JP3672868B2 - Method for producing polytetrafluoroethylene porous membrane composite - Google Patents

Method for producing polytetrafluoroethylene porous membrane composite Download PDF

Info

Publication number
JP3672868B2
JP3672868B2 JP2001393917A JP2001393917A JP3672868B2 JP 3672868 B2 JP3672868 B2 JP 3672868B2 JP 2001393917 A JP2001393917 A JP 2001393917A JP 2001393917 A JP2001393917 A JP 2001393917A JP 3672868 B2 JP3672868 B2 JP 3672868B2
Authority
JP
Japan
Prior art keywords
porous membrane
support material
ptfe porous
breathable support
membrane composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001393917A
Other languages
Japanese (ja)
Other versions
JP2003190749A (en
Inventor
拓也 前岡
栄三 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2001393917A priority Critical patent/JP3672868B2/en
Publication of JP2003190749A publication Critical patent/JP2003190749A/en
Application granted granted Critical
Publication of JP3672868B2 publication Critical patent/JP3672868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリテトラフルオロエチレン(以下、PTFE、と表記)多孔質膜と通気性支持材との積層体を含むPTFE多孔質膜複合材の製造方法に関するものである。
【0002】
【従来の技術】
PTFE多孔質膜は、通気性、撥水性、微小粒子の捕集性などに優れており、従来、フィルタなどの様々な分野で利用されている。実際の使用にあたっては、強度などの観点から、PTFE多孔質膜を単独で用いるのではなく、不織布などの通気性を持つ支持材との積層体など、複合材の形で用いられる場合が多い。例えば、エアフィルタ濾材として使用されるPTFE多孔質膜複合材は、プリーツ加工時のPTFE多孔質膜へのダメージを防ぐため、PTFE多孔質膜の両面に通気性支持材を積層させて用いられる。PTFE多孔質膜と通気性支持材との一般的な積層方法として、通気性支持材を加熱ロールに接触させることで、その融点以上に加熱し、PTFE多孔質膜と接着、積層させる熱ラミネート法が知られている。
【0003】
上記従来の技術の熱ラミネート法の一例を、図3を用いて説明する。
【0004】
帯状の通気性支持材21と、同じく帯状のPTFE多孔質膜22とを、通気性支持材21がPTFE多孔質膜22を挟み込むように、ガイドロール23を通して重ね、続けて全体を加熱ロール24に接触させて所定の温度にまで加熱する。そのまま加熱ロール24上でニップロール25との間で狭持して、通気性支持材21とPTFE多孔質膜22を接着、積層させ、その後加熱ロール24から分離することでPTFE多孔質膜複合材を得ることができる。
【0005】
【発明が解決しようとする課題】
しかし、上記従来の方法の、加熱ロールを用いた熱ラミネート法の場合、加熱ロールに接触することで熱せられた通気性支持材が、加熱ロールより分離する際に、部分的に加熱ロールに貼り付いてしまうといった問題があった。この問題が発生した場合、複合材の機能が損なわれないまでも、表面に毛羽が発生するなど、表面になんらかの欠陥を持つ複合材となる。
【0006】
本発明は、このような事情に鑑みてなされたもので、表面に欠陥の少ないPTFE多孔質膜複合材の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明のPTFE多孔質膜複合材の製造方法は、ポリテトラフルオロエチレン多孔質膜と通気性支持材との積層体を含むポリテトラフルオロエチレン多孔質膜複合材の製造方法であって、赤外線の照射により上記通気性支持材を加熱する工程を含むことを特徴とする。この方法を用いれば、通気性支持材を、加熱ロールなどとの物理的接触なしに加熱することができ、表面に毛羽などの欠陥の少ないPTFE多孔質膜複合材を得ることができる。
【0008】
上記PTFE多孔質膜複合材の製造方法において、赤外線のピーク波長が、1〜4μmの範囲にあることが好ましい。この方法を用いれば、効率よく通気性支持材を加熱することができる。
【0009】
