JP6661098B1 - Laminated polytetrafluoroethylene porous membrane and method for producing the same - Google Patents

Laminated polytetrafluoroethylene porous membrane and method for producing the same Download PDF

Info

Publication number
JP6661098B1
JP6661098B1 JP2019012368A JP2019012368A JP6661098B1 JP 6661098 B1 JP6661098 B1 JP 6661098B1 JP 2019012368 A JP2019012368 A JP 2019012368A JP 2019012368 A JP2019012368 A JP 2019012368A JP 6661098 B1 JP6661098 B1 JP 6661098B1
Authority
JP
Japan
Prior art keywords
layer
film
laminated
polytetrafluoroethylene
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019012368A
Other languages
Japanese (ja)
Other versions
JP2020116551A (en
Inventor
山本 勝年
勝年 山本
美智子 澤井
美智子 澤井
亜沙美 増田
亜沙美 増田
しげみ 及川
しげみ 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUGEN KAISHA YAMAKATSU LABO.
Original Assignee
YUGEN KAISHA YAMAKATSU LABO.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUGEN KAISHA YAMAKATSU LABO. filed Critical YUGEN KAISHA YAMAKATSU LABO.
Priority to JP2019012368A priority Critical patent/JP6661098B1/en
Priority to PCT/JP2020/000910 priority patent/WO2020158373A1/en
Application granted granted Critical
Publication of JP6661098B1 publication Critical patent/JP6661098B1/en
Publication of JP2020116551A publication Critical patent/JP2020116551A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/24Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by surface fusion and bonding of particles to form voids, e.g. sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

【課題】本発明は、高強度で、耐水性、通気性及び捕集性能が良好で、剥離しない積層PTFE多孔膜及びその製法を提供することを目的とする。【解決手段】本発明に係る積層PTFE多孔膜は、第1層〜第3層の3つの層を含む3層以上の積層体から構成され、第1層及び第3層は、平均分子量が300万以上のPTFE乳化重合粒子により作製され、フィブリルとノードとにより形成された微細孔を有するPTFE多孔膜層であり、第2層は、第1層と第3層との間に位置し、共重合性変性剤を含んだPTFE乳化重合粒子により作製された難フィブリル化の変性PTFE多孔膜層であることを特徴とする。【選択図】なしPROBLEM TO BE SOLVED: To provide a laminated PTFE porous membrane which has high strength, good water resistance, air permeability and collection performance and does not peel off, and a method for producing the same. A laminated PTFE porous membrane according to the present invention is composed of a laminated body of three or more layers including three layers of a first layer to a third layer, and the first layer and the third layer have an average molecular weight of 300. Is a PTFE porous membrane layer made of 10,000 or more PTFE emulsion-polymerized particles and having micropores formed by fibrils and nodes, the second layer being located between the first layer and the third layer, It is characterized in that it is a modified fibrillated modified PTFE porous membrane layer made of PTFE emulsion-polymerized particles containing a polymerizable modifier. [Selection diagram] None

Description

本発明は、積層されたポリテトラフルオロエチレン(以下、「ポリテトラフルオロエチレン」を単に「PTFE」という。)の多孔膜及びその製法に関する。   The present invention relates to a laminated polytetrafluoroethylene (hereinafter, “polytetrafluoroethylene” is simply referred to as “PTFE”) porous film and a method for producing the same.

なお、本明細書において、340℃以上に加熱する工程を経ていないPTFEを未焼成PTFEという。ちなみにPTFEの融点といえば340℃であり、焼成されたPTFEの融点は327℃である。   In the present specification, PTFE that has not undergone a step of heating to 340 ° C. or higher is referred to as unfired PTFE. Incidentally, the melting point of PTFE is 340 ° C., and the melting point of calcined PTFE is 327 ° C.

最近の半導体工業、精密工業、バイオテクノロジーなどにおける製造工程においては、高度に清浄化された空間や高度に清浄化された薬液が要求される。特に半導体工業において近来の高集積化に伴い微細な粒子の除去等、装置内部の雰囲気を高度に清浄化することが要請される。これらの課題を解決するために装備される高性能エアフィルタや薬液中の微細粒子除去フィルタにPTFEの多孔膜が濾材として使用されている。乳化重合によって得られた結晶化度98%以上のPTFEファインパウダーにより、高倍率の延伸多孔膜を作成することが重要である。そして押出方向に沿った長手方向(以下、「MD方向」と称す。)と押出方向に直交する幅方向(以下、「TD方向」と称す)の延伸倍率を大きくしていけば、フィブリルが増大し、ノードが減少して厚みが薄くなり、孔径を小さくすることができる。この現象は、濾材にあっては、微細粒子の除去、透過流量の増大という好ましい結果をもたらす。   In recent manufacturing processes in the semiconductor industry, precision industry, biotechnology, etc., a highly purified space and a highly purified chemical are required. Particularly, in the semiconductor industry, with the recent high integration, it is required to highly clean the atmosphere inside the device, such as removal of fine particles. In order to solve these problems, a porous PTFE membrane is used as a filter material in a high-performance air filter or a filter for removing fine particles in a chemical solution. It is important to form a high-magnification stretched porous membrane with PTFE fine powder having a crystallinity of 98% or more obtained by emulsion polymerization. The fibril increases as the stretching ratio in the longitudinal direction along the extrusion direction (hereinafter, referred to as “MD direction”) and the width direction orthogonal to the extrusion direction (hereinafter, referred to as “TD direction”) is increased. However, the number of nodes decreases, the thickness decreases, and the hole diameter can be reduced. This phenomenon brings about a favorable result in the filter medium in that fine particles are removed and the permeation flow rate is increased.

PTFE多孔膜は、一般的に次のように製造される。すなわち、PTFEを乳化重合することによって得られるPTFEファインパウダーに、成形助剤として石油溶剤等の溶剤を添加したペースト状の予備成形体を作製し、この予備成形体を押出成形金型となるシリンダーに装填する。そして、押出成形金型の先端に設置されたノズル部分から、前記ペースト状の予備成形体をロッド状又はシート状に押し出すとペースト状の押出成形体が作製される。ここまでの工程を本明細書においては「ペースト押出成形」または単に「ペースト押出」という。   The PTFE porous membrane is generally manufactured as follows. That is, a paste-like preform is prepared by adding a solvent such as a petroleum solvent as a molding aid to PTFE fine powder obtained by emulsion polymerization of PTFE, and this preform is used as a cylinder for forming an extrusion mold. To load. Then, when the paste-like preform is extruded into a rod shape or a sheet shape from a nozzle portion provided at the tip of the extrusion mold, a paste-like extruded product is produced. The steps so far are referred to as “paste extrusion” or simply “paste extrusion” in this specification.

