JP6657643B2 - Halogen-free flame-retardant resin composition, insulated wires and cables - Google Patents
Halogen-free flame-retardant resin composition, insulated wires and cables Download PDFInfo
- Publication number
- JP6657643B2 JP6657643B2 JP2015153442A JP2015153442A JP6657643B2 JP 6657643 B2 JP6657643 B2 JP 6657643B2 JP 2015153442 A JP2015153442 A JP 2015153442A JP 2015153442 A JP2015153442 A JP 2015153442A JP 6657643 B2 JP6657643 B2 JP 6657643B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- resin composition
- parts
- retardant resin
- ethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0853—Vinylacetate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/18—Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
- H01B7/187—Sheaths comprising extruded non-metallic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/295—Protection against damage caused by extremes of temperature or by flame using material resistant to flame
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/22—Halogen free composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
Landscapes
- Chemical & Material Sciences (AREA)
- Insulated Conductors (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、ノンハロゲン難燃性樹脂組成物、並びに当該樹脂組成物からなる被覆層を備えた絶縁電線及びケーブルに関するものである。 The present invention relates to a halogen-free flame-retardant resin composition, and an insulated wire and cable provided with a coating layer made of the resin composition.
軟質塩化ビニル樹脂組成物は、安価で加工性に優れ、可塑剤の添加量により柔軟性を自在に変化させることができる。さらに、自己消化性で機械特性も比較的良好であるなどの利点があることから、電線被覆材をはじめ、建材や日用品に軟質塩化ビニル樹脂組成物が広く用いられてきた。 The soft vinyl chloride resin composition is inexpensive and excellent in processability, and the flexibility can be freely changed by the addition amount of the plasticizer. In addition, soft vinyl chloride resin compositions have been widely used for electric wire covering materials, building materials and daily necessities because of their advantages such as self-extinguishing properties and relatively good mechanical properties.
しかし、軟質塩化ビニル樹脂組成物においては、可塑剤の移行に起因するそれ自体の脆化や周辺部位の汚染の問題がある。また、ハロゲンである塩素を含むことから、これを焼却処分する際に、有害なダイオキシンなどの有機化合物が発生する。さらに、安定剤として環境汚染の恐れがある鉛化合物を使用することがあるなどの不都合も多い。 However, in the case of the soft vinyl chloride resin composition, there is a problem of embrittlement due to migration of the plasticizer and contamination of peripheral parts. Further, since it contains chlorine, which is a halogen, harmful organic compounds such as dioxin are generated when incinerating this. Further, there are many disadvantages such as the use of a lead compound which may cause environmental pollution as a stabilizer.
上述の課題を解決する手段として、いくつかの技術が提案されている(例えば、特許文献1〜3参照)。 Several techniques have been proposed as means for solving the above-described problems (for example, see Patent Documents 1 to 3).
例えば、特許文献1、2には、ポリオレフィン系樹脂に、難燃剤としての金属水和物を多量に添加して得られたノンハロゲン難燃性樹脂組成物が開示されている。 For example, Patent Documents 1 and 2 disclose non-halogen flame-retardant resin compositions obtained by adding a large amount of metal hydrate as a flame retardant to a polyolefin resin.
しかし、難燃剤として金属水和物を多量に添加すると、押出性、熱衝撃性及び可とう性が低下するおそれがある。 However, when a large amount of a metal hydrate is added as a flame retardant, extrudability, thermal shock resistance and flexibility may decrease.
また、昨今、電線被覆材料に対する信頼性の向上を図るため、難燃性のさらなる向上が求められている。 Further, recently, in order to improve the reliability of the electric wire coating material, further improvement in flame retardancy is required.
そこで、本発明は、金属水和物を多量に用いても押出性、熱衝撃性及び可とう性を維持することができ、かつ難燃性の向上が図られたノンハロゲン難燃性樹脂組成物、並びに当該樹脂組成物からなる被覆層を備えた絶縁電線及びケーブルを提供することを目的とする。 Therefore, the present invention provides a non-halogen flame-retardant resin composition that can maintain extrudability, thermal shock resistance and flexibility even when a large amount of metal hydrate is used, and has improved flame retardancy. An object of the present invention is to provide an insulated wire and cable provided with a coating layer made of the resin composition.
上記目的を達成するため、本発明によれば、以下のノンハロゲン難燃性樹脂組成物、絶縁電線及びケーブルが提供される。 In order to achieve the above object, according to the present invention, the following halogen-free flame-retardant resin composition, insulated wire and cable are provided.
[1]2種類以上のエチレン−酢酸ビニル共重合体を合計で55質量部以上含有するポリオレフィン系樹脂100質量部に対して、シランにより表面処理された水酸化アルミニウムを100質量部以上250質量部以下含有し、かつメラミンシアヌレート、すず酸亜鉛及び非晶質シリカから選ばれる1種類以上を5質量部以上50質量部以下含有しており、前記2種類以上のエチレン−酢酸ビニル共重合体の平均酢酸ビニル含有量(単位:質量%)が38.5以上44以下であり、かつ、平均MFR(単位:g/10分)が10以上50以下であるノンハロゲン難燃性樹脂組成物。
[2]前記2種類以上のエチレン−酢酸ビニル共重合体はいずれも、酢酸ビニル含有量(単位:質量%)が30以上65以下である前記[1]に記載のノンハロゲン難燃性樹脂組成物。
[3]前記ポリオレフィン系樹脂として、エチレン−アクリル酸エチル−無水マレイン酸3元共重合体、エチレン−アクリル酸エチル、マレイン酸変性高密度ポリエチレン、メタロセン直鎖状低密度ポリエチレン、及びメタロセン系ポリプロピレンから選ばれる1種以上を含有する前記[1]又は前記[2]に記載のノンハロゲン難燃性樹脂組成物。
[4]前記[1]〜[3]のいずれか1つに記載のノンハロゲン難燃性樹脂組成物からなる絶縁層を備えたことを特徴とする絶縁電線。
[5]前記[1]〜[3]のいずれか1つに記載のノンハロゲン難燃性樹脂組成物からなるシースを備えたことを特徴とするケーブル。
[6]前記[4]に記載の絶縁電線を備えたことを特徴とする前記[5]に記載のケーブル。
[1] 100 parts by mass of polyhydric resin containing 55 parts by mass or more in total of two or more types of ethylene-vinyl acetate copolymer, and 100 parts by mass or more and 250 parts by mass of aluminum hydroxide surface-treated with silane. Contains not more than 5 parts by mass and not more than 50 parts by mass of at least one selected from melamine cyanurate, zinc stannate and amorphous silica, and the two or more types of ethylene-vinyl acetate copolymer A non-halogen flame-retardant resin composition having an average vinyl acetate content (unit: mass%) of 38.5 to 44 and an average MFR (unit: g / 10 minutes) of 10 to 50.
[2] The non-halogen flame-retardant resin composition according to [1], wherein the two or more ethylene-vinyl acetate copolymers each have a vinyl acetate content (unit: mass%) of 30 to 65. .