上記PTFE多孔質膜複合材の製造方法において、赤外線の光源が、赤外線ヒーターであることが好ましい。この方法を用いれば、製造装置のメンテナンスなどが容易であり、また、効率良く、低コストで、表面に毛羽などの欠陥の少ないPTFE多孔質膜複合材を得ることができる。
【0010】
上記PTFE多孔質膜複合材の製造方法において、通気性支持材を、上記通気性支持材に含まれる少なくとも一つの材料の融点以上に加熱することが好ましい。この方法を用いれば、PTFE多孔質膜複合材に十分な強度を与えることができる。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施形態について、図面を参照しながら説明する。
【0012】
本発明の製造方法によって得られるPTFE多孔質膜複合材は、PTFE多孔質膜と通気性支持材との積層体を含んでいる。通気性支持材により、全体の強度が向上される。
【0013】
PTFE多孔質膜は、例えば、シート状のPTFE成形体を作製し、これを2軸延伸して多孔質化する方法(特表平6−816802号公報、および特開平7−196831号公報などに記載)などの公知の方法により製造することができる。
【0014】
また必要に応じて、PTFE多孔質膜として、複数のPTFE多孔質膜が積層した構造を持つPTFE複層多孔質膜を用いても構わない。PTFE複層多孔質膜の製法としては特に限定されないが、次に示すような幾つかの方法が提案されている。例えば、
1)液状潤滑剤の混合された分子量の異なるPTFEファインパウダーを、層状に分布させたのちに、層構造を保ったまま押出して圧延し、さらに延伸することでPTFE複層多孔質膜を得る方法(特開平3−179038号公報に記載)。
2)液状潤滑剤を含んだPTFE圧延シートを重ねて圧延し、さらに延伸することでPTFE複層多孔質膜を得る方法(特開昭59−49935号公報に記載)。
3)孔径の異なる未焼成のPTFE多孔質膜を圧着することにより積層化し、PTFEの融点以上の温度で焼成することでPTFE複層多孔質膜を得る方法(特開昭54−97686号公報に記載)。
などが挙げられる。
【0015】
通気性支持材は、PTFE多孔質膜より通気性に優れていればよく、例えば、不織布、織布、メッシュ、その他の多孔質材料などを用いることができる。通気性支持材は、材質、構造、形態などを特に限定する必要はないが、強度や柔軟性、作業性の観点からは不織布が好ましい。さらに、PTFE多孔質膜との接着が容易であることなどから、不織布を構成する一部あるいは全部の繊維が芯鞘構造の複合繊維であり、芯成分が鞘成分より相対的に融点が高い合成繊維であることがより好ましい。なお、通気性支持材の材料としては、特に限定するものではないが、例えば、ポリオレフィン(ポリエチレン(PE)、ポリプロピレン(PP)など)、ポリアミド、ポリエステル(ポリエチレンテレフタレート(PET)など)、芳香族ポリアミド、またはこれらの複合材を含むものなどを用いることができる。
【0016】
本発明のPTFE多孔質膜複合材の製造方法では、赤外線の照射により通気性支持材を加熱することで、PTFE多孔質膜と通気性支持材とを、接着、積層すればよい。通気性支持材は、単独で加熱の後にPTFE多孔質膜と結合させてもよく、通気性支持材とPTFE多孔質膜とを接触させた状態で加熱してもよい。加熱の方法に赤外線を用いることで、通気性支持材を加熱用部材に接触させることなく加熱することが可能になり、表面に毛羽などの欠陥の少ないPTFE多孔質膜複合体を安定して製造することができる。
【0017】
また、加熱の方法に赤外線を用いることでさらなる利点も生じる。例えば、
1.設備を予熱することなく素早く加熱が可能で、温度調節も容易に行なうことができる。
2.加熱に要するエネルギーのロスが少ないため、低コストの生産を行なうことができる。
3.非接触の加熱方法のため、加熱ムラが起きにくく、全体に均一な加熱を行なうことができる。
などである。
【0018】
赤外線の光源としては、その放射により、通気性支持材を必要な温度にまで加熱できるものであれば特に制限はないが、なかでも赤外線のピーク波長が1〜4μmの範囲にあることが好ましい。通気性支持材の材料として多く用いられる高分子材料の赤外吸収スペクトルが、1〜4μmの範囲に多く存在するためである。
【0019】
赤外線の光源としては、一般的に広く使われている赤外線ヒーターなどを用いることが好ましい。具体的には特に限定されないが、例えば、中波長ヒーター、短波長ヒーター、カーボンヒーターなどである。
【0020】
また、通気性支持材の加熱の温度は、通気性支持材に含まれる少なくとも一つの材料の融点以上であることが好ましい。
【0021】
上記本発明の製造方法の一例を、図1を用いて説明する。
【0022】
帯状の通気性支持材1と、同じく帯状のPTFE多孔質膜2とを、通気性支持材1がPTFE多孔質膜2を挟み込むように、ガイドロール3を通して重ね、続けて全体を回転ロール4に沿わせる。回転ロール4に沿わせた状態で通気性支持材1を含む全体を赤外線ヒーター5により所定の温度にまで加熱し、通気性支持材1とPTFE多孔質膜2を接着、積層させ、本発明のPTFE多孔質膜複合材を得ることができる。また、図1の例では、上記した一連の工程を連続して行なうことができる。
【0023】
図1の例において、通気性支持材の加熱温度は、積層スピードを調節したり、赤外線ヒーターと通気性支持材との距離を調節したりすることで制御することができる。また、赤外線ヒーターと通気性支持材との距離は、0.5〜100mmが好ましく、1〜10mmがより好ましい。赤外線ヒーターを近づけすぎると通気性支持材と赤外線ヒーターとが接触するおそれがあり、離しすぎた場合には通気性支持材を均一に加熱することが難しくなる。
【0024】
また、赤外線ヒーターの直後に設置されているニップロール6により、加熱された通気性支持材1とPTFE多孔質膜2との積層体をさらに加圧することで各層の接着力を上げることが好ましい。また、ニップロール6を使用することで繰出し側のテンションと巻取り側のテンションのコントロールも可能となる。
【0025】
さらに回転ロール4は、加熱後の積層体の温度調節機能を持つ部材としても用いることができる。例えば、積層体の温度を回転ロール4上で通気性支持材1の融点以下にまで冷却させた後に、回転ロール4から積層体を分離させることにより、回転ロール4上に通気性支持材1の一部が貼り付くという問題を、より確実に回避することができる。この場合、積層体の温度を調節できるのであれば、回転ロール4を、冷却装置などを用いて冷却しても、自然放冷で冷却させても構わない。また、ニップロール6に対しても回転ロール4と同様な、加熱後の積層体に対する温度調節機能を与えることができる。
【0026】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明は以下の実施例により制限されるものではない。
【0027】
本実施例におけるPTFE多孔質膜複合材の剥離強度の測定、および外観検査は以下に示す方法で行った。
【0028】
(剥離強度)
本実施例における剥離強度の測定について図2を用いて説明する。
【0029】
PTFE多孔質膜複合材を、MD(Machine Direction−PTFEシートの長手方向)100mm×CD(Cross Direction−PTFEシートの幅方向)25mmの大きさにサンプリングし、ステンレス板14に両面テープ15(No.500 日東電工製)を用いて貼りつける。引張試験機の一方のチャック16に、上記サンプリングしたPTFE多孔質膜複合材11をステンレス板14ごと取り付け、もう一方のチャック17に、PTFE多孔質膜複合材11の一方の面を構成する通気性支持材13を、PTFE多孔質膜複合材11より約60mm剥離して取り付ける。このとき、PTFE多孔質膜複合材11のCD方向、すなわち短辺をそれぞれのチャックに取り付ける。PTFE多孔質膜複合材11のMD方向に剥離強度試験が行なわれることになる。その後、チャック16に取り付けたPTFE多孔質膜12と、チャック17に取り付けた通気性支持材11との界面を、チャック速度50mm/minで180°ピーリングを行って剥離させ、剥離強度を測定した。チャートに連続的に記録された引張強度の、上位5個の平均値をサンプルの剥離強度とする。
【0030】
(外観)
目視により、PTFE多孔質膜複合材の表面に異常がないかを確認する。
【0031】
(実施例1)
PTFEファインパウダー(フルオンCD−123、旭硝子社製)100重量部に対して液状潤滑剤(流動パラフィン)30重量部を均一に混合し、この混合物を20kg/cm2の条件で予備成形した。続いてこれをロッド状に押出成形し、さらにこのロッド状押出物を1対の金属製圧延ロール間に通すことで圧延し、厚さ0.2mmの長尺のシート状成形体を得た。次に、このシート状成形体を、ノルマルデカンを用いた抽出法を用いて液状潤滑剤を除去した後に、管状の芯体に巻き、ロール状にした。このシート状成形体を、ロール延伸法を用い、250℃にて長手方向に20倍の延伸を行なった。続いて、テンターを用い、100℃にて幅方向に5倍の延伸を行い、未焼成状態のPTFE多孔質膜を得た。この未焼成PTFE多孔質膜を380℃で30秒間加熱して焼成を行い、PTFE多孔質膜を得た。
【0032】
上記の方法で得られたPTFE多孔質膜に積層させる通気性支持材として、目付けが30g/m2のPET/PE芯鞘不織布(TO303WDO ユニチカ社製 鞘部PEの融点129℃、芯部PETの融点261℃)を準備し、図1に示す装置を用いてPTFE多孔質膜と通気性支持材との積層を行い、PTFE多孔質膜複合材を得た。赤外線ヒーターには、ピーク波長が2.0〜2.5μmである中波長カーボンヒーター(ヘレウス社製)を使用した。通気性支持材と赤外線ヒーターの距離は3mmとし、回転ロールの速度を3m/minとして積層を行った。このとき、通気性支持材の加熱温度は、150℃であった。
【0033】
得られたPTFE多孔質膜複合材の、通気性支持材とPTFE多孔質膜との界面の剥離強度測定、および表面外観の確認を行った。
【0034】
(比較例1)
PTFE多孔質膜と通気性支持材には実施例1と同じものを用い、図3に示す装置を用いてPTFE多孔質膜と通気性支持材との積層を行い、PTFE多孔質膜複合材を得た。加熱ロールの表面温度を150℃とし、加熱ロールの速度を3m/minとして積層を行った。
【0035】
得られたPTFE多孔質膜複合材の、通気性支持材とPTFE多孔質膜との界面の剥離強度測定、および表面外観の確認を行った。
【0036】
上記実施例1と比較例1におけるPTFE多孔質膜複合材の、剥離強度測定結果、および表面外観確認結果を、表1にまとめて記す。
【0037】
(表1)

Figure 0003672868
【0038】
表1によれば、実施例1と比較例1で得られたPTFE多孔質膜複合材は、どちらもほぼ同等の剥離強度を示している。しかし、表面外観について見てみると、比較例1で得られたPTFE多孔質膜複合材では、加熱ロールとPTFE多孔質膜複合材が離れる際に通気性支持材に含まれる繊維の一部が加熱ロールに貼り付いたために、表面が毛羽立つ現象が見られたが、実施例1で得られたPTFE多孔質膜複合材の表面外観は良好であった。
【0039】
【発明の効果】
以上説明したように、本発明によれば、表面に欠陥の少ないPTFE多孔質膜複合材の製造方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明のPTFE多孔質膜複合材の製造方法例を示す図である。
【図2】 実施例における、PTFE多孔質膜複合材の剥離強度測定方法を示す断面図である。
【図3】 従来の技術のPTFE多孔質膜複合材の製造方法例を示す図である。
【符号の説明】
1、13、21 通気性支持材
2、12、22 PTFE多孔質膜
3、23 ガイドロール
4 回転ロール
5 赤外線ヒーター
6、25 ニップロール
11 PTFE多孔質膜複合材
14 ステンレス板
15 両面テープ
16、17 チャック
24 加熱ロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a PTFE porous membrane composite including a laminate of a polytetrafluoroethylene (hereinafter referred to as PTFE) porous membrane and a breathable support material.
[0002]
[Prior art]
The PTFE porous membrane is excellent in air permeability, water repellency, fine particle collecting property and the like, and has been conventionally used in various fields such as filters. In actual use, from the viewpoint of strength and the like, the PTFE porous membrane is not used alone but is often used in the form of a composite material such as a laminate with a breathable support material such as a nonwoven fabric. For example, a PTFE porous membrane composite material used as an air filter medium is used by laminating a breathable support material on both sides of a PTFE porous membrane in order to prevent damage to the PTFE porous membrane during pleating. As a general method of laminating a porous PTFE membrane and a breathable support material, a heat laminating method in which the breathable support material is brought into contact with a heating roll so as to be heated to the melting point or higher and bonded to and laminated with the PTFE porous membrane. It has been known.
[0003]
An example of the conventional heat laminating method will be described with reference to FIG.
[0004]
The belt-like air-permeable support material 21 and the belt-like PTFE porous membrane 22 are overlapped through the guide roll 23 so that the air-permeable support material 21 sandwiches the PTFE porous membrane 22, and then the whole is placed on the heating roll 24. It is made to contact and it heats to predetermined temperature. As it is, it is sandwiched between the nip roll 25 on the heating roll 24, the breathable support material 21 and the PTFE porous film 22 are bonded and laminated, and then separated from the heating roll 24 to obtain the PTFE porous film composite material. Can be obtained.
[0005]
[Problems to be solved by the invention]
However, in the case of the heat laminating method using the heating roll of the above conventional method, when the breathable support material heated by contacting the heating roll is separated from the heating roll, it is partially attached to the heating roll. There was a problem of sticking. When this problem occurs, even if the function of the composite material is not impaired, the composite material has some defects on the surface, such as fluffing on the surface.
[0006]
This invention is made | formed in view of such a situation, and it aims at providing the manufacturing method of a PTFE porous membrane composite with few defects on the surface.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a PTFE porous membrane composite according to the present invention includes a polytetrafluoroethylene porous membrane composite including a laminate of a polytetrafluoroethylene porous membrane and a breathable support material. It is a manufacturing method, Comprising: The process of heating the said air-permeable support material by infrared irradiation is characterized by the above-mentioned. If this method is used, the breathable support material can be heated without physical contact with a heating roll or the like, and a PTFE porous membrane composite material with few defects such as fuzz on the surface can be obtained.
[0008]
In the method for producing the PTFE porous membrane composite material, it is preferable that the infrared peak wavelength is in the range of 1 to 4 μm. If this method is used, the breathable support material can be efficiently heated.
[0009]
In the method for producing the PTFE porous membrane composite material, the infrared light source is preferably an infrared heater. By using this method, it is possible to obtain a PTFE porous membrane composite material that facilitates maintenance of the manufacturing apparatus, and is efficient, low-cost, and has few defects such as fuzz on the surface.
[0010]
In the method for producing the PTFE porous membrane composite material, it is preferable to heat the breathable support material to a temperature equal to or higher than the melting point of at least one material included in the breathable support material. If this method is used, sufficient strength can be given to the PTFE porous membrane composite.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0012]
The PTFE porous membrane composite material obtained by the production method of the present invention includes a laminate of a PTFE porous membrane and a breathable support material. The breathable support material improves the overall strength.
[0013]
The PTFE porous membrane is prepared, for example, by a method of producing a sheet-like PTFE molded body and biaxially stretching it to make it porous (Japanese Patent Publication No. 6-816802 and Japanese Patent Laid-Open No. 7-196931). And the like.
[0014]
If necessary, a PTFE multilayer porous membrane having a structure in which a plurality of PTFE porous membranes are laminated may be used as the PTFE porous membrane. Although it does not specifically limit as a manufacturing method of a PTFE multilayer porous membrane, Several methods as shown below are proposed. For example,
1) A method of obtaining a PTFE multilayer porous film by distributing PTFE fine powders mixed with a liquid lubricant in different layers, extruding and rolling while maintaining the layer structure, and further stretching. (Described in JP-A-3-179038).
2) A method of obtaining a PTFE multilayer porous film by rolling a PTFE rolled sheet containing a liquid lubricant on top of each other, and further stretching (described in JP-A-59-49935).
3) A method in which unfired PTFE porous membranes having different pore diameters are laminated by pressure bonding, and a PTFE multilayer porous membrane is obtained by firing at a temperature equal to or higher than the melting point of PTFE (Japanese Patent Laid-Open No. 54-97686) Listed).
Etc.
[0015]
The breathable support material only needs to be more breathable than the PTFE porous membrane, and for example, a nonwoven fabric, a woven fabric, a mesh, other porous materials, and the like can be used. The breathable support material need not be particularly limited in terms of material, structure, form, etc., but is preferably a nonwoven fabric from the viewpoint of strength, flexibility, and workability. Furthermore, because it is easy to adhere to the PTFE porous membrane, some or all of the fibers constituting the nonwoven fabric are core-sheath composite fibers, and the core component has a relatively higher melting point than the sheath component. More preferably, it is a fiber. The material of the breathable support material is not particularly limited, but for example, polyolefin (polyethylene (PE), polypropylene (PP), etc.), polyamide, polyester (polyethylene terephthalate (PET), etc.), aromatic polyamide Or those containing these composite materials can be used.
[0016]
In the method for producing a PTFE porous membrane composite of the present invention, the PTFE porous membrane and the breathable support material may be bonded and laminated by heating the breathable support material by irradiation with infrared rays. The breathable support material may be combined with the PTFE porous membrane after heating alone, or may be heated while the breathable support material and the PTFE porous membrane are in contact with each other. By using infrared rays as the heating method, it is possible to heat the breathable support material without bringing it into contact with the heating member, and stably produce a PTFE porous membrane composite with few defects such as fuzz on the surface. can do.
[0017]
In addition, the use of infrared rays as a heating method has further advantages. For example,
1. Heating can be done quickly without preheating the equipment, and the temperature can be adjusted easily.
2. Since there is little energy loss required for heating, low-cost production can be performed.
3. Due to the non-contact heating method, uneven heating is unlikely to occur and uniform heating can be performed throughout.
Etc.
[0018]
The infrared light source is not particularly limited as long as it can heat the breathable support material to a necessary temperature by the radiation, but it is preferable that the infrared peak wavelength is in the range of 1 to 4 μm. This is because a large number of infrared absorption spectra of a polymer material often used as a material for the breathable support material exist in the range of 1 to 4 μm.
[0019]
As the infrared light source, it is preferable to use a generally used infrared heater or the like. Although it does not specifically limit, For example, they are a medium wavelength heater, a short wavelength heater, a carbon heater, etc.
[0020]
Further, the heating temperature of the breathable support material is preferably equal to or higher than the melting point of at least one material contained in the breathable support material.
[0021]
An example of the manufacturing method of the present invention will be described with reference to FIG.
[0022]
The belt-like air-permeable support material 1 and the belt-like PTFE porous membrane 2 are overlapped through the guide roll 3 so that the air-permeable support material 1 sandwiches the PTFE porous membrane 2, and then the whole is attached to the rotating roll 4. Keep along. The whole including the breathable support material 1 along the rotating roll 4 is heated to a predetermined temperature by the infrared heater 5, and the breathable support material 1 and the PTFE porous membrane 2 are bonded and laminated. A PTFE porous membrane composite can be obtained. In the example of FIG. 1, the above-described series of steps can be performed continuously.
[0023]
In the example of FIG. 1, the heating temperature of the breathable support material can be controlled by adjusting the stacking speed or adjusting the distance between the infrared heater and the breathable support material. Moreover, 0.5-100 mm is preferable and, as for the distance of an infrared heater and a breathable support material, 1-10 mm is more preferable. If the infrared heater is too close, the breathable support material and the infrared heater may come into contact with each other, and if it is too far, it becomes difficult to uniformly heat the breathable support material.
[0024]
Moreover, it is preferable to raise the adhesive force of each layer by further pressurizing the laminated body of the heated air-permeable support material 1 and the PTFE porous membrane 2 with the nip roll 6 installed immediately after the infrared heater. Further, the use of the nip roll 6 makes it possible to control the tension on the feeding side and the tension on the winding side.
[0025]
Furthermore, the rotating roll 4 can also be used as a member having a temperature adjusting function of the laminated body after heating. For example, after the temperature of the laminated body is cooled on the rotating roll 4 to be equal to or lower than the melting point of the breathable support material 1, the laminated body is separated from the rotating roll 4, whereby the breathable support material 1 is placed on the rotating roll 4. The problem of part sticking can be avoided more reliably. In this case, as long as the temperature of the laminated body can be adjusted, the rotating roll 4 may be cooled using a cooling device or the like, or may be cooled by natural cooling. The nip roll 6 can also be provided with a temperature adjustment function for the laminated body after heating, similar to the rotating roll 4.
[0026]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by a following example.
[0027]
The measurement of the peel strength and the appearance inspection of the PTFE porous membrane composite material in this example were performed by the following methods.
[0028]
(Peel strength)
Measurement of peel strength in this example will be described with reference to FIG.
[0029]
The PTFE porous membrane composite material was sampled to a size of MD (Machine Direction—the length direction of the PTFE sheet) 100 mm × CD (Cross Direction—the width direction of the PTFE sheet) 25 mm, and the double-faced tape 15 (No. 500 using Nitto Denko). The sampled PTFE porous membrane composite material 11 is attached to one chuck 16 of the tensile tester together with the stainless steel plate 14, and the air permeability that constitutes one surface of the PTFE porous membrane composite material 11 to the other chuck 17. The support material 13 is peeled from the PTFE porous membrane composite material 11 by about 60 mm and attached. At this time, the CD direction of the PTFE porous membrane composite material 11, that is, the short side is attached to each chuck. A peel strength test is performed in the MD direction of the PTFE porous membrane composite material 11. Thereafter, the interface between the PTFE porous membrane 12 attached to the chuck 16 and the air-permeable support material 11 attached to the chuck 17 was peeled by 180 ° peeling at a chuck speed of 50 mm / min, and the peel strength was measured. The average value of the top five tensile strengths continuously recorded on the chart is taken as the peel strength of the sample.
[0030]
(appearance)
Visual inspection confirms that there is no abnormality on the surface of the PTFE porous membrane composite.
[0031]
(Example 1)
30 parts by weight of a liquid lubricant (liquid paraffin) was uniformly mixed with 100 parts by weight of PTFE fine powder (Fullon CD-123, manufactured by Asahi Glass Co., Ltd.), and this mixture was preformed under the condition of 20 kg / cm 2 . Subsequently, this was extruded into a rod shape, and the rod-like extrudate was rolled by passing between a pair of metal rolling rolls to obtain a long sheet-like molded body having a thickness of 0.2 mm. Next, after removing the liquid lubricant by using an extraction method using normal decane, the sheet-like molded body was wound around a tubular core body to form a roll. This sheet-like molded body was stretched 20 times in the longitudinal direction at 250 ° C. using a roll stretching method. Subsequently, using a tenter, the film was stretched 5 times in the width direction at 100 ° C. to obtain an unfired PTFE porous membrane. This unsintered PTFE porous membrane was baked by heating at 380 ° C. for 30 seconds to obtain a PTFE porous membrane.
[0032]
As a breathable support material to be laminated on the PTFE porous membrane obtained by the above method, a PET / PE core-sheath nonwoven fabric with a basis weight of 30 g / m 2 (TO303WDO Unitika's sheath PE melting point 129 ° C., core PET 1 was prepared, and a PTFE porous membrane and a breathable support material were laminated using the apparatus shown in FIG. 1 to obtain a PTFE porous membrane composite. As the infrared heater, a medium wavelength carbon heater (manufactured by Heraeus) having a peak wavelength of 2.0 to 2.5 μm was used. Lamination was performed at a distance of 3 mm / min between the breathable support material and the infrared heater and at a rotating roll speed of 3 m / min. At this time, the heating temperature of the breathable support material was 150 ° C.
[0033]
The obtained PTFE porous membrane composite material was measured for peel strength at the interface between the air-permeable support material and the PTFE porous membrane, and confirmed the surface appearance.
[0034]
(Comparative Example 1)
The same PTFE porous membrane and breathable support material as in Example 1 were used, and the PTFE porous membrane and the breathable support material were laminated using the apparatus shown in FIG. Obtained. Lamination was performed at a surface temperature of the heating roll of 150 ° C. and a heating roll speed of 3 m / min.
[0035]
The obtained PTFE porous membrane composite material was measured for peel strength at the interface between the air-permeable support material and the PTFE porous membrane, and confirmed the surface appearance.
[0036]
The peel strength measurement results and the surface appearance confirmation results of the PTFE porous membrane composite materials in Example 1 and Comparative Example 1 are collectively shown in Table 1.
[0037]
(Table 1)
Figure 0003672868
[0038]
According to Table 1, the PTFE porous membrane composites obtained in Example 1 and Comparative Example 1 both show substantially the same peel strength. However, looking at the surface appearance, in the PTFE porous membrane composite material obtained in Comparative Example 1, when the heating roll and the PTFE porous membrane composite material are separated, some of the fibers contained in the breathable support material are Since the surface was fluffed due to sticking to the heating roll, the surface appearance of the PTFE porous membrane composite obtained in Example 1 was good.
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method for producing a PTFE porous membrane composite material having few defects on the surface.
[Brief description of the drawings]
FIG. 1 is a view showing an example of a method for producing a PTFE porous membrane composite of the present invention.
FIG. 2 is a cross-sectional view showing a method for measuring the peel strength of a PTFE porous membrane composite in an example.
FIG. 3 is a diagram showing an example of a conventional method for producing a PTFE porous membrane composite.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 13, 21 Breathable support material 2, 12, 22 PTFE porous membrane 3, 23 Guide roll 4 Rotating roll 5 Infrared heater 6, 25 Nip roll 11 PTFE porous membrane composite material 14 Stainless steel plate 15 Double-sided tape 16, 17 Chuck 24 Heating roll

Claims (4)

ポリテトラフルオロエチレン多孔質膜と通気性支持材との積層体を含むポリテトラフルオロエチレン多孔質膜複合材の製造方法であって、前記ポリテトラフルオロエチレンと前記通気性支持材とを積層する工程を含み、前記積層工程において、赤外線の照射によって前記通気性支持材を加熱し、前記通気性支持材を前記ポリテトラフルオロエチレン多孔質膜に接着させることを特徴とするポリテトラフルオロエチレン多孔質膜複合材の製造方法。A process for producing a polytetrafluoroethylene porous membrane composite material comprising a laminate of a polytetrafluoroethylene porous membrane and a breathable support material, the step of laminating the polytetrafluoroethylene and the breathable support material In the laminating step, the air-permeable support material is heated by infrared irradiation, and the air-permeable support material is bonded to the polytetrafluoroethylene porous film. A method of manufacturing a composite material. 赤外線のピーク波長が、1〜4μmの範囲にあることを特徴とする請求項1に記載のポリテトラフルオロエチレン多孔質膜複合材の製造方法。  The method for producing a polytetrafluoroethylene porous membrane composite according to claim 1, wherein the infrared peak wavelength is in the range of 1 to 4 µm. 赤外線の光源が、赤外線ヒーターであることを特徴とする請求項1または2に記載のポリテトラフルオロエチレン多孔質膜複合材の製造方法。  The method for producing a polytetrafluoroethylene porous membrane composite according to claim 1 or 2, wherein the infrared light source is an infrared heater. 通気性支持材を、前記通気性支持材に含まれる少なくとも一つの材料の融点以上に加熱することを特徴とする請求項1〜3のいずれか一項に記載のポリテトラフルオロエチレン多孔質膜複合材の製造方法。  The polytetrafluoroethylene porous membrane composite according to any one of claims 1 to 3, wherein the breathable support material is heated to a temperature equal to or higher than a melting point of at least one material contained in the breathable support material. A method of manufacturing the material.
JP2001393917A 2001-12-26 2001-12-26 Method for producing polytetrafluoroethylene porous membrane composite Expired - Fee Related JP3672868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393917A JP3672868B2 (en) 2001-12-26 2001-12-26 Method for producing polytetrafluoroethylene porous membrane composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393917A JP3672868B2 (en) 2001-12-26 2001-12-26 Method for producing polytetrafluoroethylene porous membrane composite

Publications (2)

Publication Number Publication Date
JP2003190749A JP2003190749A (en) 2003-07-08
JP3672868B2 true JP3672868B2 (en) 2005-07-20

Family

ID=27600788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393917A Expired - Fee Related JP3672868B2 (en) 2001-12-26 2001-12-26 Method for producing polytetrafluoroethylene porous membrane composite

Country Status (1)

Country Link
JP (1) JP3672868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12121869B2 (en) * 2021-02-09 2024-10-22 Allied Supreme Corp. Porous polytetrafluoroethylene membrane, and thermosetting method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104512086A (en) * 2013-09-30 2015-04-15 湖北华尚光电有限公司 Device for covering protective film with optical film in mobile phone touch screen and application method thereof
CN103785249A (en) * 2014-01-21 2014-05-14 安徽纳微环保科技有限公司 Micro-filtration membrane for filtering PM2.5 particulate matters and preparation method of membrane
KR101578747B1 (en) 2014-04-02 2015-12-18 류진호 Apparatus of generating infra-red for heat treatment of microporous membrane
US10071334B2 (en) 2015-05-07 2018-09-11 Nitto Denko Corporation Filter medium and filter unit
JP6744188B2 (en) 2016-09-30 2020-08-19 日東電工株式会社 Air filter media, air filter pack and air filter unit
JP6920042B2 (en) 2016-09-30 2021-08-18 日東電工株式会社 Air filter filter media, air filter pack and air filter unit
JP6861493B2 (en) 2016-09-30 2021-04-21 日東電工株式会社 Air filter filter media, air filter pack and air filter unit
TWI766104B (en) * 2017-09-22 2022-06-01 日商日東電工股份有限公司 Air filter media, filter pleats and air filter units
JP6661098B1 (en) * 2019-01-28 2020-03-11 有限会社ヤマカツラボ Laminated polytetrafluoroethylene porous membrane and method for producing the same
CN112619427B (en) * 2020-12-14 2023-04-07 宁波日新恒力科技有限公司 Semipermeable membrane support and preparation method thereof
CN116059849B (en) * 2021-11-01 2024-10-15 中国石油化工股份有限公司 Polytetrafluoroethylene compound and porous membrane thereof, preparation method and application
CN117732259B (en) * 2024-01-16 2024-07-12 深圳市普朗医疗科技发展有限公司 Antibacterial and ozone-resistant PTFE composite filter membrane and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12121869B2 (en) * 2021-02-09 2024-10-22 Allied Supreme Corp. Porous polytetrafluoroethylene membrane, and thermosetting method

Also Published As

Publication number Publication date
JP2003190749A (en) 2003-07-08

Similar Documents

Publication Publication Date Title
US8609249B2 (en) Thin wall expandable polymer tubes having improved axial and radial strength, and a method of manufacturing thereof
JP3672868B2 (en) Method for producing polytetrafluoroethylene porous membrane composite
EP0437721B1 (en) Process for producing multilayer polytetrafluoroethylene porous membrane and semisintered polytetrafluoroethylene multilayer structure
DE69529956T2 (en) POROUS POLYTETRAFLUORETHYLENE COMPOSITE MEMBRANE
US5225131A (en) Process for producing multilayer polytetrafluoroethylene porous membrane and semisintered polytetrafluoroethylene multilayer structure
JP3795027B2 (en) Asymmetric porous polytetrafluoroethylene membrane for filters
TWI227196B (en) Film, laminated sheet and methods of making same
EP0963775B1 (en) Filtering medium for air filters and process for producing the same
EP2343180A1 (en) Polytetrafluoroethylene porous membrane, method for producing same and waterproof air-permeable filter
US8784710B2 (en) Expandable polymer membrane and tubes, and a method of manufacturing thereof
JPH10509387A (en) Vacuum deposition of vapor- and liquid-impermeable thin coatings on perforated substrates and articles made therefrom
EP1403412A1 (en) Non-woven fabric and,laminate and string using the same
WO2013084858A1 (en) Porous polytetrafluoroethylene resin film, porous polytetrafluoroethylene resin film composite, and separation membrane element
CN114761101B (en) Polytetrafluoroethylene stretched porous film, and air-permeable filter material and filter member using same
TWI429535B (en) Method for forming porous ptfe layer, and porous ptfe layer and molded product that are obtained by the forming method
JP5470137B2 (en) Crystalline polymer microporous membrane, method for producing the same, and filter for filtration using the crystalline polymer microporous membrane
WO1996010662A1 (en) Polytetrafluoroethylene fiber, cotton-like article obtained therefrom, and method for their production
CN114761102B (en) Polytetrafluoroethylene stretched porous film, and air-permeable filter material and filter member using same
EP3275531A1 (en) Filter material and filter unit
JP2011212607A (en) Crystalline polymer microporous membrane and filtration filter
WO1994016891A1 (en) Method of laminating gas permeable sheet-shaped material
JPH1180397A (en) Polytetrafluoroethylene porous film and its production
JP4526693B2 (en) Polytetrafluoroethylene porous membrane, air-permeable laminate and filter unit using the same
JP4213485B2 (en) Method for producing breathable composite material
JP2006150275A (en) Method for filter material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3672868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees