JP6660662B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP6660662B2
JP6660662B2 JP2014160860A JP2014160860A JP6660662B2 JP 6660662 B2 JP6660662 B2 JP 6660662B2 JP 2014160860 A JP2014160860 A JP 2014160860A JP 2014160860 A JP2014160860 A JP 2014160860A JP 6660662 B2 JP6660662 B2 JP 6660662B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
active material
solid electrolyte
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014160860A
Other languages
Japanese (ja)
Other versions
JP2016039006A (en
Inventor
好伸 山田
好伸 山田
相原 雄一
雄一 相原
聡 藤木
聡 藤木
直毅 鈴木
直毅 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2014160860A priority Critical patent/JP6660662B2/en
Priority to KR1020150038955A priority patent/KR102349962B1/en
Priority to US14/818,626 priority patent/US10168389B2/en
Publication of JP2016039006A publication Critical patent/JP2016039006A/en
Application granted granted Critical
Publication of JP6660662B2 publication Critical patent/JP6660662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Description

本発明は、リチウムイオン二次電池に関するものである。   The present invention relates to a lithium ion secondary battery.

従来から、リチウムイオン二次電池として、リチウムイオン伝導度に優れた硫化物を無機固体電解質として使用し、固体電解質層の両面に形成される電極(正極及び負極)と、各電極に接合される集電体とを備えた構成のものが知られている。   Conventionally, as a lithium ion secondary battery, a sulfide excellent in lithium ion conductivity is used as an inorganic solid electrolyte, and electrodes (positive electrode and negative electrode) formed on both surfaces of the solid electrolyte layer are joined to each electrode. A configuration including a current collector is known.

リチウムイオン二次電池においては、リチウムを吸蔵、放出でき、かつ、大きな容量を発揮することができるグラファイトが負極活物質として主に使用されている。特許文献1には、固体電解質にポリマー電解質を用い、炭素材料からなる負極活物質の表面にリチウムと合金化しない遷移金属の粒子を固着させることによって、電気伝導性を向上したリチウム二次電池が記載されている。   In a lithium ion secondary battery, graphite capable of inserting and extracting lithium and exhibiting a large capacity is mainly used as a negative electrode active material. Patent Literature 1 discloses a lithium secondary battery that has improved electric conductivity by using a polymer electrolyte as a solid electrolyte and fixing transition metal particles that do not alloy with lithium on the surface of a negative electrode active material made of a carbon material. Has been described.

特許文献2には、グラファイトを被覆用黒鉛、ピッチなどで被覆し、これをリチウムイオン二次電池の負極として用いることが記載されている。さらに、特許文献3では、負極のリチウムイオン伝導抵抗を低減させるために、グラファイトからなる負極活物質をアモルファスカーボンで被覆した無機全固体型二次電池が記載されている。   Patent Literature 2 describes that graphite is coated with graphite for coating, pitch, or the like, and is used as a negative electrode of a lithium ion secondary battery. Further, Patent Document 3 describes an inorganic all-solid-state secondary battery in which a negative electrode active material made of graphite is coated with amorphous carbon in order to reduce the lithium ion conduction resistance of the negative electrode.

特許文献4には、良好な電池特性が得られる無機固体電解質二次電池を提供するために、正極と、負極と、無機固体電解質を具備し、正極が、正極活物質層と正極集電体層とで構成され、負極が、負極活物質層と負極集電体層とで構成され、前記正極集電体層、負極集電体層が導電性金属酸化物層であり、負極活物質層が、負極の作動電位が金属リチウムの電位に対して1.0Vよりも貴となる物質を用いたことが記載されている。   Patent Document 4 discloses that in order to provide an inorganic solid electrolyte secondary battery having good battery characteristics, a positive electrode, a negative electrode, and an inorganic solid electrolyte are provided, and the positive electrode includes a positive electrode active material layer and a positive electrode current collector. The negative electrode is composed of a negative electrode active material layer and a negative electrode current collector layer, and the positive electrode current collector layer and the negative electrode current collector layer are conductive metal oxide layers; Discloses that a substance whose operating potential of the negative electrode is more noble than 1.0 V with respect to the potential of metallic lithium was used.

一方、硫化物系固体電解質を用いた無機全固体型二次電池において、充放電状態を把握するには、特許文献5のように、リチウムイオン二次電池と、リチウムイオン二次電池に重ねた圧力センサと、リチウムイオン二次電池及び圧力センサを、これらを重ねた方向の両側から挟む挟持部材とを備えている。そして、リチウム二次電池が充電・放電によって膨張収縮すると、これに対応して、圧力センサにかかる力が変化して、リチウムイオン二次電池の体積の変化を圧力センサの出力値として検出している。   On the other hand, in an inorganic all-solid-state secondary battery using a sulfide-based solid electrolyte, in order to grasp the charge / discharge state, as in Patent Document 5, a lithium-ion secondary battery and a lithium-ion secondary battery were stacked. The pressure sensor includes a pressure sensor, and a holding member that sandwiches the lithium ion secondary battery and the pressure sensor from both sides in a direction in which they are stacked. When the lithium secondary battery expands and contracts due to charge and discharge, the force applied to the pressure sensor changes accordingly, and the change in volume of the lithium ion secondary battery is detected as the output value of the pressure sensor. I have.

特許文献6の二次電池の状態推定システムでは、二次電池セル各々は、筐体内に格納された正極および負極を含んでいる。そして、温度センサが、拘束板の間に配置され、二次電池セルと一体的に拘束されている。この温度センサは、少なくとも1個の二次電池セルに対して、正極および負極の温度を検知可能なように配置されている。ECU(Electronic Control Unit)は、温度によって電極の体積変化特性が変化する点を考慮して、圧力センサからの圧力検出値および温度センサからの温度検出値に基づいて、二次電池の充電状態(SOC:State of Charge)を算出している。   In the system for estimating the state of a secondary battery of Patent Document 6, each secondary battery cell includes a positive electrode and a negative electrode stored in a housing. And the temperature sensor is arrange | positioned between the restraint plates, and is integrally restrained with the secondary battery cell. The temperature sensor is arranged so as to detect the temperature of the positive electrode and the negative electrode for at least one secondary battery cell. The ECU (Electronic Control Unit) considers that the volume change characteristic of the electrode changes depending on the temperature, and based on the pressure detection value from the pressure sensor and the temperature detection value from the temperature sensor, the state of charge of the secondary battery ( SOC (State of Charge) is calculated.

特許文献7の過電圧検出装置は、厚さ方向に積層され、リチウムイオン二次電池から構成されたラミネート外装電池と、このラミネート外装電池の積層体において、隣接するラミネート外装電池間の積層面に挿入された圧力センサとを備えている。そして、積層面に作用する面圧(接触圧)を計測し検出された接触圧がしきい値を超えているか否かにより、ラミネート外装電池で過電圧が発生しているか否かを判定する。   The overvoltage detection device of Patent Document 7 is laminated in a thickness direction and inserted into a laminated outer battery composed of a lithium ion secondary battery and a laminated body of the laminated outer battery in a laminated surface between adjacent laminated outer batteries. Pressure sensor. Then, it is determined whether or not an overvoltage has occurred in the laminated exterior battery by measuring the surface pressure (contact pressure) acting on the lamination surface and determining whether or not the detected contact pressure exceeds a threshold value.

特許文献8には、固体電池を備えた電池ユニットにおいて、正確な充電状態を把握することができることを目的として、固体電池と、固体電池を収容する収容ケースと、収容ケース上に設けられた荷重センサと、収容ケースおよび荷重センサを挟み込む挟持部材とを備える電池ユニットが開示されている。   Patent Literature 8 discloses a solid-state battery, a storage case for storing the solid-state battery, and a load provided on the storage case for the purpose of being able to accurately grasp the state of charge in a battery unit including the solid-state battery. A battery unit including a sensor and a holding member for holding the storage case and the load sensor is disclosed.

また、特許文献9には、放電時の正極の電位と容量の関係が、リチウムニッケル酸化物とリン酸鉄リチウムとがそれぞれ可逆的にリチウムを吸蔵することによって、これらが複合したものとなり、電池電圧から放電終止時の負極電位をケイ素酸化物の変質を起こさない電位となるように、放電終止電圧を設定することができるリチウムイオン二次電池が記載されている。   Further, in Patent Document 9, the relationship between the potential and the capacity of the positive electrode at the time of discharge is such that lithium nickel oxide and lithium iron phosphate reversibly occlude lithium, and these are combined. There is described a lithium ion secondary battery in which a discharge end voltage can be set so that a negative electrode potential at the end of discharge becomes a potential that does not cause deterioration of silicon oxide from a voltage.

特開2008−300148号公報JP 2008-300488 A 特開平11−310405号公報JP-A-11-310405 特開2012−049001号公報JP 2012-049001 A 特開2006−107812号公報JP 2006-107812 A 特開2005−285647号公報JP 2005-285647 A 特開2006−12761号公報JP-A-2006-12761 特開2006−269345号公報JP 2006-269345 A 特開2010−73544号公報JP 2010-73544 A 特開2013−65453号公報JP 2013-65553 A

しかしながら、従来のリチウムイオン二次電池では、グラファイトを負極活物質に用いた場合、リチウムの酸化還元電位とグラファイト−リチウム層間化合物の酸化還元電位との差が小さいために、容易にリチウムデンドライトが析出し、高いレートで充電をすることは困難であった。また、多くのリチウムイオン二次電池では、充放電状態を電池の圧力や温度等の物理的性質の変化によって把握していたため、リチウムイオン二次電池の装置構成が複雑になるという課題があった。また、特許文献6に記載のリチウム二次電池では、正極での放電電位と電池容量との関係から負極の電位を予測できるものの、負極の状態を直接把握することができない。   However, in the conventional lithium ion secondary battery, when graphite is used as the negative electrode active material, the difference between the oxidation-reduction potential of lithium and the oxidation-reduction potential of the graphite-lithium intercalation compound is small, so that lithium dendrite easily precipitates. However, it was difficult to charge at a high rate. Also, in many lithium ion secondary batteries, the charge / discharge state was grasped by changes in physical properties such as pressure and temperature of the battery, so that there was a problem that the device configuration of the lithium ion secondary battery became complicated. . Further, in the lithium secondary battery described in Patent Literature 6, although the potential of the negative electrode can be predicted from the relationship between the discharge potential at the positive electrode and the battery capacity, the state of the negative electrode cannot be directly grasped.

そこで、本発明の第1の目的は、負極活物質の如何に拘わらず、デンドライトの析出を抑制して高い充電特性を実現させ得るリチウムイオン二次電池を提供することを目的とする。本発明の第2の目的は、デンドライトの析出を抑制して高い充電特性を実現させながら、圧力センサ等からの情報に基づくことなく、負極の充放電状態を直接把握可能なリチウムイオン二次電池を提供することを目的とするものである。   Therefore, a first object of the present invention is to provide a lithium ion secondary battery capable of suppressing dendrite precipitation and realizing high charging characteristics regardless of the negative electrode active material. A second object of the present invention is to provide a lithium ion secondary battery capable of directly grasping the charge / discharge state of a negative electrode without being based on information from a pressure sensor or the like, while suppressing the precipitation of dendrite and realizing high charging characteristics. The purpose is to provide.

前記目的を達成するために、本発明は、正極層と、負極層と、前記正極層と負極層とに挟持された固体電解質層と、を備えるリチウムイオン二次電池であって、前記負極層の負極活物質の表面の少なくとも一部が、リチウムイオンとの電気化学反応によってリチウム化合物を形成する金属又は当該金属の化合物によって被覆され、前記電気化学反応の反応電位は前記負極活物質のリチウムイオンとの反応における反応電位よりも貴である、ことを特徴とするリチウムイオン二次電池である。   In order to achieve the above object, the present invention provides a lithium ion secondary battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer sandwiched between the positive electrode layer and the negative electrode layer, wherein the negative electrode layer At least a portion of the surface of the negative electrode active material is coated with a metal or a compound of the metal that forms a lithium compound by an electrochemical reaction with lithium ions, and the reaction potential of the electrochemical reaction is the lithium ion of the negative electrode active material. A lithium ion secondary battery, which is more noble than the reaction potential in the reaction with

前記目的を達成する第2の発明は、リチウムイオン二次電池の放電制御方法において、負極の放電曲線をモニタする工程と、前記負極の放電末期での急激な電圧低下の際に生じる前記放電曲線の変曲点を検出する工程と、前記変曲点が検出されたことに基づいて放電を終了させる工程と、を備えるリチウムイオン二次電池の放電制御方法である。   According to a second aspect of the present invention, there is provided a discharge control method for a lithium ion secondary battery, comprising the steps of: monitoring a discharge curve of a negative electrode; And a step of terminating the discharge based on the detection of the inflection point.

前記目的を達成する第3の発明は、リチウムイオン二次電池の放電制御方法において、負極の放電曲線をモニタする工程と、前記負極の放電末期での急激な電圧低下の際に生じる前記放電曲線の変曲点を検出する工程と、前記検出された変曲点に基づいて前記負極の劣化を判定する工程と、を備える、リチウムイオン二次電池の電池特性判定方法である。   According to a third aspect of the present invention, there is provided a discharge control method for a lithium ion secondary battery, comprising the steps of: monitoring a discharge curve of a negative electrode; And a step of determining deterioration of the negative electrode based on the detected inflection point. 4. A method for determining battery characteristics of a lithium ion secondary battery, comprising the steps of:

本発明によれば、負極活物質とリチウムの酸化還元電位よりも貴な電位でリチウム化合物を形成可能な金属を負極活物質の表面に被覆、塗布、あるいは、付着等することで、当該金属のリチウム化合物を経由してリチウムが負極活物質へ吸蔵されることにより、デンドライト析出を抑制して高い充電性を実現させることができる。負極活物質とリチウムとの化合物よりも貴な電位でリチウム化合物を形成可能な金属を、例えば、ビスマスとし、負極活物質をグラファイトとすると、リチウムの負極への吸蔵過程は、ビスマスとリチウムとの固溶体合金あるいはBiLi,BiLi金属間化合物が一旦生成され、それを介してリチウムがグラファイトへ吸蔵される。 According to the present invention, a metal capable of forming a lithium compound at a noble potential than the oxidation-reduction potential of the negative electrode active material and lithium is coated, coated, or attached to the surface of the negative electrode active material, whereby the metal is formed. By absorbing lithium into the negative electrode active material via the lithium compound, dendrite deposition can be suppressed and high chargeability can be realized. If a metal capable of forming a lithium compound at a potential more noble than the compound of the negative electrode active material and lithium is, for example, bismuth and the negative electrode active material is graphite, the occlusion process of lithium into the negative electrode involves the reaction between bismuth and lithium. A solid solution alloy or BiLi, BiLi 3 intermetallic compound is once generated, through which lithium is absorbed into graphite.

この際、ビスマスは、負極活物質とリチウムとの化合物よりも貴な電位でリチウム化合物を形成するため、リチウムとグラファイトとの酸化還元電位が近似するものであっても、デンドライト析出を抑制して高い充電性を発揮させることができる。   At this time, bismuth forms a lithium compound at a potential that is more noble than the compound of the negative electrode active material and lithium, so even if the oxidation-reduction potential of lithium and graphite is similar, it suppresses dendrite precipitation. High chargeability can be exhibited.

このように、本発明において、「リチウムイオンとの電気化学反応」とは、例えば、リチウムイオンのグラファイトへのインターカレーション反応である。また、本発明によれば、グラファイト表面にビスマスのような柔らかい金属を被覆することで、ロールプレスなどの圧密化工程によって負極活物質間の密着性が向上し、界面抵抗の減少につながりサイクル特性を向上することもできる。   Thus, in the present invention, the “electrochemical reaction with lithium ions” is, for example, an intercalation reaction of lithium ions with graphite. Further, according to the present invention, by coating a soft metal such as bismuth on the graphite surface, the adhesion between the negative electrode active materials is improved by a consolidation step such as a roll press, which leads to a decrease in interface resistance and a reduction in cycle characteristics. Can also be improved.

グラファイトの放電特性は、放電初期から放電末期までほぼなだらかな平坦に近い電圧での放電であり、放電末期に急激に電圧が低下するというものである。ちなみに、ハードカーボンの場合は放電終了電圧まで均一に電圧が降下する。ハードカーボンでは電圧を測定することにより電池の容量を直接、正確に知ることができるが、電池電圧が安定しない欠点を持つ。グラファイトでは電圧変化が少ないため、電池電圧から電池の容量を知ることは難しいが、放電末期まで比較的安定して高い電圧を保つ事が可能となる。しかしながら、グラファイトでは、放電末期に急激に電圧が低下するため、電圧から電池容量を測定することはそもそも困難であり、過放電状態になるおそれが多分にある。従来、正極の電圧変化から負極の下限電圧を予測することは行われていたが、負極の状態を直接検出できるものではなかった。   The discharge characteristics of graphite are discharge at a voltage that is almost flat from the beginning of discharge to the end of discharge at a nearly flat voltage, and the voltage drops sharply at the end of discharge. Incidentally, in the case of hard carbon, the voltage uniformly drops to the discharge end voltage. Hard carbon can directly and accurately determine the battery capacity by measuring the voltage, but has the disadvantage that the battery voltage is not stable. Since the voltage change is small in graphite, it is difficult to know the capacity of the battery from the battery voltage, but it is possible to maintain a relatively stable high voltage until the end of discharge. However, in the case of graphite, since the voltage drops sharply at the end of discharge, it is difficult to measure the battery capacity from the voltage in the first place, and there is a possibility that the battery will be in an overdischarged state. Conventionally, the lower limit voltage of the negative electrode has been predicted from the voltage change of the positive electrode, but the state of the negative electrode cannot be directly detected.

本発明の既述の電気化学反応によれば、過放電直前で、ビスマス−リチウム化合物からリチウムが抜け始めるため、放電末期での急激な電圧低下の過程で、電圧の低下の度合いが弱まるタイミングが生じる。放電曲線では、このタイミングが変曲点として出現するので、電池電圧の変化を測定することによって変曲点を検出してこれ以降の放電を停止することで過放電状態に至らないようにすることができる。さらに、負極のサイクル劣化によって変曲点の位置も変動するために、検出された変曲点によってリチウムイオン二次電池の負極寿命を評価、判定等することができる。   According to the above-described electrochemical reaction of the present invention, lithium starts to be released from the bismuth-lithium compound immediately before overdischarge, so that in the process of sharp voltage drop at the end of discharge, the timing at which the degree of voltage drop weakens is reduced. Occurs. In the discharge curve, this timing appears as an inflection point, so measure the change in the battery voltage to detect the inflection point and stop the subsequent discharge so that the overdischarge state does not occur. Can be. Furthermore, since the position of the inflection point also changes due to the cycle deterioration of the negative electrode, the life of the negative electrode of the lithium ion secondary battery can be evaluated and determined based on the detected inflection point.

本発明のリチウムイオン二次電池によれば、負極活物質の如何に拘わらず、デンドライトの析出を抑制して高い充電特性を実現させ得るリチウム二次電池を提供することができる。さらに、デンドライトの析出を抑制して高い充電特性を実現させながら、圧力センサ等からの情報に基づくことなく、負極の状態を直接把握可能なリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to the lithium ion secondary battery of this invention, regardless of the negative electrode active material, it can suppress precipitation of dendrite and can provide the lithium secondary battery which can implement | achieve a high charge characteristic. Furthermore, it is possible to provide a lithium ion secondary battery capable of directly grasping the state of the negative electrode without relying on information from a pressure sensor or the like while realizing high charging characteristics by suppressing precipitation of dendrite.

本発明の実施形態に係るリチウムイオン二次電池の断面図である。1 is a sectional view of a lithium ion secondary battery according to an embodiment of the present invention. 負極活物質の電子顕微鏡写真である。It is an electron micrograph of a negative electrode active material. 本発明の実施形態に係るリチウムイオン二次電池(実施例1)の充電曲線である。5 is a charging curve of the lithium ion secondary battery (Example 1) according to the embodiment of the present invention. 本発明の実施形態に係るリチウムイオン二次電池(実施例1)の放電曲線である。4 is a discharge curve of the lithium ion secondary battery (Example 1) according to the embodiment of the present invention. 本発明の実施形態に係るリチウムイオン二次電池(実施例2)の放電曲線である。5 is a discharge curve of the lithium ion secondary battery (Example 2) according to the embodiment of the present invention.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this specification and the drawings, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted.

図1に基づいて、固体電池の構成について説明する。固体電池は、正極層1、電解質層2、負極層3、から構成される。   The configuration of the solid state battery will be described based on FIG. The solid-state battery includes a positive electrode layer 1, an electrolyte layer 2, and a negative electrode layer 3.

<正極層>
正極層1は、硫化物系固体電解質、正極活物質、正極層導電性物質から構成されている.正極活物質の表面は、例えばLiO−ZrOからなる被覆層で被覆されている。硫化物系固体電解質を用いた全固体型リチウムイオン二次電池は、正極活物質と固体電解質との界面での反応により界面抵抗が上昇し、電池の出力が低下するという問題がある。しかし、正極活物質の表面がLiO−ZrOからなる被覆層で被覆されていることにより、被覆層が、固体電解質層に含まれる固体電解質粒子と正極活物質の直接接触を防ぐことができるので、正極活物質と固体電解質との界面で抵抗成分が生成しにくくなる。また、正極活物質の表面がLiO−ZrOで被覆されていると、正極活物質と固体電解質との界面でのリチウムイン濃度の低下が抑制され、さらには、リチウムイオンが移動可能な経路を形成することができるので、これによっても、正極活物質と固体電解質との界面における抵抗の上昇を抑制することが可能となる。このため、レート特性及びサイクル特性に優れる。
<Positive electrode layer>
The positive electrode layer 1 is composed of a sulfide-based solid electrolyte, a positive electrode active material, and a positive electrode layer conductive material. The surface of the positive electrode active material is coated with a coating layer made of, for example, Li 2 O—ZrO 2 . The all-solid-state lithium ion secondary battery using the sulfide-based solid electrolyte has a problem that the interface resistance increases due to a reaction at the interface between the positive electrode active material and the solid electrolyte, and the output of the battery decreases. However, since the surface of the positive electrode active material is coated with the coating layer made of Li 2 O—ZrO 2 , the coating layer prevents direct contact between the solid electrolyte particles included in the solid electrolyte layer and the positive electrode active material. Therefore, it is difficult to generate a resistance component at the interface between the positive electrode active material and the solid electrolyte. In addition, when the surface of the positive electrode active material is coated with Li 2 O—ZrO 2 , a decrease in the lithium-in concentration at the interface between the positive electrode active material and the solid electrolyte is suppressed, and further, lithium ions can move. Since a path can be formed, it is also possible to suppress an increase in resistance at the interface between the positive electrode active material and the solid electrolyte. Therefore, the rate characteristics and the cycle characteristics are excellent.

ここで示したLiO−ZrOは化学的に安定であるので、LiO−ZrOにより正極活物質の表面が被覆されていると、正極活物質と固体電解質とが直接接触するのを防ぐことができるため、正極活物質と固体電解質との界面における反応が抑制され、抵抗成分の生成を抑制することができる。なお、正極活物質は、その表面の少なくとも一部が被覆層で被覆されていればよく、正極活物質の表面全体が被覆層で被覆されている場合、正極活物質の表面が部分的に被覆層で被覆されている場合がある。 Since Li 2 O—ZrO 2 shown here is chemically stable, if the surface of the positive electrode active material is covered with Li 2 O—ZrO 2 , the positive electrode active material and the solid electrolyte may come into direct contact. Therefore, the reaction at the interface between the positive electrode active material and the solid electrolyte can be suppressed, and the generation of a resistance component can be suppressed. Note that the positive electrode active material only needs to have at least a part of its surface covered with a coating layer, and when the entire surface of the positive electrode active material is covered with the coating layer, the surface of the positive electrode active material is partially covered. May be coated with a layer.

本実施形態における「被覆」とは、正極活物質の粒子の表面に、LiO−ZrOが流動しない形態で配置された状態が維持されていることを意味する。さらに、正極活物質の粒子表面を被覆している被覆層は、リチウムイオン伝導性を有し、かつ、正極活物質や固体電解質と接触しても流動しない層状の形態を維持し得る。 “Coating” in the present embodiment means that the state where Li 2 O—ZrO 2 is arranged on the surface of the particles of the positive electrode active material in a form in which Li 2 O—ZrO 2 does not flow is maintained. Further, the coating layer covering the particle surface of the positive electrode active material has lithium ion conductivity and can maintain a layered form that does not flow even when it comes into contact with the positive electrode active material or the solid electrolyte.

正極層1に含まれる正極活物質は、リチウムイオンを可逆的に吸蔵及び放出することが可能な物質であれば特に限定されず、例えば、コバルト酸リチウム、ニッケル酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム、ニッケルコバルトマンガン酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、硫化ニッケル、硫化銅、硫黄、酸化鉄、酸化バナジウム等が挙げられる。これらの正極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。   The positive electrode active material contained in the positive electrode layer 1 is not particularly limited as long as it can reversibly occlude and release lithium ions. For example, lithium cobaltate, lithium nickelate, nickel lithium cobaltate, nickel nickel Examples include lithium cobalt aluminum oxide, lithium nickel cobalt manganate, lithium manganate, lithium iron phosphate, nickel sulfide, copper sulfide, sulfur, iron oxide, and vanadium oxide. These positive electrode active materials may be used alone or in combination of two or more.

正極活物質は、上記に挙げた正極活物質の例のうち、特に、層状岩塩型構造を有するリチウム遷移金属酸化物であることが好ましい。層状岩塩型構造を有するリチウム遷移金属酸化物としては、例えば、Li1−x−y−zNiCoAlまたはLi1−x−y−zNiCoMn(0<x<1、0<y<1、0<z<1、かつx+y+z<1)で表される3元系が挙げられる。 The positive electrode active material is preferably a lithium transition metal oxide having a layered rock-salt structure among the examples of the positive electrode active material described above. As the lithium transition metal oxide having a layered rock-salt structure, such, Li 1-x-y- z Ni x Co y Al z O 2 or Li 1-x-y-z Ni x Co y Mn z O 2 ( There is a ternary system represented by 0 <x <1, 0 <y <1, 0 <z <1, and x + y + z <1).

正極層導電性物質としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が挙げられる。   Examples of the conductive material for the positive electrode layer include graphite, carbon black, acetylene black, Ketjen black, carbon fiber, and metal powder.

<電解質層>
電解質層2は、硫化物系固体電解質から構成される。硫化物系固体電解質は、第1の成分として少なくともリチウム(Li)を含み、第2の成分としてリン(P)、および硫黄(S)を含む硫化物固体電解質である。このような、硫化物系固体電解質は、例えばLi2SとP25とを溶融温度以上に加熱して所定の比率で両者を溶融混合し、所定時間保持した後、急冷することにより得られる(溶融急冷法)。あるいは、Li2S−P25をメカニカルミリング法などの機械的処理によって得ることもできる。
<Electrolyte layer>
The electrolyte layer 2 is composed of a sulfide-based solid electrolyte. The sulfide-based solid electrolyte is a sulfide solid electrolyte including at least lithium (Li) as a first component and phosphorus (P) and sulfur (S) as a second component. Such a sulfide-based solid electrolyte is obtained, for example, by heating Li 2 S and P 2 S 5 to a melting temperature or higher, melting and mixing them at a predetermined ratio, holding the mixture for a predetermined time, and then rapidly cooling. (Melt quenching method). Alternatively, Li 2 SP 2 S 5 can be obtained by a mechanical treatment such as a mechanical milling method.

また、得られた非晶質体を熱処理することにより結晶質とすることでイオン伝導度を向上させることができる。固体電解質がLi2S-P25からなる硫化物系固体電解質である場合、非晶質体のリチウムイオン伝導度は10-4Scm-1である。一方、結晶質体のリチウムイオン伝導度は10-3Scm-1である。 The ion conductivity can be improved by making the obtained amorphous body crystalline by heat treatment. When the solid electrolyte is a sulfide-based solid electrolyte made of Li 2 SP 2 S 5 , the lithium ion conductivity of the amorphous body is 10 −4 Scm −1 . On the other hand, the lithium ion conductivity of the crystalline material is 10 −3 Scm −1 .

無機固体電解質は、リチウムイオン二次電池に使用可能な公知の無機固体電解質を適宜用いることができる。そのような無機固体電解質としては、硫化物系無機固体電解質の他に、酸化物系無機固体電解質やリン酸物系無機固体電解質等を例示することができる。   As the inorganic solid electrolyte, a known inorganic solid electrolyte that can be used for a lithium ion secondary battery can be appropriately used. Examples of such an inorganic solid electrolyte include, besides a sulfide-based inorganic solid electrolyte, an oxide-based inorganic solid electrolyte, a phosphate-based inorganic solid electrolyte, and the like.

<負極層>
負極層3は、硫化物系固体電解質と負極活物質として、グラファイト例えば、人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、人造黒鉛を被覆した天然黒鉛等が挙げられる。あるいは、無定形炭素、例えばハードカーボン等が挙げられる。また、負極活物質は、リチウムの吸蔵放出を可能とするものであれば特に制限はなく、グラファイトの他、スズ、ケイ素材料、又は、スズ・ケイ素材料と炭素材料との複合材料などでもよい。
<Negative electrode layer>
The negative electrode layer 3 includes graphite as a sulfide-based solid electrolyte and a negative electrode active material, for example, artificial graphite, natural graphite, a mixture of artificial graphite and natural graphite, and natural graphite coated with artificial graphite. Alternatively, amorphous carbon, such as hard carbon, may be used. The negative electrode active material is not particularly limited as long as it can store and release lithium, and may be graphite, tin, a silicon material, or a composite material of a tin-silicon material and a carbon material.

負極活物質の表面に被覆される元素としては、負極活物質とリチウムの化合物よりも貴な電位でリチウム化合物を形成可能な金属であればよく、好適には、Al(アルミニウム),Si(ケイ素),Ti(チタン)、Zr(ジルコニウム)、Nb(ニオブ)、Ge(ゲルマニウム)、Ga(ガリウム),Ag(銀)、In(インジウム)、Sn(スズ)、Sb(アンチモン)、Bi(ビスマス)からなる群から選らばれた少なくとも一種以上の金属、二種以上の金属の合金、前記群から得らばれた一種以上の元素とリチウムの化合物、又は、前記群から得らばれた一種以上の金属の酸化物である。金属としては、ビスマス、アンチモンが好ましい。   The element coated on the surface of the negative electrode active material may be any metal capable of forming a lithium compound at a nobleer potential than a compound of the negative electrode active material and lithium, and is preferably Al (aluminum) or Si (silicon). ), Ti (titanium), Zr (zirconium), Nb (niobium), Ge (germanium), Ga (gallium), Ag (silver), In (indium), Sn (tin), Sb (antimony), Bi (bismuth) At least one metal selected from the group consisting of: an alloy of two or more metals; a compound of one or more elements and lithium obtained from the group; or one or more compounds obtained from the group It is a metal oxide. As the metal, bismuth and antimony are preferable.

負極活物質として、80℃で24時間真空乾燥したグラファイトを用意する。グラファイト―リチウム層間化合物よりもリチウムの酸化還元電位に対して高い電位でリチウム化合物を形成する元素の一つであるビスマスをグラファイト表面に被覆する。ビスマスは、柔らかく,乾式粒子複合化(グラファイト表面へのビスマス微粒子を衝突)によりグラファイト表面に強固に付着させることができる。また、電池製造の最後の加圧工程において電極を圧密化する際、容易に変形する等の利点もある。乾式粒子複合化法により被覆元素としてビスマス(粒径0.7μm)の微粒子をグラファイトに対して1wt%の割合でグラファイト(平均粒子径10μm)表面に均一に固定させた。乾式粒子複合化法とは水平円筒状の混合容器内で、特殊な形状のロータを周速40m/s以上の高速で回転させて衝撃・圧縮・せん断の力を粒子個々に均一に作用させながら母粒子上へ微粒子を固定化させる方法である。市販の乾式粒子複合化装置を用いてグラファイトのビスマス被覆を行った。なお、金属被覆の他の例として、メッキや蒸着,スパッタリングのような方法を用いてもよい。被覆は反応が速やかにかつ、均質に進行するように負極活物質の全面に薄く生成されることが好ましい。一方で、重量エネルギー密度の観点から被覆量は少量(例えば、0.1から5wt%)であることが好ましい。また、負極活物資と被覆層の界面がより強固に接触して、被覆金属がグラファイト表面から容易に剥がれ落ちないことが重要である。このために、乾式複合化装置にて高速回転で長時間処理をすることが好ましい。   As the negative electrode active material, graphite dried in vacuum at 80 ° C. for 24 hours is prepared. Bismuth, which is one of the elements forming a lithium compound at a potential higher than the oxidation-reduction potential of lithium than a graphite-lithium intercalation compound, is coated on the graphite surface. Bismuth is soft and can be firmly adhered to the graphite surface by dry particle compounding (collision of bismuth particles on the graphite surface). In addition, there is an advantage that the electrode is easily deformed when the electrodes are compacted in the final pressurizing step of battery production. Fine particles of bismuth (particle diameter 0.7 μm) as a coating element were uniformly fixed on the surface of graphite (average particle diameter 10 μm) at a ratio of 1 wt% with respect to graphite by a dry particle compounding method. Dry particle compounding is a method of rotating a specially shaped rotor at a high speed of 40 m / s or more in a horizontal cylindrical mixing vessel to apply the impact, compression, and shear forces uniformly to individual particles. This is a method of immobilizing fine particles on mother particles. Bismuth coating of graphite was performed using a commercially available dry particle composite apparatus. As another example of the metal coating, a method such as plating, vapor deposition, or sputtering may be used. The coating is preferably formed thinly over the entire surface of the negative electrode active material so that the reaction proceeds promptly and uniformly. On the other hand, the coating amount is preferably small (for example, 0.1 to 5 wt%) from the viewpoint of the weight energy density. In addition, it is important that the interface between the negative electrode active material and the coating layer comes into more firm contact, so that the coating metal does not easily come off the graphite surface. For this reason, it is preferable to perform a long-time treatment at a high-speed rotation in a dry-type compounding device.

<リチウムイオン二次電池の製造方法>
本発明の好適な実施形態に係る全固体型リチウムイオン二次電池の構成について、既述のとおり説明したが、続いて、当該構成を有するリチウムイオン二次電池の製造方法について説明する。リチウムイオン二次電池は、正極層1、負極層3及び固体電解質層2を作製した後に、これらの各層を積層することにより得られる。以下、各工程について詳述する。
<Production method of lithium ion secondary battery>
Although the configuration of the all-solid-state lithium-ion secondary battery according to the preferred embodiment of the present invention has been described above, a method of manufacturing a lithium-ion secondary battery having the configuration will be described. The lithium ion secondary battery is obtained by forming the positive electrode layer 1, the negative electrode layer 3, and the solid electrolyte layer 2, and then laminating these layers. Hereinafter, each step will be described in detail.

<正極層1の作製>
正極層1の作製方法は以下の通りである。例えば、表面がaLiO−ZrO(0.1≦a≦2.0)で被覆された上記正極活物質と硫化物系固体電解質、導電助剤の混合物および結着剤を有機溶媒等の溶媒に添加してスラリー又はペースト状とし、得られたスラリー又はペーストを、ドクターブレード等を用いて集電体に塗布し、乾燥した後に、圧延ロール等で圧密化することで、正極層1を得ることができる。このとき用いることができる集電体としては、SUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができ、中でもアルミニウムが好ましい。なお、集電体と結着剤を用いずに、表面がaLiO−ZrOで被覆された上記正極活物と硫化物系固体電解質、導電助剤との粉末混合物をペレット状に圧密化して正極層としてもよい。
<Preparation of positive electrode layer 1>
The method for producing the positive electrode layer 1 is as follows. For example, a mixture of the positive electrode active material and the sulfide-based solid electrolyte, the surface of which is coated with aLi 2 O—ZrO 2 (0.1 ≦ a ≦ 2.0), a conductive additive, and a binder such as an organic solvent are used. The slurry or paste was added to a solvent to form a slurry or paste, and the obtained slurry or paste was applied to a current collector using a doctor blade or the like, dried, and then compacted with a rolling roll or the like to form the positive electrode layer 1. Obtainable. Examples of the current collector that can be used at this time include SUS, aluminum, nickel, iron, titanium, and carbon, and among them, aluminum is preferable. The powder mixture of the positive electrode active material, the surface of which was coated with aLi 2 O—ZrO 2 , the sulfide-based solid electrolyte, and the conductive additive was compacted into pellets without using the current collector and the binder. To form a positive electrode layer.

<負極層3の作製>
負極層3の作製方法は以下の通りである。例えば、ビスマスで被覆された上記負極活物質と硫化物系固体電解質、導電助剤の混合物および結着剤を有機溶媒等の溶媒に添加してスラリー又はペースト状とし、得られたスラリー又はペーストを、ドクターブレード等を用いて集電体に塗布し、乾燥した後に、圧延ロール等で圧密化することで、負極層3を得ることができる。このとき用いることができる集電体としては、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができ、中でもニッケルが好ましい。なお、集電体と結着剤を用いずに、表面がビスマスで被覆された上記負極活物と硫化物系固体電解質、導電助剤との粉末混合物をペレット状に圧密化して負極層としてもよい。
<Preparation of negative electrode layer 3>
The method for producing the negative electrode layer 3 is as follows. For example, the negative electrode active material and sulfide-based solid electrolyte coated with bismuth, a mixture of a conductive additive and a binder are added to a solvent such as an organic solvent to form a slurry or paste, and the obtained slurry or paste is formed. The negative electrode layer 3 can be obtained by applying the powder to the current collector using a doctor blade or the like, drying it, and then compacting it with a rolling roll or the like. The current collector that can be used at this time includes, for example, SUS, copper, nickel, and carbon. Among them, nickel is preferable. Note that, without using the current collector and the binder, the powder mixture of the negative electrode active material and the sulfide-based solid electrolyte, the surface of which was coated with bismuth, and a powder mixture of a conductive auxiliary were compacted into a pellet shape to form a negative electrode layer. Good.

<電解質層2の作製>
固体電解質層2の作製方法は以下の通りである。固体電解質として用いる硫化物系固体電解質の製造方法としては、上述した溶融急冷法やメカニカルミリング法がある。溶融急冷法による場合には、LiSとPとを所定量混合しペレット状にしたものを、真空中で所定の反応温度で反応させた後、急冷することにより、硫化物系固体電解質を得ることができる。この際の反応温度は、好ましくは400℃〜1000℃、より好ましくは、800℃〜900℃である。また、反応時間は、好ましくは0.1時間〜12時間、より好ましくは、1〜12時間である。さらに、上記反応物の急冷温度は、通常10℃以下、好ましくは0℃以下であり、その冷却速度は、通常1〜10000K/sec程度、好ましくは1〜1000K/secである。
<Preparation of electrolyte layer 2>
The method for producing the solid electrolyte layer 2 is as follows. As a method for producing a sulfide-based solid electrolyte used as a solid electrolyte, there are the above-mentioned melt quenching method and mechanical milling method. In the case of the melt quenching method, a mixture of Li 2 S and P 2 S 5 in a predetermined amount and formed into a pellet is reacted at a predetermined reaction temperature in a vacuum, and then rapidly cooled to obtain a sulfide-based material. A solid electrolyte can be obtained. The reaction temperature at this time is preferably from 400C to 1000C, more preferably from 800C to 900C. Further, the reaction time is preferably 0.1 hour to 12 hours, more preferably 1 hour to 12 hours. Further, the quenching temperature of the reactant is usually 10 ° C. or lower, preferably 0 ° C. or lower, and the cooling rate is usually about 1 to 10,000 K / sec, preferably 1 to 1000 K / sec.

メカニカルミリング法による場合には、LiSとPとを所定量混合し、メカニカルミリング法にて所定時間反応させることで、硫化物系固体電解質を得ることができる。上記原料を用いたメカニカルミリング法は、室温で反応を行うことができるという利点がある。メカニカルミリング法によれば、室温で固体電解質を製造できるため、原料の熱分解が起こらず、仕込み組成の固体電解質を得ることができる。メカニカルミリング法の回転速度及び回転時間は特に限定されないが、回転速度が速いほど固体電解質の生成速度が速くなり、回転時間が長いほど固体電解質ヘの原料の転化率が高くなる。その後、得られた固体電解質を所定の温度で熱処理した後に、粉砕して粒子状の固体電解質とする。 In the case of using the mechanical milling method, a sulfide-based solid electrolyte can be obtained by mixing a predetermined amount of Li 2 S and P 2 S 5 and reacting the mixture for a predetermined time by the mechanical milling method. The mechanical milling method using the above raw materials has an advantage that the reaction can be performed at room temperature. According to the mechanical milling method, since a solid electrolyte can be produced at room temperature, thermal decomposition of a raw material does not occur, and a solid electrolyte having a charged composition can be obtained. The rotation speed and rotation time of the mechanical milling method are not particularly limited, but the higher the rotation speed, the higher the solid electrolyte generation speed, and the longer the rotation time, the higher the conversion rate of the raw material to the solid electrolyte. Thereafter, the obtained solid electrolyte is heat-treated at a predetermined temperature, and then pulverized to obtain a particulate solid electrolyte.

このようにして得られた粒子状の固体電解質を、例えば、エアロゾルデポジション法、スパッタリング法、溶射法等の公知の製膜方法を用いて製膜することにより、固体電解質層3を作製できる。また、固体電解質と溶媒や結着剤を混合した溶液を塗布した後、溶媒を除去し製膜化する方法を用いてもよい。また、固体電解質自体や固体電解質と結着剤や支持体(固体電解質層3の強度を補強させたり、固体電解質自体の短絡を防ぐための材料や化合物等)を混合した電解質をプレスすることで製膜することもできる。   The solid electrolyte layer 3 can be produced by forming a film of the particulate solid electrolyte thus obtained by using a known film forming method such as an aerosol deposition method, a sputtering method, and a thermal spraying method. Alternatively, a method in which a solution in which a solid electrolyte is mixed with a solvent or a binder is applied, and then the solvent is removed to form a film may be used. Alternatively, by pressing the solid electrolyte itself or an electrolyte in which the solid electrolyte is mixed with a binder or a support (a material or a compound for reinforcing the strength of the solid electrolyte layer 3 or preventing a short circuit of the solid electrolyte itself). It can also be formed into a film.

<各層の積層および接合>
以上のようにして得られた正極層1、固体電解質層2及び負極層3を、固体電解質層2を介して積層し、プレスすることにより、本実施形態に係るリチウムイオン二次電池を製造することができる。また、プレスの際に加熱することで各層内および層間界面の密着をより強固なものとすることもできる。
<Lamination and joining of each layer>
The positive electrode layer 1, the solid electrolyte layer 2, and the negative electrode layer 3 obtained as described above are stacked via the solid electrolyte layer 2 and pressed to manufacture the lithium ion secondary battery according to the present embodiment. be able to. Further, by heating at the time of pressing, the adhesion within each layer and the interface between the layers can be further strengthened.

[電池評価]
(実施例1)
正極活物質は次の手順で準備した。リチウムメトキシドとジルコニウム(IV)プロポキシドとを、エタノールとアセト酢酸エチルと水の混合溶液中で30分混合した。次いで、この混合溶液中に、正極活物質としてLi1−x−y−zNiCoAlを、aLiO−ZrO(a=1)の被覆量が0.5mol%となるように添加し、混合溶液を40℃に加熱して撹拌しながら溶媒を蒸発乾燥させた。このとき、混合溶液には超音波を加えた。さらに、正極活物質の表面へ担持されたLiO−ZrOの前駆体を、酸素を吹き込みながら300℃で2時間焼成し、0.5mol%のLiO−ZrOが表面に被覆されたLi1−x−y−zNiCoAlを得た。
[Battery evaluation]
(Example 1)
The positive electrode active material was prepared according to the following procedure. Lithium methoxide and zirconium (IV) propoxide were mixed in a mixed solution of ethanol, ethyl acetoacetate and water for 30 minutes. Then, to this mixed solution, the Li 1-x-y-z Ni x Co y Al z O 2 as the positive electrode active material, and the coating amount is 0.5 mol% of aLi 2 O-ZrO 2 (a = 1) The mixture was heated to 40 ° C., and the solvent was evaporated to dryness while stirring. At this time, ultrasonic waves were applied to the mixed solution. Further, the precursor of Li 2 O—ZrO 2 supported on the surface of the positive electrode active material is calcined at 300 ° C. for 2 hours while blowing oxygen, and the surface is coated with 0.5 mol% of Li 2 O—ZrO 2. Li 1-x-y-z Ni x Co y Al z O 2 was obtained.

負極活物質は次の手順で準備した。80℃で24時間真空乾燥したグラファイトを用意した。グラファイト―リチウム層間化合物よりもリチウムの酸化還元電位に対して高い電位でリチウム化合物を形成する元素の一つであるビスマスをグラファイト表面に被覆した。被覆は乾式粒子複合化法により被覆元素としてビスマス(粒径0.7μm)の微粒子をグラファイトに対して1wt%の割合でグラファイト(平均粒子径10μm)表面に均一に固定させた。乾式複合化装置での処理条件を5000rpmで30分とした。図2の(1)は、グラファイトにビスマスが被覆されている表面の形態を示す電子顕微鏡写真(倍率1万倍)であり、(2)はビスマス被覆がされていないグラファイトの表面形態の電子顕微鏡写真(倍率1万倍)である。一方、固体電解質であるLiS−P(80−20mol%)をメカニカルミリング処理したものを準備した。 The negative electrode active material was prepared according to the following procedure. Graphite dried under vacuum at 80 ° C. for 24 hours was prepared. Bismuth, which is one of the elements forming a lithium compound at a potential higher than the oxidation-reduction potential of lithium than the graphite-lithium intercalation compound, was coated on the graphite surface. For coating, fine particles of bismuth (particle diameter: 0.7 μm) as a coating element were uniformly fixed on the surface of graphite (average particle diameter: 10 μm) at a ratio of 1 wt% to graphite by a dry particle composite method. The processing conditions in the dry compounding device were 5000 rpm for 30 minutes. FIG. 2A is an electron microscope photograph (magnification: 10,000 times) showing the surface morphology of graphite coated with bismuth, and FIG. 2B is an electron microscope showing the surface morphology of graphite not coated with bismuth. It is a photograph (magnification 10,000 times). On the other hand, a material prepared by subjecting a solid electrolyte Li 2 SP 2 S 5 (80 to 20 mol%) to mechanical milling was prepared.

上記のようにして得られた表面被覆正極および負極、固体電解質と、導電剤である気相成長カーボンファイバ(VGCF)とを60/35/5質量%の比率で混合したものを、それぞれ正極合剤および負極合剤として固体電解質70mgを介して15mgを配し、その状態で3t/cmの圧力で加圧してペレットを作製し、これを試験用セルとした。 A mixture of the surface-coated positive electrode and negative electrode obtained as described above, a solid electrolyte, and a vapor-grown carbon fiber (VGCF) as a conductive agent at a ratio of 60/35/5% by mass was mixed with the positive electrode, respectively. As an agent and a negative electrode mixture, 15 mg was placed via 70 mg of a solid electrolyte, and in that state, a pressure was applied at a pressure of 3 t / cm 2 to produce a pellet, which was used as a test cell.

既述のようにして製造された試験用セルを、25℃の恒温槽内で、東洋システム製充放電評価装置TOSCAT−3100により電流密度を0.05mA/cm〜0.20mA/cmで変化させて充電評価を行った。比較例として、ビスマス被覆がされていない負極活物質を用いた固体電池について充放電評価を行った。図3に充電曲線を示す。図3から分かるように、負極活物質がビスマスで被覆された固体電池では、高い値の容量まで充電されることから、充電性が大幅に改善されていることが確認された。 The test cell was prepared as described above, in a thermostat at 25 ° C., by Toyo System SeiTakashi discharge evaluation apparatus TOSCAT-3100 the current density at 0.05mA / cm 2 ~0.20mA / cm 2 The charge was evaluated by changing the charge. As a comparative example, charge / discharge evaluation was performed on a solid-state battery using a negative electrode active material not coated with bismuth. FIG. 3 shows a charging curve. As can be seen from FIG. 3, in the solid state battery in which the negative electrode active material was covered with bismuth, the chargeability was significantly improved since the battery was charged to a high value capacity.

(実施例2)
前記作製された電池を25℃の恒温槽内で電流密度0.05mA/cmで充放電を行い、初期電池容量を確認した。次いで、100サイクル後の電池を容量規制にて電流密度0.05mA/cmで放電した。図4に負極の放電曲線を示す。負極活物質をビスマス等で被覆した電池では、負極活物質とリチウムの酸化還元電位よりも貴な電位でリチウム化合物を形成するために、放電曲線の途中に変曲点が現れるのに対して、負極活物質をビスマスで被覆しない電池では変曲点は現れなかった。前者の固体電池では、変曲点が現れるため、変曲点が生じた時点で放電を停止することによって過放電を抑制することができた。一方、後者の固体電池では、変曲点が出現しないため下限電圧の直前で放電を停止することは困難である。リチウムイオン二次電池では、下限電圧がサイクル劣化によって変動するために、下限電圧直前で放電を停止させることは困難である。負極活物質がビスマス等で被覆されている場合、充放電サイクルを繰り返すことによって、サイクル数と容量との相関曲線と同じように変曲点が移動する。したがって、変曲点に基づいて負極の劣化を判定することもできる。このように、負極活物質をビスマス等で被覆することによって過放電を抑制したり、さらに、負極の劣化を判定することができるため、ビスマス等はリチウムイオン二次電池の諸管理のためのマーカー元素として分類されてもよい。
(Example 2)
The prepared battery was charged and discharged at a current density of 0.05 mA / cm 2 in a constant temperature bath at 25 ° C., and the initial battery capacity was confirmed. Next, the battery after 100 cycles was discharged at a current density of 0.05 mA / cm 2 under capacity regulation. FIG. 4 shows a discharge curve of the negative electrode. In a battery in which the negative electrode active material is coated with bismuth or the like, an inflection point appears in the middle of the discharge curve in order to form a lithium compound at a potential more noble than the oxidation-reduction potential of the negative electrode active material and lithium, No inflection point appeared in a battery in which the negative electrode active material was not coated with bismuth. In the former solid battery, since an inflection point appears, overdischarging can be suppressed by stopping the discharge at the time when the inflection point occurs. On the other hand, in the latter solid battery, since no inflection point appears, it is difficult to stop discharging immediately before the lower limit voltage. In a lithium ion secondary battery, since the lower limit voltage fluctuates due to cycle deterioration, it is difficult to stop discharging immediately before the lower limit voltage. When the negative electrode active material is covered with bismuth or the like, the inflection point moves in the same manner as the correlation curve between the number of cycles and the capacity by repeating the charge / discharge cycle. Therefore, the deterioration of the negative electrode can be determined based on the inflection point. As described above, by covering the negative electrode active material with bismuth or the like, overdischarge can be suppressed, and furthermore, deterioration of the negative electrode can be determined. Therefore, bismuth or the like is a marker for various management of lithium ion secondary batteries. It may be classified as an element.

さらに、負極活物質をビスマス等で被覆することによって、電池残量を正確に把握することもできる。従来、電池に劣化がないことを前提に、機器の停止のための作動下限電圧を例えば3Vなどと決めて、電池残量表を行っていた。すなわち、機器に含まれる回路やその他ハードの電圧誤差などを加味してカット電圧をある程度高めに設定していた。この結果、電池が劣化して内部インピーダンスが上昇することにより放電電圧が下がると、電池残量に余裕があるにもかかわらず機器を停止していたため,未利用の容量が発生していた。負極活物質をビスマス等で被覆することによって、電池容量が劣化した場合においても変曲点から電池残量を正確に把握することができるため、作動下限電圧を下げることによって電池残容量を無駄なく利用することができるようになる。   Furthermore, by coating the negative electrode active material with bismuth or the like, the remaining battery level can be accurately grasped. Conventionally, on the premise that the battery does not deteriorate, the operation lower limit voltage for stopping the device is determined to be, for example, 3 V, and a battery remaining amount table is performed. That is, the cut voltage is set to be somewhat higher in consideration of a voltage error of a circuit included in the device or other hardware. As a result, when the discharge voltage drops due to deterioration of the battery and an increase in the internal impedance, the device is stopped even though there is enough remaining battery power, so that unused capacity is generated. By coating the negative electrode active material with bismuth, etc., the remaining battery capacity can be accurately grasped from the inflection point even when the battery capacity is degraded. Can be used.

(実施例3)
既述の工程にしたがってビスマスの被覆量を変化させたグラファイト(負極)を準備した。被覆量は被覆無し、1、3、10wt%とした。図5は対極にリチウム−インジウム合金を用いた初回の放電曲線(グラファイトへのリチウム挿入)である。25℃の恒温槽内で電流密度0.03mA/cmで充電を行った。ビスマスの被覆量に応じた初期電池容量と電圧との関係を図5のように確認した。なお、敢えて、固体電解質を省き、負極にとってリチウム受け入れに対して厳しい条件下で、で電池の評価を行うことにより、ビスマスの添加量と充電量との関係を明確にした。図5によれば、ビスマスの被覆量が多いほど、電池容量が増加されていることが分かる。
(Example 3)
Graphite (negative electrode) was prepared in which the amount of bismuth coating was changed according to the above-described steps. The coating amount was 1, 3, 10 wt% without coating. FIG. 5 is an initial discharge curve (lithium insertion into graphite) using a lithium-indium alloy as a counter electrode. The battery was charged at a current density of 0.03 mA / cm 2 in a thermostat at 25 ° C. The relationship between the initial battery capacity and the voltage according to the bismuth coverage was confirmed as shown in FIG. The relationship between the amount of bismuth added and the amount of charge was clarified by daringly omitting the solid electrolyte and evaluating the battery under conditions that are strict for the negative electrode to accept lithium. According to FIG. 5, it can be seen that the larger the amount of bismuth coating, the higher the battery capacity.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものである。   As described above, the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, but the present invention is not limited to such examples. It is apparent that those skilled in the art to which the present invention pertains can conceive various changes or modifications within the scope of the technical idea described in the claims. Of course, these also belong to the technical scope of the present invention.

1 正極層
2 電解質槽
3 負極層
1 positive electrode layer 2 electrolyte tank 3 negative electrode layer

Claims (2)

正極層と、
負極層と、
前記正極層と負極層とに挟持された固体電解質層と、
を備えるリチウムイオン二次電池であって、
前記負極層の負極活物質粒子個々の表面の少なくとも一部が、リチウムイオンとの電気化学反応によってリチウム化合物を形成する金属によって被覆され、前記電気化学反応の反応電位は前記負極活物質のリチウムイオンとの反応における反応電位よりも貴であり、
前記負極活物質がグラファイトであり、前記負極活物質のリチウムイオンとの反応がリチウムイオンのグラファイトへのインターカレーション反応であり、
前記金属がビスマスであることを特徴とするリチウムイオン二次電池。
A positive electrode layer;
A negative electrode layer;
A solid electrolyte layer sandwiched between the positive electrode layer and the negative electrode layer,
A lithium ion secondary battery comprising:
At least a part of the surface of each of the negative electrode active material particles of the negative electrode layer is coated with a metal that forms a lithium compound by an electrochemical reaction with lithium ions, and the reaction potential of the electrochemical reaction is determined by the lithium ion of the negative electrode active material. Is more noble than the reaction potential in the reaction with
The negative active material is graphite, Ri intercalation reaction der of the the negative electrode active reaction with the lithium ions of the lithium-ion substance graphite,
A lithium ion secondary battery, wherein the metal is bismuth .
前記固体電解質層がLi(リチウム),P(リン),S(硫黄)を含む硫化物固体電解質からなる、請求項1記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the solid electrolyte layer is made of a sulfide solid electrolyte containing Li (lithium), P (phosphorus), and S (sulfur).
JP2014160860A 2014-08-06 2014-08-06 Lithium ion secondary battery Active JP6660662B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014160860A JP6660662B2 (en) 2014-08-06 2014-08-06 Lithium ion secondary battery
KR1020150038955A KR102349962B1 (en) 2014-08-06 2015-03-20 All Solid secondary battery, method of controlling all solid secondary battery and method of evaluating all solid secondary battery
US14/818,626 US10168389B2 (en) 2014-08-06 2015-08-05 All-solid secondary battery, method of controlling all-solid secondary battery and method of evaluating all-solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014160860A JP6660662B2 (en) 2014-08-06 2014-08-06 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016039006A JP2016039006A (en) 2016-03-22
JP6660662B2 true JP6660662B2 (en) 2020-03-11

Family

ID=55448050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160860A Active JP6660662B2 (en) 2014-08-06 2014-08-06 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP6660662B2 (en)
KR (1) KR102349962B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985407B2 (en) 2017-11-21 2021-04-20 Samsung Electronics Co., Ltd. All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same
US11211595B2 (en) 2018-03-07 2021-12-28 Lg Chem, Ltd. Method for manufacturing negative electrode
JP7321769B2 (en) * 2019-05-21 2023-08-07 三星電子株式会社 All-solid lithium secondary battery
US11824155B2 (en) 2019-05-21 2023-11-21 Samsung Electronics Co., Ltd. All-solid lithium secondary battery and method of charging the same
WO2023017673A1 (en) * 2021-08-10 2023-02-16 パナソニックIpマネジメント株式会社 Battery
JPWO2023017672A1 (en) * 2021-08-10 2023-02-16

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021913A (en) * 1996-07-05 1998-01-23 Hitachi Ltd Battery chargeable and dischargeable reversibly for plural times
JP2004185975A (en) * 2002-12-03 2004-07-02 Samsung Yokohama Research Institute Co Ltd Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
JP2004213946A (en) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5076134B2 (en) * 2004-06-08 2012-11-21 国立大学法人東京工業大学 Lithium battery element
JP5351990B2 (en) * 2006-01-31 2013-11-27 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012049001A (en) * 2010-08-27 2012-03-08 Toyota Motor Corp Negative electrode and solid state battery
WO2012060349A1 (en) * 2010-11-02 2012-05-10 株式会社 村田製作所 All-solid-state battery
JP2013089423A (en) * 2011-10-17 2013-05-13 Nissan Motor Co Ltd Battery control device
JP2014116149A (en) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
KR101785268B1 (en) * 2013-12-10 2017-10-16 삼성에스디아이 주식회사 Negative active material and lithium battery including the material, and method for manufacturing the material

Also Published As

Publication number Publication date
KR20160017592A (en) 2016-02-16
JP2016039006A (en) 2016-03-22
KR102349962B1 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
JP7050419B2 (en) Negative electrode for all-solid-state secondary battery and all-solid-state secondary battery
KR102651551B1 (en) Anode for all solid state secondary battery, all solid state secondary battery and method of manufacturing the same
JP6660662B2 (en) Lithium ion secondary battery
JP5590576B2 (en) Method for manufacturing electrode for power storage device, and power storage device
US20170358816A1 (en) All-solid-state battery and method for producing the same
US10168389B2 (en) All-solid secondary battery, method of controlling all-solid secondary battery and method of evaluating all-solid secondary battery
CN117038880A (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
JP5782616B2 (en) Lithium secondary battery
JP7321769B2 (en) All-solid lithium secondary battery
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
JP2012243645A (en) Electrode and all-solid state nonaqueous electrolyte battery
JP2018181702A (en) Method for manufacturing all-solid lithium ion secondary battery
JP2021039876A (en) All-solid battery
JP2020107594A (en) Solid electrolyte sheet, negative electrode sheet for all-solid type secondary battery and all-solid type secondary battery, and manufacturing methods thereof
JP6179404B2 (en) Manufacturing method of secondary battery
CN100466340C (en) Non-aqueous electrolyte rechargeable battery
JP2019117768A (en) All-solid secondary battery
JP6776995B2 (en) Manufacturing method of all-solid-state lithium-ion secondary battery
WO2014199782A1 (en) Anode active material for electrical device, and electrical device using same
JP6988738B2 (en) Negative electrode for sulfide all-solid-state battery and sulfide all-solid-state battery
US20230090463A1 (en) Battery
JP2018045779A (en) All-solid lithium ion secondary battery
JP5076301B2 (en) Secondary battery
JP2013097969A (en) Electrode for all-solid battery, and all-solid battery including the same
JP7319008B2 (en) Electrodes and secondary batteries

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180605

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180614

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200210

R150 Certificate of patent or registration of utility model

Ref document number: 6660662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250