[3] As the polyolefin resin, ethylene-ethyl acrylate-maleic anhydride terpolymer, ethylene-ethyl acrylate, maleic acid-modified high-density polyethylene, metallocene linear low-density polyethylene, and metallocene polypropylene The non-halogen flame-retardant resin composition according to the above [1] or [2], containing one or more selected ones.
[4] An insulated wire comprising an insulating layer made of the non-halogen flame-retardant resin composition according to any one of [1] to [3].
[5] A cable comprising a sheath made of the halogen-free flame-retardant resin composition according to any one of [1] to [3].
[6] The cable according to [5], comprising the insulated wire according to [4].
本発明によれば、金属水和物を多量に用いても押出性、熱衝撃性及び可とう性を維持することができ、かつ難燃性の向上が図られたノンハロゲン難燃性樹脂組成物、並びに当該樹脂組成物からなる被覆層を備えた絶縁電線及びケーブルが提供される。 According to the present invention, a non-halogen flame-retardant resin composition capable of maintaining extrudability, thermal shock resistance and flexibility even when a large amount of metal hydrate is used, and having improved flame retardancy And an insulated wire and cable provided with a coating layer made of the resin composition.
以下、本発明のノンハロゲン難燃性樹脂組成物、絶縁電線及びケーブルの一実施形態について具体的に説明する。 Hereinafter, one embodiment of the halogen-free flame-retardant resin composition, the insulated wire and the cable of the present invention will be specifically described.
〔ノンハロゲン難燃性樹脂組成物〕
本発明の実施形態に係るノンハロゲン難燃性樹脂組成物は、2種類以上のエチレン−酢酸ビニル共重合体を合計で55質量部以上含有するポリオレフィン系樹脂100質量部に対して、シランにより表面処理された水酸化アルミニウムを100質量部以上250質量部以下含有し、かつメラミンシアヌレート、すず酸亜鉛及び非晶質シリカから選ばれる1種類以上を5質量部以上50質量部以下含有しており、前記2種類以上のエチレン−酢酸ビニル共重合体の平均酢酸ビニル含有量(単位:質量%)が37.5以上45以下であり、かつ、平均MFR(単位:g/10分)が10以上50以下である。
(Non-halogen flame-retardant resin composition)
The halogen-free flame-retardant resin composition according to the embodiment of the present invention is surface-treated with silane with respect to 100 parts by mass of a polyolefin resin containing 55 parts by mass or more in total of two or more kinds of ethylene-vinyl acetate copolymers. Containing 100 parts by mass or more and 250 parts by mass or less of the obtained aluminum hydroxide, and containing 5 parts by mass or more and 50 parts by mass or less of at least one selected from melamine cyanurate, zinc stannate and amorphous silica, The average vinyl acetate content (unit: mass%) of the two or more ethylene-vinyl acetate copolymers is 37.5 or more and 45 or less, and the average MFR (unit: g / 10 minutes) is 10 or more and 50 or more. It is as follows.
(エチレン−酢酸ビニル共重合体)
ノンハロゲン難燃性樹脂組成物は、ベース樹脂として、ポリオレフィン系樹脂を含有する。
(Ethylene-vinyl acetate copolymer)
The non-halogen flame-retardant resin composition contains a polyolefin-based resin as a base resin.
ノンハロゲン難燃性樹脂組成物は、ポリオレフィン系樹脂として、2種以上のエチレン−酢酸ビニル共重合体(EVA)を含有する。2〜5種のEVAを含有することが好ましく、2〜4種のEVAを含有することがより好ましく、2〜3種のEVAを含有することが更に好ましい。 The non-halogen flame-retardant resin composition contains two or more ethylene-vinyl acetate copolymers (EVA) as a polyolefin-based resin. It preferably contains 2 to 5 types of EVA, more preferably contains 2 to 4 types of EVA, and still more preferably contains 2 to 3 types of EVA.
含有された2種以上のEVAは、平均酢酸ビニル含有量(平均VA量)が37.5質量%以上45質量%以下である。平均VA量の下限値は38質量%であることが好ましく、38.5質量%であることがより好ましい。平均VA量の上限値は44質量%であることが好ましく、43質量%であることがより好ましい。平均VA量が37.5質量%未満であると必要な難燃性が発現せず、45質量%を超えると粘着性が増し、押出性が悪くなる。 The two or more types of EVA contained have an average vinyl acetate content (average VA amount) of 37.5% by mass to 45% by mass. The lower limit of the average VA amount is preferably 38% by mass, and more preferably 38.5% by mass. The upper limit value of the average VA amount is preferably 44% by mass, and more preferably 43% by mass. If the average VA amount is less than 37.5% by mass, the required flame retardancy is not exhibited. If the average VA amount exceeds 45% by mass, the adhesiveness increases and the extrudability deteriorates.
平均VA量は、下記の式で求めることができる。なお、EVA1〜EVA3は、添加される各EVAを指す。
平均VA量=(EVA1の添加量×EVA1のVA量+EVA2の添加量×EVA2のVA量+EVA3の添加量×EVA3のVA量+・・・)/(EVA1の添加量+EVA2の添加量+EVA3の添加量+・・・)
The average VA amount can be obtained by the following equation. EVA1 to EVA3 indicate each EVA to be added.
Average VA amount = (addition amount of EVA1 × VA amount of EVA1 + addition amount of EVA2 × VA amount of EVA2 + addition amount of EVA3 × VA amount of EVA3 + ...) / (addition amount of EVA1 + addition amount of EVA2 + addition of EVA3 Amount + ...)
上記2種類以上のEVAはいずれも、酢酸ビニル含有量(VA量)が30質量%以上65質量%以下であることが好ましく、33質量%以上60質量%以下であることがより好ましい。 Each of the above two or more types of EVA preferably has a vinyl acetate content (VA amount) of 30% by mass to 65% by mass, more preferably 33% by mass to 60% by mass.
また、含有された2種以上のEVAは、平均MFR(メルトマスフローレイト)が10以上50以下(単位:g/10分)である。平均MFRの下限値は11であることが好ましく、15であることがより好ましい。平均MFRの上限値は45であることが好ましく、25であることがより好ましく、20であることが更に好ましい。平均MFRを上記範囲にすることが、押出性の観点から好ましい。平均MFRが10未満であると高負荷により押出性が悪化し、50を超えると電線被覆材としての引張特性を満たさず、かつ押出性も悪くなる。 The two or more types of EVA contained have an average MFR (melt mass flow rate) of 10 or more and 50 or less (unit: g / 10 minutes). The lower limit of the average MFR is preferably 11 and more preferably 15. The upper limit of the average MFR is preferably 45, more preferably 25, and even more preferably 20. It is preferable to set the average MFR in the above range from the viewpoint of extrudability. If the average MFR is less than 10, the extrudability deteriorates due to a high load, and if it exceeds 50, the tensile properties as a wire covering material are not satisfied, and the extrudability also deteriorates.
平均MFRは、下記の式で求めることができる。なお、EVA1〜EVA3は、添加される各EVAを指す。
平均MFR=(EVA1の添加量×EVA1のMFR+EVA2の添加量×EVA2のMFR+EVA3の添加量×EVA3のMFR+・・・)/(EVA1の添加量+EVA2の添加量+EVA3の添加量+・・・)
The average MFR can be obtained by the following equation. EVA1 to EVA3 indicate each EVA to be added.
Average MFR = (addition amount of EVA1 × MFR of EVA1 + addition amount of EVA2 × MFR of EVA2 + addition amount of EVA3 × MFR of EVA3 + ...) / (addition amount of EVA1 + addition amount of EVA2 + addition amount of EVA3 + ...)
上記2種類以上のEVAはいずれも、MFR(単位:g/10分)が0.2以上110以下であることが好ましく、0.3以上100以下であることがより好ましい。 Each of the above two or more types of EVA preferably has an MFR (unit: g / 10 minutes) of 0.2 or more and 110 or less, more preferably 0.3 or more and 100 or less.
ノンハロゲン難燃性樹脂組成物は、ポリオレフィン系樹脂100質量部のうち、2種以上のEVAを合計で55質量部以上含有する。2種以上のEVAの含有量の下限値は、70質量部であることが好ましく、80質量部であることがより好ましい。2種以上のEVAの含有量の上限値は、100質量部であることが好ましく、95質量部であることがより好ましい。2種以上のEVAの含有量を上記範囲とすることが、可とう性の観点から好ましい。2種以上のEVAの含有量が55質量部未満であると必要な可とう性や熱衝撃性が発現しない。 The non-halogen flame-retardant resin composition contains a total of 55 parts by mass or more of two or more EVA out of 100 parts by mass of the polyolefin resin. The lower limit of the content of two or more types of EVA is preferably 70 parts by mass, and more preferably 80 parts by mass. The upper limit of the content of two or more types of EVA is preferably 100 parts by mass, and more preferably 95 parts by mass. It is preferable from the viewpoint of flexibility that the content of two or more EVA is within the above range. If the content of two or more types of EVA is less than 55 parts by mass, the necessary flexibility and thermal shock properties are not exhibited.
(その他のポリオレフィン系樹脂)
ノンハロゲン難燃性樹脂組成物は、ポリオレフィン系樹脂として、上記の2種以上のEVA以外に、その他のポリオレフィン系樹脂を含有していてもよい。その他のポリオレフィン系樹脂は、1種又は2種以上を添加できる。
(Other polyolefin resins)
The non-halogen flame-retardant resin composition may contain other polyolefin-based resin as the polyolefin-based resin in addition to the above-mentioned two or more types of EVA. One or more other polyolefin-based resins can be added.
その他のポリオレフィン系樹脂としては、特に限定されるものではないが、例えば、ポリオレフィン樹脂の重合時又は重合後に、無水マレイン酸やアクリル酸等の不飽和カルボン酸、あるいはこれらの誘導体を反応させて、変性させた酸変性ポリオレフィンが挙げられる。酸変性ポリオレフィンのポリオレフィンとしては、超低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレン、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブテン−1共重合体、エチレン−ヘキセン−1共重合体、エチレン−オクテン−1共重合体などが挙げられ、酸としてはマレイン酸、無水マレイン酸、フマル酸などが挙げられる。 The other polyolefin-based resin is not particularly limited, for example, during or after polymerization of the polyolefin resin, by reacting an unsaturated carboxylic acid such as maleic anhydride or acrylic acid, or a derivative thereof, Modified acid-modified polyolefins may be mentioned. Examples of the acid-modified polyolefin polyolefin include ultra-low density polyethylene, low density polyethylene, high density polyethylene, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butene-1 copolymer, ethylene-hexene- 1 copolymer, ethylene-octene-1 copolymer and the like. Examples of the acid include maleic acid, maleic anhydride and fumaric acid.
その他のポリオレフィン系樹脂として、エチレン−アクリル酸エチル−無水マレイン酸3元共重合体(マレイン酸変性EEA)、エチレン−アクリル酸エチル(EEA)、マレイン酸変性高密度ポリエチレン(マレイン酸変性HDPE)、メタロセン直鎖状低密度ポリエチレン(M−LLDPE)、及びメタロセン系ポリプロピレン(リアクタPP)から選ばれる1種以上を含有することが好ましい。 Other polyolefin resins include ethylene-ethyl acrylate-maleic anhydride terpolymer (maleic acid-modified EEA), ethylene-ethyl acrylate (EEA), maleic acid-modified high-density polyethylene (maleic acid-modified HDPE), It is preferable to contain at least one selected from metallocene linear low-density polyethylene (M-LLDPE) and metallocene-based polypropylene (reactor PP).
本実施の形態に係るノンハロゲン難燃性樹脂組成物には、本発明の効果を発揮する限り、上記のポリオレフィン系樹脂以外のポリマ成分を含有させてもよいが、上記のポリオレフィン系樹脂の含有量がポリマ成分中の90質量%以上であることが好ましく、95質量%以上であることがより好ましく、100質量%であることがさらに好ましい。 The non-halogen flame-retardant resin composition according to the present embodiment may contain a polymer component other than the above-mentioned polyolefin-based resin as long as the effects of the present invention are exhibited. Is preferably 90% by mass or more in the polymer component, more preferably 95% by mass or more, even more preferably 100% by mass.
(難燃剤)
本発明の実施形態に係るノンハロゲン難燃性樹脂組成物は、上記ポリオレフィン系樹脂100質量部に対して、難燃剤として、シランにより表面処理された水酸化アルミニウムを100質量部以上250質量部以下の割合で含有する。シランにより表面処理された水酸化アルミニウムの含有量が100質量部未満であると難燃助剤と組み合わせても必要な難燃性が発現せず、250質量部を超えると熱衝撃性が低下するためである。
(Flame retardants)
The non-halogen flame-retardant resin composition according to the embodiment of the present invention is based on 100 parts by mass of the polyolefin resin, and as a flame retardant, 100 parts by mass or more and 250 parts by mass or less of aluminum hydroxide surface-treated with silane. Contains in proportions. If the content of the aluminum hydroxide surface-treated with silane is less than 100 parts by mass, the required flame retardancy will not be exhibited even when combined with a flame retardant aid, and if it exceeds 250 parts by mass, the thermal shock resistance will decrease. That's why.
水酸化アルミニウムの粒径は平均粒径が0.5μmから2μmに調整されたものが良く、常圧での乾式粒度測定において、10μm以上の粗粒が1質量%以下に抑えられているものが良い。 The average particle size of aluminum hydroxide is preferably adjusted from 0.5 μm to 2 μm. In dry particle size measurement under normal pressure, the one in which coarse particles of 10 μm or more are suppressed to 1% by mass or less. good.
表面処理に用いるシランを具体的に示すと、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルジメトキシエトキシシラン、ビニルジメトキシブトキシシラン、ビニルジエトキシブトキシシラン、ビニルトリアセトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、グリシジルオキシプロピルトリメトキシシラン等のシランカップリング剤が挙げられる。これらのシランカップリング剤は単独で使用しても2種以上を併用してもよい。 Specific examples of the silane used for the surface treatment include vinyltrimethoxysilane, vinyltriethoxysilane, vinyldimethoxyethoxysilane, vinyldimethoxybutoxysilane, vinyldiethoxybutoxysilane, vinyltriacetoxysilane, methacryloxypropyltrimethoxysilane, Examples of the silane coupling agent include methacryloxypropyltriethoxysilane, methacryloxypropylmethyldimethoxysilane, and glycidyloxypropyltrimethoxysilane. These silane coupling agents may be used alone or in combination of two or more.
シランによる表面処理量は、現物の蛍光X線分析にて、Si質量として、0.02%以上0.05%以下にコントロールされているものが良い。 The amount of surface treatment with silane is preferably controlled to be 0.02% or more and 0.05% or less as Si mass by actual X-ray fluorescence analysis.
(難燃助剤)
本発明の実施形態に係るノンハロゲン難燃性樹脂組成物は、上記ポリオレフィン系樹脂100質量部に対して、難燃助剤として、メラミンシアヌレート、すず酸亜鉛及び非晶質シリカから選ばれる1種類以上を5質量部以上50質量部以下の割合で含有する。上記難燃助剤の含有合計量が5質量部未満であると燃殻が維持されず、難燃性が悪化し、50質量部を超えると熱衝撃性、可とう性及び押出性が低下するためである。
(Flame retardant aid)
The non-halogen flame-retardant resin composition according to the embodiment of the present invention is one kind selected from melamine cyanurate, zinc stannate, and amorphous silica as a flame retardant aid based on 100 parts by mass of the polyolefin resin. The above is contained at a ratio of 5 parts by mass or more and 50 parts by mass or less. If the total content of the above-mentioned flame-retardant aids is less than 5 parts by mass, the fuel shell is not maintained and the flame retardancy is deteriorated. If it exceeds 50 parts by mass, the thermal shock resistance, flexibility and extrudability are reduced. That's why.
上記難燃助剤を2種以上併用する場合には、メラミンシアヌレート及びすず酸亜鉛、メラミンシアヌレート及び非晶質シリカ、すず酸亜鉛及び非晶質シリカ、3種すべて、の4通りの組み合わせが可能であるが、特にメラミンシアヌレート及びすず酸亜鉛の組み合わせが好ましい。メラミンシアヌレートとすず酸亜鉛の配合比(メラミンシアヌレート/すず酸亜鉛)は、2〜6であることが好ましく、3〜5であることがより好ましい。 When two or more of the above flame retardant aids are used in combination, melamine cyanurate and zinc stannate, melamine cyanurate and amorphous silica, zinc stannate and amorphous silica, all four kinds of combinations However, a combination of melamine cyanurate and zinc stannate is particularly preferred. The compounding ratio of melamine cyanurate and zinc stannate (melamine cyanurate / zinc stannate) is preferably 2 to 6, and more preferably 3 to 5.
(1)メラミンシアヌレート
適用するメラミンシアヌレートは、平均粒径が1.5μm〜8μmに調整されたものが良い。2μm〜5μmに調整されたものがより良い。1.5μm未満であると凝集しやすく、8μmを超えると樹脂に添加した際、引張強度が低下するためである。凝集塊抑制を目的に、そのものを脂肪酸等で表面処理してもよく、シリカ等の無機物を担持させたあとシリコーンやシランカップリング剤などで表面処理しても良い。
(1) Melamine cyanurate The melamine cyanurate to be applied preferably has an average particle diameter adjusted to 1.5 μm to 8 μm. Those adjusted to 2 μm to 5 μm are better. If it is less than 1.5 μm, it tends to agglomerate, and if it exceeds 8 μm, the tensile strength decreases when it is added to the resin. For the purpose of suppressing agglomerates, the substance itself may be subjected to a surface treatment with a fatty acid or the like, or after carrying an inorganic substance such as silica, may be subjected to a surface treatment with a silicone or a silane coupling agent.
(2)すず酸亜鉛
適用するすず酸亜鉛は、三酸化錫亜鉛及び六水酸化錫亜鉛(ヒドロキシ錫酸亜鉛)から選択される。平均粒径は1μm〜8μmに調整されたものが良い。2μm〜5μmに調整されたものがより良い。1μm未満であると凝集しやすく、8μmを超えると樹脂に添加した際、引張強度が低下するためである。凝集塊抑制を目的に、そのものを脂肪酸等で表面処理してもよく、シリカ等の無機物を担持させたあとシリコーンやシランカップリング剤などで表面処理しても良い。
(2) Zinc stannate The applied zinc stannate is selected from zinc tin oxide and tin zinc hexahydroxide (zinc hydroxystannate). The average particle diameter is preferably adjusted to 1 μm to 8 μm. Those adjusted to 2 μm to 5 μm are better. If it is less than 1 μm, it tends to agglomerate, and if it exceeds 8 μm, the tensile strength decreases when added to the resin. For the purpose of suppressing agglomerates, the substance itself may be subjected to a surface treatment with a fatty acid or the like, or after carrying an inorganic substance such as silica, may be subjected to a surface treatment with a silicone or a silane coupling agent.
(3)非晶質シリカ
適用する非晶質シリカは、平均粒径が50nm〜400nmに調整されたものが良く、100nm〜250nmに調整されたものがより良い。平均粒径が50nm未満であると取扱い性が悪くなり、400nmを超えると樹脂に添加した際、引張強度が低下するためである。形状は球状が好ましい。BET比表面積は15〜28m2/gに調整されたものがよい。
(3) Amorphous silica The amorphous silica to be applied preferably has an average particle diameter adjusted to 50 nm to 400 nm, more preferably 100 nm to 250 nm. If the average particle size is less than 50 nm, the handleability becomes poor, and if it exceeds 400 nm, the tensile strength decreases when added to the resin. The shape is preferably spherical. The BET specific surface area is preferably adjusted to 15 to 28 m 2 / g.
(その他の添加剤)
本発明の実施形態に係るノンハロゲン難燃性樹脂組成物は、上記の難燃剤、難燃助剤以外にも、必要に応じて、酸化防止剤、加工助剤、滑剤、軟化剤、可塑剤、無機充填剤、相溶化剤、安定剤、カーボンブラック、着色剤等の添加剤を加えることが可能である。
(Other additives)
The non-halogen flame-retardant resin composition according to the embodiment of the present invention is, in addition to the above-described flame retardant and flame retardant auxiliary, if necessary, an antioxidant, a processing aid, a lubricant, a softener, a plasticizer, It is possible to add additives such as inorganic fillers, compatibilizers, stabilizers, carbon black, and colorants.