次に、前記押出成形体は、一対の金属ロールからなる圧延ロールによって、厚み50〜1000μmの未焼成PTFEフィルムに加工される。この段階における未焼成PTFEフィルムには成形助剤が混入している。本明細書においては、この成形助剤が混入している未焼成PTFEフィルムを「成形助剤混入フィルム」という。   Next, the extruded body is processed into an unfired PTFE film having a thickness of 50 to 1000 μm by a rolling roll including a pair of metal rolls. A molding aid is mixed in the unfired PTFE film at this stage. In the present specification, the unfired PTFE film in which the molding aid has been mixed is referred to as a “molding aid mixed film”.

このフィルムを揮発乾燥することにより前記の成形助剤を除去すると、成形助剤が除去された未焼成PTFEフィルムが製造される。本明細書においては、成形助剤を除去した未焼成PTFEフィルムを「成形助剤除去フィルム」という。   When the molding aid is removed by volatilizing and drying the film, an unfired PTFE film from which the molding aid has been removed is produced. In the present specification, the unfired PTFE film from which the molding aid has been removed is referred to as a “molding aid removed film”.

前記成形助剤除去フィルムは、ガス管等の管類が連結される接合ネジ部分のシールテープ、電気を絶縁するための電線被覆材、フラットケーブルの形成材料などの用途に使われる。   The film for removing a molding aid is used for applications such as a sealing tape at a joint screw portion to which a pipe such as a gas pipe is connected, a wire covering material for insulating electricity, and a material for forming a flat cable.

上記の成形助剤除去フィルムをPTFEの融点、すなわち340℃未満の温度に加熱して、当該フィルムをMD方向に延伸し、さらにTD方向に延伸し、延伸したのちにPTFEの融点以上の温度に加熱処理するとPTFE多孔膜が製造される。   The above-mentioned molding aid-removed film is heated to a temperature lower than the melting point of PTFE, ie, a temperature lower than 340 ° C., and the film is stretched in the MD direction, further stretched in the TD direction, and then stretched to a temperature equal to or higher than the melting point of PTFE. After the heat treatment, a PTFE porous membrane is produced.

このPTFE多孔膜は、スキーウエアや登山服、キャンプ用テント、自動車のランプ、ハードディスクなどのエアベンド、薬液フィルターやエアフィルターなどに使用される。   This porous PTFE membrane is used for ski wear, mountain climbing clothing, camping tents, car lamps, air bends for hard disks, etc., chemical liquid filters and air filters.

ところで、PTFE多孔膜は、その厚みが薄くなると、機械的強度が弱くなるため加工時点での帯電による放電破損が生じ、オイルミストなどが付着することにより通気性と粒子の捕集性能が低下し、液圧などの作用によってPTFE多孔膜が厚み方向に圧縮されると隙間が減少するために流量低下が発生し、プリーツ加工時の曲げ加工で破損が生ずるなどの問題点がある。アパレル分野では通気性衣料品について、生地に界面活性剤が接触すると耐水性が低下し、皮脂などの油分が接触すると通気性が低下する問題点がある。   By the way, when the thickness of the PTFE porous membrane is reduced, the mechanical strength is weakened, so that discharge damage occurs due to charging at the time of processing, and oil mist or the like adheres to the porous membrane, which deteriorates air permeability and particle collection performance. When the PTFE porous membrane is compressed in the thickness direction by the action of liquid pressure or the like, the gap decreases and the flow rate decreases, and there is a problem that breakage occurs in bending during pleating. In the apparel field, a breathable garment has a problem that when a surfactant comes into contact with the fabric, the water resistance decreases, and when the oil such as sebum contacts, the breathability decreases.

上記のような問題点に対して下記特許文献1に記載の発明が提案されている。すなわち、特許文献1による多孔質PTFE物品は、高強度、低い流れ抵抗、小孔径の組み合わせを提供するものである。   The invention described in Patent Literature 1 below has been proposed to solve the above problems. That is, the porous PTFE article according to Patent Document 1 provides a combination of high strength, low flow resistance, and small pore size.

しかし、上記特許文献1の方法では、まず助剤を除去していない圧延フィルムをTD方向に延伸し、その後フィルムを積層して再度圧延を行い一体化する工程を経た上で、助剤を乾燥除去し、フィルムをMD方向に延伸し、続いてTD方向に延伸した後、焼結して作製する方法であり、前半の一体化工程が簡潔でない。   However, in the method of Patent Document 1, a rolled film from which the auxiliary agent has not been removed is first stretched in the TD direction, and then the film is laminated, rolled again and integrated, and then the auxiliary agent is dried. This is a method in which the film is removed, the film is stretched in the MD direction, then stretched in the TD direction, and then sintered, and the first-half integration step is not simple.

下記特許文献2においては、粒子の捕集効率を高めるために、微細孔を有するPTFE多孔膜とその孔径より少し大きい5μm以下のPTFE多孔膜を交互に積み重ねるという提案がなされている。   Patent Literature 2 below proposes alternately stacking a PTFE porous membrane having fine pores and a PTFE porous membrane having a size of 5 μm or less, which is slightly larger than the pore diameter, in order to increase the particle collection efficiency.

しかし、上記特許文献2の方法は、薄くて腰のない複数のPTFE多孔膜を交互に積み重ねる作業上の困難性があり、また、容易に多孔膜が剥離する問題がある。   However, the method of Patent Document 2 has a difficulty in alternately stacking a plurality of thin and rigid PTFE porous membranes, and also has a problem that the porous membrane is easily peeled off.

上記のPTFE多孔膜の積層方法については、下記特許文献3及び4に示される本願の発明者が提案した多層押出の方法により解決される。   The above-mentioned method of laminating a porous PTFE membrane can be solved by a multilayer extrusion method proposed by the present inventor shown in Patent Documents 3 and 4 below.

すなわち、下記特許文献3には、PTFE多孔膜の積層体の作製方法について、箱状の金型内に、第1層を得るためのPTFEペーストを層状に下金型上に乗せ、上金型で押圧する。こうして圧縮された第1層が形成される。次に上金型を取り外して、第2層を形成するためにPTFEペーストを入れ、上金型を用いて圧縮し、第1層の上に第2層を形成する。その後、さらに第3層のためのPTFEペーストを入れて上金型によって押圧する。こうして第1層、第2層及び第3層を有し、ペースト押出金型のシリンダーに収納される寸法に成形された複層予備成形体が得られる。この複層予備成形体を使用して、上記したPTFE多孔膜の製造手順によりPTFE多孔膜複層体が作製される。   That is, Patent Literature 3 below discloses a method of manufacturing a laminate of a porous PTFE membrane, in which a PTFE paste for obtaining a first layer is placed in a layered manner on a lower mold in a box-shaped mold. Press with. Thus, a compressed first layer is formed. Next, the upper mold is removed, a PTFE paste is added to form a second layer, and the PTFE paste is compressed using the upper mold to form a second layer on the first layer. Thereafter, the PTFE paste for the third layer is further added and pressed by the upper mold. In this way, a multilayer preform having the first layer, the second layer, and the third layer and having a size to be accommodated in the cylinder of the paste extrusion die is obtained. Using this multilayer preform, a PTFE porous membrane multilayer is produced by the above-described procedure for producing a PTFE porous membrane.

なお、当該特許文献4には、PTFE多孔膜複層体を形成する層の組合せとして、平均分子量が相違するPTFEファインパウダー同士の組み合わせや低分子量重合体等の非繊維化物を含有しているPTFEファインパウダーの組み合わせが示されている。   Patent Document 4 discloses, as a combination of layers forming a PTFE porous membrane multilayer body, a combination of PTFE fine powders having different average molecular weights or a PTFE containing a non-fibrous material such as a low molecular weight polymer. Fine powder combinations are shown.

特表2009−501632号公報Japanese Patent Publication No. 2009-501632 特開2012−120969号公報JP 2012-120969 A 特開平4−118212号公報JP-A-4-118212 特開平3−179038号公報JP-A-3-17938

しかしながら、上記特許文献4においては、平均分子量が相違するPTFEファインパウダー同士を組み合わせた層や低分子量重合体等の非繊維化物を含有しているPTFEファインパウダーの層を中間層として介在させているが、未だ、上記の問題点を解決するに至っていない。   However, in Patent Document 4, a layer in which PTFE fine powders having different average molecular weights are combined or a layer of PTFE fine powder containing a non-fibrous material such as a low molecular weight polymer is interposed as an intermediate layer. However, the above problems have not yet been solved.

そこで、本発明者は、少なくとも三層のうちの中間層に、フィブリルの発現が少なく、多角形的に広がったノード層を構成する膜材料を、ペースト押出前の予備成形体の段階から作製し、通常の工程、すなわちペースト押出によるシートの作製、シートの圧延、助剤の乾燥除去、縦延伸、横延伸は従来の方法で行うことで、容易に上記の問題点が解決することを見出した。   Therefore, the present inventor has prepared a film material constituting a polygonally expanded node layer in the intermediate layer of at least three layers from the stage of a preformed body before paste extrusion. It has been found that the above-mentioned problems can be easily solved by performing the usual steps, that is, the production of the sheet by paste extrusion, the rolling of the sheet, the drying and removal of the auxiliary agent, the longitudinal stretching and the transverse stretching by the conventional methods. .

該発明の最大の特徴は、多層、すなわち少なくとも三層以上からなる積層構造において、中間層に0.5%以下のコモノマーが含まれた変性PTFEファインパウダーの層を配置すること、三層構造の上下層は結晶化度98%以上のPTFEファインパウダーであること、さらに圧延及び助剤除去されたフィルムをMD方向に5倍以上、TD方向に20倍以上延伸し、その後、焼結したPTFE多孔膜の構造にしたこと、にある。   The greatest feature of the present invention is that, in a multilayer structure, that is, a laminated structure composed of at least three layers or more, a modified PTFE fine powder layer containing 0.5% or less of a comonomer is disposed in an intermediate layer, The upper and lower layers are PTFE fine powders having a crystallinity of 98% or more, and the rolled and auxiliary-removed film is stretched 5 times or more in the MD direction and 20 times or more in the TD direction. In the structure of the membrane.

このように構成したことによって得られる積層PTFE多孔膜は、中間層の変性PTFEポリマーがほとんどフィブリルを形成せず、ノードのみとなり、大きな孔径を形成した膜となる。さらに厚みの減少率も上下面に比べはるかに小さいことにより全体の厚みを嵩上げする。   The laminated porous PTFE membrane obtained by such a configuration is a membrane in which the modified PTFE polymer of the intermediate layer hardly forms fibrils, but only a node, and has a large pore diameter. Furthermore, the rate of thickness reduction is much smaller than that of the upper and lower surfaces, thereby increasing the overall thickness.

本発明に係る第1の積層PTFE多孔膜は、第1層〜第3層の3つの層を含む3層以上の積層体から構成され、第1層及び第3層は、数平均分子量が300万以上のポリテトラフルオロエチレン乳化重合粒子により作製され、フィブリルとノードとにより形成された微細孔を有するポリテトラフルオロエチレン多孔膜層であり、第2層は、第1層と第3層との間に位置し、共重合性変性剤を含んだポリテトラフルオロエチレン乳化重合粒子により作製された難フィブリル化の変性ポリテトラフルオロエチレン多孔膜層であって、ノードにより形成され、第1層及び第3層に形成された微細孔よりも大きな孔径を有する変性ポリテトラフルオロエチレン多孔膜層であることを特徴とする。 The first laminated porous PTFE membrane according to the present invention is composed of a laminate of three or more layers including three layers of a first layer to a third layer, and the first layer and the third layer have a number average molecular weight of 300. A polytetrafluoroethylene porous membrane layer made of 10,000 or more polytetrafluoroethylene emulsion polymerized particles and having micropores formed by fibrils and nodes, wherein the second layer is formed of a first layer and a third layer. A non-fibrillated modified polytetrafluoroethylene porous membrane layer made of polytetrafluoroethylene emulsion polymerized particles containing a copolymerizable modifying agent, wherein the first and second layers are formed by nodes; It is a modified polytetrafluoroethylene porous membrane layer having a pore size larger than the fine pores formed in the three layers .

本発明に係る第2の積層PTFE多孔膜は、前記第1の積層PTFE多孔膜の構成に加えて、第1層と第3層のポリテトラフルオロエチレン多孔膜層の厚みは、第2層の変性ポリテトラフルオロエチレン多孔膜層の厚みより小であることを特徴とする。 In the second laminated PTFE porous membrane according to the present invention, in addition to the configuration of the first laminated PTFE porous membrane, the thickness of the first and third polytetrafluoroethylene porous membrane layers is The thickness is smaller than the thickness of the modified polytetrafluoroethylene porous membrane layer.

本発明に係る積層PTFE多孔膜の第1の製法は、前記第1の積層PTFE多孔膜における第1層を形成するための成形助剤添混入PTFE乳化重合粒子と、前記第1の積層PTFE多孔膜における第2層を形成するための成形助剤混入変性PTFE乳化重合粒子と、前記第1の積層PTFE多孔膜における第3層を形成するための成形助剤混入PTFE乳化重合粒子とを、第1層、第2層、第3層の順序に積層して予備成形体を作製し、当該予備成形体を押出成形金型に装填し、装填した前記予備成形体を当該押出成形金型から押し出して押出成形体を作製し、前記押出成形体を圧延及び乾燥して成形助剤除去フィルムを作製し、前記成形助剤除去フィルムを押出方向に5倍以上延伸し、押出方向に延伸した後、押出方向と直交する方向に20倍以上延伸して、延伸膜を作製し、当該延伸膜をポリテトラフルオロエチレンの融点以上の温度で焼成して前記第1又は第2の積層ポリテトラフルオロエチレン多孔膜を製造することを特徴とする。 The first method for producing a laminated porous PTFE membrane according to the present invention comprises the steps of: forming a PTFE emulsion-polymerized particle mixed with a molding aid for forming a first layer in the first laminated PTFE porous membrane; A modified PTFE emulsion-polymerized particle mixed with a molding aid for forming a second layer in the membrane, and a PTFE emulsion-polymerized particle mixed with a molding aid for forming a third layer in the first laminated PTFE porous film. One layer, the second layer, and the third layer are laminated in this order to prepare a preform, and the preform is loaded into an extrusion die, and the loaded preform is extruded from the extrusion die. After preparing an extruded body, rolling and drying the extruded body to form a molding aid removal film, stretching the molding aid removal film 5 times or more in the extrusion direction, and stretching in the extrusion direction, In the direction perpendicular to the extrusion direction Extend 0 times or more, characterized in that to produce a drawn film, to produce said first or second multilayer polytetrafluoroethylene porous membrane by baking the stretched film at a temperature above the melting point of polytetrafluoroethylene And

本発明に係る積層PTFE多孔膜の第2の製法は、前記積層PTFE多孔膜の第1の製法における成形助剤除去フィルムを作製した後、当該成形助剤除去フィルムを、2本一対のロールから構成され、一方は金属製ロールであり、他方は金属製の軸芯にゴムを被覆したゴムロールからなるニップロールにより狭圧して高密度未焼成フィルムを作製し、作製した前記高密度未焼成フィルムを押出方向に5倍以上延伸し、押出方向に延伸した後、押出方向と直交する方向に20倍以上延伸して、高密度延伸膜を作製し、当該高密度延伸膜をポリテトラフルオロエチレンの融点以上の温度で焼成して前記第1又は第2の積層ポリテトラフルオロエチレン多孔膜を製造することを特徴とする。 In the second method for producing the laminated porous PTFE membrane according to the present invention, after forming the forming aid removing film in the first producing method for the laminated PTFE porous film, the forming aid removing film is removed from a pair of two rolls. One is a metal roll, and the other is narrowed by a nip roll composed of a rubber roll coated with rubber on a metal shaft core to produce a high-density unfired film, and extrude the produced high-density unfired film. After stretching in the direction of extrusion and stretching in the extrusion direction, stretching in the direction perpendicular to the extrusion direction by 20 times or more to produce a high-density stretched film, the high-density stretched film is at least the melting point of polytetrafluoroethylene. And producing the first or second laminated polytetrafluoroethylene porous membrane.

上記のように構成された積層PTFE多孔膜は、機械的強度が向上し、十分な耐水性、通気性及び粒子の捕集性能を有する。   The laminated porous PTFE membrane configured as described above has improved mechanical strength, and has sufficient water resistance, air permeability, and particle collection performance.

また、当該積層PTFE多孔膜は、静電気帯電の放電によるピンホールが減少する。   In addition, in the laminated porous PTFE membrane, pinholes due to electrostatic discharge are reduced.

さらに、当該積層PTFE多孔膜は、十分な厚みを確保できるので、外力による圧密を抑制する。完全一体化された膜単体となるので、剥離などが生じることがなく、取り扱い性が向上する。   Furthermore, since the laminated PTFE porous film can secure a sufficient thickness, consolidation due to external force is suppressed. Since the film is a completely integrated film, peeling and the like do not occur, and handleability is improved.

さらにまた、当該積層PTFE多孔膜は、接着剤で他の布帛とラミネートするときに接着剤が当該積層PTFE多孔膜に吸収されて布帛の表面へ接着剤が染み出すおそれがない。   Furthermore, when the laminated PTFE porous film is laminated with another fabric with an adhesive, there is no possibility that the adhesive is absorbed by the laminated PTFE porous film and the adhesive oozes out onto the surface of the fabric.

また、当該積層PTFE多孔膜は、界面活性剤や皮脂などの接触による通気性の悪化を抑制する効果がある。   Further, the laminated porous PTFE membrane has an effect of suppressing deterioration in air permeability due to contact with a surfactant, sebum, or the like.

本発明の実施例1における積層PTFE多孔膜の一部を剥がして内部の層が確認できるようにした表面写真である。2 is a surface photograph in which a part of a laminated porous PTFE membrane in Example 1 of the present invention is peeled off so that an inner layer can be confirmed. 本発明の実施例1におけるB層の拡大表面写真である。It is an enlarged surface photograph of layer B in Example 1 of the present invention. 図中の左図は実施例1の積層PTFE多孔膜にオイルを滴下した状態を示す表面写真であり、右図は比較例1の積層PTFE多孔膜にオイルを滴下した状態を示す表面写真である。The left figure in the figure is a surface photograph showing the state where oil was dropped on the laminated PTFE porous film of Example 1, and the right figure is a surface photograph showing the state where oil was dropped on the laminated PTFE porous film of Comparative Example 1. . 図中の左図は実施例1の積層PTFE多孔膜にオイルを滴下して下に敷いている色紙へ染み出したオイルの状態を示す写真であり、右図は比較例1の積層PTFE多孔膜にオイルを滴下して下に敷いている色紙へ染み出したオイルの状態を示す写真である。The left figure in the figure is a photograph showing the state of the oil that was dripped onto the colored paper laid below by dropping oil onto the laminated PTFE porous membrane of Example 1, and the right figure is the laminated PTFE porous membrane of Comparative Example 1. 5 is a photograph showing the state of oil that has been dripped into colored paper laid under the oil by dropping the oil. 比較例2の積層PTFE多孔膜にオイルを滴下した直後の表面写真である。9 is a photograph of the surface immediately after oil was dropped on the laminated porous PTFE membrane of Comparative Example 2. 比較例2の積層PTFE多孔膜にオイルを滴下して10分経過後の表面写真である。10 is a photograph of the surface of the laminated PTFE porous membrane of Comparative Example 2 after oil was dropped for 10 minutes. 比較例2の積層PTFE多孔膜にオイルを滴下して下に敷いている色紙へ染み出したオイルの状態を示す写真である。9 is a photograph showing the state of oil that was dropped onto colored paper laid below by dropping oil onto the laminated porous PTFE membrane of Comparative Example 2.

積層PTFE多孔膜は、その厚み方向の層がA層(第1層)、B層(第2層)、C層(第3層)以上の多層からなる。   The laminated PTFE porous membrane has a multilayer in the thickness direction of a layer A (first layer), a layer B (second layer), and a layer C (third layer) or more.

A層とC層とは、フィブリルとノードによる多孔膜を形成し易いPTFE乳化重合粒子のファインパウダーからなり、微細孔が形成された層である。A層及びC層は、同一のPTFE乳化重合粒子のファインパウダーであってもよいし、異なるPTFE乳化重合粒子のファインパウダーであってもよい。A層及びC層を形成するフィブリルとノードによる微細孔を形成し易いPTFEは、数平均分子量が300万以上であるPTFE乳化重合粒子から構成される。   The A layer and the C layer are layers formed of fine powder of PTFE emulsion polymerized particles which are easy to form a porous film by fibrils and nodes, and in which fine pores are formed. The A layer and the C layer may be fine powders of the same PTFE emulsion polymerized particles or different PTFE emulsion polymerized particles. PTFE that easily forms micropores by fibrils and nodes that form the A layer and the C layer is composed of PTFE emulsion polymerized particles having a number average molecular weight of 3,000,000 or more.

B層は、A層とC層との間に介在する中間層であって微細孔を形成していない層である。B層は膜の表面から見た構造が数ミリ単位の葉脈的筋状多角形状の構造の層が形成されている。また、B層は、共重合性変性剤が0.5%以下含まれ、フィブリル化が行われにくいPTFE乳化重合粒子のファインパウダーから構成される。なお、共重合性変性剤としては、ヘキサフルオロプロペン、ω−ヒドロパーフルオロオレフィン、トリフルオロクロロエチレン、炭素数3〜10のパーフルオロアルキルトリフルオロエチレンが好適に使用できる。   The B layer is an intermediate layer interposed between the A layer and the C layer and does not form micropores. The layer B is a layer having a vein-like streak-like polygonal structure whose structure viewed from the surface of the membrane is several millimeters. The layer B is composed of fine powder of PTFE emulsion polymerized particles containing 0.5% or less of a copolymerizable modifier and hardly fibrillated. In addition, hexafluoropropene, ω-hydroperfluoroolefin, trifluorochloroethylene, and perfluoroalkyltrifluoroethylene having 3 to 10 carbon atoms can be suitably used as the copolymerizable modifier.

A層、B層及びC層は、一度に予備成形の段階から層状に形成して、さらに圧延・乾燥されたフィルムから積層PTFE多孔膜が製造される。   The A layer, the B layer and the C layer are formed into layers at once from the stage of preforming, and a laminated PTFE porous film is manufactured from the rolled and dried film.

前記積層PTFE多孔膜は、MD方向に5倍以上、TD方向に10倍以上の延伸倍率で作製し、融点以上の温度で熱処理される。   The laminated PTFE porous film is manufactured at a draw ratio of 5 times or more in the MD direction and 10 times or more in the TD direction, and is heat-treated at a temperature of the melting point or more.

積層PTFE多孔膜を作製する前に、未焼成フィルムをニップロールで高密度化したのち延伸してもよい。   Before producing a laminated porous PTFE membrane, the unfired film may be densified by nip rolls and then stretched.

なお、上記のA層、B層及びC層の間やA層及びC層の外側に、他のPTFE多孔膜を積層する構造にしてもよい。   Note that a structure in which another PTFE porous film is laminated between the A layer, the B layer, and the C layer or outside the A layer and the C layer may be adopted.

[積層PTFE多孔膜の作製]
PTFE乳化重合粒子からなるファインパウダーF−106(ダイキン工業株式会社製)に成形助剤として溶剤アイソパーH(エクソンモービルコーポレーション製)を22重量部混合した(以後、この混合物を「成形助剤混入PTFE乳化重合粒子A」と称す)。
[Production of laminated PTFE porous film]
22 parts by weight of Solvent Isopar H (manufactured by ExxonMobil Corporation) was mixed with fine powder F-106 (manufactured by Daikin Industries, Ltd.) composed of PTFE emulsion polymerized particles as a forming aid (hereinafter, this mixture was referred to as “PTFE mixed with forming aid ”). Emulsion polymerization particles A ").

変性されたPTFE乳化重合粒子からなるファインパウダーF−205(ダイキン工業株式会社製)に成形助剤として溶剤アイソパーH(エクソンモービルコーポレーション製)を20重量部混合した(以後、この混合物を「成形助剤混入変性PTFE乳化重合粒子B」と称す。)。   20 parts by weight of a solvent Isopar H (manufactured by ExxonMobil Corporation) as a molding aid was mixed with fine powder F-205 (manufactured by Daikin Industries, Ltd.) composed of modified PTFE emulsion polymerized particles (hereinafter, this mixture was referred to as “Molding aid”). Agent-modified PTFE emulsion polymerized particles B ”).

70mm正方形からなるペースト押出シリンダーに挿入するために、上記特許文献3の製法により、上記成形助剤添混入PTFE乳化重合粒子AからなるA層及びC層と、上記成形助剤混入変性PTFE乳化重合粒子BからなるB層とを3分の1の比率で、A、B、Cの順に、予備成形金型にA層及びC層が上下に、B層が中間に配置されるように充填して、複層予備成形体を作製した。   To be inserted into a 70 mm square paste extrusion cylinder, the A layer and the C layer made of the PTFE emulsion polymer particles A mixed with the molding aid, and the modified PTFE emulsion polymer mixed with the molding agents, according to the production method of Patent Document 3 described above. A layer B composed of particles B is filled in a ratio of 1/3 in the order of A, B and C in a preforming mold so that the A layer and the C layer are arranged vertically and the B layer is arranged in the middle. Thus, a multilayer preform was prepared.

押出成形金型はダイス出口、すなわちノズル部分の開口は250mm×2mmの細幅の矩形状をなしており、前記複層予備成形体は、押出成形金型から押出されるシートが厚み方向に3層になるように押出成形金型に充填してシート状の押出成形体を作製した。   The extrusion die has a die outlet, that is, the opening of the nozzle portion has a narrow rectangular shape of 250 mm × 2 mm, and the multilayer preform has a sheet extruded from the extrusion die in a thickness direction of 3 mm. An extruded mold was filled into layers so as to form a sheet-shaped extruded body.

押出成形金型によりペースト押出したシート状の押出成形体をカレンダロールにて200μmに圧延し、続いて、溶剤を加熱除去して成形助剤除去フィルムを作製した。   A sheet-like extruded product obtained by extruding a paste with an extrusion mold was rolled to 200 μm using a calendar roll, and then the solvent was removed by heating to prepare a film from which a molding aid had been removed.

前記で作製した成形助剤除去フィルムを、300℃のロール間で長さMD方向に5倍延伸した、続いてテンター装置を用いて200℃でTD方向に20倍延伸した。テンターの熱固定ゾーンは380℃であった。   The molding aid-removed film prepared above was stretched 5 times in the MD direction between rolls at 300 ° C, and then stretched 20 times in the TD direction at 200 ° C using a tenter device. The heat setting zone of the tenter was 380 ° C.

なお、成形助剤除去フィルムを、2本一対のロールから構成され、一方は金属製ロールであり、他方は金属製の軸芯にゴムを被覆したゴムロールからなるニップロールに挟み込んで圧縮することにより作製した厚みだけを縮小させた高密度化未焼成PTFEフィルムを延伸して熱固定して積層PTFE多孔膜を作製してもよい。   The film formed by removing the molding aid from a pair of two rolls, one of which is a metal roll, and the other of which is sandwiched and compressed by a nip roll composed of a rubber roll coated with rubber on a metal shaft. A laminated PTFE porous film may be produced by stretching and heat fixing a densified unfired PTFE film reduced in thickness only.

[積層PTFE多孔膜の物性]
積層PTFE多孔膜の重量測定については、積層PTFE多孔膜の中央部を50mm正方形の型で裁断してサンプル5枚を作製し、その1枚ずつの重量を電子天秤(有効桁1000分の1g、アズワン株式会社製アズプロ電子天秤ASP213)で秤量し、その平均値を積層PTFE多孔膜の1枚分の重量とした。
[Physical properties of laminated PTFE porous film]
For the measurement of the weight of the laminated PTFE porous membrane, the central portion of the laminated PTFE porous membrane was cut with a 50 mm square mold to prepare five samples, and the weight of each sample was measured using an electronic balance (effective digit: 1/1000 g, The sample was weighed with an Aspro Electronic Balance ASP 213 manufactured by As One Corporation, and the average value was defined as the weight of one laminated PTFE porous membrane.

積層PTFE多孔膜の厚みは、ダイヤルシックネスゲージ(株式会社テクロック製SM−112でサンプル5枚分を重ねて測定し、その測定値を5で割った計算値を1枚分の厚みとした。その結果、積層PTFE多孔膜の1枚分の厚みは約30μmであった。   The thickness of the laminated PTFE porous film was measured by superimposing five samples on a dial thickness gauge (SM-112 manufactured by TECLOCK Co., Ltd.), and dividing the measured value by 5 to obtain a thickness of one sheet. As a result, the thickness of one laminated PTFE porous film was about 30 μm.

また、MD・TD延伸後で焼結前にサンプルを作製し、粘着テープを両面に貼り付けて、図1に示すように、A層とC層とを剥がして前記のマイクロメーターで測定した。その結果、元のA層〜C層の全厚みは30μmであり、A層及びC層の厚みはそれぞれ約5μm、B層の厚みは約20μmであった。   In addition, a sample was prepared after MD / TD stretching and before sintering, an adhesive tape was stuck on both sides, and as shown in FIG. 1, the A layer and the C layer were peeled off, and measurement was performed using the above-mentioned micrometer. As a result, the total thickness of the original layers A to C was 30 μm, the thickness of the layers A and C was about 5 μm, respectively, and the thickness of the layer B was about 20 μm.

積層PTFE多孔膜に対する気体の通過性は、実施例1の積層PTFE多孔膜の圧力損失と粒子の粒子除去効率を測定することにより算出した。   The gas permeability of the laminated porous PTFE membrane was calculated by measuring the pressure loss and the particle removal efficiency of the laminated porous PTFE membrane of Example 1.

すなわち、圧力損失は、実施例1の積層PTFE多孔膜の測定サンプルを、内径100mmのフィルタホルダにセットし、コンプレッサで入口側を加圧し、流速計で空気の透過する流量を5.3cm/秒に調整した。そして、この時の圧力損失をマノメータで測定した。   That is, the pressure loss was measured by setting the measurement sample of the laminated PTFE porous membrane of Example 1 in a filter holder having an inner diameter of 100 mm, pressurizing the inlet side with a compressor, and measuring the flow rate of air permeation with a flow meter at 5.3 cm / sec. Was adjusted. Then, the pressure loss at this time was measured with a manometer.

また、捕集効率は、JIS B9928 附属書5(規定)NaClエアロゾルの発生方法(加圧噴霧法)記載の方法に準じて、アトマイザーで発生させたNaCl粒子を、静電分級器(TSI社製)で、粒子径0.1μmに分級し、アメリシウム241を用いて粒子帯電を中和した後、透過する流量を5.3cm/秒に調整し、パーティクルカウンター(TSI社製、CNC)を用いて、測定試料である実施例1の積層PTFE多孔膜の前後での粒子数を求め、次式により捕集効率を算出した。   In addition, the collection efficiency was determined according to the method described in JIS B9928, Annex 5 (Regulation), Method for Generating NaCl Aerosol (Pressure Spraying Method), by using an NaCl particle generated by an atomizer and an electrostatic classifier (manufactured by TSI). ), The particles are classified to a particle diameter of 0.1 μm, the particles are neutralized with Americium 241, the permeation flow rate is adjusted to 5.3 cm / sec, and a particle counter (TSI, CNC) is used. The number of particles before and after the laminated porous PTFE membrane of Example 1 as a measurement sample was determined, and the collection efficiency was calculated by the following equation.

CO=測定試料が捕集したNaCl 0.1μmの粒子数
CI=測定試料に供給されたNaCl 0.1μmの粒子数
捕集効率(%)=(CO/CI)×100
PTFE多孔膜の特性としては、圧力損失及び捕集効率が重要であるが、この2つの特性は、一方を上げれば他方が下がる傾向を有しているので、その両立が難しい。圧力損失と捕集効率とのバランスの優劣を評価するための指標としては次式で求められるPF値が用いられる。
CO = number of particles of NaCl 0.1 μm collected by the measurement sample CI = number of particles of NaCl 0.1 μm supplied to the measurement sample Collection efficiency (%) = (CO / CI) × 100
Pressure loss and trapping efficiency are important as the characteristics of the porous PTFE membrane. However, it is difficult to balance these two characteristics because one tends to increase and the other tends to decrease. As an index for evaluating the balance between the pressure loss and the collection efficiency, a PF value obtained by the following equation is used.

PF値={−log((100−捕集効率(%))/100)}/(圧力損失/1000)
その試験結果は以下の表1に示すとおりである。
PF value = {− log ((100−collection efficiency (%)) / 100)} / (pressure loss / 1000)
The test results are as shown in Table 1 below.

積層PTFE多孔膜の孔径の測定については、表1に示される0.1μmのNaCl粒子がほぼ100%捕集されていることから、A層及びC層の孔径は、概ね0.1μm程度であると推定できた。   Regarding the measurement of the pore size of the laminated PTFE porous film, since the 0.1 μm NaCl particles shown in Table 1 are almost 100% collected, the pore sizes of the A layer and the C layer are about 0.1 μm. It could be estimated.

B層については、図2に示すように、実体写真から1cmを選んでその重さを測定し、比較的小さな孔径になる部分と比較的大きな孔径となる部分とを切り抜いて、その重さを測定し、その重さを面積に換算した。そして、その面積を円の面積として孔径を算出した。その結果は、下記表2に示すとおりであり、B層の孔径は概ね22μm〜120μmであると推定できた。 As for the layer B, as shown in FIG. 2, 1 cm 2 was selected from a stereoscopic photograph and its weight was measured. A portion having a relatively small hole diameter and a portion having a relatively large hole diameter were cut out, and the weight was measured. Was measured, and the weight was converted to the area. The hole diameter was calculated using the area as the area of a circle. The results are as shown in Table 2 below, and it was estimated that the pore size of the layer B was approximately 22 μm to 120 μm.

積層PTFE多孔膜の流体浸透性については、積層PTFE多孔膜の下に色紙を敷き、エクストラバージンオリーブオイル70g入り(株式会社J-オイルミルズ製、味の素販売)を使用してオリーブオイルを積層PTFE多孔膜に一滴(約0.025g)滴下して測定した。まず、オリーブオイル滴下前の前記色紙の重量を測定し、オリーブオイル滴下10分後の色紙の重量を測定して、その差を浸透量とした。   Regarding the fluid permeability of the laminated PTFE porous membrane, color paper is spread under the laminated PTFE porous membrane, and 70 g of extra virgin olive oil (J-Oil Mills Co., Ltd., Ajinomoto sales) is used to mix the olive oil with the laminated PTFE porous membrane. The measurement was performed by dropping one drop (about 0.025 g) on the film. First, the weight of the colored paper before the olive oil was dropped was measured, and the weight of the colored paper 10 minutes after the olive oil was dropped was measured, and the difference was defined as the permeation amount.

[比較例1]
比較例1として、成形助剤混入PTFE乳化重合粒子Aのみからなる多孔膜を、実施例1と同様の製法でペースト押出、圧延、二軸延伸で多孔膜を作製した。
[Comparative Example 1]
As Comparative Example 1, a porous film made of only PTFE emulsion polymer particles A mixed with a molding aid was prepared by the same production method as in Example 1 by paste extrusion, rolling, and biaxial stretching.

[比較例2]
比較例2として、厚み15μmの比較例1の多孔膜を2枚重ねて厚み30μmの多孔膜を作製した。
[Comparative Example 2]
As Comparative Example 2, two porous films of Comparative Example 1 each having a thickness of 15 μm were stacked to form a porous film having a thickness of 30 μm .

[試験結果]
実施例1、比較計1及び比較例2について、上記した測定を行ったところ、下記表3の結果となった。
[Test results]
When the above-mentioned measurement was performed for Example 1, Comparative Meter 1 and Comparative Example 2, the results shown in Table 3 below were obtained.

上記表3に示されるように、実施例1は、比較例1と重量において差がほとんどないが、厚みにおいては実施例1の方が2倍になった。   As shown in Table 3 above, Example 1 had almost no difference in weight from Comparative Example 1, but Example 1 had twice the thickness.

また、浸透試験を行った結果、図3に示すように、実施例1の多孔膜と比較例1の多孔膜にオリーブオイルを滴下したところ、図4に示すように、色紙に対して実施例1は浸透量が目に見えて僅かであり、比較例1の浸透量は多かった。数値的には、表3に示すように実施例1の浸透量が非常に少ない結果になった。   As a result of a penetration test, olive oil was dropped on the porous membrane of Example 1 and the porous membrane of Comparative Example 1 as shown in FIG. 3, and as shown in FIG. In No. 1, the permeation amount was visibly small, and in Comparative Example 1, the permeation amount was large. Numerically, as shown in Table 3, the amount of permeation of Example 1 was very small.

さらに、図5に示すように、比較例2の多孔膜にオリーブオイルを滴下すると、10分経過後には図6に示すような状態となり、色紙に対しては、図7及び表3に示すように、浸透量は比較例1と大した差がなく、比較例1の多孔膜を2枚重ねた場合も浸透量はかなり大きいことが解った。また、浸透速度は比較例1の1枚の場合と変わらなかった。つまり単純に厚みによっては浸透量も浸透速度も変わらないことが判った。 Furthermore, as shown in FIG. 5, when dropping a porous membrane olive oil of Comparative Example 2, after lapse of 10 minutes in a state as shown in FIG. 6, for the color paper, as shown in FIG. 7 and Table 3 In addition, the permeation amount was not much different from that of Comparative Example 1, and it was found that the permeation amount was considerably large even when two porous membranes of Comparative Example 1 were stacked. Also, the permeation rate was not different from that of the single sheet of Comparative Example 1. That is, it was found that the amount of penetration and the rate of penetration did not change depending on the thickness .

以上のことから、実施例1のB層、すなわち成形助剤混入変性PTFE乳化重合粒子Bから構成された多孔膜層は、空間層となり液を捕集して浸透を遮断する効果が確認された。   From the above, it was confirmed that the layer B in Example 1, that is, the porous membrane layer composed of the modified PTFE emulsion polymer particles B mixed with the molding aid became a space layer and had an effect of collecting liquid and blocking permeation. .

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although the embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This embodiment can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.

Claims (4)

第1層〜第3層の3つの層を含む3層以上の積層体から構成され、
第1層及び第3層は、数平均分子量が300万以上のポリテトラフルオロエチレン乳化重合粒子により作製され、フィブリルとノードとにより形成された微細孔を有するポリテトラフルオロエチレン多孔膜層であり、
第2層は、第1層と第3層との間に位置し、共重合性変性剤を含んだポリテトラフルオロエチレン乳化重合粒子により作製された難フィブリル化の変性ポリテトラフルオロエチレン多孔膜層であって、ノードにより形成され、第1層及び第3層に形成された微細孔よりも大きな孔径を有する変性ポリテトラフルオロエチレン多孔膜層である
ことを特徴とする積層ポリテトラフルオロエチレン多孔膜。
It is composed of a laminate of three or more layers including three layers of a first layer to a third layer,
The first layer and the third layer are a polytetrafluoroethylene porous membrane layer having a number average molecular weight of 3,000,000 or more and made of polytetrafluoroethylene emulsion polymerized particles and having fine pores formed by fibrils and nodes,
The second layer is located between the first layer and the third layer, and is a fibrillated modified polytetrafluoroethylene porous membrane layer made of polytetrafluoroethylene emulsion polymerized particles containing a copolymerizable modifier. And a modified polytetrafluoroethylene porous membrane layer formed by the node and having a larger pore diameter than the fine pores formed in the first layer and the third layer. .
第1層と第3層のポリテトラフルオロエチレン多孔膜層の厚みは第2層の変性ポリテトラフルオロエチレン多孔膜層の厚みより小である
ことを特徴とする請求項1に記載の積層ポリテトラフルオロエチレン多孔膜。
The thickness of the first layer and the third layer porous polytetrafluoroethylene film layer of laminate according to claim 1, characterized in that is smaller than the thickness of the modified polytetrafluoroethylene porous membrane layer of the second layer polytetra Fluoroethylene porous membrane.
請求項1に記載の第1層を形成するための成形助剤混入ポリテトラフルオロエチレン乳化重合粒子と、請求項1に記載の第2層を形成するための成形助剤混入変性ポリテトラフルオロエチレン乳化重合粒子と、請求項1に記載の第3層を形成するための成形助剤混入ポリテトラフルオロエチレン乳化重合粒子とを、第1層、第2層、第3層の順序に積層して予備成形体を作製し、A polytetrafluoroethylene emulsion polymer particle mixed with a molding aid for forming the first layer according to claim 1, and a modified polytetrafluoroethylene mixed with a molding aid for forming the second layer according to claim 1. The emulsion polymerization particles and the polytetrafluoroethylene emulsion polymerization particles mixed with a molding aid for forming the third layer according to claim 1 are laminated in the order of a first layer, a second layer, and a third layer. Make a preform,
当該予備成形体を押出成形金型に装填し、Loading the preform into an extrusion mold,
装填した前記予備成形体を当該押出成形金型から押し出して押出成形体を作製し、The loaded preform is extruded from the extrusion mold to produce an extruded body,
前記押出成形体を圧延及び乾燥して成形助剤除去フィルムを作製し、Rolling and drying the extruded body to produce a molding aid removal film,
前記成形助剤除去フィルムを押出方向に5倍以上延伸し、The molding aid-removed film is stretched 5 times or more in the extrusion direction,
押出方向に延伸した後、押出方向と直交する方向に20倍以上延伸して、延伸膜を作製し、After stretching in the extrusion direction, stretched 20 times or more in the direction perpendicular to the extrusion direction to produce a stretched film,
当該延伸膜をポリテトラフルオロエチレンの融点以上の温度で焼成して請求項1又は2に記載の積層ポリテトラフルオロエチレン多孔膜を製造するThe laminated film is fired at a temperature equal to or higher than the melting point of polytetrafluoroethylene to produce the laminated polytetrafluoroethylene porous film according to claim 1 or 2.
ことを特徴とする積層ポリテトラフルオロエチレン多孔膜の製法。A method for producing a laminated polytetrafluoroethylene porous membrane, comprising:
請求項3に記載の成形助剤除去フィルムを作製した後、
当該成形助剤除去フィルムを、2本一対のロールから構成され、一方は金属製ロールであり、他方は金属製の軸芯にゴムを被覆したゴムロールからなるニップロールにより狭圧して高密度未焼成フィルムを作製し、
作製した前記高密度未焼成フィルムを押出方向に5倍以上延伸し、
押出方向に延伸した後、押出方向と直交する方向に20倍以上延伸して、高密度延伸膜を作製し、
当該高密度延伸膜をポリテトラフルオロエチレンの融点以上の温度で焼成して請求項1又は2に記載の積層ポリテトラフルオロエチレン多孔膜を製造する
ことを特徴とする積層ポリテトラフルオロエチレン多孔膜の製法。
After producing the molding aid removal film according to claim 3,
The molding aid-removed film is composed of a pair of two rolls, one is a metal roll, and the other is a high-density unfired film that is narrowed by a nip roll composed of a rubber roll having a metal shaft covered with rubber. And make
The produced high-density unfired film is stretched 5 times or more in the extrusion direction,
After stretching in the extrusion direction, stretched 20 times or more in the direction perpendicular to the extrusion direction to produce a high-density stretched film,
3. The laminated polytetrafluoroethylene porous film according to claim 1 or 2, wherein the high-density stretched film is fired at a temperature not lower than the melting point of polytetrafluoroethylene to produce the laminated polytetrafluoroethylene porous film according to claim 1 or 2 . Manufacturing method.
JP2019012368A 2019-01-28 2019-01-28 Laminated polytetrafluoroethylene porous membrane and method for producing the same Active JP6661098B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019012368A JP6661098B1 (en) 2019-01-28 2019-01-28 Laminated polytetrafluoroethylene porous membrane and method for producing the same
PCT/JP2020/000910 WO2020158373A1 (en) 2019-01-28 2020-01-14 Laminated porous polytetrafluoroethylene film and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012368A JP6661098B1 (en) 2019-01-28 2019-01-28 Laminated polytetrafluoroethylene porous membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP6661098B1 true JP6661098B1 (en) 2020-03-11
JP2020116551A JP2020116551A (en) 2020-08-06

Family

ID=69998092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012368A Active JP6661098B1 (en) 2019-01-28 2019-01-28 Laminated polytetrafluoroethylene porous membrane and method for producing the same

Country Status (2)

Country Link
JP (1) JP6661098B1 (en)
WO (1) WO2020158373A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078926B2 (en) * 1989-12-07 1995-02-01 ダイキン工業株式会社 Method for producing polytetrafluoroethylene multilayer porous membrane
JPH0798136B2 (en) * 1990-02-23 1995-10-25 三菱レイヨン株式会社 Multilayer composite film and method for producing the same
JP2002301321A (en) * 2001-04-05 2002-10-15 Daikin Ind Ltd Filter medium, filter pack and filter unit which use the same, and method for manufacturing filter medium
JP3672868B2 (en) * 2001-12-26 2005-07-20 日東電工株式会社 Method for producing polytetrafluoroethylene porous membrane composite
JP5470137B2 (en) * 2010-03-31 2014-04-16 富士フイルム株式会社 Crystalline polymer microporous membrane, method for producing the same, and filter for filtration using the crystalline polymer microporous membrane
WO2013157647A1 (en) * 2012-04-20 2013-10-24 ダイキン工業株式会社 Composition mainly composed of ptfe, mixed powder, molding material, filtering medium for filter, air filter unit, and porous membrane manufacturing method

Also Published As

Publication number Publication date
WO2020158373A1 (en) 2020-08-06
JP2020116551A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP5012990B2 (en) Filter medium provided with porous membrane, manufacturing method thereof, filter pack, and filter unit
EP2000499B1 (en) Process for production of polytetrafluoroethylene porous membrane, filter medium and filter unit
JP3003500B2 (en) Polytetrafluoroethylene composite porous membrane
JP3273735B2 (en) Polytetrafluoroethylene porous membrane and method for producing the same, sheet-like polytetrafluoroethylene molded article, and filter medium for air filter
JP5985278B2 (en) Polytetrafluoroethylene porous membrane and air filter medium
TWI526243B (en) Porous multi - layer filter
JP3099416B2 (en) Method for producing polytetrafluoroethylene porous membrane with asymmetric pore size
JPH03179038A (en) Production of multilayered porous membrane of polytetrafluoroethylene
WO2010092938A1 (en) Porous multilayer filter and method for producing same
JP2011231321A (en) Improved porous membrane
EP3357564A1 (en) Air filter material, air filter pack, and air filter unit
JP2010018800A (en) Expanded ptfe membrane and method for producing the same
JP2022078151A (en) Production method of porous fluorine-based resin membrane
JP2005298554A (en) Stretched polytetrafluoroethylene porous film having elasticity-restoring property in film thickness direction, its manufacturing method and use of porous film
JP2008055407A (en) Method for manufacturing polytetrafluoroethylene porous film and air filter filtering medium
CN113195187B (en) Method for preparing unsintered polytetrafluoroethylene film and porous film thereof
TW201922883A (en) Fluororesin porous film and preparation method thereof
KR102031506B1 (en) Asymmetric polytetrafluoroethylene composites with macrotextured surfaces and methods for their preparation
JP2014042869A (en) Porous multi-layer filter
JP6661098B1 (en) Laminated polytetrafluoroethylene porous membrane and method for producing the same
KR20200020460A (en) Porous fluorine resin film
JPH078927B2 (en) Method for producing polytetrafluoroethylene multilayer porous membrane
JP3302606B2 (en) Polytetrafluoroethylene porous membrane and method for producing the same
KR102177292B1 (en) Porous fluorine resin sheet and method for prepararing0 the same
JP3456284B2 (en) Porous tetrafluoroethylene resin laminate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190424

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200110

R150 Certificate of patent or registration of utility model

Ref document number: 6661098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250