Solubility in low-polarity organic solvents (1)>

At 23 ° C., 100 g of HAWS (aniline point: 15 ° C.) was added to 100 g of the polyisocyanate composition, and the state after standing for 12 hours was observed.場合 indicates uniformity, X indicates separation or cloudiness, and Δ indicates slight cloudiness.

<水への分散性>

ポリイソシアネート組成物を、23℃の水/BGA=9:1の混合物100部に対し、1部入れ、激しく手で撹拌して分散させた後、3時間後の状態を観察した。3時間後も均一に分散していたものを○、わずかに沈降が見られたものを△、分離したものを×とした。
<Dispersibility in water>

One part of the polyisocyanate composition was added to 100 parts of a mixture of 23 ° C. water / BGA = 9: 1, and the mixture was vigorously stirred and dispersed by hand. After 3 hours, the state was observed. After 3 hours, those which were uniformly dispersed were evaluated as ○, those with slight precipitation were evaluated as Δ, and those separated were evaluated as ×.

<貯蔵安定性評価方法>

上述のとおりである。
<Storage stability evaluation method>

As described above.

〔合成例(1−5)−1〕
LTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内にエタノールアミン122.2g、o−ジクロロベンゼン100ml、トルエン420mlを入れ、氷冷化塩化水素ガスを導入し、エタノールアミンを塩酸塩に転換した。次に、リジン塩酸塩182.5gを添加し、反応液を80℃に加熱し、エタノールアミン塩酸塩を溶解させ、塩化水素ガスを導入してリジン二塩酸塩とした。さらに塩化水素ガスを20〜30ml/分で通過させ、反応液を116℃に加熱し、水が留出しなくなるまでこの温度を維持した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してリジンβ−アミノエチルエステル三塩酸塩165gを得た。このリジンβ−アミノエチルエステル三塩酸塩100gを微粉末としてo−ジクロロベンゼン1200mlに懸濁させ、かきまぜながら反応液を昇温し、120℃に達した時点でホスゲンを0.4モル/時間の速度にて吹込みはじめ、10時間保持し、その後150℃に昇温した。懸濁液はほとんど溶解した。冷却後ろ過し、減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点155〜157℃/0.022mmHgの無色透明なLTI80.4gが得られた。このもののNCO含有率は47.1重量%であった。
[Synthesis Example (1-5) -1]
Synthesis of LTI

122.2 g of ethanolamine, 100 ml of o-dichlorobenzene, and 420 ml of toluene were placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas introduction tube, and ice-cooled hydrogen chloride gas was introduced. Converted to salt. Next, 182.5 g of lysine hydrochloride was added, the reaction solution was heated to 80 ° C. to dissolve ethanolamine hydrochloride, and hydrogen chloride gas was introduced to obtain lysine dihydrochloride. Further, hydrogen chloride gas was passed at a rate of 20 to 30 ml / min, and the reaction solution was heated to 116 ° C. and maintained at this temperature until no more water distilled. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 165 g of lysine β-aminoethyl ester trihydrochloride. 100 g of this lysine β-aminoethyl ester trihydrochloride was suspended as fine powder in 1200 ml of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 120 ° C., phosgene was added at a rate of 0.4 mol / hour. Blowing was started at a constant speed and maintained for 10 hours, and then the temperature was raised to 150 ° C. The suspension almost dissolved. After cooling and filtration, the dissolved phosgene and the solvent were distilled off under reduced pressure, followed by vacuum distillation to obtain 80.4 g of a colorless and transparent LTI having a boiling point of 155 to 157 ° C / 0.022 mmHg. Its NCO content was 47.1% by weight.

〔合成例(1−5)−2〕
GTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内にグルタミン酸塩酸塩275g、エタノールアミン塩酸塩800g、トルエン150mlを入れ、塩化水素ガスを吹き込みながら、水が共沸しなくなるまで110℃にて24時間加熱還流した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してビス(2−アミノエチル)グルタメート三塩酸塩270gを得た。このビス(2−アミノエチル)グルタメート三塩酸塩85gをo−ジクロロベンゼン680gに懸濁させ、かきまぜながら反応液を昇温し、135℃に達した時点でホスゲンを0.8モル/時間の速度にて吹込みはじめ、13時間保持し、反応生成物をろ過後、減圧濃縮し、さらに薄膜蒸発缶で精製することにより、GTI54gが得られた。NCO含有率は39.8重量%であった。
[Synthesis Example (1-5) -2]
Synthesis of GTI

275 g of glutamate hydrochloride, 800 g of ethanolamine hydrochloride, and 150 ml of toluene are placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas inlet tube. The mixture was heated at reflux at 24 ° C. for 24 hours. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 270 g of bis (2-aminoethyl) glutamate trihydrochloride. 85 g of this bis (2-aminoethyl) glutamate trihydrochloride was suspended in 680 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 135 ° C., phosgene was added at a rate of 0.8 mol / hour. The reaction product was filtered, concentrated under reduced pressure, and further purified by a thin film evaporator to obtain 54 g of GTI. The NCO content was 39.8% by weight.

〔合成例(1−5)−3〕
NTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内に4−アミノメチル−1,8−オクタメチレンジアミン(以下トリアミンと称す)1060gをメタノー ル1500gに溶かし、これに35%濃塩酸1800mlを冷却しながら徐々に滴下した。減圧下にてメタノールおよび水を除去して濃縮し、60℃/5mmHgにて 24時間乾燥したところ、白色固体のトリアミン塩酸塩が得られた。得られたトリアミン塩酸塩650gを微粉末としてo−ジクロルベンゼン5000gに懸濁させ、かきまぜながら反応液を昇温し、100℃に達した時点でホスゲンを200g/Hrの速度にて吹込みはじめ、さらに昇温を続けて180℃に保持し、12時間ホスゲンを吹込み続けた。減圧下にて溶存ホスゲンおよび溶媒を留去したのち、真空蒸留することにより、沸点161〜163℃/1.2mmHgの無色透明な4−イソシアネートメチル−1,8−オクタメチレンジイソシアネート(以下「NTI」という」420gが得られた。このもののNCO含有率50重量%であった。
[Synthesis Example (1-5) -3]
Synthesis of NTI

In a four-necked flask equipped with a stirrer, a thermometer, and a gas inlet tube, 1,060 g of 4-aminomethyl-1,8-octamethylenediamine (hereinafter, referred to as triamine) was dissolved in 1500 g of methanol, and 35% concentrated. 1800 ml of hydrochloric acid was gradually added dropwise while cooling. After removing methanol and water under reduced pressure, the mixture was concentrated, and dried at 60 ° C./5 mmHg for 24 hours to obtain triamine hydrochloride as a white solid. The obtained triamine hydrochloride (650 g) was suspended as fine powder in 5000 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 100 ° C., phosgene was started to be blown at a rate of 200 g / Hr. Then, the temperature was further increased and maintained at 180 ° C., and phosgene was continuously blown in for 12 hours. After distilling out the dissolved phosgene and the solvent under reduced pressure, vacuum distillation is performed to obtain colorless and transparent 4-isocyanatomethyl-1,8-octamethylene diisocyanate having a boiling point of 161 to 163 ° C./1.2 mmHg (hereinafter “NTI”). 420 g was obtained, which had an NCO content of 50% by weight.

〔実施例(1−5)−1〕
P(1−5)−1の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてNTI50g、2−エチルヘキサノール11.7gを仕込み、温度を90℃、1時間保持した。その後、130℃に昇温し、アロファネート化触媒2−エチルヘキサン酸ジルコニルの固形分20%ミネラルスピリット溶液(日本化学産業株式会社製、商品名「ニッカオクチックスジルコニウム13%」をミネラルスピリットで希釈)を2mg加え、アロファネート化反応を行い、転化率が10%になった時点でピロリン酸の固形分50%イソブタノール溶液(片山化学工業株式会社製の試薬をイソブタノールで希釈)を添加し、反応を停止し、ポリイソシアネートP(1−5)−1を得た。得られたポリイソシアネートP(1−5)−1の粘度は35mPa・s/25℃で、NCO含有率は39質量%であった。
さらに、ポリイソシアネート組成物P(1−5)−1の低粘度化度は○、乾燥性評価結果は○、低極性有機溶剤への溶解性結果は○、水への分散性は○であった。
[Example (1-5) -1]
Synthesis of P (1-5) -1

The inside of the four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen blowing tube was set to a nitrogen atmosphere, 50 g of NTI and 11.7 g of 2-ethylhexanol were charged as monomers, and the temperature was maintained at 90 ° C. for 1 hour. . Thereafter, the temperature was raised to 130 ° C., and a 20% solids mineral spirit solution of zirconyl 2-ethylhexanoate, an allophanation catalyst (trade name “Nikka Octix Zirconium 13%” manufactured by Nippon Chemical Industry Co., Ltd., diluted with mineral spirit) Was added, and an allophanate-forming reaction was performed. When the conversion reached 10%, a 50% solid solution of pyrophosphoric acid in isobutanol (a reagent manufactured by Katayama Chemical Industry Co., Ltd. diluted with isobutanol) was added, and the reaction was performed. Was stopped to obtain polyisocyanate P (1-5) -1. The viscosity of the obtained polyisocyanate P (1-5) -1 was 35 mPa · s / 25 ° C., and the NCO content was 39% by mass.
Furthermore, the degree of viscosity reduction of the polyisocyanate composition P (1-5) -1 was ○, the evaluation result of dryness was ○, the result of solubility in a low-polarity organic solvent was ○, and the dispersibility in water was ○. Was.

〔実施例(1−5)−2〜(1−5)−8、比較例(1−5)−1〜(1−5)−3〕

モノマー、アルコールの種類と仕込み量、および転化率を表(1−5)−1に記載の通りとした以外は実施例(1−5)−1と同様に実施した。但し、比較例(1−5)−3では残留HDIが0.5質量%になるまで薄膜蒸留で取り除いた。得られたポリイソシアネート組成物の粘度、NCO含有率、低粘度化度、乾燥性評価結果、低極性有機溶剤への溶解性、水への分散性の結果は表(1−5)−1に記載した。
[Examples (1-5) -2 to (1-5) -8, Comparative examples (1-5) -1 to (1-5) -3]

The procedure was performed in the same manner as in Example (1-5) -1 except that the types and charged amounts of the monomer and alcohol and the conversion were as shown in Table (1-5) -1. However, in Comparative Example (1-5) -3, the residual HDI was removed by thin-film distillation until the residual HDI became 0.5% by mass. Table (1-5) -1 shows the results of the viscosity, NCO content, degree of viscosity reduction, drying property evaluation, solubility in low-polar organic solvents, and dispersibility in water of the obtained polyisocyanate composition. Described.

Figure 0006664509
Figure 0006664509

〔実施例(1−5)−9〕

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−5)−7で得られたポリイソシアネート組成物P(1−5)−7を20g、酢酸ブチルを15.5g仕込み、温度を70℃に加熱した、その後、撹拌しながら3,5−ジメチルピラゾール17.9gを添加し、70℃を保持し、1時間撹拌した結果、NCO含有率0.0%となり、ブロックポリイソシアネートを得た。得られたブロックポリイソシアネートの粘度は360mPa・s/25℃であった。
さらに、低粘度化度は○、乾燥性評価結果は○であった。
[Example (1-5) -9]

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate composition P (1-5) obtained in Example (1-5) -7 was obtained. -20 g of -7 and 15.5 g of butyl acetate were charged, and the temperature was heated to 70 ° C. Thereafter, 17.9 g of 3,5-dimethylpyrazole was added with stirring, the temperature was maintained at 70 ° C, and the mixture was stirred for 1 hour. , NCO content became 0.0%, and a blocked polyisocyanate was obtained. The viscosity of the obtained blocked polyisocyanate was 360 mPa · s / 25 ° C.
Further, the degree of viscosity reduction was ○, and the evaluation result of dryness was ○.

〔実施例(1−5)−10〕

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−5)−7で得られたポリイソシアネート組成物P(1−5)−7を20g、親水性化合物であるポリエチレンオキサイド(日本乳化剤株式会社製、商品名「MPG−130」数平均分子量=420)8.3gを仕込み、100℃に加熱撹拌しながら4時間保持し、親水性ポリイソシアネートを得た。得られた親水性ポリイソシアネートの粘度は85mPa・s/25℃であった。
さらに、低粘度化度は○、乾燥性評価結果は○であった。
[Example (1-5) -10]

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate composition P (1-5) obtained in Example (1-5) -7 was obtained. -20 g of -7 and 8.3 g of polyethylene oxide as a hydrophilic compound (manufactured by Nippon Emulsifier Co., Ltd., trade name “MPG-130” number average molecular weight = 420), and the mixture was heated and stirred at 100 ° C. for 4 hours. A hydrophilic polyisocyanate was obtained. The viscosity of the obtained hydrophilic polyisocyanate was 85 mPa · s / 25 ° C.
Further, the degree of viscosity reduction was ○, and the evaluation result of dryness was ○.

〔実施例(1−5)−11〕

実施例(1−5)−1で得られたポリイソシアネート組成物P(1−5)−1:300gに2,2,4−トリメチルペンタンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、低極性有機溶剤への溶解性結果は○、水への分散性は○、貯蔵安定性評価結果は良好であった。
[Example (1-5) -11]

0.03 g of 2,2,4-trimethylpentane was added to 300 g of the polyisocyanate composition P (1-5) -1 obtained in Example (1-5) -1.
The degree of viscosity reduction of this polyisocyanate composition was ○, the evaluation result of dryness was ○, the result of solubility in a low-polarity organic solvent was ○, the dispersibility in water was ○, and the storage stability evaluation result was good .

〔実施例(1−5)−12〕

実施例(1−5)−1で得られたポリイソシアネート組成物P(1−5)−1:300gにヘキサデカンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、低極性有機溶剤への溶解性結果は○、水への分散性は○、貯蔵安定性評価結果は良好であった。
[Example (1-5) -12]

0.03 g of hexadecane was added to 300 g of the polyisocyanate composition P (1-5) -1 obtained in Example (1-5) -1.
The degree of viscosity reduction of this polyisocyanate composition was ○, the evaluation result of dryness was ○, the result of solubility in a low-polarity organic solvent was ○, the dispersibility in water was ○, and the storage stability evaluation result was good .

〔合成例(1−5)−4〕

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、NTIを20g仕込み、60℃に加熱し、メタノールを7.7g添加し、撹拌しながら4時間保持し、N−置換カルバミン酸エステルC(1−5)−1を得た。
[Synthesis Example (1-5) -4]

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet tube was set to a nitrogen atmosphere, 20 g of NTI was charged, heated to 60 ° C., 7.7 g of methanol was added, and stirring was continued. After holding for a time, an N-substituted carbamic acid ester C (1-5) -1 was obtained.

〔実施例(1−5)−13〕

実施例(1−5)−1で得られたポリイソシアネート組成物P(1−5)−1:300gにN−置換カルバミン酸エステルC(1−5)−1を0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、低極性有機溶剤への溶解性結果は○、水への分散性は○、貯蔵安定性評価結果は良好であった。
[Example (1-5) -13]

0.03 g of N-substituted carbamic acid ester C (1-5) -1 was added to 300 g of the polyisocyanate composition P (1-5) -1 obtained in Example (1-5) -1.
The degree of viscosity reduction of this polyisocyanate composition was ○, the evaluation result of dryness was ○, the result of solubility in a low-polarity organic solvent was ○, the dispersibility in water was ○, and the storage stability evaluation result was good .


実施例(1−6)−1〜(1−6)−11および比較例(1−6)−1〜(1−6)−10における、ポリイソシアネート組成物の物性は、以下のとおり測定した。なお、特に明記しない場合は、「部」および「%」は、「質量部」および質量%」を意味する。

The physical properties of the polyisocyanate composition in Examples (1-6) -1 to (1-6) -11 and Comparative Examples (1-6) -1 to (1-6) -10 were measured as follows. . Unless otherwise specified, “parts” and “%” mean “parts by mass” and “% by mass”.

<粘度>

上述のとおりである。
<Viscosity>

As described above.

<NCO含有率>

上述のとおりである。
<NCO content>

As described above.

<計算NCO含有率>

上述のとおりである。
<Calculated NCO content>

As described above.

<転化率>

上述のとおりである。
<Conversion rate>

As described above.

<アロファネート構造のモル比率定量方法>

Bruker社製Biospin Avance600(商品名)を用いて、13C−NMRを測定し、イミノオキサジアジンジオン構造、ウレトジオン構造、イソシアヌレート構造、アロファネート構造、ウレタン構造、およびビュレット構造のモル比率を求めた。
具体的な測定条件は以下の通りであった。
13C−NMR装置:AVANCE600(ブルカー社製)
クライオプローブ(ブルカー社製)
Cryo Probe
CPDUL
600S3−C/H−D−05Z
共鳴周波数:150MHz
濃度:60wt/vol%
シフト基準:CDCl(77ppm)
積算回数:10000回
パルスプログラム:zgpg30(プロトン完全デカップリング法、待ち時間2sec)
<Method for determining molar ratio of allophanate structure>

Using a Bruker Co. Biospin AVANCE 600 (trade name), 13 to measure the C-NMR, it was determined iminooxadiazinedione structure, uretdione, isocyanurate structures, allophanate structures, urethane structures, and the molar ratio of biuret structure .
Specific measurement conditions were as follows.
13 C-NMR apparatus: AVANCE600 (manufactured by Bruker)
Cryoprobe (Bruker)
Cryo Probe
CPDUL
600S3-C / HD-05Z
Resonant frequency: 150MHz
Concentration: 60 wt / vol%
Shift standard: CDCl 3 (77 ppm)
Number of integration: 10000 times Pulse program: zgpg30 (proton complete decoupling method, waiting time 2 sec)

以下のシグナルの積分値を、測定している炭素の数で除し、その値から各モル比を求めた。
ウレトジオン構造:157.5ppm付近:積分値÷2
イミノオキサジアジンジオン構造:144.5ppm付近:積分値÷1
イソシアヌレート構造:148.5ppm付近:積分値÷3
アロファネート構造:154ppm付近:積分値÷1
ウレタン構造 :156.3ppm付近:積分値÷1−アロファネート構造積分値
ビュレット構造 :156.1ppm付近:積分値÷2
アロファネート構造、ウレトジオン構造、イミノオキサジアジンジオン構造、イソシアヌレート構造、ウレタン構造、およびビュレット構造の各モル比をa、b、c、d、e、およびfとし、以下式により、アロファネート構造のモル比率を求めた。
アロファネート構造のモル比率=a/(a+b+c+d+e+f)
The integral value of the following signal was divided by the number of measured carbons, and each molar ratio was determined from the value.
Uretdione structure: around 157.5 ppm: integral value ÷ 2
Iminooxadiazinedione structure: around 144.5 ppm: integral value ÷ 1
Isocyanurate structure: around 148.5 ppm: integral value ÷ 3
Allophanate structure: around 154 ppm: integrated value ÷ 1
Urethane structure: around 156.3 ppm: integral value ÷ 1-allophanate structure integral value Bullet structure: around 156.1 ppm: integral value ÷ 2
The molar ratios of the allophanate structure, uretdione structure, iminooxadiazinedione structure, isocyanurate structure, urethane structure, and burette structure are a, b, c, d, e, and f, and the molar ratio of the allophanate structure is represented by the following formula. The ratio was determined.
Molar ratio of allophanate structure = a / (a + b + c + d + e + f)

<ポリイソシアネート組成物の低粘度化度(4)>
上述のとおりである。
<Low viscosity of polyisocyanate composition (4)>
As described above.

<ポリイソシアネート組成物の乾燥性評価方法(3)>

上述のとおりである。
<Method for evaluating dryness of polyisocyanate composition (3)>

As described above.

<ポリイソシアネート組成物と1級アルコールとの反応速度>

上述のとおりである。
<Reaction rate between polyisocyanate composition and primary alcohol>

As described above.

<ブロックポリイソシアネート組成物の低粘度化度(4)>

ブロックポリイソシアネート組成物の粘度測定結果から、450mPa・s/25℃未満の場合を○、450mPa・s/25℃以上の場合を×とした。
<Low viscosity of block polyisocyanate composition (4)>

From the viscosity measurement results of the blocked polyisocyanate composition, the case where the viscosity was less than 450 mPa · s / 25 ° C. was evaluated as “○”, and the case where the viscosity was 450 mPa · s / 25 ° C. or higher was evaluated as “X”.

<ブロックポリイソシアネート組成物の乾燥性評価方法(1)>

上述のとおりである。
<Method for evaluating dryness of blocked polyisocyanate composition (1)>

As described above.

<親水性ポリイソシアネート組成物の低粘度化度(4)>

親水性ポリイソシアネート組成物の粘度測定結果から、90mPa・s/25℃未満の場合を○、90mPa・s/25℃以上の場合を×とした。
<Low viscosity (4) of hydrophilic polyisocyanate composition>

From the results of the viscosity measurement of the hydrophilic polyisocyanate composition, the case where the viscosity was less than 90 mPa · s / 25 ° C. was evaluated as “good”, and the case where the viscosity was 90 mPa · s / 25 ° C. or more was evaluated as “bad”.

<親水性ポリイソシアネート組成物の乾燥性評価方法>

上述のとおりである。
<Method for evaluating dryness of hydrophilic polyisocyanate composition>

As described above.

<低極性有機溶剤への溶解性(2)>

0℃の条件で、ポリイソシアネート組成物100gに対して、High Aromatic White Spirit(HAWS)(アニリン点:15℃)100gを加え、24時間放置後の状態を観察し、均一透明であれば溶解していると判断した。均一に混合した場合を○、分離または白濁した場合を×とした。
<Solubility in low-polarity organic solvents (2)>

Under a condition of 0 ° C., 100 g of High Aromatic White Spirit (HAWS) (aniline point: 15 ° C.) is added to 100 g of the polyisocyanate composition, and the state after standing for 24 hours is observed. I judged that it was. The case where the mixture was uniformly mixed was evaluated as ○, and the case where separation or cloudiness was observed was evaluated as ×.

<貯蔵安定性評価方法>

上述のとおりである。
<Storage stability evaluation method>

As described above.

〔合成例(1−6)−1〕
LTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内にエタノールアミン122.2g、o−ジクロロベンゼン100mL、トルエン420mLを入れ、氷冷化塩化水素ガスを導入し、エタノールアミンを塩酸塩に転換した。次に、リジン塩酸塩182.5gを添加し、反応液を80℃に加熱し、エタノールアミン塩酸塩を溶解させ、塩化水素ガスを導入してリジン二塩酸塩とした。さらに塩化水素ガスを20から30mL/分で通過させ、反応液を116℃に加熱し、水が留出しなくなるまでこの温度を維持した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してリジンβ−アミノエチルエステル三塩酸塩165gを得た。このリジンβ−アミノエチルエステル三塩酸塩100gを微粉末としてo−ジクロロベンゼン1200mLに懸濁させ、かきまぜながら反応液を昇温し、120℃に達した時点でホスゲンを0.4モル/時間の速度にて吹込みはじめ、10時間保持し、その後150℃に昇温した。懸濁液はほとんど溶解した。冷却後ろ過し、減圧下にて溶存ホスゲン及び溶媒を留去したのち、真空蒸留することにより、沸点155〜157℃/0.022mmHgの無色透明なLTI80.4gが得られた。このもののNCO含有率は47.1重量%であった。
[Synthesis Example (1-6) -1]
Synthesis of LTI

122.2 g of ethanolamine, 100 mL of o-dichlorobenzene, and 420 mL of toluene were placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas introduction tube, and ice-cooled hydrogen chloride gas was introduced. Converted to salt. Next, 182.5 g of lysine hydrochloride was added, the reaction solution was heated to 80 ° C. to dissolve ethanolamine hydrochloride, and hydrogen chloride gas was introduced to obtain lysine dihydrochloride. Further, hydrogen chloride gas was passed at a rate of 20 to 30 mL / min, and the reaction solution was heated to 116 ° C. and maintained at this temperature until no more water distilled. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 165 g of lysine β-aminoethyl ester trihydrochloride. 100 g of this lysine β-aminoethyl ester trihydrochloride was suspended as fine powder in 1200 mL of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 120 ° C., phosgene was added at a rate of 0.4 mol / hour. Blowing was started at a constant speed and maintained for 10 hours, and then the temperature was raised to 150 ° C. The suspension almost dissolved. After cooling, the mixture was filtered, and the dissolved phosgene and the solvent were distilled off under reduced pressure, followed by vacuum distillation to obtain 80.4 g of a colorless and transparent LTI having a boiling point of 155 to 157 ° C / 0.022 mmHg. Its NCO content was 47.1% by weight.

〔合成例(1−6)−2〕
GTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内にグルタミン酸塩酸塩275g、エタノールアミン塩酸塩800g、トルエン150mLを入れ、塩化水素ガスを吹き込みながら、水が共沸しなくなるまで110℃にて24時間加熱還流した。生成した反応混合物をメタノールおよびエタノールの混合液中で再結晶してビス(2−アミノエチル)グルタメート三塩酸塩270gを得た。このビス(2−アミノエチル)グルタメート三塩酸塩85gをo−ジクロロベンゼン680gに懸濁させ、かきまぜながら反応液を昇温し、135℃に達した時点でホスゲンを0.8モル/時間の速度にて吹込みはじめ、13時間保持し、反応生成物をろ過後、減圧濃縮し、さらに薄膜蒸発缶で精製することにより、GTI54gが得られた。NCO含有率は39.8重量%であった。
[Synthesis Example (1-6) -2]
Synthesis of GTI

Glutamic acid hydrochloride (275 g), ethanolamine hydrochloride (800 g), and toluene (150 mL) are placed in a four-necked flask equipped with a stirrer, a thermometer, and a gas inlet tube. The mixture was heated at reflux at 24 ° C. for 24 hours. The resulting reaction mixture was recrystallized in a mixture of methanol and ethanol to obtain 270 g of bis (2-aminoethyl) glutamate trihydrochloride. 85 g of this bis (2-aminoethyl) glutamate trihydrochloride was suspended in 680 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 135 ° C., phosgene was added at a rate of 0.8 mol / hour. The reaction product was filtered, concentrated under reduced pressure, and further purified by a thin film evaporator to obtain 54 g of GTI. The NCO content was 39.8% by weight.

〔合成例(1−6)−3〕
NTIの合成

撹拌機、温度計、およびガス導入管を取り付けた4ツ口フラスコ内に4−アミノメチル−1,8−オクタメチレンジアミン(以下、「トリアミン」と称する場合がある。)1060gをメタノー ル1500gに溶かし、これに35%濃塩酸1800mLを冷却しながら徐々に滴下した。減圧下にてメタノール及び水を除去して濃縮し、60℃/5mmHgにて 24時間乾燥したところ、白色固体のトリアミン塩酸塩が得られた。得られたトリアミン塩酸塩650gを微粉末としてo−ジクロルベンゼン5000gに懸濁させ、かきまぜながら反応液を昇温し、100℃に達した時点でホスゲンを200g/Hrの速度にて吹込みはじめ、さらに昇温を続けて180℃に保持し、12時間ホスゲンを吹込み続けた。減圧下にて溶存ホスゲン及び溶媒を留去したのち、真空蒸留することにより、沸点161〜163℃/1.2mmHgの無色透明な4−イソシアネートメチル−1,8−オクタンメチレンジイソシアネート(以下、「NTI」と称する場合がある。)420gが得られた。このもののNCO含有率50.0重量%であった。
[Synthesis Example (1-6) -3]
Synthesis of NTI

In a four-necked flask equipped with a stirrer, a thermometer, and a gas inlet tube, 1,060 g of 4-aminomethyl-1,8-octamethylenediamine (hereinafter sometimes referred to as "triamine") was added to 1500 g of methanol. The solution was dissolved, and 1800 mL of 35% concentrated hydrochloric acid was gradually added dropwise while cooling. After removing methanol and water under reduced pressure, the mixture was concentrated, and dried at 60 ° C./5 mmHg for 24 hours to obtain triamine hydrochloride as a white solid. The obtained triamine hydrochloride (650 g) was suspended as fine powder in 5000 g of o-dichlorobenzene, and the temperature of the reaction solution was increased while stirring. When the temperature reached 100 ° C., phosgene was started to be blown at a rate of 200 g / Hr. Then, the temperature was further increased and maintained at 180 ° C., and phosgene was continuously blown in for 12 hours. After distilling out the dissolved phosgene and the solvent under reduced pressure, the residue was distilled under vacuum to obtain colorless and transparent 4-isocyanatomethyl-1,8-octanemethylene diisocyanate having a boiling point of 161 to 163 ° C./1.2 mmHg (hereinafter referred to as “NTI ) Was obtained.) 420 g was obtained. Its NCO content was 50.0% by weight.

〔実施例(1−6)−1〕
P(1−6)−1の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてLTI50g、2−エチルヘキサノール2.0gを仕込み、温度を90℃、1時間保持した。その後、130℃に昇温し、アロファネート化触媒2−エチルヘキサン酸ジルコニルの固形分20%ミネラルスピリット溶液(日本化学産業株式会社製、商品名「ニッカオクチックスジルコニウム13%」をミネラルスピリットで希釈)を2mg加え、アロファネート化反応を行い、転化率が20%になった時点でピロリン酸の固形分50%イソブタノール溶液(片山化学工業株式会社製の試薬をイソブタノールで希釈)。を添加し、反応を停止し、ポリイソシアネートP(1−6)−1を得た。得られたポリイソシアネートP(1−6)−1の粘度は46mPa・s/25℃で、NCO含有率は42質量%で、アロファネート構造のモル比率は0.75であった。
さらに、ポリイソシアネート組成物P(1−6)−1の低粘度化度は○、乾燥性評価結果は○、ポリイソシアネート組成物と1級アルコールの反応速度結果は○、低極性有機溶剤への溶解性結果は○であった。これらの結果を表(1−6)−1に記載した。
[Example (1-6) -1]
Synthesis of P (1-6) -1

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet tube was set to a nitrogen atmosphere, 50 g of LTI and 2.0 g of 2-ethylhexanol were charged as monomers, and the temperature was maintained at 90 ° C. for 1 hour. . Thereafter, the temperature was raised to 130 ° C., and a 20% solids mineral spirit solution of zirconyl 2-ethylhexanoate, an allophanation catalyst (trade name “Nikka Octix Zirconium 13%” manufactured by Nippon Chemical Industry Co., Ltd., diluted with mineral spirit) Was added, and an allophanate-forming reaction was performed. When the conversion reached 20%, a 50% solid solution of pyrophosphoric acid in isobutanol (a reagent manufactured by Katayama Chemical Co., Ltd. was diluted with isobutanol). Was added to stop the reaction to obtain polyisocyanate P (1-6) -1. The viscosity of the obtained polyisocyanate P (1-6) -1 was 46 mPa · s / 25 ° C., the NCO content was 42% by mass, and the molar ratio of the allophanate structure was 0.75.
Furthermore, the degree of viscosity reduction of the polyisocyanate composition P (1-6) -1 is ○, the evaluation result of drying property is ○, the result of the reaction rate between the polyisocyanate composition and the primary alcohol is ○, The solubility result was ○. The results are shown in Table (1-6) -1.

〔実施例(1−6)−2〜(1−6)−5、比較例(1−6)−1〜2〕
P(1−6)−2〜P(1−6)−5、P(1−6)−7、P(1−6)−8の合成

表(1−6)−1のモノマー、2−エチルヘキサノール仕込み量、転化率を記載の通りとした以外は実施例(1−6)−1と同様に実施した。また、得られたポリイソシアネート組成物の粘度、NCO含有率、アロファネート構造のモル比率、低粘度化度、乾燥性評価結果、低極性有機溶剤への溶解性結果は表(1−6)−1に記載した。
[Examples (1-6) -2 to (1-6) -5, Comparative examples (1-6) -1 and 2]
Synthesis of P (1-6) -2 to P (1-6) -5, P (1-6) -7, P (1-6) -8

The procedure was performed in the same manner as in Example (1-6) -1 except that the monomers, the charged amount of 2-ethylhexanol, and the conversion in Table (1-6) -1 were as described. Table (1-6) -1 shows the viscosity, NCO content, molar ratio of allophanate structure, degree of viscosity reduction, results of dryness evaluation, and results of solubility in low-polarity organic solvents of the obtained polyisocyanate composition. It described in.

Figure 0006664509
Figure 0006664509

〔実施例(1−6)−6〕

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、モノマーとしてLTI50gを仕込み、温度を50℃に加熱した、その後、撹拌しながらメチルエチルケトオキシム29.3gを滴下し、50℃1時間保持した。次に2−エチルヘキサノール4.0gを仕込み、温度を90℃、1時間保持した。その後、130℃に昇温し、アロファネート化触媒2−エチルヘキサン酸ジルコニルの固形分20%ミネラルスピリット溶液(日本化学産業株式会社製、商品名「ニッカオクチックスジルコニウム13%」をミネラルスピリットで希釈)を2mg加え、アロファネート化反応を行い、転化率が40%になった時点でピロリン酸の固形分50%イソブタノール溶液(片山化学工業株式会社製の試薬をイソブタノールで希釈。)を添加し、反応を停止し、その後、150℃に昇温し、真空蒸留することで、メチルエチルケトオキシムを留出させ、ポリイソシアネート組成物P(1−6)−6を得た。得られたP(1−6)−6の粘度は79mPa・s/25℃で、NCO含有率は39質量%で、アロファネート構造のモル比率は0.81であった。 さらに、ポリイソシアネート組成物P(1−6)−5の低粘度化度は○、乾燥性評価結果は◎、ポリイソシアネート組成物と1級アルコールの反応速度結果は◎、低極性有機溶剤への溶解性結果は○であった。
[Example (1-6) -6]

A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, 50 g of LTI was charged as a monomer, the temperature was heated to 50 ° C., and then 29.3 g of methyl ethyl ketoxime was stirred. Was added dropwise and kept at 50 ° C. for 1 hour. Next, 4.0 g of 2-ethylhexanol was charged, and the temperature was maintained at 90 ° C. for 1 hour. Thereafter, the temperature was raised to 130 ° C., and a 20% solids mineral spirit solution of zirconyl 2-ethylhexanoate, an allophanation catalyst (trade name “Nikka Octix Zirconium 13%” manufactured by Nippon Chemical Industry Co., Ltd., diluted with mineral spirit) Was added, and an allophanate-forming reaction was carried out. When the conversion reached 40%, a 50% solid solution of pyrophosphoric acid in isobutanol (a reagent manufactured by Katayama Chemical Industry Co., Ltd. was diluted with isobutanol) was added. The reaction was stopped, then the temperature was raised to 150 ° C., and the mixture was distilled under vacuum to distill out methyl ethyl ketoxime, thereby obtaining a polyisocyanate composition P (1-6) -6. The viscosity of the obtained P (1-6) -6 was 79 mPa · s / 25 ° C., the NCO content was 39% by mass, and the mole ratio of the allophanate structure was 0.81. Further, the degree of viscosity reduction of the polyisocyanate composition P (1-6) -5 was ○, the evaluation result of dryness was ◎, the result of the reaction rate between the polyisocyanate composition and the primary alcohol was ◎, The solubility result was ○.

〔比較例(1−6)−3〕
P(1−6)−9の合成

比較例(1−6)−2で得られた反応液を薄膜蒸発缶にフィードし、未反応のHDIを除去し、ポリイソシアネート組成物P(1−6)−9を得た。得られたポリイソシアネート組成物P(1−6)−9の粘度は25mPa・s/25℃で、NCO含有率は47質量%で、アロファネート構造のモル比率は0.87であった。
さらに、ポリイソシアネート組成物P(1−6)−9の低粘度化度は×、乾燥性評価結果は×、ポリイソシアネート組成物と1級アルコールの反応速度結果は×、低極性有機溶剤への溶解性結果は○であった。これらの結果を表(1−6)−1に記載した。
[Comparative Example (1-6) -3]
Synthesis of P (1-6) -9

The reaction solution obtained in Comparative Example (1-6) -2 was fed to a thin film evaporator to remove unreacted HDI, to obtain a polyisocyanate composition P (1-6) -9. The viscosity of the obtained polyisocyanate composition P (1-6) -9 was 25 mPa · s / 25 ° C., the NCO content was 47% by mass, and the molar ratio of the allophanate structure was 0.87.
Further, the degree of viscosity reduction of the polyisocyanate composition P (1-6) -9 was x, the result of the evaluation of dryness was x, the result of the reaction rate of the polyisocyanate composition and the primary alcohol was x, The solubility result was ○. The results are shown in Table (1-6) -1.

〔比較例(1−6)−4〕

LTIモノマーの粘度は25mPa・s/25℃で、NCO含有率は47質量%で、アロファネート構造のモル比率は0であった。
さらに、LTIモノマーの低粘度化度は○、乾燥性評価結果は×、ポリイソシアネート組成物と1級アルコールの反応速度結果は○、低極性有機溶剤への溶解性結果は○であった。これらの結果を表(1−6)−1に記載した。
[Comparative Example (1-6) -4]

The viscosity of the LTI monomer was 25 mPa · s / 25 ° C., the NCO content was 47% by mass, and the mole ratio of the allophanate structure was 0.
Further, the degree of viscosity reduction of the LTI monomer was ○, the evaluation result of dryness was ×, the result of the reaction rate between the polyisocyanate composition and the primary alcohol was ○, and the result of solubility in the low polar organic solvent was ○. The results are shown in Table (1-6) -1.

〔実施例(1−6)−7〕
ブロックポリイソシアネート組成物の合成

撹拌機、温度計、還流冷却管、および窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−6)−4で得られたポリイソシアネート組成物P(1−6)−4を20g、酢酸ブチルを15.5g仕込み、温度を70℃に加熱した、その後、撹拌しながら3,5−ジメチルピラゾール17.9gを添加し、70℃を保持し、1時間撹拌した結果、NCO含有率0.0%となり、ブロックポリイソシアネートを得た。得られたブロックポリイソシアネートの粘度は360mPa・s/25℃で、計算NCO含有率は14.2質量%あった。
さらに、低粘度化度は○、乾燥性評価結果は○であった。これらの結果を表(1−6)−2に記載した。
[Example (1-6) -7]
Synthesis of blocked polyisocyanate composition

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate composition P (1-6) obtained in Example (1-6) -4 was obtained. -20 g of -4 and 15.5 g of butyl acetate were charged, and the temperature was heated to 70 ° C. Then, 17.9 g of 3,5-dimethylpyrazole was added with stirring, the temperature was maintained at 70 ° C, and the mixture was stirred for 1 hour. , NCO content became 0.0%, and a blocked polyisocyanate was obtained. The viscosity of the obtained blocked polyisocyanate was 360 mPa · s / 25 ° C., and the calculated NCO content was 14.2% by mass.
Further, the degree of viscosity reduction was ○, and the evaluation result of dryness was ○. These results are shown in Table (1-6) -2.

〔比較例(1−6)−5〜(1−6)−7〕
ブロックポリイソシアネート組成物の合成

表(1−6)−2のポリイソシアネート組成物、3,5−ジメチルピラゾール添加量、酢酸ブチル添加量を記載の通りにした以外は実施例(1−6)−7と同様に実施した。また、得られたブロックポリイソシアネート組成物の粘度、計算NCO含有率、低粘度化度、乾燥性評価結果は表(1−6)−2に記載した。
[Comparative Example (1-6) -5 to (1-6) -7]
Synthesis of blocked polyisocyanate composition

It carried out like Example (1-6) -7 except having set the polyisocyanate composition of Table (1-6) -2, the amount of 3,5-dimethylpyrazole addition, and the amount of butyl acetate addition as described. In addition, Table (1-6) -2 shows the viscosity, calculated NCO content, reduced viscosity, and dryness evaluation results of the obtained blocked polyisocyanate composition.

Figure 0006664509
Figure 0006664509

〔実施例(1−6)−8〕
親水性ポリイソシアネート組成物の合成

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、実施例(1−6)−4で得られたポリイソシアネート組成物P(1−6)−4を20g、親水性化合物であるポリエチレンオキサイド(日本乳化剤株式会社製、商品名「MPG−130」数平均分子量=420)8.3gを仕込み、100℃に加熱撹拌しながら4時間保持し、親水性ポリイソシアネートを得た。得られた親水性ポリイソシアネートの粘度は84mPa・s/25℃で、NCO含有率は24.8質量%あった。
さらに、低粘度化度は○、乾燥性評価結果は○であった。これらの結果を表(1−6)−3に記載した。
[Example (1-6) -8]
Synthesis of hydrophilic polyisocyanate composition

The inside of the four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was set to a nitrogen atmosphere, and the polyisocyanate composition P (1-6)-obtained in Example (1-6) -4. 20 g, and 8.3 g of a hydrophilic compound, polyethylene oxide (manufactured by Nippon Emulsifier Co., Ltd., trade name: “MPG-130”, number average molecular weight = 420), and kept at 100 ° C. for 4 hours while heating and stirring. A reactive polyisocyanate was obtained. The viscosity of the obtained hydrophilic polyisocyanate was 84 mPa · s / 25 ° C., and the NCO content was 24.8% by mass.
Further, the degree of viscosity reduction was ○, and the evaluation result of dryness was ○. The results are shown in Table (1-6) -3.

〔比較例(1−6)−8〜(1−6)−10〕
親水性ポリイソシアネート組成物の合成

表(1−6)−3のポリイソシアネート組成物、MPG−130添加量を記載の通りにした以外は実施例(1−6)−8と同様に実施した。また、得られた親水性ポリイソシアネート組成物の粘度、NCO含有率、低粘度化度、乾燥性評価結果は表(1−6)−3に記載した。
[Comparative Examples (1-6) -8 to (1-6) -10]
Synthesis of hydrophilic polyisocyanate composition

It carried out similarly to Example (1-6) -8 except having set the polyisocyanate composition of Table (1-6) -3, and the addition amount of MPG-130 as described. In addition, Table (1-6) -3 shows the viscosity, NCO content, viscosity reduction degree, and dryness evaluation results of the obtained hydrophilic polyisocyanate composition.

Figure 0006664509
Figure 0006664509

〔実施例(1−6)−9〕

実施例(1−6)−1で得られたポリイソシアネート組成物P(1−6)−1:300gに2,2,4−トリメチルペンタンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、ポリイソシアネート組成物と1級アルコールの反応速度結果は○、低極性有機溶剤への溶解性結果は○、貯蔵安定性評価結果は良好であった。
[Example (1-6) -9]

0.03 g of 2,2,4-trimethylpentane was added to 300 g of the polyisocyanate composition P (1-6) -1 obtained in Example (1-6) -1.
The degree of viscosity reduction of this polyisocyanate composition is ○, the evaluation result of dryness is ○, the result of reaction rate between polyisocyanate composition and primary alcohol is ○, the result of solubility in low polar organic solvent is 、, storage stability The evaluation result was good.

〔実施例(1−6)−10〕

実施例(1−6)−1で得られたポリイソシアネート組成物P(1−6)−1:300gにヘキサデカンを0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、ポリイソシアネート組成物と1級アルコールの反応速度結果は○、低極性有機溶剤への溶解性結果は○、貯蔵安定性評価結果は良好であった。
[Example (1-6) -10]

0.03 g of hexadecane was added to 300 g of the polyisocyanate composition P (1-6) -1 obtained in Example (1-6) -1.
The degree of viscosity reduction of this polyisocyanate composition is ○, the evaluation result of dryness is ○, the result of reaction rate between polyisocyanate composition and primary alcohol is ○, the result of solubility in low polar organic solvent is 、, storage stability The evaluation result was good.

〔合成例(1−6)−4〕
C(1−6)−1の合成

撹拌機、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、LTIを20g仕込み、60℃に加熱し、メタノールを7.2g添加し、撹拌しながら4時間保持し、N−置換カルバミン酸エステルC(1−6)−1を得た。
[Synthesis Example (1-6) -4]
Synthesis of C (1-6) -1

The inside of the four-necked flask equipped with a stirrer, thermometer, reflux condenser and nitrogen blowing tube was set to a nitrogen atmosphere, 20 g of LTI was charged, heated to 60 ° C., 7.2 g of methanol was added, and stirring was continued for 4 hours Retained to give N-substituted carbamic acid ester C (1-6) -1.

〔実施例(1−6)−11〕

実施例(1−6)−1で得られたポリイソシアネート組成物P(1−6)−1:300gにN−置換カルバミン酸エステルC(1−6)−1を0.03g添加した。
このポリイソシアネート組成物の低粘度化度は○、乾燥性評価結果は○、ポリイソシアネート組成物と1級アルコールの反応速度結果は○、低極性有機溶剤への溶解性結果は○、貯蔵安定性評価結果は良好であった。
[Example (1-6) -11]

0.03 g of N-substituted carbamic acid ester C (1-6) -1 was added to 300 g of the polyisocyanate composition P (1-6) -1 obtained in Example (1-6) -1.
The degree of viscosity reduction of this polyisocyanate composition is ○, the evaluation result of dryness is ○, the result of reaction rate between polyisocyanate composition and primary alcohol is ○, the result of solubility in low polar organic solvent is 、, storage stability The evaluation result was good.

以上より、各実施例のポリイソシアネート組成物は、低粘度であり、かつ、乾燥性、低極性有機溶剤への溶解性に優れることが確認された。 From the above, it was confirmed that the polyisocyanate compositions of the respective examples had low viscosity, and were excellent in drying properties and solubility in low-polarity organic solvents.

Claims (32)

一般式(I)、(II)、(III)または(IV)で表されるポリイソシアネート化合物を含む、ポリイソシアネート組成物。
Figure 0006664509
Figure 0006664509
Figure 0006664509
Figure 0006664509
[一般式(I)、(II)、(III)および(IV)中、複数あるR11、R21、R31およびR41は、それぞれ独立に、有機基であり、複数あるR 11 、R 31 およびR 41 のうち少なくとも1つは一般式(V)または(VI)で表される基であり、複数あるR 21 のうち少なくとも1つは一般式(V)で表される基である。複数あるR11、R21、R31およびR41は、それぞれ同一であってもよく異なっていてもよい。一般式(III)中、R32は、1価以上のアルコールから1つのヒドロキシ基を除去した残基である。」
Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
Figure 0006664509
[一般式(VI)中、Yはエステル構造を含む炭素数1〜20の2価の炭化水素基である。波線は結合手を意味する。]
A polyisocyanate composition comprising a polyisocyanate compound represented by the general formula (I), (II), (III) or (IV).
Figure 0006664509
Figure 0006664509
Figure 0006664509
Figure 0006664509
[In general formulas (I), (II), (III) and (IV), a plurality of R 11 , R 21 , R 31 and R 41 are each independently an organic group, and a plurality of R 11 , R At least one of R 31 and R 41 is a group represented by formula (V) or (VI), and at least one of a plurality of R 21 is a group represented by formula (V). A plurality of R 11 , R 21 , R 31 and R 41 may be the same or different. In the general formula (III), R 32 is a residue obtained by removing one hydroxy group from a monohydric or higher alcohol. "
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]
Figure 0006664509
[In the general formula (VI), Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms including an ester structure. A wavy line indicates a bond. ]
一般式(I)および一般式(II)で表されるポリイソシアネート化合物を含む、請求項1に記載のポリイソシアネート組成物。
Figure 0006664509
Figure 0006664509
[一般式(I)および一般式(II)中、複数あるR11およびR21は、それぞれ独立に、有機基であり、複数あるR11およびR21のうち少なくとも1つは一般式(V)で表される基である。複数あるR11およびR21は、それぞれ同一であってもよく異なっていてもよい。]
Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
The polyisocyanate composition according to claim 1, comprising a polyisocyanate compound represented by the general formula (I) and the general formula (II).
Figure 0006664509
Figure 0006664509
[In the general formulas (I) and (II), a plurality of R 11 and R 21 are each independently an organic group, and at least one of the plurality of R 11 and R 21 is a group represented by the general formula (V) Is a group represented by A plurality of R 11 and R 21 may be the same or different. ]
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]
前記一般式(I)および前記一般式(II)で表されるポリイソシアネート化合物を含み、
イミノオキサジアジンジオン構造とイソシアヌレート構造とのモル比率が、0.01以上1.5以下である、請求項2に記載のポリイソシアネート組成物。
Including a polyisocyanate compound represented by the general formula (I) and the general formula (II),
The polyisocyanate composition according to claim 2, wherein the molar ratio between the iminooxadiazinedione structure and the isocyanurate structure is 0.01 or more and 1.5 or less.
一般式(V)−1で表されるトリイソシアネートをさらに含む、請求項2または3に記載のポリイソシアネート組成物。
Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。]
The polyisocyanate composition according to claim 2, further comprising a triisocyanate represented by the general formula (V) -1.
Figure 0006664509
[In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]
前記一般式(II)で表されるポリイソシアネート化合物を含み、ポリイソシアネート組成物のNCO%から算出される、理論反応率が47%以下である、請求項2〜4のいずれか一項に記載のポリイソシアネート組成物。   The method according to any one of claims 2 to 4, comprising a polyisocyanate compound represented by the general formula (II), wherein the theoretical reaction rate calculated from NCO% of the polyisocyanate composition is 47% or less. A polyisocyanate composition. 前記一般式(II)で表されるポリイソシアネート化合物を含み、ポリイソシアネート組成物のNCO%から算出される、理論反応率が95%以上150%以下である、請求項2〜4のいずれか一項に記載のポリイソシアネート組成物。 The polyisocyanate compound represented by the general formula (II), wherein the theoretical reaction rate calculated from the NCO% of the polyisocyanate composition is 95% or more and 150% or less. Item 13. The polyisocyanate composition according to item 8. 前記一般式(II)で示されるポリイソシアネート化合物(A)と、前記一般式(V)−1で示されるトリイソシアネート化合物(B)とを含む、ポリイソシアネート組成物であって、
ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる、前記ポリイソシアネート化合物(A)の数平均分子量のピーク面積(A)と、前記トリイソシアネート化合物(B)の数平均分子量のピーク面積(B)と、の面積比率((A)/[(A)+(B)])が0.8以上1未満である、請求項4に記載のポリイソシアネート組成物。
A polyisocyanate composition comprising a polyisocyanate compound (A) represented by the general formula (II) and a triisocyanate compound (B) represented by the general formula (V) -1;
The peak area (A) of the number average molecular weight of the polyisocyanate compound (A) and the peak area (B) of the number average molecular weight of the triisocyanate compound (B) obtained by gel permeation chromatography (GPC) measurement. The polyisocyanate composition according to claim 4, wherein the area ratio ((A) / [(A) + (B)]) is 0.8 or more and less than 1.
前記一般式(II)中のR21のすべてが前記一般式(V)で示されるトリイソシアネートであるモノマー3量体を化合物(C)とした時、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られる、前記ポリイソシアネート化合物(A)の数平均分子量のピーク面積(A)と、前記トリイソシアネート化合物(B)の数平均分子量のピーク面積(B)と、前記化合物(C)の数平均分子量のピーク面積(C)との面積比率((C)/[(A)+(B)])が0.3以上1未満である、請求項7に記載のポリイソシアネート組成物。 When a monomer trimer in which all of R 21 in the general formula (II) is a triisocyanate represented by the general formula (V) is a compound (C), the monomer trimer is obtained by gel permeation chromatography (GPC) measurement. The peak area (A) of the number average molecular weight of the polyisocyanate compound (A), the peak area (B) of the number average molecular weight of the triisocyanate compound (B), and the number average molecular weight of the compound (C). The polyisocyanate composition according to claim 7, wherein the area ratio ((C) / [(A) + (B)]) to the peak area (C) is 0.3 or more and less than 1. イソシアネート基官能価が4以上12以下である、請求項7または8に記載のポリイソシアネート組成物。   The polyisocyanate composition according to claim 7 or 8, wherein the isocyanate group functionality is 4 or more and 12 or less. 一般式(II)および一般式(III)で表されるポリイソシアネート化合物を含み、イソシアヌレート構造とアロファネート構造とのモル比が100/0.1〜100/15である、請求項1に記載のポリイソシアネート組成物。
Figure 0006664509
Figure 0006664509
[一般式(II)および一般式(III)中、複数あるR21およびR31は、それぞれ独立に、有機基であり、複数あるR21およびR31のうち少なくとも1つは一般式(V)で表される基である。複数あるR21およびR31は、それぞれ同一であってもよく異なっていてもよい。R32は、1価以上のアルコールから1つのヒドロキシ基を除去した残基である。]
Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
The polyisocyanate compound represented by the general formula (II) and the general formula (III), wherein the molar ratio of the isocyanurate structure to the allophanate structure is from 100 / 0.1 to 100/15. Polyisocyanate composition.
Figure 0006664509
Figure 0006664509
[In the general formulas (II) and (III), a plurality of R 21 and R 31 are each independently an organic group, and at least one of the plurality of R 21 and R 31 is a group represented by the general formula (V) Is a group represented by A plurality of R 21 and R 31 may be the same or different. R 32 is a residue obtained by removing one hydroxy group from a monovalent or higher alcohol. ]
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]
一般式(V)−1で表されるトリイソシアネートをさらに含む、請求項10に記載のポリイソシアネート組成物。
Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。]
The polyisocyanate composition according to claim 10, further comprising a triisocyanate represented by the general formula (V) -1.
Figure 0006664509
[In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]
一般式(II)および一般式(IV)で表されるポリイソシアネート化合物を含み、イソシアヌレート構造とウレトジオン構造とのモル比が100/0.1〜100/100である、請求項1に記載のポリイソシアネート組成物。
Figure 0006664509
Figure 0006664509
[一般式(II)および(IV)中、複数あるR21およびR41は、それぞれ独立に、有機基であり、複数あるR21およびR41のうち少なくとも1つは一般式(V)で表される基である。複数あるR21およびR41は、それぞれ同一であってもよく異なっていてもよい。」
Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
The polyisocyanate compound represented by the general formula (II) and the general formula (IV), wherein the molar ratio between the isocyanurate structure and the uretdione structure is from 100 / 0.1 to 100/100. Polyisocyanate composition.
Figure 0006664509
Figure 0006664509
[In the general formulas (II) and (IV), a plurality of R 21 and R 41 are each independently an organic group, and at least one of the plurality of R 21 and R 41 is represented by the general formula (V). It is a group to be performed. A plurality of R 21 and R 41 may be the same or different. "
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]
一般式(V)−1で表されるトリイソシアネートをさらに含む、請求項12に記載のポリイソシアネート組成物。
Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。]
The polyisocyanate composition according to claim 12, further comprising a triisocyanate represented by the general formula (V) -1.
Figure 0006664509
[In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]
一般式(II)で表されるポリイソシアネート化合物を含み、
ヘキサメチレンジイソシアネートから誘導されるポリイソシアネートと1級アルコールとの反応速度(V )に対する、ポリイソシアネート組成物と1級アルコールとの反応速度(V )の比(V /V )が、5以上13未満である、ポリイソシアネート組成物。
Figure 0006664509
[一般式(II)中、R21は有機基である。複数あるR21のうち少なくとも1つは、一般式(V)で表される基、または一般式(VI)で表される基である。複数あるR21は、それぞれ同一であってもよく異なっていてもよい。]
Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、エステル構造および/またはエーテル構造を含んでいる炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
Figure 0006664509
[一般式(VI)中、Yはエステル構造を含む炭素数1〜20の2価の炭化水素基である。波線は結合手を意味する。]
The polyisocyanate compound represented by general formula (II) seen including,
The ratio (V h / V p ) of the reaction rate (V p ) between the polyisocyanate composition and the primary alcohol to the reaction rate (V h ) between the polyisocyanate derived from hexamethylene diisocyanate and the primary alcohol , The polyisocyanate composition , which is 5 or more and less than 13 .
Figure 0006664509
[In the general formula (II), R 21 is an organic group. At least one of the plurality of R 21 is a group represented by the general formula (V) or a group represented by the general formula (VI). A plurality of R 21 may be the same or different. ]
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a divalent hydrocarbon group having 1 to 20 carbon atoms and containing an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]
Figure 0006664509
[In the general formula (VI), Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms including an ester structure. A wavy line indicates a bond. ]
一般式(V)−1で表されるトリイソシアネートまたは一般式(VI)−1で示されるジイソシアネートをさらに含む、請求項14に記載のポリイソシアネート組成物。
Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。]
Figure 0006664509
[一般式(VI)−1中、Yはエステル構造を含んでいてもよい炭素数1〜20の2価の炭化水素基である。]
The polyisocyanate composition according to claim 14 , further comprising a triisocyanate represented by the general formula (V) -1 or a diisocyanate represented by the general formula (VI) -1.
Figure 0006664509
[In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]
Figure 0006664509
[In general formula (VI) -1, Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain an ester structure. ]
一般式(III)で示されるポリイソシアネート化合物を含むポリイソシアネート組成物であって、
該ポリイソシアネート組成物に含まれるイソシアネート基、アロファネート構造、イソシアヌレート構造、ウレトジオン構造、イミノオキサジアジンジオン構造、ウレタン構造、およびビュレット構造に含まれる窒素元素の総数に対して、該アロファネート構造に含まれる窒素元素(ただし、R31、R32に含まれる窒素元素を除く)の数が1.5%以上60%以下である請求項1に記載のポリイソシアネート組成物。
Figure 0006664509
[一般式(III)中、R31は有機基である。複数あるR31のうち少なくとも1つは、一般式(V)で示される基であり、R32は1価以上のアルコールのヒドロキシル基を除去した残基である。]
Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
A polyisocyanate composition containing a polyisocyanate compound represented by the general formula (III),
The isocyanate group contained in the polyisocyanate composition, allophanate structure, isocyanurate structure, uretdione structure, iminooxadiazinedione structure, urethane structure, and the total number of nitrogen elements contained in the burette structure included in the allophanate structure nitrogen element (however, R 31, R 32 excluding nitrogen element contained in) a polyisocyanate composition according to claim 1 number is 60% or less than 1.5%.
Figure 0006664509
[In the general formula (III), R 31 is an organic group. At least one of the plurality of R 31 is a group represented by the general formula (V), and R 32 is a residue obtained by removing a hydroxyl group of a monohydric or higher alcohol. ]
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]
前記アロファネート構造に含まれるR32が、2価以上のアルコールのヒドロキシル基を除去した残基である、請求項16に記載のポリイソシアネート組成物。 Wherein R 32 contained in the allophanate structure is a residue obtained by removing the divalent or more hydroxyl groups of the alcohol, polyisocyanate composition according to claim 16. 前記アロファネート構造に含まれるR32が、炭素数3〜50である1価以上のアルコールのヒドロキシル基を除去した残基である、請求項16または17に記載のポリイソシアネート組成物。 Wherein R 32 contained in the allophanate structure is a residue obtained by removing one or more valent alcohol hydroxyl groups of 3 to 50 carbon atoms, polyisocyanate composition according to claim 16 or 17. 一般式(III)で表されるポリイソシアネート化合物を含む、請求項1に記載のポリイソシアネート組成物。
Figure 0006664509
[一般式(III)中、複数あるR31は、それぞれ独立に、有機基であり、複数あるR31のうち少なくとも1つは一般式(V)で表される基、または一般式(VI)で表される基である。複数あるR31は、それぞれ同一であってもよく異なっていてもよい。R32は、1価以上のアルコールから1つのヒドロキシ基を除去した残基である。]
Figure 0006664509
[一般式(V)中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。波線は結合手を意味する。]
Figure 0006664509
[一般式(VI)中、Yはエステル構造を含む炭素数1〜20の2価の炭化水素基である。波線は結合手を意味する。]
The polyisocyanate composition according to claim 1, comprising a polyisocyanate compound represented by the general formula (III).
Figure 0006664509
[In general formula (III), a plurality of R 31 are each independently an organic group, and at least one of the plurality of R 31 is a group represented by general formula (V) or a general formula (VI) Is a group represented by A plurality of R 31 may be the same or different. R 32 is a residue obtained by removing one hydroxy group from a monovalent or higher alcohol. ]
Figure 0006664509
[In the general formula (V), a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may have an ester structure and / or an ether structure. A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. A wavy line indicates a bond. ]
Figure 0006664509
[In the general formula (VI), Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms including an ester structure. A wavy line indicates a bond. ]
アロファネート構造、ウレトジオン構造、イミノオキサジアジンジオン構造、イソシアヌレート構造、ウレタン構造、およびビュレット構造の各モル比率をa、b、c、d、e、およびfとしたとき、アロファネート構造のモル比率(a/(a+b+c+d+e+f))が、0.02以上0.95以下である、請求項19に記載のポリイソシアネート組成物。 When the molar ratios of the allophanate structure, uretdione structure, iminooxadiazinedione structure, isocyanurate structure, urethane structure, and buret structure are a, b, c, d, e, and f, the molar ratio of the allophanate structure ( The polyisocyanate composition according to claim 19 , wherein a / (a + b + c + d + e + f)) is 0.02 or more and 0.95 or less. ヘキサメチレンジイソシアネートから誘導されるポリイソシアネートと1級アルコールとの反応速度(V)に対する、ポリイソシアネート組成物と1級アルコールとの反応速度(V)の比(V/V)が、5以上13未満である、請求項19または20に記載のポリイソシアネート組成物。 The ratio (V h / V p ) of the reaction rate (V p ) between the polyisocyanate composition and the primary alcohol to the reaction rate (V h ) between the polyisocyanate derived from hexamethylene diisocyanate and the primary alcohol, The polyisocyanate composition according to claim 19, wherein the composition is 5 or more and less than 13. 一般式(V)−1で表されるトリイソシアネートまたは一般式(VI)−1で示されるジイソシアネートをさらに含む、請求項19〜21のいずれか一項に記載のポリイソシアネート組成物。
Figure 0006664509
[一般式(V)−1中、複数あるYは、それぞれ独立に、単結合、あるいは、エステル構造および/またはエーテル構造を含んでもよい炭素数1〜20の2価の炭化水素基である。複数あるYは、それぞれ同一であってもよく異なっていてもよい。R51は、水素原子または炭素数1〜12の1価の炭化水素基である。]
Figure 0006664509
[一般式(VI)−1中、Yはエステル構造を含んでいてもよい炭素数1〜20の2価の炭化水素基である。]
The polyisocyanate composition according to any one of claims 19 to 21 , further comprising a triisocyanate represented by the general formula (V) -1 or a diisocyanate represented by the general formula (VI) -1.
Figure 0006664509
[In general formula (V) -1, a plurality of Y 1 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which may include an ester structure and / or an ether structure. . A plurality of Y 1 may be the same or different. R 51 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. ]
Figure 0006664509
[In general formula (VI) -1, Y 2 is a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain an ester structure. ]
請求項1〜22のいずれか一項に記載のポリイソシアネート組成物が含有する前記一般式(I)、(II)、(III)または(IV)で表されるポリイソシアネート化合物の、イソシアネート基の少なくとも一部がブロック剤で保護された、ブロックポリイソシアネート組成物。 The isocyanate group of the polyisocyanate compound represented by the general formula (I), (II), (III) or (IV) contained in the polyisocyanate composition according to any one of claims 1 to 22. A blocked polyisocyanate composition at least partially protected by a blocking agent. 請求項1〜23のいずれか一項に記載のポリイソシアネート組成物が含有する前記一般式(I)、(II)、(III)または(IV)で表されるポリイソシアネート化合物の、イソシアネート基の少なくとも一部に親水性基が付加された、親水性ポリイソシアネート組成物。 The isocyanate group of the polyisocyanate compound represented by the general formula (I), (II), (III) or (IV) contained in the polyisocyanate composition according to any one of claims 1 to 23. A hydrophilic polyisocyanate composition having a hydrophilic group added to at least a part thereof. 請求項23に記載のブロックポリイソシアネート組成物が含有する前記一般式(I)、(II)、(III)または(VI)で表されるポリイソシアネート化合物の、イソシアネート基の少なくとも一部に親水性基が付加された、親水性ポリイソシアネート組成物。 The polyisocyanate compound represented by the general formula (I), (II), (III) or (VI) contained in the blocked polyisocyanate composition according to claim 23 , wherein at least a part of the isocyanate group is hydrophilic. A hydrophilic polyisocyanate composition to which groups have been added. 請求項1〜22のいずれか一項に記載のポリイソシアネート組成物と、ポリオールとを含む、塗料組成物。 A coating composition comprising the polyisocyanate composition according to any one of claims 1 to 22 and a polyol. 請求項23に記載のブロックポリイソシアネート組成物と、ポリオールとを含む、塗料組成物。 A coating composition comprising the blocked polyisocyanate composition according to claim 23 and a polyol. 請求項24または25に記載の親水性ポリイソシアネート組成物と、ポリオールとを含む、塗料組成物。 A coating composition comprising the hydrophilic polyisocyanate composition according to claim 24 or 25 and a polyol. 請求項26〜28のいずれか一項に記載の塗料組成物を硬化した塗膜。 A coating film obtained by curing the coating composition according to any one of claims 26 to 28 . 水と、水に分散した請求項16〜19のいずれかに記載のポリイソシアネート組成物、とを含む、水分散体。 An aqueous dispersion comprising water and the polyisocyanate composition according to any one of claims 16 to 19 dispersed in water. 水と、請求項23に記載のブロックポリイソシアネート組成物、とを含む、水分散体。 An aqueous dispersion comprising water and the blocked polyisocyanate composition according to claim 23 . 水と、請求項24または25に記載の親水性ポリイソシアネート組成物、とを含む、水分散体。 An aqueous dispersion comprising water and the hydrophilic polyisocyanate composition according to claim 24 or 25 .
JP2018545085A 2016-10-14 2017-10-13 Polyisocyanate composition, blocked polyisocyanate composition, hydrophilic polyisocyanate composition, coating composition, and coating film Active JP6664509B2 (en)

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
JP2016203095 2016-10-14
JP2016203090 2016-10-14
JP2016203088 2016-10-14
JP2016203082 2016-10-14
JP2016203089 2016-10-14
JP2016203089 2016-10-14
JP2016203082 2016-10-14
JP2016203083 2016-10-14
JP2016203097 2016-10-14
JP2016203083 2016-10-14
JP2016203088 2016-10-14
JP2016203097 2016-10-14
JP2016203111 2016-10-14
JP2016203090 2016-10-14
JP2016203095 2016-10-14
JP2016203111 2016-10-14
PCT/JP2017/037271 WO2018070536A1 (en) 2016-10-14 2017-10-13 Polyisocyanate composition, block polyisocyanate composition, hydrophilic polyisocyanate composition, coating material composition, and coating film

Publications (2)

Publication Number Publication Date
JPWO2018070536A1 JPWO2018070536A1 (en) 2019-04-11
JP6664509B2 true JP6664509B2 (en) 2020-03-13

Family

ID=61905663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018545085A Active JP6664509B2 (en) 2016-10-14 2017-10-13 Polyisocyanate composition, blocked polyisocyanate composition, hydrophilic polyisocyanate composition, coating composition, and coating film

Country Status (5)

Country Link
US (1) US11021562B2 (en)
EP (6) EP4134384A1 (en)
JP (1) JP6664509B2 (en)
CN (5) CN114149564B (en)
WO (1) WO2018070536A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107913730B (en) * 2017-11-30 2020-04-10 万华化学集团股份有限公司 Imine type quaternary ammonium salt catalyst, preparation method thereof and polyisocyanate composition
CN114085166B (en) * 2020-08-25 2023-05-05 万华化学集团股份有限公司 Method for preparing high-purity high-stability isocyanate in high yield
WO2022184522A1 (en) * 2021-03-02 2022-09-09 Basf Se Water-emulsifiable polyisocyanates with improved properties
WO2023237339A1 (en) 2022-06-08 2023-12-14 Covestro Deutschland Ag Two-component coating composition

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB614994A (en) * 1946-08-02 1948-12-30 David Augustine Harper Improvements in the curing of polymeric materials
GB856372A (en) * 1958-02-24 1960-12-14 Ici Ltd Derivatives of isocyanuric acid
JPS5334361B1 (en) 1969-04-14 1978-09-20
JPS6026775B2 (en) 1977-04-28 1985-06-25 東レ株式会社 Lysine ester triisocyanate
JPS5661341A (en) 1979-10-26 1981-05-26 Toray Ind Inc Aliphatic triisocyanate
JPS6021686B2 (en) 1980-08-08 1985-05-29 旭硝子株式会社 Fluorine-containing copolymer that can be cured at room temperature
JPS57198761A (en) 1981-06-02 1982-12-06 Asahi Chem Ind Co Ltd Quick-drying covering composition
JPS57198760A (en) 1981-06-02 1982-12-06 Asahi Chem Ind Co Ltd Quick-drying covering composition
JPS6044561A (en) 1983-08-19 1985-03-09 Asahi Chem Ind Co Ltd Rapidly-drying coating composition
JPS61215311A (en) 1985-03-20 1986-09-25 Shiseido Co Ltd External agent for skin
JP3055197B2 (en) 1991-01-14 2000-06-26 日本ポリウレタン工業株式会社 Polyurethane adhesive composition
US5124427A (en) * 1991-01-22 1992-06-23 Miles Inc. Polyisocyanates containing allophanate and isocyanurate groups, a process for their production and their use in two-component coating compositions
CA2072916C (en) 1991-07-22 2003-02-11 Terry A. Potter A process for the production of polyisocyanates containing allophanate and isocyanurate groups
US5208334A (en) * 1991-07-22 1993-05-04 Miles Inc. Process for the production of polyisocyanates containing allophanate and isocyanurate groups
DE4136618A1 (en) * 1991-11-07 1993-05-13 Bayer Ag Water-dispersible polyisocyanate mixtures
DE19603245A1 (en) * 1996-01-30 1997-07-31 Bayer Ag Thin-film distillation of uretdione diisocyanates
DE19611849A1 (en) * 1996-03-26 1997-10-02 Bayer Ag New isocyanate trimer and isocyanate trimer mixtures, their production and use
JP3724607B2 (en) * 1996-06-25 2005-12-07 日立化成工業株式会社 Photosensitive resin composition and photosensitive element using the same
JPH1048822A (en) * 1996-07-31 1998-02-20 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element using the same
US5714564A (en) * 1996-08-21 1998-02-03 Bayer Corporation Low viscosity polyisocyanates prepared from monomeric triisocyanates
EP1003802B1 (en) * 1997-08-12 2004-12-22 Rhodia Chimie Method for preparing (poly)isocyanate composition with reduced viscosity
DE19800286A1 (en) 1998-01-07 1999-07-08 Bayer Ag Use of special isocyanates for the production of aqueous PUR coatings
JP2000044649A (en) * 1998-08-03 2000-02-15 Asahi Chem Ind Co Ltd New aqueous (block)polyisocyanate composition and aqueous coating composition using the same
JP2000302745A (en) 1999-02-15 2000-10-31 Saito Kk Polyisocyanate composition
DE10007821A1 (en) * 2000-02-21 2001-08-23 Bayer Ag Water-dispersible polyisocyanate mixtures
FR2812646A1 (en) * 2000-08-04 2002-02-08 Rhodia Chimie Sa POLYISOCYANATE COMPOSITION OBTAINED BY POLYMERIZATION OF ISOCYANATE MONOMERS AND POLYISOCYANATE MASK COMPOUNDS
CN1296404C (en) 2000-10-17 2007-01-24 旭化成株式会社 Process for preparation of polyisocyanate composition
WO2002042351A1 (en) 2000-11-27 2002-05-30 Asahi Kasei Kabushiki Kaisha High-solid coating composition
EP1373353B1 (en) * 2001-03-27 2010-03-10 Rhodia Chimie Low-viscosity polyisocyanate composition having a high functionality and the preparation method thereof
DE10123419A1 (en) * 2001-05-14 2002-11-21 Bayer Ag Production of polyisocyanates by catalytic conversion of aliphatic diisocyanates comprises using a catalyst consisting of a triazolate salt
FR2837820B1 (en) * 2002-03-27 2005-03-11 Rhodia Chimie Sa LOW VISCOSITY POLYISOCYANATE COMPOSITION WITH HIGH FUNCTIONALITY AND PREPARATION PROCESS
WO2004078819A1 (en) 2003-03-06 2004-09-16 Kyowa Hakko Chemical Co., Ltd. Polyisocyanate composition and aqueous curing composition using same
DE10350242A1 (en) * 2003-10-27 2005-05-19 Basf Ag Production of emulsifiable polyisocyanate for use in aqueous coating material or adhesive, involves reacting di-isocyanate with polyether-alcohol and mixing the product with aliphatic polyisocyanate and allophanatisation catalyst
FR2879616B1 (en) * 2004-12-21 2007-05-25 Rhodia Chimie Sa POLYISACYANATE COMPOSITION WITH IMPROVED ANTI-SHOCK PROPERTIES
JP4545648B2 (en) 2005-06-20 2010-09-15 旭化成ケミカルズ株式会社 Polyisocyanate composition
US20060293484A1 (en) * 2005-06-24 2006-12-28 Bayer Materialscience Llc Low viscosity, ethylenically-unsaturated polyurethanes
WO2007046470A1 (en) 2005-10-21 2007-04-26 Asahi Kasei Chemicals Corporation Highly crosslinkable low-viscosity polyisocyanate composition and coating composition containing same
DE102005053678A1 (en) * 2005-11-10 2007-05-16 Bayer Materialscience Ag Hydrophilic polyisocyanate mixtures
FR2893940B1 (en) * 2005-11-28 2008-01-04 Rhodia Recherches & Tech ISOCYANATE FUNCTIONALITY COMPOUND, PREPARATION THEREOF AND USE THEREOF IN A COATING PREPARATION PROCESS
JP4725850B2 (en) * 2006-04-13 2011-07-13 Dic株式会社 Water-dispersible polyisocyanate composition, aqueous curable composition, aqueous paint and aqueous adhesive
DE102006025313A1 (en) * 2006-05-31 2007-12-06 Bayer Materialscience Ag Low-solvent or solvent-free crosslinker dispersion with pyrazole-blocked isocyanate groups
JP5334361B2 (en) 2006-07-21 2013-11-06 旭化成ケミカルズ株式会社 Polyisocyanate composition and coating composition
RU2009141369A (en) * 2007-04-11 2011-05-20 Байер МатириальСайенс АГ (DE) RADIATION-BINDABLE AND THERMALLY-BINDABLE POLYURETHANE SYSTEMS CONTAINING IMINO-OXADIAZINDION
JP5106088B2 (en) * 2007-12-26 2012-12-26 旭化成ケミカルズ株式会社 Block polyisocyanate composition
FR2931828B1 (en) * 2008-06-03 2011-07-08 Rhodia Operations NOVEL MIXTURES OF POLYISOCYANATE COMPOSITIONS
FR2939433B1 (en) * 2008-12-08 2012-03-16 Perstorp Tolonates France PROCESS FOR THE PREPARATION OF ALLOPHANATE, ALLOPHANATE AND LOW VISCOSITY COMPOSITION COMPRISING ALLOPHANATE
US8815066B2 (en) * 2008-12-29 2014-08-26 Basf Coatings Gmbh Coating composition with phosphorous-containing resins and organometallic compounds
CN102753596B (en) * 2010-02-08 2014-03-26 旭化成化学株式会社 Block polyisocyanate composition and coating composition containing same
JP2011256217A (en) * 2010-06-04 2011-12-22 Asahi Kasei Chemicals Corp Blocked polyisocyanate composition
TWI555800B (en) * 2011-04-04 2016-11-01 拜耳材料科學股份有限公司 Polyurethane urea dispersions
JP5725655B2 (en) * 2011-06-23 2015-05-27 旭化成ケミカルズ株式会社 Block polyisocyanate composition and coating composition containing the same
EP2771376B1 (en) * 2011-10-28 2021-02-24 Basf Se Colour-stable curing compositions containing polyisocyanates of (cyclo)aliphatic diisocyanates
CN103987750B (en) * 2011-11-29 2017-06-06 科思创德国股份有限公司 Prepare method and its application of polyisocyanates
US9790194B2 (en) 2011-11-30 2017-10-17 Covestro Deutschland Ag Process for continuous isocyanate modification
TWI530510B (en) * 2012-11-01 2016-04-21 旭化成化學股份有限公司 Polyisocyanate composition and isocyanate polymer composition
US20160046756A1 (en) * 2013-03-22 2016-02-18 Covestro Deutschland Ag Process for preparing polyisocyanates and catalyst kit therefor
TWI518976B (en) * 2013-07-10 2016-01-21 Lg化學股份有限公司 Electrode with enhanced cycle life and lithium secondary battery including the same
EP3024862B1 (en) * 2013-07-25 2021-08-25 Covestro Intellectual Property GmbH & Co. KG Use of succinnitrile in the production of polyisocyanates containing iminooxadiazindione groups
KR101799923B1 (en) 2014-09-16 2017-11-21 주식회사 엘지화학 Electrode active material slurry for a lithium secondary battery comprise dispersant agent and lithium secondary battery using same
JP6588203B2 (en) * 2014-12-12 2019-10-09 旭化成株式会社 Block polyisocyanate composition
JP6305631B2 (en) 2015-03-24 2018-04-04 富士フイルム株式会社 Aqueous dispersion of gel particles, method for producing the same, and image forming method
CN107913730B (en) * 2017-11-30 2020-04-10 万华化学集团股份有限公司 Imine type quaternary ammonium salt catalyst, preparation method thereof and polyisocyanate composition

Also Published As

Publication number Publication date
US11021562B2 (en) 2021-06-01
WO2018070536A1 (en) 2018-04-19
EP4122968A1 (en) 2023-01-25
EP3527594A1 (en) 2019-08-21
EP3527594A4 (en) 2019-11-06
EP3527594B1 (en) 2024-03-20
CN114163611B (en) 2023-08-11
CN114085357A (en) 2022-02-25
CN109843952B (en) 2021-11-12
CN114149564A (en) 2022-03-08
EP4122966A1 (en) 2023-01-25
CN114195971A (en) 2022-03-18
US20200040124A1 (en) 2020-02-06
EP4122967A1 (en) 2023-01-25
EP4137523B1 (en) 2023-12-06
JPWO2018070536A1 (en) 2019-04-11
CN114149564B (en) 2023-07-25
EP4122966B1 (en) 2023-12-06
EP4134384A1 (en) 2023-02-15
EP4137523A1 (en) 2023-02-22
CN114195971B (en) 2023-08-25
CN109843952A (en) 2019-06-04
CN114163611A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP6626985B2 (en) Isocyanate composition, aqueous dispersion of isocyanate composition, method for producing same, coating composition, and coating film
JP7044797B2 (en) A method for improving the water resistance and hardness retention of a coating film
JP6664509B2 (en) Polyisocyanate composition, blocked polyisocyanate composition, hydrophilic polyisocyanate composition, coating composition, and coating film
CN110785450B (en) Blocked isocyanate composition, one-pack type coating composition, and coating film
JP6746461B2 (en) Polyisocyanate composition, blocked polyisocyanate composition, hydrophilic polyisocyanate composition, coating composition, and coating film
JP6945012B2 (en) Painting method and coating film
JP7058571B2 (en) Water dispersion block polyisocyanate composition, water dispersion, water-based coating composition and coating base material
JP6626986B2 (en) Polyisocyanate composition, coating composition, and coating film
WO2022224927A1 (en) Blocked isocyanate composition, aqueous dispersion, coating composition and coating film
JP2023101150A (en) Blocked polyisocyanate composition, resin composition, resin film and laminate
JP2023099628A (en) Blocked polyisocyanate composition, resin composition, resin film and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R150 Certificate of patent or registration of utility model

Ref document number: 6664509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150