(特性)
本発明の実施形態に係るノンハロゲン難燃性樹脂組成物は、電線被覆材料に要求される基本特性としての熱衝撃性、押出性、可とう性、難燃性に優れる。特に難燃性においては難燃ポリ塩化ビニル(PVC)と同等の難燃性を有するため、垂直燃焼試験を必要とするケーブルで、可燃性のポリエチレン(PE)又はポリプロピレン(PP)からなる絶縁体を有し、難燃PVCからなるシースを有する構造のシース材料を本発明の実施形態に係るノンハロゲン難燃性樹脂組成物で置き換えることが可能となる。本発明の実施形態に係るノンハロゲン難燃性樹脂組成物は、火災時に燃え難く、発煙量も少ない。また、ハロゲンを含まないので、燃焼時にダイオキシンやハロゲンガス等の有毒ガスを発生しないため、焼却処分することができ、火災時にも有毒ガスを発生しない。また、リン系化合物を含んでいないので環境上好ましく、鉛の溶出が無いので埋立処分が可能である。
(Characteristic)
The halogen-free flame-retardant resin composition according to the embodiment of the present invention is excellent in thermal shock resistance, extrudability, flexibility, and flame retardancy as basic characteristics required for a wire covering material. In particular, it has the same flame retardancy as flame-retardant polyvinyl chloride (PVC). Therefore, it is necessary to use a cable that requires a vertical burn test. It is an insulator made of flammable polyethylene (PE) or polypropylene (PP). And a sheath material having a structure having a sheath made of flame-retardant PVC can be replaced with the halogen-free flame-retardant resin composition according to the embodiment of the present invention. The non-halogen flame-retardant resin composition according to the embodiment of the present invention hardly burns in a fire and emits a small amount of smoke. Further, since it does not contain halogen, no toxic gas such as dioxin or halogen gas is generated during combustion, so that it can be incinerated and disposed, and no toxic gas is generated even in the event of fire. In addition, since it does not contain a phosphorus compound, it is environmentally preferable, and since there is no elution of lead, landfill disposal is possible.
(用途)
本発明の実施形態に係るノンハロゲン難燃性樹脂組成物は、上述の特性を備えることより、様々な用途で用いることができる。例えば、絶縁電線、電子機器配線用電線、自動車用電線、機器用電線、電源コード、屋外配電用絶縁電線、電力用ケーブル、制御用ケーブル、通信用ケーブル、計装用ケーブル、信号用ケーブル、移動用ケーブル、及び船用ケーブルなどの各種電線・ケーブルの絶縁材、シース材、テープ類、及び介在物として用いることができる。また、ケース、プラグ、及びテープなどの電線・ケーブル用付属部品、電線管などの電材製品などに用いることができる。その他にも、農業用シート、水道用ホース、ガス管被覆材、建築内装材、家具材料、玩具材料及びフロア材などに用いることができる。
(Application)
The non-halogen flame-retardant resin composition according to the embodiment of the present invention can be used in various applications because it has the above-described characteristics. For example, insulated wires, wires for electronic equipment wiring, wires for automobiles, wires for equipment, power cords, insulated wires for outdoor power distribution, power cables, control cables, communication cables, instrumentation cables, signal cables, transport cables It can be used as an insulating material, sheath material, tapes, and inclusions of various electric wires and cables such as cables and marine cables. In addition, it can be used for electric wires and cables, such as cases, plugs, and tapes, and electric materials such as electric conduits. In addition, it can be used for agricultural sheets, water hoses, gas pipe covering materials, building interior materials, furniture materials, toy materials, floor materials, and the like.
〔絶縁電線〕
図1は、本発明の絶縁電線の一実施形態を示す断面図である。
[Insulated wire]
FIG. 1 is a sectional view showing one embodiment of the insulated wire of the present invention.
図1に示される本実施の形態に係る絶縁電線10は、汎用の材料、例えば、錫めっき銅等からなる導体1と、導体1の外周に形成された絶縁層2とを備える。 An insulated wire 10 according to the present embodiment shown in FIG. 1 includes a conductor 1 made of a general-purpose material, for example, tin-plated copper, and an insulating layer 2 formed on the outer periphery of the conductor 1.
絶縁層2は、本発明の実施の形態に係る上記のノンハロゲン難燃性樹脂組成物から構成されている。 The insulating layer 2 is composed of the non-halogen flame-retardant resin composition according to the embodiment of the present invention.
本実施の形態においては、絶縁層を、単層で構成してもよく、また、多層構造とすることもできる。多層構造とした場合の具体例としては、最外層に上記ノンハロゲン難燃性樹脂組成物を、また、最外層以外にポリオレフィン樹脂やゴム材料を押出被覆することで得られる構造を挙げることができる。ポリオレフィン樹脂としては、例えば前述の物を使用することができる。さらに、必要に応じて、セパレータ、編組等を施してもよい。絶縁層は、成形後、架橋処理が施されても良い。架橋方法は特に限定されるものではなく周知の方法で実施できる。 In this embodiment, the insulating layer may have a single-layer structure or a multilayer structure. Specific examples of the multilayer structure include a structure obtained by extrusion-coating the non-halogen flame-retardant resin composition in the outermost layer and a polyolefin resin or a rubber material in a layer other than the outermost layer. As the polyolefin resin, for example, those described above can be used. Further, if necessary, a separator, a braid, or the like may be provided. After molding, the insulating layer may be subjected to a crosslinking treatment. The crosslinking method is not particularly limited, and can be carried out by a known method.
〔ケーブル〕
図2は、本発明のケーブルの一実施形態を示す断面図である。
〔cable〕
FIG. 2 is a sectional view showing one embodiment of the cable of the present invention.
図2に示される本実施の形態に係るケーブル20は、本実施の形態に係る絶縁電線10を2本撚り合わせた二芯撚り線を3本撚り合わせた撚り線と、撚り線の周囲に巻き付けられた押えテープ3と、押えテープ3の外周に設けられた編組シールド4と、編組シールド4の外周に設けられたシース5とを備える。絶縁電線は単芯でもよく、上記以外の多芯撚り線であってもよい。 The cable 20 according to the present embodiment shown in FIG. 2 is wound around a twisted wire obtained by twisting two insulated wires 10 according to the present embodiment into two twisted two-core twisted wires and around the twisted wire. And a braided shield 4 provided on the outer periphery of the holding tape 3, and a sheath 5 provided on the outer periphery of the braided shield 4. The insulated wire may be a single core or a multi-core stranded wire other than the above.
シース5は、上述のノンハロゲン難燃性樹脂組成物から構成されている。シース5の肉厚は、例えば1mmt以下とすることができる。 The sheath 5 is made of the non-halogen flame-retardant resin composition described above. The thickness of the sheath 5 can be, for example, 1 mmt or less.
本実施の形態においては、シースを、単層で構成してもよく、また、多層構造とすることもできる。多層構造とした場合の具体例としては、最外層に上記ノンハロゲン難燃性樹脂組成物を、また、最外層以外にポリオレフィン樹脂を押出被覆することで得られる構造を挙げることができる。ポリオレフィン樹脂としては、例えば前述の物を挙げることができる。さらに、必要に応じて、セパレータ等を施してもよい。シースは、成形後、架橋処理が施されても良い。架橋方法は特に限定されるものではなく周知の方法で実施できる。 In the present embodiment, the sheath may be composed of a single layer, or may have a multilayer structure. As a specific example in the case of a multilayer structure, a structure obtained by extrusion-coating the non-halogen flame-retardant resin composition in the outermost layer and a polyolefin resin in other than the outermost layer can be mentioned. Examples of the polyolefin resin include those described above. Further, a separator or the like may be provided as necessary. After molding, the sheath may be subjected to a crosslinking treatment. The crosslinking method is not particularly limited, and can be carried out by a known method.
なお、本実施の形態においては、本実施の形態に係る絶縁電線10を使用した例を示したが、汎用の材料を用いた絶縁電線を使用することもできる。 In the present embodiment, an example using the insulated wire 10 according to the present embodiment has been described, but an insulated wire using a general-purpose material may be used.
以下に、実施例を用いてさらに具体的に説明する。なお、本発明は、以下の実施例によって、いかなる制限を受けるものではない。 Hereinafter, a more specific description will be given using examples. The present invention is not limited by the following examples.
(実施例及び比較例)
図2に示すケーブルを以下のようにして製造した。
0.5mm2(7本/0.32mm)の錫メッキ軟銅撚り線1(外径0.96mm)の外周に、ポリエチレンを0.3mmtで被覆して絶縁層2を設け、絶縁電線10を得た。絶縁電線10を2本撚り合わせた二芯撚り線を3本撚り合わせて撚り線とし、この撚り線の周囲にPETからなる押えテープ3を施し、その上に錫メッキ軟銅線による編組シールド4を設けた。編組シールド4の外周に、表1〜2に示す配合の樹脂組成物をシース厚1mmtで被覆してシース5を設け、ケーブル外径8.1mmのケーブルを得た。表1〜2に示す配合の樹脂組成物は、各成分を計量機で秤量した後、3Lニーダーで160℃で混練し、ミキシングロールでシート化したものを造粒機で造粒し、ペレット化したものを使用した。シースの被覆は、90mm押出機を用い、シリンダー温度160℃、ヘッド温度180℃、ダイス温度185℃とし、チューブ押出法で線速30m/分で押出した。
(Examples and Comparative Examples)
The cable shown in FIG. 2 was manufactured as follows.
A 0.5 mm 2 (7 pieces / 0.32 mm) tin-plated soft copper stranded wire 1 (outer diameter 0.96 mm) is coated with polyethylene at 0.3 mmt to provide an insulating layer 2 to obtain an insulated wire 10. Was. Two insulated electric wires 10 are twisted to form a two-core stranded wire by twisting three wires to form a stranded wire, a pressing tape 3 made of PET is applied around the stranded wire, and a braided shield 4 made of tinned annealed copper wire is placed thereon. Provided. A sheath 5 was provided on the outer periphery of the braided shield 4 by coating a resin composition having the composition shown in Tables 1 and 2 with a sheath thickness of 1 mmt to obtain a cable having a cable outer diameter of 8.1 mm. The resin compositions having the compositions shown in Tables 1 and 2 were weighed with a weighing machine, kneaded at 160 ° C. with a 3 L kneader, formed into a sheet with a mixing roll, granulated with a granulator, and pelletized. What was used was used. The sheath was coated using a 90 mm extruder at a cylinder temperature of 160 ° C., a head temperature of 180 ° C., and a die temperature of 185 ° C., and was extruded at a linear speed of 30 m / min by a tube extrusion method.
得られたケーブルを以下に示す各試験方法によって評価した。その評価結果を表1〜2に示す。 The obtained cable was evaluated by the following test methods. The evaluation results are shown in Tables 1 and 2.
(引張強度)
作製したケーブルからシース(試料)を剥ぎ取り、JISK7113に準じて引張強度を測定した。具体的には引張速度200mm/min、標線間距離20mmの試験条件で試料の引張破断強度を測定した。引張破断強度が10MPa以上である試料を合格とし、10MPa未満である試料を不合格とした。
(Tensile strength)
The sheath (sample) was peeled off from the produced cable, and the tensile strength was measured according to JIS K7113. Specifically, the tensile breaking strength of the sample was measured under the test conditions of a tensile speed of 200 mm / min and a distance between marked lines of 20 mm. Samples having a tensile strength at break of 10 MPa or more were judged as acceptable, and samples having a tensile strength less than 10 MPa were judged as unacceptable.
(引張伸び)
作製したケーブルからシース(試料)を剥ぎ取り、JISK7113に準じて引張伸びを測定した。具体的には引張速度200mm/min、標線間距離20mmの試験条件で試料の引張破断伸びを測定した。引張破断伸びが150%以上である試料を合格とし、150%未満である試料を不合格とした。
(Tensile elongation)
The sheath (sample) was peeled off from the produced cable, and the tensile elongation was measured according to JIS K7113. Specifically, the tensile elongation at break of the sample was measured under the test conditions of a tensile speed of 200 mm / min and a distance between marked lines of 20 mm. Samples with a tensile elongation at break of 150% or more were accepted, and samples with a tensile elongation of less than 150% were rejected.
(可とう性)
可とう性の評価として、硬さの指標である100%モジェラス値を適用した。
作製したケーブルからシース(試料)を剥ぎ取り、JISK7113に準じて引張伸びを測定した。100%モジェラス値が10MPa以下となるもの良とした。また、参考試験として、上述の通り作製したケーブルを30cmフリーの状態として固定し、フリーとした先端に100gの錘をつけて、たわませた際の角度が45度以上となるものを良とした。
(Flexibility)
As the evaluation of flexibility, a 100% Mogellas value, which is an index of hardness, was applied.
The sheath (sample) was peeled off from the produced cable, and the tensile elongation was measured according to JIS K7113. It was determined that the 100% Mogellas value was 10 MPa or less. As a reference test, a cable prepared as described above was fixed in a free state of 30 cm, a 100 g weight was attached to the free end, and a cable having an angle of 45 degrees or more when bent was considered good. did.
(熱衝撃性)
UL規格,UL1581 Table 50.133に基づき、上述の通り作製したケーブルを2倍径のマンドレルに6ターン巻き付け、100℃×1hrの熱負荷をかけた後、シース表面にクラックが発生しないものを合格とし、クラックが発生するものを不合格とした。
(Thermal shock resistance)
Based on UL standard, UL1581 Table 50.133, the cable manufactured as described above was wound around a double diameter mandrel for 6 turns, and after applying a heat load of 100 ° C. × 1 hr, a cable having no crack on the sheath surface was regarded as passed. Those with cracks were rejected.
(押出性)
上述の90mm押出機によるシース押出作業において、押出時の許容トルクが90%未満で作業可能であり、かつ30m/分あるいはそれ以上の線速で作業できるものを良とした。許容トルクが90%以上、30m/分未満でしか作業できないものは不良とした。
(Extrudability)
In the above-mentioned sheath extruding operation using a 90 mm extruder, those that can be operated with an allowable torque during extrusion of less than 90% and that can be operated at a linear speed of 30 m / min or more were regarded as good. Those which can be operated only when the allowable torque is 90% or more and less than 30 m / min are regarded as defective.
(難燃性)
UL規格,UL1581に基づき、上述の通り作製したケーブルについてVW−1(Vertical Wire Flame Test:垂直燃焼試験)を実施した。試験数10本で実施し、10本とも合格したものを良とし、10本中1本でも不合格であったものを不良とした。
(Flame retardance)
VW-1 (Vertical Wire Flame Test: vertical burning test) was performed on the cable manufactured as described above based on UL standard, UL1581. Ten tests were performed, and those that passed all ten tests were good, and those that failed even one of the ten tests were poor.
本発明の実施の形態に係るノンハロゲン難燃性樹脂組成物をシース材料として使用した実施例1〜8は、表1に示すように、可とう性、熱衝撃性、押出性、難燃性のいずれも良好な結果が得られた。 Examples 1 to 8 using the non-halogen flame-retardant resin composition according to the embodiment of the present invention as a sheath material showed flexibility, thermal shock, extrudability, and flame retardancy as shown in Table 1. In each case, good results were obtained.
比較例1は、シラン処理水酸化アルミニウムの代わりにシラン処理水酸化マグネシウムを用いた系である。規定の伸びが発現せず、可とう性及び熱衝撃性において良好な結果が得られなかった。
比較例2は、難燃助剤含量を5質量部未満とした系であり、比較例3は、シラン処理水酸化アルミニウム含量を100質量部未満、難燃助剤含量を50質量部超えとした系である。ともに必要な難燃性を得ることができなかった。
比較例4は、EVAの平均VA量が45質量%を超える系であり、比較例5はEVAの平均VA量を37.5質量%未満とした系である。比較例4は、EVA起因の粘着により、押出外径が安定せず、必要な速度での押出作業ができなかった。比較例5は、難燃性が不良であった。
比較例6は、EVAの平均MFRを10未満とし、EVA添加量を55質量部未満とした系であり、比較例7は、EVAの平均MFRを50超えとした系である。比較例6は、押出のトルクの問題から3m/分でしか作業できず、また熱衝撃性も不合格であった。比較例7は、引張強度が規定値を満たさなかった他、比較例4同様の粘着現象が発生し、押出性が不良であった。
比較例8は、難燃助剤含量を50質量部超えとした系である。可とう性、熱衝撃性及び押出性において良好な結果を得ることができなかった。
比較例9は、シラン処理水酸化アルミニウム含量を250質量部超えとした系である。引張強度が規定値を満たさなかった他、規定の伸びが発現せず、可とう性、熱衝撃性及び押出性において良好な結果を得ることができなかった。
Comparative Example 1 is a system using silane-treated magnesium hydroxide instead of silane-treated aluminum hydroxide. The specified elongation was not exhibited, and good results were not obtained in flexibility and thermal shock resistance.
Comparative Example 2 is a system in which the content of the flame-retardant aid is less than 5 parts by mass, and Comparative Example 3 is a system in which the content of the silane-treated aluminum hydroxide is less than 100 parts by mass and the content of the flame-retardant aid is more than 50 parts by mass. System. In both cases, the required flame retardancy could not be obtained.
Comparative Example 4 is a system in which the average VA amount of EVA exceeds 45% by mass, and Comparative Example 5 is a system in which the average VA amount of EVA is less than 37.5% by mass. In Comparative Example 4, the extrusion outer diameter was not stable due to the adhesion caused by EVA, and the extrusion operation at a required speed could not be performed. Comparative Example 5 had poor flame retardancy.
Comparative Example 6 is a system in which the average MFR of EVA is less than 10 and the amount of EVA added is less than 55 parts by mass, and Comparative Example 7 is a system in which the average MFR of EVA exceeds 50. In Comparative Example 6, the work could be performed only at 3 m / min due to the problem of the extrusion torque, and the thermal shock resistance was also rejected. In Comparative Example 7, in addition to the tensile strength not satisfying the specified value, the same adhesion phenomenon as in Comparative Example 4 occurred, and the extrudability was poor.
Comparative Example 8 is a system in which the content of the flame retardant auxiliary exceeded 50 parts by mass. Good results could not be obtained in flexibility, thermal shock and extrudability.
Comparative Example 9 is a system in which the content of silane-treated aluminum hydroxide was more than 250 parts by mass. In addition to the tensile strength not satisfying the specified value, the specified elongation was not exhibited, and good results could not be obtained in flexibility, thermal shock resistance and extrudability.
以上より、本発明者らは、シラン処理水酸化アルミニウムを多量に用いる系(難燃助剤を併用)において、シラン処理水酸化アルミニウムと所定の難燃助剤の添加量を所定範囲とし、かつ2種類以上のEVAの平均VA量、平均MFR、添加量を所定範囲に規定すれば、充分な引張特性、熱衝撃性、難燃性が得られ、更には可とう性が発現し、押出成形性も改良できることを見出した。 From the above, the present inventors have set the addition amount of the silane-treated aluminum hydroxide and the predetermined flame-retardant aid in a predetermined range, in a system using a large amount of the silane-treated aluminum hydroxide (in combination with the flame-retardant auxiliary), and If the average VA amount, average MFR and addition amount of two or more types of EVA are defined in predetermined ranges, sufficient tensile properties, thermal shock resistance and flame retardancy can be obtained, and furthermore, flexibility is exhibited and extrusion molding is performed. It has been found that the properties can be improved.
特に興味深い点は、シラン処理水酸化マグネシウム(比較例1)で発現しなかった伸び特性が、シラン処理水酸化アルミニウム(実施例3)では発現している点である。このメカニズムを追究するため、実施例3の配合をミキシングロールで混練し、プレス機にて1mm厚シートとしたものについて延伸テストを実施した。 Of particular interest is the fact that elongation properties not exhibited by the silane-treated magnesium hydroxide (Comparative Example 1) are exhibited by the silane-treated aluminum hydroxide (Example 3). In order to investigate this mechanism, a stretching test was carried out on the composition of Example 3 kneaded with a mixing roll and made into a 1 mm thick sheet by a press machine.
延伸前後のSEM写真を図3、図4に示す。表面に見える白色粒が、シラン処理水酸化アルミニウム粒子である。30%延伸後(図4)をみると、延伸前(図3)と比較して、破断起因の濃黒色微小孔が散見されるが、水酸化アルミニウム粒子は盤面形状を保持して延伸している。このことは、本組成では水酸化アルミニウムが押出時の樹脂流に対して、逆らうことなく規則的な粒子盤面形状にて流動していることを示唆している。規則的な粒子盤面分散形態が、ポリマ成分の均一配向に寄与し、伸びが発現したものと考えている。 FIGS. 3 and 4 show SEM photographs before and after stretching. The white particles visible on the surface are the silane-treated aluminum hydroxide particles. After 30% stretching (FIG. 4), dark black micropores due to breakage are scattered as compared with before stretching (FIG. 3), but the aluminum hydroxide particles are stretched while maintaining the board surface shape. I have. This suggests that in this composition, the aluminum hydroxide flows in a regular particle disk shape without opposing the resin flow during extrusion. It is considered that the regular particle disk surface dispersion form contributes to the uniform orientation of the polymer component and elongation is developed.
1:導体、2:絶縁層、10:絶縁電線
3:押えテープ、4:編組シールド、5:シース、20:ケーブル
1: conductor, 2: insulating layer, 10: insulated wire 3: holding tape, 4: braided shield, 5: sheath, 20: cable
Claims (5)
前記2種類以上のエチレン−酢酸ビニル共重合体の平均酢酸ビニル含有量(単位:質量%)が38.5以上44以下であり、かつ、平均MFR(単位:g/10分)が10以上50以下であるノンハロゲン難燃性樹脂組成物。 A total of 55 parts by mass or more of two or more ethylene-vinyl acetate copolymers , ethylene-ethyl acrylate-maleic anhydride terpolymer, ethylene-ethyl acrylate, maleic acid-modified high-density polyethylene, metallocene Chain low-density polyethylene, and 100 parts by mass of a base resin consisting of only one or more polyolefin resins selected from metallocene-based polypropylene , 100 parts by mass or more and 250 parts by mass or less of aluminum hydroxide surface-treated with silane Contains, and contains at least 5 parts by mass and not more than 50 parts by mass of at least one selected from melamine cyanurate, zinc stannate and amorphous silica,
The average vinyl acetate content (unit: mass%) of the two or more ethylene-vinyl acetate copolymers is 38.5 or more and 44 or less, and the average MFR (unit: g / 10 minutes) is 10 or more and 50 or more. A non-halogen flame-retardant resin composition which is as follows.
備えたことを特徴とするケーブル。 Claim 1 or the cable, characterized in that it comprises a sheath made of non-halogen flame retardant resin composition according to 2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015153442A JP6657643B2 (en) | 2015-08-03 | 2015-08-03 | Halogen-free flame-retardant resin composition, insulated wires and cables |
CN201610602162.1A CN106397947B (en) | 2015-08-03 | 2016-07-27 | Halogen-free flame-retardant resin composition, insulated wire and cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015153442A JP6657643B2 (en) | 2015-08-03 | 2015-08-03 | Halogen-free flame-retardant resin composition, insulated wires and cables |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017031337A JP2017031337A (en) | 2017-02-09 |
JP6657643B2 true JP6657643B2 (en) | 2020-03-04 |
Family
ID=57987926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015153442A Active JP6657643B2 (en) | 2015-08-03 | 2015-08-03 | Halogen-free flame-retardant resin composition, insulated wires and cables |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6657643B2 (en) |
CN (1) | CN106397947B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101804906B1 (en) | 2017-09-11 | 2017-12-05 | 오켈케이블주식회사 | Power cable |
JP7119361B2 (en) * | 2017-12-05 | 2022-08-17 | 東ソー株式会社 | Resin composition and laminate comprising the same |
JP7272218B2 (en) * | 2018-10-31 | 2023-05-12 | 株式会社プロテリアル | Flame-retardant insulated wire |
JP6947857B2 (en) * | 2019-03-01 | 2021-10-13 | 日立金属株式会社 | Wires and cables |
CN111640535B (en) * | 2019-03-01 | 2024-06-25 | 株式会社博迈立铖 | Wire and cable |
JP7092090B2 (en) * | 2019-04-15 | 2022-06-28 | 日立金属株式会社 | Power transmission cable using non-halogen flame-retardant resin composition |
CN112397242A (en) * | 2019-08-15 | 2021-02-23 | 江苏亨通电力电缆有限公司 | Fire-resistant 1100 ℃ mineral low-voltage cable and preparation method thereof |
CN110648799B (en) * | 2019-08-21 | 2024-08-06 | 湖北宇洪光电实业有限公司 | Method for manufacturing comprehensive cable for smart city underground cable duct |
EP4002395A1 (en) * | 2020-11-11 | 2022-05-25 | Prysmian S.p.A. | Flame-retardant cable with self-extinguishing coating layer |
CN113881180A (en) * | 2021-10-08 | 2022-01-04 | 广州敬信高聚物科技有限公司 | Insulating polypropylene material and preparation method and application thereof |
CN115850870B (en) * | 2023-03-02 | 2023-09-19 | 南京中超新材料股份有限公司 | Polypropylene modified insulating material and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003034793A (en) * | 2001-07-24 | 2003-02-07 | Fujikura Ltd | Silane-treated magnesium hydroxide and silane-treated aluminum hydroxide |
JP5260868B2 (en) * | 2006-12-19 | 2013-08-14 | 古河電気工業株式会社 | Insulating resin composition and insulated wire |
KR100797222B1 (en) * | 2007-01-25 | 2008-01-23 | 엘에스전선 주식회사 | Flame retardant polymer composition |
CN102585322B (en) * | 2012-02-27 | 2014-06-25 | 广州凯恒科塑有限公司 | Easily-processed low-smoke halogen-free flame-retardant heat shrinkable label sleeve as well as preparation and application thereof |
JP2013222518A (en) * | 2012-04-13 | 2013-10-28 | Hitachi Cable Ltd | Wire/cable for railway vehicle |
JP5733352B2 (en) * | 2013-07-23 | 2015-06-10 | 日立金属株式会社 | Insulated electric wire for vehicle and cable for vehicle using non-halogen crosslinkable resin composition |
JP2015072743A (en) * | 2013-10-01 | 2015-04-16 | 日立金属株式会社 | Wire and cable |
-
2015
- 2015-08-03 JP JP2015153442A patent/JP6657643B2/en active Active
-
2016
- 2016-07-27 CN CN201610602162.1A patent/CN106397947B/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017031337A (en) | 2017-02-09 |
CN106397947A (en) | 2017-02-15 |
CN106397947B (en) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6657643B2 (en) | Halogen-free flame-retardant resin composition, insulated wires and cables | |
US7586043B2 (en) | Non-halogenous insulated wire and a wiring harness | |
JP6376463B2 (en) | cable | |
JP4412407B2 (en) | Flame retardant resin composition and insulated wire, insulated shielded wire, insulated cable and insulated tube using the same | |
JP4974041B2 (en) | Non-halogen wires, wire bundles and automotive wire harnesses | |
JP5183873B2 (en) | Flame retardant resin composition and molded body using the same | |
JP5733352B2 (en) | Insulated electric wire for vehicle and cable for vehicle using non-halogen crosslinkable resin composition | |
JP5617903B2 (en) | Vehicle wires, vehicle cables | |
JP6850420B2 (en) | Insulated electric wires and cables using non-halogen flame-retardant resin composition | |
WO2016031789A1 (en) | Flame-retardant resin composition, cable using same, and optical fiber cable | |
JP6082741B2 (en) | Non-halogen flame retardant resin composition and insulated wire / cable having the resin composition | |
JP2015097210A (en) | Phosphorus-free non-halogen fire-resistant insulated wire and phosphorus-free non-halogen fire-resistant cable | |
US11049629B2 (en) | Non-halogen flame-retardant insulated electric wire and non-halogen flame-retardant cable | |
US20070155883A1 (en) | Crosslinked flame-retardant resin composition, and an insulated wire and a wiring harness using the same | |
JP4846991B2 (en) | Sheathed wire | |
JP5260868B2 (en) | Insulating resin composition and insulated wire | |
KR20140049606A (en) | Non-halogen flame retardant resin composition and electric wire and cable using same | |
JP6738547B2 (en) | Insulated wire and cable | |
JP2011057860A (en) | Flame retardant resin composition and electric wire and cable using the same | |
JP2001002840A (en) | Non-halogen flame-retarded resin composition, and inclusion and flame-retarded wire and cable using the same | |
JP2001143540A (en) | Fire retardant electric wire and cable | |
JP2010126649A (en) | Thermoplastic resin composition and molded article produced by using the same | |
JP3907417B2 (en) | Flame retardant resin composition | |
JP2003176386A (en) | Flame-retardant resin composition | |
JP2008156476A (en) | Water-resistant flame-retardant resin composition and insulated electric wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180216 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6657643 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |