JP6657037B2 - Addition-curable silicone resin composition and semiconductor device - Google Patents

Addition-curable silicone resin composition and semiconductor device Download PDF

Info

Publication number
JP6657037B2
JP6657037B2 JP2016128007A JP2016128007A JP6657037B2 JP 6657037 B2 JP6657037 B2 JP 6657037B2 JP 2016128007 A JP2016128007 A JP 2016128007A JP 2016128007 A JP2016128007 A JP 2016128007A JP 6657037 B2 JP6657037 B2 JP 6657037B2
Authority
JP
Japan
Prior art keywords
integer
sio
group
carbon atoms
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016128007A
Other languages
Japanese (ja)
Other versions
JP2017115116A (en
Inventor
洋之 井口
洋之 井口
貴行 楠木
貴行 楠木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to EP16205132.0A priority Critical patent/EP3184589B1/en
Priority to EP18204697.9A priority patent/EP3473675A1/en
Priority to US15/387,019 priority patent/US10253139B2/en
Priority to CN201611196873.XA priority patent/CN106947258B/en
Publication of JP2017115116A publication Critical patent/JP2017115116A/en
Priority to US16/197,567 priority patent/US10696794B2/en
Application granted granted Critical
Publication of JP6657037B2 publication Critical patent/JP6657037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Description

本発明は、付加硬化型シリコーン組成物、特には、長い鎖長のシロキサン分岐鎖を有するアルケニル基含有分岐状オルガノポリシロキサンを含有する付加硬化型シリコーン組成物、及びその硬化物によって半導体が封止されている半導体装置に関する。   The present invention relates to an addition-curable silicone composition, particularly an addition-curable silicone composition containing an alkenyl group-containing branched organopolysiloxane having a long siloxane branched chain, and a semiconductor encapsulated by the cured product. Semiconductor device.

付加硬化型シリコーン樹脂は耐熱、耐光性、速硬化性などに優れることから、以前よりLED等の半導体素子を封止するための封止材として用いられてきた。例えば、特許文献1には、PPAなどの熱可塑性樹脂で作られたLEDパッケージに高い接着力を示す付加硬化型シリコーン樹脂が記載されている。また、特許文献2には、光半導体素子を付加硬化型シリコーン樹脂組成物の圧縮成型によって封止する方法が記載されている。   The addition-curable silicone resin has been used as a sealing material for sealing a semiconductor element such as an LED since it is excellent in heat resistance, light resistance, rapid curing property and the like. For example, Patent Literature 1 describes an addition-curable silicone resin having a high adhesive strength to an LED package made of a thermoplastic resin such as PPA. Patent Document 2 describes a method of sealing an optical semiconductor element by compression molding of an addition-curable silicone resin composition.

このように、付加硬化型シリコーン樹脂は半導体封止材料として広く一般的に使用されているが、その特性は未だ満足できるものではない。特に、LED封止材は、光半導体装置のON/OFFによる温度変化の内部的なストレスに加えて気温や湿度の変化などの外部ストレスにも晒されるため、耐熱、耐光性に加え、耐寒性も重要とされる。しかし従来の付加硬化型シリコーン樹脂は低温特性に十分でなく、温度変化のストレスに耐えられずクラックを生じるという問題がある。 As described above, addition-curable silicone resins are widely and generally used as semiconductor encapsulating materials, but their properties are still unsatisfactory. In particular, since the LED encapsulant is exposed to external stresses such as changes in temperature and humidity in addition to internal stresses due to temperature changes due to ON / OFF of the optical semiconductor device, it has cold resistance in addition to heat resistance and light resistance. Is also important. However, the conventional addition-curable silicone resin has a problem in that it has insufficient low-temperature characteristics, cannot withstand the stress of temperature change, and causes cracks.

低温特性を改善するための一つの手段として、直鎖状のシリコーン鎖中に分岐構造を持たせることが効果的であることが知られており、その製造方法について様々な研究が成されてきた(特許文献1,2及び3)。しかしながら、このようなRSiO1/2単位[M単位]とRSiO3/2単位[T単位]を含む加水分解性シランを酸触媒やアルカリ触媒を用いて縮合・平衡化する方法では、主鎖と側鎖の鎖長を独立して制御することができないため、所望する構造のシロキサンを得ることが困難であった。 As one means for improving low-temperature characteristics, it is known that it is effective to have a branched structure in a linear silicone chain, and various studies have been made on its production method. (Patent Documents 1, 2, and 3). However, such a method of condensing and equilibrating a hydrolyzable silane containing R 3 SiO 1/2 unit [M unit] and RSiO 3/2 unit [T unit] using an acid catalyst or an alkali catalyst is mainly used. Since the chain lengths of the chains and side chains cannot be controlled independently, it has been difficult to obtain a siloxane having a desired structure.

特開2006−256603号公報JP 2006-256603 A 特開2006−93354号公報JP 2006-93354 A 特開2002−348377号公報JP-A-2002-348377 特開2001−163981号公報JP 2001-163981 A 特開2000−351949号公報JP 2000-351949 A

本発明は上記問題を鑑み成されたものであり、低温特性が良好であり温度変化耐性に優れる硬化物を与える付加硬化型シリコーン組成物、および該組成物の硬化物によって半導体素子が封止された高信頼性を有する半導体装置を提供することを目的とする。   The present invention has been made in view of the above problems, and has an addition-curable silicone composition that provides a cured product having good low-temperature characteristics and excellent temperature change resistance, and a semiconductor element is encapsulated by a cured product of the composition. It is another object of the present invention to provide a highly reliable semiconductor device.

即ち、本発明は、下記(A)〜(D)成分を含む半導体素子封止用付加硬化型シリコーン組成物を提供する。
(A)下記式(1)

Figure 0006657037
(式中、Rは、互いに独立に、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基から選ばれる基であり、Rは、互いに独立に、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基、炭素数2から10のアルケニル基から選ばれる基であり、各々のR、Rは同一であっても異なっていても良く、ただし該オルガノポリシロキサンは前記アルケニル基を主鎖の両末端のみに有し、aは2〜100の整数、bは5〜100の整数、cは5〜100の整数、0.03≦a/(a+b)<1.0、(R SiO1/2)単位の数/(RSiO3/2)単位の数≦2であり、a、bおよびcのシロキサン鎖の並びはランダムであってもブロックであっても良い)
で示される分岐状オルガノポリシロキサン、
(B)下記式(2)
(R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2 (2)
(式中、Rの定義は上記と同じであり、Rの少なくとも2つはアルケニル基であり、rは0から100の整数、sは0から300の整数、tは0から200の整数、uは0から200の整数であり、1≦t+u≦400、2≦r+s+t+u≦800である)
で示されるオルガノポリシロキサン
(A)成分100質量部に対して5〜900重量部の量、
(C)ヒドロシリル基を分子内に少なくとも2つ有するオルガノポリシロキサン
(A)成分と(B)成分中のアルケニル基の合計数に対して(C)成分中のヒドロシリル基の数が0.4〜4.0となる量、および
(D)ヒドロシリル化触媒
ヒドロシリル化反応を進行させるのに十分な量
を含む、半導体素子封止用付加硬化性シリコーン樹脂組成物。 That is, the present invention provides an addition-curable silicone composition for encapsulating a semiconductor device , comprising the following components (A) to (D).
(A) Formula (1) below
Figure 0006657037
(Wherein, R 1 s are each independently a group selected from a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms. , R 2 are each independently a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms. Wherein each of R 1 and R 2 may be the same or different, provided that the organopolysiloxane has the alkenyl group only at both ends of the main chain, 100 integers, b is 5 to 100 integer, c is 5-100 integer, 0.03 ≦ a / (a + b) <1.0, (R 1 2 R 2 SiO 1/2) units of several / (R 2 SiO 3/2 ) The number of units ≦ 2, and a, b, and c siloxanes (The arrangement of chains may be random or block.)
A branched organopolysiloxane represented by
(B) The following formula (2)
(R 2 3 SiO 1/2) r (R 2 2 SiO 2/2) s (R 2 SiO 3/2) t (SiO 4/2) u (2)
(Wherein, R 2 is the same as defined above, at least two of R 2 are alkenyl groups, r is an integer of 0 to 100, s is an integer of 0 to 300, and t is an integer of 0 to 200. , U is an integer from 0 to 200, and 1 ≦ t + u ≦ 400 and 2 ≦ r + s + t + u ≦ 800)
An amount of 5 to 900 parts by weight based on 100 parts by weight of the organopolysiloxane (A) component represented by
(C) Organopolysiloxane having at least two hydrosilyl groups in the molecule The number of hydrosilyl groups in the component (C) is from 0.4 to the total number of alkenyl groups in the component (A) and the component (B). 4.0, and
(D) Hydrosilylation catalyst An addition-curable silicone resin composition for encapsulating a semiconductor element , comprising an amount sufficient to allow the hydrosilylation reaction to proceed.

本発明によれば、主鎖のシロキサン鎖長に比べて十分に長い側鎖を多く含む、アルケニル基含有分岐状オルガノポリシロキサンを特定の他の成分と組合わせて用いることで、同程度の主鎖の鎖長を有する直鎖状オルガノポリシロキサンを用いた場合に比べて、硬化物のガラス転移点が低下し、耐クラック性などが改善される。 According to the present invention, by using an alkenyl group-containing branched organopolysiloxane containing many side chains sufficiently longer than the siloxane chain length of the main chain in combination with a specific other component, the same degree of main chain can be obtained. As compared with the case where a linear organopolysiloxane having a chain length is used, the glass transition point of the cured product is lowered, and crack resistance and the like are improved.

実施例1(実線)および比較例1(点線)の硬化物の貯蔵弾性率のグラフおよびTanδのグラフである。4 is a graph of the storage elastic modulus and a graph of Tan δ of the cured products of Example 1 (solid line) and Comparative Example 1 (dotted line).

以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
(A)分岐状ポリオルガノシロキサン
本発明の特徴の一つである(A)分岐状ポリオルガノシロキサンは、以下の式によって示される。
(A)下記式(1)

Figure 0006657037
(式中、Rは、互いに独立に、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基から選ばれる基であり、Rは、互いに独立に、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基、炭素数2から10のアルケニル基から選ばれる基であり、各々のR、Rは同一であっても異なっていても良く、ただしRのうち少なくとも2つはアルケニル基、aは2〜100の整数、bは5〜100の整数、cは5〜100の整数、0.03≦a/(a+b)<1.0、(R SiO1/2)単位の数/(RSiO3/2)単位の数≦2であり、a、bおよびcのシロキサン鎖の並びはランダムであってもブロックであっても良い)
で示される分岐状オルガノポリシロキサン。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
(A) Branched polyorganosiloxane One of the features of the present invention, (A) the branched polyorganosiloxane is represented by the following formula.
(A) Formula (1) below
Figure 0006657037
(Wherein, R 1 s are each independently a group selected from a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms. , R 2 are each independently a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms. R 1 and R 2 may be the same or different, provided that at least two of R 2 are alkenyl groups, a is an integer of 2 to 100, and b is 5 to 100 integers, c is 5-100 integer, 0.03 ≦ a / (a + b) <1.0, the number of (R 1 2 R 2 SiO 1/2 ) units of several / (R 2 SiO 3/2) units ≦ 2, and the arrangement of the siloxane chains of a, b and c is random, Or a block)
A branched organopolysiloxane represented by the formula:

aは2〜100の整数であり、好ましくは2〜75の整数であり、より好ましくは2〜50の整数であり、bは5〜100の整数であり、好ましくは5〜75の整数であり、より好ましくは10〜50の整数であり、cは5〜100の整数であり、好ましくは5〜75の整数であり、より好ましくは10〜50の整数である。(R SiO1/2)単位の数/(RSiO3/2)単位の数≦2であり、a、bのシロキサン鎖の並びはランダムであってもブロックであっても良い。
式(1)において、0.03≦a/(a+b)<1.0であり、0.09≦a/(a+b)0.9であることが好ましい。
a is an integer of 2 to 100, preferably an integer of 2 to 75, more preferably an integer of 2 to 50, b is an integer of 5 to 100, preferably an integer of 5 to 75 , More preferably an integer of 10 to 50, c is an integer of 5 to 100, preferably an integer of 5 to 75, and more preferably an integer of 10 to 50. (R 1 2 R 2 SiO 1/2 ) units of several / (R 2 SiO 3/2) a number ≦ 2 units, a, the arrangement of the siloxane chain of b be a block be a random good.
In the formula (1), it is preferable that 0.03 ≦ a / (a + b) <1.0 and 0.09 ≦ a / (a + b) 0.9.

は、互いに独立に、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基から選ばれる基であり、飽和炭化水素基の例としては、具体的にはメチル基、エチル基、プロピル基、ブチル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;これらの基の炭素原子に結合する水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子またはシアノ基で置換したもの、例えば、トリフルオロプロピル基、クロロプロピル基等のハロゲン化一価炭化水素基;β−シアノエチル基、γ−シアノプロピル基等のシアノアルキル基、3−メタクリルオキシプロピル基、3−グリシジルオキシプロピル基、3−メルカプトプロピル基、3−アミノプロピル基が例示される。この中でも、メチル基、シクロヘキシル基などが好ましく、メチル基が特に好ましい。また、芳香族炭化水素基の例としては、フェニル基、トリル基、ナフチル基等のアリール基やベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基などが挙げられる。これらの基の炭素原子に結合する水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子またはシアノ基で置換したものであってもよい。中でも、フェニル基、トリル基が好ましく、フェニル基が特に好ましい。Rの少なくとも1つが炭素数6から12の芳香族炭化水素基であることが好ましい。 R 1 , independently of each other, is a group selected from a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms; Specific examples of the group include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group and an octyl group; a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group; and a hydrogen atom bonded to a carbon atom of these groups. Those in which some or all of the atoms have been substituted with halogen atoms such as fluorine, bromine and chlorine or cyano groups, for example, halogenated monovalent hydrocarbon groups such as trifluoropropyl and chloropropyl groups; β-cyanoethyl groups, γ A cyanoalkyl group such as a cyanopropyl group, a 3-methacryloxypropyl group, a 3-glycidyloxypropyl group, a 3-mercaptopropyl group, Aminopropyl groups. Among these, a methyl group and a cyclohexyl group are preferred, and a methyl group is particularly preferred. Examples of the aromatic hydrocarbon group include an aryl group such as a phenyl group, a tolyl group, and a naphthyl group, and an aralkyl group such as a benzyl group, a phenylethyl group, and a phenylpropyl group. Some or all of the hydrogen atoms bonded to the carbon atoms of these groups may be substituted with halogen atoms such as fluorine, bromine, and chlorine, or cyano groups. Among them, a phenyl group and a tolyl group are preferable, and a phenyl group is particularly preferable. Preferably, at least one of R 1 is an aromatic hydrocarbon group having 6 to 12 carbon atoms.

は、互いに独立に、炭素数1から12、好ましくは1〜8の置換または非置換の飽和炭化水素基、炭素数6から12、好ましくは6〜10の置換または非置換の芳香族炭化水素基、および炭素数2〜10、好ましくは2〜8のアルケニル基から選ばれる基である。飽和炭化水素基及び芳香族炭化水素基は上記Rの為に例示したものと同じものが挙げられる。アルケニル基としては、ビニル基、アリル基、プロペニル基、ヘキセニル基、及びスチリル基などが挙げられ、ビニル基、及びアリル基が好ましく、特にはビニル基が好ましい。
aは2〜100の整数であり、好ましくは2〜75の整数であり、より好ましくは2〜50の整数であり、bは5〜100の整数であり、好ましくは5〜75の整数であり、より好ましくは10〜50の整数であり、cは5〜100の整数であり、好ましくは5〜75の整数であり、より好ましくは10〜50の整数である。(R SiO1/2)単位の数/(RSiO3/2)単位の数≦2であり、a、bのシロキサン鎖の並びはランダムであってもブロックであっても良い。0.03≦a/(a+b)<1.0であり、0.09≦a/(a+b)≦0.9であることが好ましい。
なお、(A)成分において、ケイ素原子に結合する全置換基の合計数の内、1価芳香族炭化水素基の数の割合が3%以上、特に5%以上、90%以下、特に80%以下であることが好ましい。この範囲内であれば、(A)成分の分岐状オルガノポリシロキサンが高屈折率であり、ガス透過性が低いので、当該組成物が半導体装置の封止用途などに好適に用いられることができる。
R 2 , independently of each other, is a substituted or unsubstituted saturated hydrocarbon group having 1 to 12, preferably 1 to 8 carbon atoms, and a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12, preferably 6 to 10 carbon atoms. It is a group selected from a hydrogen group and an alkenyl group having 2 to 10, preferably 2 to 8 carbon atoms. Saturated hydrocarbon group and aromatic hydrocarbon group include the same as those exemplified for the above R 1. Examples of the alkenyl group include a vinyl group, an allyl group, a propenyl group, a hexenyl group, and a styryl group. A vinyl group and an allyl group are preferable, and a vinyl group is particularly preferable.
a is an integer of 2 to 100, preferably an integer of 2 to 75, more preferably an integer of 2 to 50, b is an integer of 5 to 100, preferably an integer of 5 to 75 , More preferably an integer of 10 to 50, c is an integer of 5 to 100, preferably an integer of 5 to 75, and more preferably an integer of 10 to 50. (R 1 2 R 2 SiO 1/2 ) units of several / (R 2 SiO 3/2) a number ≦ 2 units, a, the arrangement of the siloxane chain of b be a block be a random good. 0.03 ≦ a / (a + b) <1.0, and preferably 0.09 ≦ a / (a + b) ≦ 0.9.
In the component (A), the proportion of the number of monovalent aromatic hydrocarbon groups in the total number of all the substituents bonded to the silicon atom is 3% or more, particularly 5% or more, 90% or less, particularly 80%. The following is preferred. Within this range, the branched organopolysiloxane of the component (A) has a high refractive index and low gas permeability, so that the composition can be suitably used for semiconductor device sealing applications and the like. .

(A)分岐状オルガノポリシロキサンは、下記式(4)

Figure 0006657037
(式中、R、R、cは上記と同じであり、Rは水素原子または炭素数1〜6の飽和炭化水素基である)で示されるオルガノポリシロキサンと、シロキサン類、たとえば、下記式(5)
Figure 0006657037
(式中、R、Rは上記と同じであり、b’は1以上かつb以下であり、bは上記と同じである)で示される、両末端にアルコキシシリル基またはヒドロキシシリル基(シラノール基)を有するオルガノポリシロキサンとを共縮合させ、次にシラン、たとえば下記式(6)
Figure 0006657037
(式中、R、Rは上記と同じであり、Xはハロゲン原子またはRO−[Rは上記と同じである]で示される基である)で示される加水分解性基含有シラン化合物によって末端封鎖を行うことによって製造することができる。
式(4)において、Rは水素原子または炭素数1〜6の飽和炭化水素基でから選ばれる基であり、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、ヘキシル基、シクロヘキシル基が例示される。この中でも、メチル基、エチル基などが好ましく、メチル基が特に好ましい。
(式中、R、R、cは上記と同じであり、Rは水素原子または炭素数1〜6の飽和炭化水素基である)で示されるオルガノポリシロキサンと、他のシラン、シロキサン類とを用いて、公知の方法によって共縮合や末端封鎖を行うことによって製造することができる。ここで、R、R、cは上記と同じであり、Rは水素原子または炭素数1〜6の飽和炭化水素基でから選ばれる基であり、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、ヘキシル基、シクロヘキシル基が例示される。この中でも、メチル基、エチル基などが好ましく、メチル基が特に好ましい。 (A) The branched organopolysiloxane is represented by the following formula (4)
Figure 0006657037
(Wherein R 1 , R 2 , and c are the same as above, and R 3 is a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms), and siloxanes, for example, The following equation (5)
Figure 0006657037
(Wherein, R 2 and R 3 are the same as above, b ′ is 1 or more and b or less, and b is the same as above), and an alkoxysilyl group or a hydroxysilyl group ( With an organopolysiloxane having a silanol group) and then a silane, for example
Figure 0006657037
(Wherein, R 1 and R 2 are the same as above, and X is a halogen atom or a group represented by R 3 O— [R 3 is the same as above]). It can be produced by performing terminal blocking with a silane compound.
In the formula (4), R 3 is a group selected from a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms, and is a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a hexyl group, a cyclohexyl group. Is exemplified. Among these, a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
(Wherein R 1 , R 2 , and c are the same as above, and R 3 is a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms), and another silane or siloxane. And co-condensation or terminal blocking by a known method. Here, R 1 , R 2 , and c are the same as above, and R 3 is a group selected from a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, a propyl group, Examples thereof include a butyl group, an isopropyl group, a hexyl group, and a cyclohexyl group. Among these, a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.

上記式(4)で示される、片末端にジアルコキシ基を有するオルガノポリシロキサンは公知の方法で合成すれば良い。例えば特開昭59−78236号公報のように金属シラノレートを開始剤として環状ケイ素化合物を開環重合し、末端を酸で停止させた後、トリアルコキシシランと反応させる方法や、特開平7−224168号公報のようにシラノール化合物を開始剤、五配位ケイ素を触媒として用いて、環状ケイ素化合物を重合し、末端をトリアルコキシシランと反応させる方法などがある。 The organopolysiloxane having a dialkoxy group at one end represented by the above formula (4) may be synthesized by a known method. For example, as disclosed in JP-A-59-78236, a method comprising subjecting a cyclic silicon compound to ring-opening polymerization using a metal silanolate as an initiator, terminating the terminal with an acid, and then reacting with a trialkoxysilane, or JP-A-7-224168. As disclosed in Japanese Patent Application Laid-Open No. H10-209, there is a method in which a cyclic silicon compound is polymerized using a silanol compound as an initiator and pentacoordinate silicon as a catalyst, and the terminal is reacted with trialkoxysilane.

(B)オルガノシロキサン
(B)オルガノシロキサンは、下記式(2)により示される。
(R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2 (2)
(式中、Rの定義は上記と同じであり、Rの少なくとも2つはアルケニル基であり、rは0から100の整数、sは0から300の整数、tは0から200の整数、uは0から200の整数であり、1≦t+u≦400、2≦r+s+t+u≦800である)
ここで、rは0〜100整数であり、好ましくは0〜75の整数であり、さらに好ましくは0〜50の整数であり、sは0〜300の整数であり、好ましくは0〜200の整数であり、さらに好ましくは0〜100の整数であり、tは0〜200の整数であり、好ましくは0〜100の整数であり、さらに好ましくは0〜50の整数であり、uは0〜200の整数であり、好ましくは0〜100の整数であり、さらに好ましくは0〜50の整数であり、1≦t+u≦400であり、好ましくは1≦t+u≦200であり、より好ましくは1≦t+u≦100であり、2≦r+s+t+u≦800であり、好ましくは2≦r+s+t+u≦400であり、より好ましくは2≦r+s+t+u≦200である。
の例は、上記(A)成分中のRのために例示した通りである。
(B) Organosiloxane (B) The organosiloxane is represented by the following formula (2).
(R 2 3 SiO 1/2) r (R 2 2 SiO 2/2) s (R 2 SiO 3/2) t (SiO 4/2) u (2)
(Wherein, R 2 is the same as defined above, at least two of R 2 are alkenyl groups, r is an integer of 0 to 100, s is an integer of 0 to 300, and t is an integer of 0 to 200. , U is an integer from 0 to 200, and 1 ≦ t + u ≦ 400 and 2 ≦ r + s + t + u ≦ 800)
Here, r is an integer of 0 to 100, preferably an integer of 0 to 75, more preferably an integer of 0 to 50, s is an integer of 0 to 300, and preferably an integer of 0 to 200. And more preferably an integer of 0 to 100, t is an integer of 0 to 200, preferably an integer of 0 to 100, more preferably an integer of 0 to 50, and u is 0 to 200. , Preferably an integer of 0 to 100, more preferably an integer of 0 to 50, 1 ≦ t + u ≦ 400, preferably 1 ≦ t + u ≦ 200, more preferably 1 ≦ t + u ≦ 100, 2 ≦ r + s + t + u ≦ 800, preferably 2 ≦ r + s + t + u ≦ 400, and more preferably 2 ≦ r + s + t + u ≦ 200.
Examples of R 2 are as exemplified for R 2 in component (A).

なお、(B)成分において、ケイ素原子に結合する全置換基の合計数の内、1価芳香族炭化水素基の数の割合が3%以上、とくに5%以上、90%以下、特に80%以下であることが好ましい。この範囲内であれば、(B)成分の分岐状オルガノポリシロキサンが高屈折率であり、ガス透過性が低く、しかも(A)成分と良好に相溶し、これを含有する組成物の硬化物が透明性に優れ、かつ優れた機械的強度を持つ。そのため、当該組成物は、半導体装置の封止用途などに好適に用いられることができる。 In the component (B), the proportion of the number of monovalent aromatic hydrocarbon groups in the total number of all the substituents bonded to the silicon atom is 3% or more, particularly 5% or more, 90% or less, particularly 80%. The following is preferred. Within this range, the branched organopolysiloxane of the component (B) has a high refractive index, low gas permeability, and is well compatible with the component (A), and cures a composition containing the same. The material is excellent in transparency and has excellent mechanical strength. Therefore, the composition can be suitably used for sealing use of a semiconductor device and the like.

(B)成分の配合量は、(A)成分100質量部に対して5〜900質量部、好ましくは10〜800質量部、さらに好ましくは20〜600質量部である。(D)成分を上記範囲となる量で含むと、ゴム状の硬化物が得られるため好ましい。   The compounding amount of the component (B) is 5 to 900 parts by mass, preferably 10 to 800 parts by mass, and more preferably 20 to 600 parts by mass based on 100 parts by mass of the component (A). It is preferable to include the component (D) in an amount falling within the above range since a rubber-like cured product can be obtained.

(C)ヒドロシリル基を分子内に少なくとも2つ有するオルガノポリシロキサン
(C)ヒドロシリル基を分子内に少なくとも2つ有するオルガノポリシロキサンは、特に限定されるものではないが、下記式(3)で示されるものが、好ましい。
(R SiO1/2r’(R SiO2/2s’(RSiO3/2t’(SiO4/2u’ (3)
(式中、Rは水素原子、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基であるが、Rの少なくとも2つは水素原子であり、r’は0から100整数、s’は0から300の整数、t’は0から200の整数、u’は0から200の整数であり、2≦r’+s’+t’+u’≦800である。)
(C) Organopolysiloxane having at least two hydrosilyl groups in the molecule (C) The organopolysiloxane having at least two hydrosilyl groups in the molecule is not particularly limited, but is represented by the following formula (3). Are preferred.
(R 3 3 SiO 1/2) r '(R 3 2 SiO 2/2) s' (R 3 SiO 3/2) t '(SiO 4/2) u' (3)
(Wherein R 3 is a hydrogen atom, a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, and at least one of R 3 Two are hydrogen atoms, r ′ is an integer from 0 to 100, s ′ is an integer from 0 to 300, t ′ is an integer from 0 to 200, u ′ is an integer from 0 to 200, and 2 ≦ r ′ + s '+ T' + u '≦ 800.)

ここで、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基は、Rのために例示した基であることが出来る。Rの内、少なくとも2つは水素原子であり、その他はメチル基もしくはフェニル基が好ましい。r’は0〜100整数であり、好ましく0〜75の整数であり、さらに好ましくは0〜50の整数であり、s’は0〜300の整数であり、好ましくは0〜200の整数であり、さらに好ましくは0〜100の整数であり、t’は0〜200の整数であり、好ましくは0〜100の整数であり、さらに好ましくは0〜50の整数であり、u’は0〜200の整数であり、好ましくは0〜100の整数であり、さらに好ましくは0〜50の整数であり、2≦r’+s’+t’+u’≦800の範囲であることが好ましく、2≦r’+s’+t’+u’≦400の範囲であることがより好ましく、2≦r’+s’+t’+u’≦200の範囲であることがさらに好ましい。 Here, the substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms or the substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms can be the groups exemplified for R 1. . At least two of R 3 are a hydrogen atom, and the others are preferably a methyl group or a phenyl group. r ′ is an integer of 0 to 100, preferably an integer of 0 to 75, more preferably an integer of 0 to 50, and s ′ is an integer of 0 to 300, preferably an integer of 0 to 200. , More preferably an integer of 0 to 100, t 'is an integer of 0 to 200, preferably an integer of 0 to 100, more preferably an integer of 0 to 50, and u' is an integer of 0 to 200. , Preferably an integer of 0 to 100, more preferably an integer of 0 to 50, and preferably in the range of 2 ≦ r ′ + s ′ + t ′ + u ′ ≦ 800, preferably 2 ≦ r ′ + S ′ + t ′ + u ′ ≦ 400 is more preferable, and 2 ≦ r ′ + s ′ + t ′ + u ′ ≦ 200 is more preferable.

また、(C)成分の全置換基中のケイ素原子結合1価芳香族炭化水素基の割合が3モル%以上であることが好ましく、5モル%以上、80モル%以下であることが更に好ましい。この範囲内であれば、(C)成分のオルガノポリシロキサンが高屈折率であったり、ガス透過性が低かったりするだけでなく、(A)成分、(B)成分と良好に相溶するため、硬化物の透明性にも優れた組成物となる。そのため、半導体装置の封止用途などに好適に用いることができる。 Further, the proportion of the silicon-bonded monovalent aromatic hydrocarbon group in all the substituents of the component (C) is preferably at least 3 mol%, more preferably at least 5 mol% and at most 80 mol%. . Within this range, the organopolysiloxane of the component (C) not only has a high refractive index and low gas permeability, but also is well compatible with the components (A) and (B). Thus, a composition having excellent transparency of the cured product is obtained. Therefore, it can be suitably used for sealing applications of semiconductor devices.

(C)成分ヒドロシリル基を分子内に少なくとも2つ有するオルガノポリシロキサンの添加量は、(A)成分と(B)成分のアルケニル基の合計数に対して(C)成分のヒドロシリル基の数が0.4〜4.0となる量であり、好ましくは0.6〜2.0となる量であり、更に好ましくは0.8〜1.6となる量である。0.4未満ではSiH基が不足するため硬化不良となるため好ましくなく、4.0を超えると残存SiH基による脱水素などの副反応が生じやすくなるので好ましくない。 The amount of the organopolysiloxane having at least two component (C) hydrosilyl groups in the molecule is such that the number of hydrosilyl groups of component (C) is based on the total number of alkenyl groups of component (A) and component (B). The amount is 0.4 to 4.0, preferably 0.6 to 2.0, and more preferably 0.8 to 1.6. When the ratio is less than 0.4, the curing is insufficient due to insufficient SiH groups, which is not preferable. When the ratio is more than 4.0, side reactions such as dehydrogenation due to the remaining SiH groups tend to occur, which is not preferable.

(D)ヒドロシリル化触媒
触媒は、ヒドロシリル化反応を進行させ得る能力を有するものであればよく、特に限定されるものでない。中でも、白金族金属単体および白金族金属化合物から選ばれる触媒が好ましい。例えば、白金(白金黒を含む)、塩化白金、塩化白金酸、白金−ジビニルシロキサン錯体等の白金−オレフィン錯体、白金−カルボニル錯体等の白金触媒、パラジウム触媒、ロジウム触媒等が挙げられる。これらの触媒は、単独で使用しても2種以上を組み合わせて使用しても良い。この中でも特に好ましくは、塩化白金酸、および白金−ジビニルシロキサン錯体等の白金−オレフィン錯体である。
(D)成分の配合量は触媒量でよい。触媒量とは、ヒドロシリル化反応を促進できる量であればよく、希望する硬化速度に応じて適宜調整すればよい。例えば白金族金属触媒である場合には、反応速度の観点から、白金族金属原子に換算した質量基準で、上記(A)〜(C)成分の合計100質量部に対して1.0×10−4〜1.0質量部となる量が好ましく、更には1.0×10−3〜1.0×10−1質量部となる量がより好ましい。
(D) Hydrosilylation catalyst
The catalyst is not particularly limited as long as it has the ability to allow the hydrosilylation reaction to proceed. Among them, a catalyst selected from a platinum group metal alone and a platinum group metal compound is preferable. Examples include platinum (including platinum black), platinum chloride, chloroplatinic acid, platinum-olefin complexes such as platinum-divinylsiloxane complex, platinum catalysts such as platinum-carbonyl complex, palladium catalyst, rhodium catalyst and the like. These catalysts may be used alone or in combination of two or more. Of these, particularly preferred are chloroplatinic acid and platinum-olefin complexes such as platinum-divinylsiloxane complex.
The amount of the component (D) may be a catalytic amount. The amount of the catalyst may be an amount capable of promoting the hydrosilylation reaction, and may be appropriately adjusted according to a desired curing speed. For example, in the case of a platinum group metal catalyst, from the viewpoint of the reaction rate, 1.0 × 10 4 based on 100 parts by mass of the above components (A) to (C) on a mass basis converted to platinum group metal atoms. The amount is preferably −4 to 1.0 part by mass, more preferably 1.0 × 10 −3 to 1.0 × 10 −1 part by mass.

任意成分
本発明の硬化性組成物は、上述した(A)〜(D)成分以外に、必要に応じて、他の成分、例えば蛍光体、無機充填材、接着助剤、硬化抑制剤等を含有してもよい。以下、各成分について説明する。
Optional components In addition to the above-mentioned components (A) to (D), the curable composition of the present invention may contain, if necessary, other components such as a phosphor, an inorganic filler, an adhesion aid, and a curing agent. You may contain an inhibitor etc. Hereinafter, each component will be described.

[蛍光体]
蛍光体は、特に制限されるものでなく、従来公知の蛍光体を使用すればよい。例えば、半導体素子、特に窒化物系半導体を発光層とする半導体発光ダイオードからの光を吸収し、異なる波長の光に波長変換するものであることが好ましい。このような蛍光体としては、例えば、Eu、Ce等のランタノイド系元素で主に賦活される窒化物系蛍光体・酸窒化物系蛍光体、Eu等のランタノイド系、Mn等の遷移金属系の元素により主に賦活されるアルカリ土類金属ハロゲンアパタイト蛍光体、アルカリ土類金属ホウ酸ハロゲン蛍光体、アルカリ土類金属アルミン酸塩蛍光体、アルカリ土類金属ケイ酸塩蛍光体、アルカリ土類金属硫化物蛍光体、アルカリ土類金属チオガレート蛍光体、アルカリ土類金属窒化ケイ素蛍光体、ゲルマン酸塩蛍光体、又は、Ce等のランタノイド系元素で主に賦活される希土類アルミン酸塩蛍光体、希土類ケイ酸塩蛍光体又はEu等のランタノイド系元素で主に賦活される有機及び有機錯体蛍光体、Ca−Al−Si−O−N系オキシ窒化物ガラス蛍光体等から選ばれる1種以上であることが好ましい。
[Phosphor]
The phosphor is not particularly limited, and a conventionally known phosphor may be used. For example, it is preferable to absorb light from a semiconductor element, particularly a semiconductor light-emitting diode having a nitride-based semiconductor as a light-emitting layer, and convert the wavelength into light having a different wavelength. Such phosphors include, for example, nitride phosphors / oxynitride phosphors mainly activated by lanthanoid elements such as Eu and Ce, lanthanoid phosphors such as Eu, and transition metal phosphors such as Mn. Alkaline earth metal halogenapatite phosphor, alkaline earth metal borate halogen phosphor, alkaline earth metal aluminate phosphor, alkaline earth metal silicate phosphor, alkaline earth metal activated mainly by elements Sulfide phosphor, alkaline earth metal thiogallate phosphor, alkaline earth metal silicon nitride phosphor, germanate phosphor, or rare earth aluminate phosphor mainly activated by a lanthanoid element such as Ce, rare earth Organic and organic complex phosphors mainly activated by lanthanoid-based elements such as silicate phosphors or Eu, and Ca-Al-Si-ON-based oxynitride glass phosphors It is preferably at least one member selected from.

Eu、Ce等のランタノイド系元素で主に賦活される窒化物系蛍光体としては、MSi:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種である)が挙げられる。また、MSi10:Eu、M1.8Si0.2:Eu、及びM0.9Si0.110:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種である)などが挙げられる。 The nitride phosphor mainly activated by a lanthanoid element such as Eu or Ce is M 2 Si 5 N 8 : Eu (M is at least one selected from Sr, Ca, Ba, Mg and Zn). Is). Further, MSi 7 N 10: Eu, M 1.8 Si 5 O 0.2 N 8: Eu, and M 0.9 Si 7 O 0.1 N 10 : Eu (M is, Sr, Ca, Ba, Mg , Zn).

Eu、Ce等のランタノイド系元素で主に賦活される酸窒化物系蛍光体としては、MSi:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種である)が挙げられる。 As an oxynitride phosphor mainly activated by a lanthanoid element such as Eu or Ce, MSi 2 O 2 N 2 : Eu (M is at least one selected from Sr, Ca, Ba, Mg and Zn) Is).

Eu等のランタノイド系、Mn等の遷移金属系の元素により主に賦活されるアルカリ土類金属ハロゲンアパタイト蛍光体としては、M(POX:R(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種である。Xは、F、Cl、Br、Iから選ばれる少なくとも1種である。Rは、Eu、Mn、Eu及びMnのいずれか1以上である)が挙げられる。 As an alkaline earth metal halogen apatite phosphor mainly activated by a lanthanoid-based element such as Eu or a transition metal-based element such as Mn, M 5 (PO 4 ) 3 X: R (M is Sr, Ca, Ba) , Mg, and Zn. X is at least one selected from F, Cl, Br, and I. R is at least one of Eu, Mn, Eu, and Mn.) Is mentioned.

アルカリ土類金属ホウ酸ハロゲン蛍光体としては、MX:R(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種である。Xは、F、Cl、Br、Iから選ばれる少なくとも1種である。Rは、Eu、Mn、Eu及びMnのいずれか1以上である)が挙げられる。 As the alkaline earth metal borate halogen phosphor, M 2 B 5 O 9 X: R (M is at least one selected from Sr, Ca, Ba, Mg, Zn. X is F, Cl, At least one selected from Br and I. R is at least one of Eu, Mn, Eu and Mn).

アルカリ土類金属アルミン酸塩蛍光体としては、SrAl:R、SrAl1425:R、CaAl:R、BaMgAl1627:R、BaMgAl1612:R、及びBaMgAl1017:R(Rは、Eu、Mn、Eu及びMnのいずれか1以上である)が挙げられる。 The alkaline earth metal aluminate phosphors include SrAl 2 O 4 : R, Sr 4 Al 14 O 25 : R, CaAl 2 O 4 : R, BaMg 2 Al 16 O 27 : R, BaMg 2 Al 16 O 12. : R, and BaMgAl 10 O 17 : R (R is at least one of Eu, Mn, Eu and Mn).

アルカリ土類金属硫化物蛍光体としては、LaS:Eu、YS:Eu、及びGdS:Euなどが挙げられる。
Ce等のランタノイド系元素で主に賦活される希土類アルミン酸塩蛍光体としては、YAl12:Ce、(Y0.8Gd0.2Al12:Ce、Y(Al0.8Ga0.212:Ce、及び(Y,Gd)(Al,Ga)12の組成式で表されるYAG系蛍光体が挙げられる。また、Yの一部若しくは全部をTb、Lu等で置換したTbAl12:Ce、LuAl12:Ceなどもある。
Examples of the alkaline earth metal sulfide phosphor, La 2 O 2 S: Eu , Y 2 O 2 S: Eu, and Gd 2 O 2 S: Eu, and the like.
Rare earth aluminate phosphors mainly activated by lanthanoid elements such as Ce include Y 3 Al 5 O 12 : Ce, (Y 0.8 Gd 0.2 ) 3 Al 5 O 12 : Ce, Y 3 YAG-based phosphors represented by a composition formula of (Al 0.8 Ga 0.2 ) 5 O 12 : Ce and (Y, Gd) 3 (Al, Ga) 5 O 12 are mentioned. In addition, there are Tb 3 Al 5 O 12 : Ce, Lu 3 Al 5 O 12 : Ce in which part or all of Y is substituted with Tb, Lu, or the like.

その他の蛍光体には、ZnS:Eu、ZnGeO:Mn、MGa:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種である。Xは、F、Cl、Br、Iから選ばれる少なくとも1種である)などが挙げられる。
上記蛍光体は、所望に応じてEuに代えて、又は、Euに加えてTb、Cu、Ag、Au、Cr、Nd、Dy、Co、Ni、Tiから選択される1種以上を含有させることができる。
Other phosphor, ZnS: Eu, Zn 2 GeO 4: Mn, MGa 2 S 4: Eu (M is at least one selected Sr, Ca, Ba, Mg, from Zn .X is F , Cl, Br, and I).
The phosphor contains one or more selected from Tb, Cu, Ag, Au, Cr, Nd, Dy, Co, Ni, and Ti instead of or in addition to Eu, if desired. Can be.

Ca−Al−Si−O−N系オキシ窒化物ガラス蛍光体とは、モル%表示で、CaCOをCaOに換算して20〜50モル%、Alを0〜30モル%、SiOを25〜60モル%、AlNを5〜50モル%、希土類酸化物または遷移金属酸化物を0.1〜20モル%とし、5成分の合計が100モル%となるオキシ窒化物ガラスを母体材料とした蛍光体である。尚、オキシ窒化物ガラスを母体材料とした蛍光体では、窒素含有量が15wt%以下であることが好ましく、希土類酸化物イオンの他に増感剤となる他の希土類元素イオンを希土類酸化物として蛍光ガラス中に0.1〜10モル%の範囲の含有量で共賦活剤として含むことが好ましい。 The Ca-Al-SiO-N-based oxynitride glass phosphor, by mol%, 20-50 mol% in terms of CaCO 3 to CaO, the Al 2 O 3 0 to 30 mol%, SiO Oxynitride glass having 25 to 60 mol%, AlN of 5 to 50 mol%, rare earth oxide or transition metal oxide of 0.1 to 20 mol%, and the total of the five components being 100 mol%. This is a phosphor. In a phosphor using oxynitride glass as a base material, the nitrogen content is preferably 15 wt% or less, and other rare earth element ions serving as a sensitizer in addition to rare earth oxide ions are used as rare earth oxides. It is preferable that the fluorescent glass be contained as a co-activator in a content of 0.1 to 10 mol%.

また、上記蛍光体以外の蛍光体であって、同様の性能、効果を有する蛍光体を使用することもできる。   Further, a phosphor other than the above-mentioned phosphors and having the same performance and effect can also be used.

蛍光体の配合量は、蛍光体以外の成分、例えば(A)〜(D)成分100質量部に対して、0.1〜2,000質量部が好ましく、より好ましくは0.1〜100質量部である。本発明の硬化物を蛍光体含有波長変換フィルムとする場合は、蛍光体の含有量を10〜2,000質量部とするのが好ましい。また、蛍光体は、平均粒径10nm以上を有することが好ましく、より好ましくは10nm〜10μm、更に好ましくは10nm〜1μmを有するのがよい。上記平均粒径は、シーラスレーザー測定装置などのレーザー光回折法による粒度分布測定で測定される。   The amount of the phosphor is preferably 0.1 to 2,000 parts by mass, more preferably 0.1 to 100 parts by mass, per 100 parts by mass of components other than the phosphor, for example, components (A) to (D). Department. When the cured product of the present invention is used as a phosphor-containing wavelength conversion film, the phosphor content is preferably 10 to 2,000 parts by mass. The phosphor preferably has an average particle diameter of 10 nm or more, more preferably 10 nm to 10 μm, and further preferably 10 nm to 1 μm. The average particle size is measured by a particle size distribution measurement using a laser diffraction method such as a Cirrus laser measuring device.

[無機充填材]
無機充填材としては、例えば、シリカ、ヒュームドシリカ、ヒュームド二酸化チタン、アルミナ、炭酸カルシウム、ケイ酸カルシウム、二酸化チタン、酸化第二鉄、及び酸化亜鉛等を挙げることができる。これらは、1種単独でまたは2種以上を併せて使用することができる。無機充填材の配合量は特に制限されないが、(A)〜(D)成分の合計100質量部あたり20質量部以下、好ましくは0.1〜10質量部の範囲で適宜配合すればよい。
[Inorganic filler]
Examples of the inorganic filler include silica, fumed silica, fumed titanium dioxide, alumina, calcium carbonate, calcium silicate, titanium dioxide, ferric oxide, and zinc oxide. These can be used alone or in combination of two or more. The blending amount of the inorganic filler is not particularly limited, but may be appropriately blended in an amount of 20 parts by mass or less, preferably 0.1 to 10 parts by mass, per 100 parts by mass of the total of components (A) to (D).

[接着助剤]
本発明の硬化性組成物は、接着性を付与するため、必要に応じて接着助剤を含有してよい。接着助剤としては、例えば、一分子中にケイ素原子に結合した水素原子、アルケニル基、アルコキシ基、エポキシ基から選ばれる官能性基を少なくとも2種、好ましくは3種有するオルガノシロキサンオリゴマーが挙げられる。該オルガノシロキサンオリゴマーは、ケイ素原子数4〜50個であることが好ましく、より好ましくは4〜20個である。また、接着助剤として、下記一般式(7)で示されるオルガノオキシシリル変性イソシアヌレート化合物、及びその加水分解縮合物(オルガノシロキサン変性イソシアヌレート化合物)を使用することができる。

Figure 0006657037
上記式(7)中、Rは互いに独立に、下記(8)で示される有機基、又は脂肪族不飽和結合を含有する一価炭化水素基である。
Figure 0006657037
は水素原子又は炭素数1〜6の一価炭化水素基であり、kは1〜6の整数、好ましくは1〜4の整数である。 [Adhesion aid]
The curable composition of the present invention may contain an adhesion aid as needed in order to impart adhesiveness. Examples of the adhesion aid include an organosiloxane oligomer having at least two, and preferably three, functional groups selected from a hydrogen atom, an alkenyl group, an alkoxy group, and an epoxy group bonded to a silicon atom in one molecule. . The organosiloxane oligomer preferably has 4 to 50 silicon atoms, more preferably 4 to 20 silicon atoms. Further, an organooxysilyl-modified isocyanurate compound represented by the following general formula (7) and a hydrolytic condensate thereof (organosiloxane-modified isocyanurate compound) can be used as the adhesion aid.
Figure 0006657037
In the above formula (7), R 4 is independently an organic group represented by the following (8) or a monovalent hydrocarbon group containing an aliphatic unsaturated bond.
Figure 0006657037
R 5 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms, and k is an integer of 1 to 6, preferably 1 to 4.

接着助剤の配合量は、(A)〜(D)成分の合計100質量部に対して、10質量部以下が好ましく、より好ましくは0.1〜8質量部、特に好ましくは0.2〜5質量部である。配合量が上記上限値以下であれば硬化物硬度が高いものとなり、表面タック性も抑えられる。   The compounding amount of the adhesion aid is preferably 10 parts by mass or less, more preferably 0.1 to 8 parts by mass, and particularly preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the total of the components (A) to (D). 5 parts by mass. When the amount is less than the above upper limit, the hardness of the cured product becomes high and the surface tackiness is suppressed.

[硬化抑制剤]
本発明の硬化性組成物は、反応性を制御して貯蔵安定性を高めるために、硬化抑制剤を含んで良い。硬化抑制剤としては、トリアリルイソシアヌレート、アルキルマレエート、アセチレンアルコール類、及びそのシラン変性物及びシロキサン変性物、ハイドロパーオキサイド、テトラメチルエチレンジアミン、ベンゾトリアゾール、及びこれらの混合物からなる群から選ばれる化合物が挙げられる。硬化抑制剤の配合量は、(A)〜(D)成分の合計100質量部あたり、0.001〜1.0質量部が好ましく、より好ましくは0.005〜0.5質量部である。
[Curing inhibitor]
The curable composition of the present invention may contain a curing inhibitor to control the reactivity and increase the storage stability. The curing inhibitor is selected from the group consisting of triallyl isocyanurate, alkyl maleate, acetylene alcohols, and silane-modified and siloxane-modified products thereof, hydroperoxide, tetramethylethylenediamine, benzotriazole, and mixtures thereof. Compounds. The compounding amount of the curing inhibitor is preferably 0.001 to 1.0 part by mass, more preferably 0.005 to 0.5 part by mass, per 100 parts by mass of the total of the components (A) to (D).

[その他の添加剤]
本発明の硬化性組成物には、上記成分のほかに、その他の添加剤を配合することができる。その他の添加剤としては、例えば、老化防止剤、ラジカル禁止剤、難燃剤、界面活性剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、酸化防止剤、熱安定剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、物性調整剤、有機溶剤等が挙げられる。これらの任意成分は、一種を単独で用いても二種以上を併用してもよい。
[Other additives]
The curable composition of the present invention may contain other additives in addition to the above components. Other additives include, for example, an antioxidant, a radical inhibitor, a flame retardant, a surfactant, an antiozonant, a light stabilizer, a thickener, a plasticizer, an antioxidant, a heat stabilizer, and a conductive agent. Examples include an imparting agent, an antistatic agent, a radiation blocking agent, a nucleating agent, a phosphorus-based peroxide decomposing agent, a lubricant, a pigment, a metal deactivator, a physical property modifier, and an organic solvent. These optional components may be used alone or in combination of two or more.

本発明の硬化性組成物の最も単純な実施形態は、(A)成分、(B)成分、(C)成分、および(D)成分からなる組成物である。好ましくは、(A)成分、(B)成分、(C)成分、(D)成分、及び蛍光体からなる組成物である。特には、高い透明性を有する硬化物を得るために、シリカ充填材等の無機充填材を含有しないのがよい。該無機充填材の例は上述の通りである。   The simplest embodiment of the curable composition of the present invention is a composition comprising the components (A), (B), (C), and (D). Preferably, it is a composition comprising component (A), component (B), component (C), component (D), and a phosphor. In particular, in order to obtain a cured product having high transparency, it is preferable not to contain an inorganic filler such as a silica filler. Examples of the inorganic filler are as described above.

本発明の硬化性組成物の調製方法は特に制限されるものでなく、従来公知の方法に従えばよい。例えば、(A)成分、(B)成分、(C)成分、及び(D)成分を任意の方法により混合して調製することができる。または、(A)、(B)、(C)、(D)成分と蛍光体、もしくは(A)、(B)、(C)、(D)成分、及び任意成分を任意の方法により混合して調製すればよい。例えば、市販の攪拌機(THINKY CONDITIONING MIXER((株)シンキー製)等)に入れて、1〜5分間程度、均一に混合することによって調製することができる。   The method for preparing the curable composition of the present invention is not particularly limited, and may be a conventionally known method. For example, it can be prepared by mixing the component (A), the component (B), the component (C), and the component (D) by an arbitrary method. Alternatively, the components (A), (B), (C), and (D) are mixed with the phosphor, or the components (A), (B), (C), (D), and any component are mixed by any method. It may be prepared by adjusting. For example, it can be prepared by placing it in a commercially available stirrer (THINKY CONDITIONING MIXER (manufactured by Shinky Corporation) or the like) and mixing uniformly for about 1 to 5 minutes.

本発明の硬化性組成物を硬化する方法は、特に制限されるものでなく、従来公知の方法に従えばよい。例えば、60〜180℃、1〜12時間程度で硬化することができる。特には、60〜150℃でステップキュアによって硬化させることが好ましい。ステップキュアでは、以下の2段階を経ることがより好ましい。まず、硬化性組成物を60〜100℃の温度で0.5〜2時間加熱し、十分に脱泡させる。次いで、硬化性組成物を120〜180℃の温度で1〜10時間加熱硬化させる。これらの段階を経ることにより、硬化物が厚い場合であっても十分に硬化し、気泡の発生がなく、無色透明を有することができる。本発明において無色透明の硬化物とは、1mm厚に対する450nmにおける光透過率が80%以上、好ましくは85%以上、特に好ましくは90%以上であるものを意味する。   The method for curing the curable composition of the present invention is not particularly limited, and may be a conventionally known method. For example, it can be cured at 60 to 180 ° C. for about 1 to 12 hours. In particular, it is preferable to cure by a step cure at 60 to 150 ° C. In the step cure, it is more preferable to go through the following two steps. First, the curable composition is heated at a temperature of 60 to 100 ° C. for 0.5 to 2 hours to sufficiently remove bubbles. Next, the curable composition is cured by heating at a temperature of 120 to 180 ° C. for 1 to 10 hours. Through these steps, even when the cured product is thick, it is fully cured, has no bubbles, and can be colorless and transparent. In the present invention, the colorless and transparent cured product means one having a light transmittance at 450 nm with respect to a thickness of 1 mm of 80% or more, preferably 85% or more, particularly preferably 90% or more.

本発明の硬化性組成物は高い光学的透過性を有する硬化物を与える。従って、本発明の硬化性組成物は、LED素子封止用、特に青色LEDや紫外LEDの素子封止用として有用である。本発明の硬化性組成物でLED素子等を封止する方法は従来公知の方法に従えばよい。例えば、ディスペンス法、コンプレッションモールド法などによって行うことができる。   The curable composition of the present invention gives a cured product having high optical transparency. Therefore, the curable composition of the present invention is useful for encapsulating LED elements, particularly for encapsulating blue LEDs and ultraviolet LEDs. The method for sealing an LED element or the like with the curable composition of the present invention may be in accordance with a conventionally known method. For example, it can be performed by a dispensing method, a compression molding method, or the like.

本発明の硬化性組成物及び硬化物は、その他にも、その優れた耐クラック性、耐熱性、耐光性、透明性等の特性を有する硬化物を与える故に、ディスプレイ材料、光記録媒体材料、光学機器材料、光部品材料、光ファイバー材料、光・電子機能有機材料、半導体集積回路周辺材料等の用途にも有用である。   The curable composition and the cured product of the present invention, in addition, to provide a cured product having properties such as excellent crack resistance, heat resistance, light resistance, and transparency, display materials, optical recording medium materials, It is also useful for applications such as optical equipment materials, optical component materials, optical fiber materials, organic materials for optical and electronic functions, and peripheral materials for semiconductor integrated circuits.

以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

下記実施例に示した重量平均分子量(Mw)はポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィー(GPC)によって測定した値である。以下に測定条件を示す。
[GPC測定条件]
展開溶媒:テトラヒドロフラン
流速:0.6mL/min
カラム:TSK Guardcolumn SuperH−L
TSKgel SuperH4000(6.0mmI.D.×15cm×1)
TSKgel SuperH3000(6.0mmI.D.×15cm×1)
TSKgel SuperH2000(6.0mmI.D.×15cm×2)
(いずれも東ソー社製)
カラム温度:40℃
試料注入量:20μL (試料濃度:0.5wt%−テトラヒドロフラン溶液)
検出器:示差屈折率計(RI)
The weight average molecular weight (Mw) shown in the following Examples is a value measured by gel permeation chromatography (GPC) using polystyrene as a standard substance. The measurement conditions are shown below.
[GPC measurement conditions]
Developing solvent: tetrahydrofuran Flow rate: 0.6 mL / min
Column: TSK Guardcolumn SuperHL
TSKgel SuperH4000 (6.0 mm ID × 15 cm × 1)
TSKgel SuperH3000 (6.0 mm ID × 15 cm × 1)
TSKgel SuperH2000 (6.0 mm ID × 15 cm × 2)
(All manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Sample injection volume: 20 μL (sample concentration: 0.5 wt% -tetrahydrofuran solution)
Detector: Differential refractometer (RI)

下記実施例に示したVi価(mol/100g)およびSiH価(mol/100g)は、化合物の400MHzのH−NMRスペクトルを測定し、ジメチルスルホキシドを内部標準として得られた水素原子の積分値から計算したものである。H−NMR測定はULTRASHIELDTM400PLUS(BRUKER社製)を使用して行い、29Si−NMR測定はRESONANCE500(JEOL社製)を使用して行った。 The Vi value (mol / 100 g) and the SiH value (mol / 100 g) shown in the following Examples were measured by measuring the 1 H-NMR spectrum of the compound at 400 MHz, and the integrated values of hydrogen atoms obtained using dimethyl sulfoxide as an internal standard. It is calculated from. 1 H-NMR measurement was performed using ULTRASHIELD 400PLUS (manufactured by BRUKER), and 29 Si-NMR measurement was performed using RESONANCE 500 (manufactured by JEOL).

実施例において使用した(A)成分の合成例と比較例を以下に示す。以下において、Meはメチル基、Phはフェニル基を示す。   The synthesis examples and comparative examples of the component (A) used in the examples are shown below. In the following, Me indicates a methyl group and Ph indicates a phenyl group.

[合成例1]
(a−1)
トルエン溶媒中にリチウムトリメチルシラノレート96.3g、ヘキサメチルシクロトリシロキサン1,560g、ヘキサフェニルシクロトリシロキサン4,160gを加え、100℃で12時間撹拌した。その後、酢酸90.0gを加えて中和し、得られた生成物を濾過した。その後、メチルトリメトキシシラン408g、Sr(OH)・8HOを8.10g加え、60℃で3時間撹拌した。その後、酢酸12.2gを加えて中和し、得られた生成物を、濾過し、メタノールとトルエンを減圧留去することで下記の、片末端に2つのアルコキシを有するオルガノポリシロキサン(a−1)を合成した。Mw=6,000であることがわかった。

Figure 0006657037
(式中、c=c’=20) [Synthesis Example 1]
(A-1)
96.3 g of lithium trimethylsilanolate, 1,560 g of hexamethylcyclotrisiloxane, and 4,160 g of hexaphenylcyclotrisiloxane were added to a toluene solvent, followed by stirring at 100 ° C. for 12 hours. Thereafter, 90.0 g of acetic acid was added for neutralization, and the obtained product was filtered. Then, methyltrimethoxysilane 408g, Sr (OH) 2 · 8H 2 O was added 8.10 g, was stirred for 3 hours at 60 ° C.. Thereafter, 12.2 g of acetic acid was added to neutralize the mixture, and the obtained product was filtered, and methanol and toluene were distilled off under reduced pressure to obtain the following organopolysiloxane having two alkoxy groups at one end (a- 1) was synthesized. It was found that Mw = 6,000.
Figure 0006657037
(Where c = c ′ = 20)

(A−1)
(a−1)で合成したオルガノポリシロキサン600g、ポリメチルフェニルシロキサン−α,ω−ジオール(Mw=530)140g、Sr(OH)・8HOを0.810g加え、60℃で18時間撹拌した。その後、酢酸1.22gを加えて中和し、クロロジメチルビニルシラン17.1gを加え、60℃で8時間撹拌した。得られた生成物を、濾過し、水洗し、共沸脱水し、減圧留去することで下記分岐状シリコーンオイルを合成した。Mw=27,000、Vi価=7.41×10−3mol/100gでを有し、29Si−NMRスペクトルからa=4、b=40、c=20、c’=20のオルガノポリシロキサン(A−1)であることがわかった。

Figure 0006657037
(A-1)
(A-1) synthesized in organopolysiloxane 600 g, polymethylphenylsiloxane-.alpha., .omega.-diol (Mw = 530) 140g, Sr (OH) 2 · 8H 2 O was added 0.810 g, 18 h at 60 ° C. Stirred. Thereafter, 1.22 g of acetic acid was added to neutralize, 17.1 g of chlorodimethylvinylsilane was added, and the mixture was stirred at 60 ° C. for 8 hours. The obtained product was filtered, washed with water, azeotropically dehydrated, and distilled under reduced pressure to synthesize the following branched silicone oil. Organopolysiloxane having Mw = 27,000, Vi value = 7.41 × 10 −3 mol / 100 g, and a = 4, b = 40, c = 20, c ′ = 20 from a 29 Si-NMR spectrum. (A-1) was found to be.
Figure 0006657037

[合成例2]
(a−2)
トルエン溶媒中にリチウムトリメチルシラノレート96.3g、ヘキサメチルシクロトリシロキサン222g、ヘキサフェニルシクロトリシロキサン595gを加え、100℃で3時間撹拌した。その後、酢酸90.0gを加えて中和し、得られた生成物を濾過した。その後、メチルトリメトキシシラン408g、Sr(OH)・8HOを8.10g加え、60℃で3時間撹拌した。その後、酢酸12.2gを加えて中和し、得られた生成物を、濾過し、メタノールとトルエンを減圧留去することで下記片末端ジアルコキシオルガノポリシロキサン(a−2)を合成した。Mw=1,000であることがわかった。

Figure 0006657037
(式中、c=c’=3) [Synthesis Example 2]
(A-2)
96.3 g of lithium trimethylsilanolate, 222 g of hexamethylcyclotrisiloxane and 595 g of hexaphenylcyclotrisiloxane were added to a toluene solvent, and the mixture was stirred at 100 ° C. for 3 hours. Thereafter, 90.0 g of acetic acid was added for neutralization, and the obtained product was filtered. Then, methyltrimethoxysilane 408g, Sr (OH) 2 · 8H 2 O was added 8.10 g, was stirred for 3 hours at 60 ° C.. Thereafter, 12.2 g of acetic acid was added for neutralization, and the obtained product was filtered, and methanol and toluene were distilled off under reduced pressure to synthesize the following one-end dialkoxyorganopolysiloxane (a-2). It was found that Mw = 1,000.
Figure 0006657037
(Where c = c ′ = 3)

(A−2)
(a−2)で合成したオルガノポリシロキサン100g、ポリメチルフェニルシロキサン−α,ω−ジオール(Mw=530)27.9g、Sr(OH)・8HOを0.640g加え、60℃で3時間撹拌した。その後、酢酸0.960gを加えて中和し、クロロジメチルビニルシラン24.4gを加え、60℃で8時間撹拌した。得られた生成物を、濾過し、水洗し、共沸脱水し、減圧留去することで下記分岐状シリコーンオイルを合成した。Mw=3,300、Vi価=6.06×10−2mol/100gを有し、29Si−NMRスペクトルからa=3、b=6、c=3、c’=3のオルガノポリシロキサンであることがわかった。

Figure 0006657037
(A-2)
(A-2) synthesized in organopolysiloxane 100 g, polymethylphenylsiloxane-.alpha., .omega.-diol (Mw = 530) 27.9g, Sr (OH) 2 · 8H 2 O was added 0.640 g, at 60 ° C. Stir for 3 hours. Thereafter, 0.960 g of acetic acid was added for neutralization, 24.4 g of chlorodimethylvinylsilane was added, and the mixture was stirred at 60 ° C. for 8 hours. The obtained product was filtered, washed with water, azeotropically dehydrated, and distilled under reduced pressure to synthesize the following branched silicone oil. An organopolysiloxane having Mw = 3,300, Vi value = 6.06 × 10 −2 mol / 100 g, and a = 3, b = 6, c = 3, c ′ = 3 from a 29 Si-NMR spectrum. I found it.
Figure 0006657037

[合成例3]
(a−3)
アセトニトリル溶媒中にトリメチルシラノール90.1g、ヘキサメチルシクロトリシロキサン6,660g、ジカテコールフェニルシロキシナトリウム121gを加え、60℃で12時間撹拌した。得られた生成物を濾過し、メチルトリメトキシシラン408g、Sr(OH)・8HOを8.10g加え、60℃で3時間撹拌した。その後、酢酸12.2gを加えて中和し、得られた生成物を、濾過し、メタノールとトルエンを減圧留去することで下記片末端ジアルコキシオルガノポリシロキサンを合成した。Mw=6,800であることがわかった。

Figure 0006657037
(式中、c=90) [Synthesis Example 3]
(A-3)
In an acetonitrile solvent, 90.1 g of trimethylsilanol, 6,660 g of hexamethylcyclotrisiloxane, and 121 g of sodium dicatecholphenylsiloxy were added, followed by stirring at 60 ° C. for 12 hours. The resulting product was filtered, methyltrimethoxysilane 408g, Sr (OH) 2 · 8H 2 O was added 8.10 g, was stirred for 3 hours at 60 ° C.. Thereafter, 12.2 g of acetic acid was added for neutralization, and the obtained product was filtered, and methanol and toluene were distilled off under reduced pressure to synthesize the following one-end dialkoxyorganopolysiloxane. It was found that Mw = 6,800.
Figure 0006657037
(Where c = 90)

(A−3)
(a−3)で合成したオルガノポリシロキサン680g、ポリジメチルシロキサン−α,ω−ジオール(Mw=280)72.0g、Sr(OH)・8HOを3.76g加え、60℃で18時間撹拌した。その後、酢酸5.64gを加えて中和し、クロロジメチルビニルシラン13.0gを加え、60℃で8時間撹拌した。得られた生成物を、濾過し、水洗し、共沸脱水し、減圧留去することで下記分岐状シリコーンオイルを合成した。Mw=73,000、Vi価=2.74×10−3mol/100gを有し、29Si−NMRスペクトルからa=10、b=90、c=90のオルガノポリシロキサンであることがわかった。

Figure 0006657037
(A-3)
(A-3) synthesized in organopolysiloxane 680 g, polydimethylsiloxane-.alpha., .omega.-diol (Mw = 280) 72.0g, Sr (OH) 2 · 8H 2 O was added 3.76 g, at 60 ° C. 18 Stirred for hours. Thereafter, 5.64 g of acetic acid was added for neutralization, 13.0 g of chlorodimethylvinylsilane was added, and the mixture was stirred at 60 ° C. for 8 hours. The obtained product was filtered, washed with water, azeotropically dehydrated, and distilled under reduced pressure to synthesize the following branched silicone oil. It has Mw = 73,000, Vi value = 2.74 × 10 −3 mol / 100 g, and was found to be an organopolysiloxane having a = 10, b = 90, and c = 90 from a 29 Si-NMR spectrum. .
Figure 0006657037

[合成例4]
(a−4)
アセトニトリル溶媒中にトリメチルシラノール90.1g、ヘキサメチルシクロトリシロキサン890g、ジカテコールフェニルシロキシナトリウム121gを加え、60℃で6時間撹拌した。得られた生成物を濾過し、メチルトリメトキシシラン408g、Sr(OH)・8HOを8.10g加え、60℃で3時間撹拌した。その後、酢酸12.2gを加えて中和し、得られた生成物を、濾過し、メタノールとトルエンを減圧留去することで下記片末端ジアルコキシオルガノポリシロキサンを合成した。Mw=1,000であることがわかった。

Figure 0006657037
(式中、c=12) [Synthesis Example 4]
(A-4)
In an acetonitrile solvent, 90.1 g of trimethylsilanol, 890 g of hexamethylcyclotrisiloxane, and 121 g of sodium dicatecholphenylsiloxy were added, and the mixture was stirred at 60 ° C. for 6 hours. The resulting product was filtered, methyltrimethoxysilane 408g, Sr (OH) 2 · 8H 2 O was added 8.10 g, was stirred for 3 hours at 60 ° C.. Thereafter, 12.2 g of acetic acid was added for neutralization, and the obtained product was filtered, and methanol and toluene were distilled off under reduced pressure to synthesize the following one-end dialkoxyorganopolysiloxane. It was found that Mw = 1,000.
Figure 0006657037
(Where c = 12)

(A−4)
(a−4)で合成したオルガノポリシロキサン1,000g、ポリジメチルシロキサン−α,ω−ジオール(Mw=280)12.0g、Sr(OH)・8HOを5.06g加え、60℃で18時間撹拌した。その後、酢酸7.59gを加えて中和し、クロロジメチルビニルシラン340gを加え、60℃で8時間撹拌した。得られた生成物を、濾過し、水洗し、共沸脱水し、減圧留去することで下記分岐状シリコーンオイルを合成した。Mw=81,000、Vi価=2.47×10−3mol/100gを有し、29Si−NMRスペクトルからa=80、b=12、c=12のオルガノポリシロキサンであることがわかった。

Figure 0006657037
(A-4)
(A-4) synthesized in organopolysiloxane 1,000 g, polydimethylsiloxane-.alpha., .omega.-diol (Mw = 280) 12.0g, Sr (OH) 2 · 8H 2 O was added 5.06 g, 60 ° C. For 18 hours. Thereafter, 7.59 g of acetic acid was added for neutralization, 340 g of chlorodimethylvinylsilane was added, and the mixture was stirred at 60 ° C. for 8 hours. The obtained product was filtered, washed with water, azeotropically dehydrated, and distilled under reduced pressure to synthesize the following branched silicone oil. It has Mw = 81,000, Vi value = 2.47 × 10 −3 mol / 100 g, and was found to be an organopolysiloxane having a = 80, b = 12, and c = 12 from a 29 Si-NMR spectrum. .
Figure 0006657037

[比較例1]
(A−1’)
下記式で表される両末端ビニルフェニルメチルシリコーンオイル(信越化学工業株式会社製、Vi価=3.81×10−2mol/100g)

Figure 0006657037
[Comparative Example 1]
(A-1 ′)
Vinyl phenyl methyl silicone oil at both ends represented by the following formula (manufactured by Shin-Etsu Chemical Co., Ltd., Vi value = 3.81 × 10 −2 mol / 100 g)
Figure 0006657037

[比較例2]
(A−2’)
下記式で表される両末端ビニルジメチルシリコーンオイル(信越化学工業株式会社製、Vi価=1.33×10−2mol/100g)

Figure 0006657037
[Comparative Example 2]
(A-2 ')
Vinyl dimethyl silicone oil at both ends represented by the following formula (manufactured by Shin-Etsu Chemical Co., Ltd., Vi value = 1.33 × 10 −2 mol / 100 g)
Figure 0006657037

[比較例3]
(A−3’)
1,1−ジフェニル−1,3−ジメチル−3,3−ジメトキシジシロキサン63.7g、ポリメチルフェニルシロキサン−α,ω−ジオール(Mw=530)1,200gおよびジメチルビニルメトキシシラン48.8gを攪拌し、60℃に調節した。その後、Sr(OH)・8HOを3.15g加え、60℃で3時間反応を行った。得られた生成物から、濾過により触媒を除去し、メタノールと水を減圧留去することで下記分岐状シリコーンオイルを合成した。Mw=5,700、Vi価=3.51×10−2mol/100gを有し、29Si−NMRスペクトルからn=37、m=1のオルガノポリシロキサンであることがわかった。

Figure 0006657037
[Comparative Example 3]
(A-3 ')
63.7 g of 1,1-diphenyl-1,3-dimethyl-3,3-dimethoxydisiloxane, 1,200 g of polymethylphenylsiloxane-α, ω-diol (Mw = 530) and 48.8 g of dimethylvinylmethoxysilane Stir and adjust to 60 ° C. Thereafter, Sr (OH) 2 · 8H 2 O was added 3.15 g, reaction was conducted for 3 hours at 60 ° C.. The catalyst was removed from the obtained product by filtration, and methanol and water were distilled off under reduced pressure to synthesize the following branched silicone oil. It had Mw = 5,700, Vi value = 3.51 × 10 −2 mol / 100 g, and was found to be an organopolysiloxane with n = 37 and m = 1 from a 29 Si-NMR spectrum.
Figure 0006657037

(B)成分、(C)成分および(D)成分
以下に、実施例において使用した(B)成分、(C)成分および(D)成分を示す。
(B−1)下記式で表されるフェニル系シリコーンレジン(信越化学工業株式会社製、Vi価=0.147mol/100g)

Figure 0006657037
(B−2)下記式で表されるメチル系シリコーンレジン(信越化学工業株式会社製、Vi価=9.12×10−2mol/100g)
Figure 0006657037
Component (B), component (C) and component (D) The components (B), (C) and (D) used in the examples are shown below.
(B-1) Phenyl-based silicone resin represented by the following formula (manufactured by Shin-Etsu Chemical Co., Ltd., Vi value = 0.147 mol / 100 g)
Figure 0006657037
(B-2) Methyl silicone resin represented by the following formula (Shin-Etsu Chemical Co., Ltd., Vi value = 9.12 × 10 −2 mol / 100 g)
Figure 0006657037

(C−1)下記式で表される、両末端にヒドロシリル基を有するシリコーンオイル(信越化学工業株式会社製、SiH価=0.600mol/100g)

Figure 0006657037
(C−2)下記式で表される、側鎖にヒドロシリル基を有するシリコーンオイル(信越化学工業株式会社製、SiH価=1.63mol/100g)
Figure 0006657037
(C-1) A silicone oil having hydrosilyl groups at both ends represented by the following formula (manufactured by Shin-Etsu Chemical Co., Ltd., SiH value = 0.600 mol / 100 g)
Figure 0006657037
(C-2) A silicone oil having a hydrosilyl group in a side chain represented by the following formula (manufactured by Shin-Etsu Chemical Co., Ltd., SiH value = 1.63 mol / 100 g)
Figure 0006657037

(D)塩化白金酸のジビニルシロキサン錯体のイソドデカン溶液(白金含有量0.5質量%) (D) Isododecane solution of divinylsiloxane complex of chloroplatinic acid (platinum content 0.5% by mass)

[実施例1]
(A−1)100質量部と(B−1)300質量部、(C−1)81質量部を混合し、塩化白金酸のジビニルシロキサン錯体を白金量として5ppm加えて混合し、硬化性組成物を調製した。
[Example 1]
100 parts by mass of (A-1), 300 parts by mass of (B-1), and 81 parts by mass of (C-1) were mixed, and 5 ppm of a divinylsiloxane complex of chloroplatinic acid was added as a platinum amount and mixed. Was prepared.

[実施例2〜4および比較例1〜3]
各成分の配合量を表1に記載の通り変更した他は実施例1と同様の操作を繰返し、硬化性組成物を調製した。
[Examples 2 to 4 and Comparative Examples 1 to 3]
A curable composition was prepared by repeating the same operation as in Example 1 except that the amount of each component was changed as shown in Table 1.

上記実施例1〜4及び比較例1〜3で調製した硬化性組成物について以下に示す試験を行った。
[硬化性組成物の粘度]
JIS Z 8803:2011に準じ、B型粘度計を用いて23℃での硬化性組成物の粘度を測定した。結果を表1に記載する。
[硬化物の硬さ]
調製した硬化性組成物を50mm径×10mm厚のアルミシャーレに流し込み、60℃×1時間、100℃×1時間、150℃×4時間の順でステップキュアして、硬化物を得た。硬化物の硬さ(デュロメータShoreAもしくはShoreD)をJIS K 6253−3:2012に準拠して測定した。結果を表1に記載する。
[硬化物の光透過率]
50mm×20mm×1mm厚のスライドガラス2枚の間に凹型の1mm厚テフロン(登録商標)スペーサーを挟み、それらを固定した後、硬化性組成物を流し込み、60℃×1時間、100℃×1時間、150℃×4時間の順でステップキュアして、透過率測定サンプルを作製した。得られたサンプルの450nmにおける光透過率を分光光度計U−4100(株式会社日立ハイテクノロジーズ製)にて測定した。結果を表1に記載する。
[硬化物の引張強さおよび切断時伸び]
150mm×200mm×2mm厚の凹型テフロン(登録商標)金型に調製した硬化性組成物を流し込み、60℃×1時間、100℃×1時間、150℃×4時間の順でステップキュアして、サンプルを作製した。JIS K 6251:2010に準拠して、EZ TEST(EZ−L、株式会社島津製作所製)を用いて、試験速度500mm/min、つかみ具間距離80mm、標点間距離40mmの条件でサンプルの引張強さと切断時伸びを測定した。
結果を表1に記載する。
[硬化物のガラス転移温度]
上記[硬化物の引張強さおよび切断時伸び]の項に記載のようにして作製した硬化物サンプルの貯蔵弾性率(MPa)をDMA Q800(TAインスツルメント株式会社製)により、−140℃〜150℃の範囲で測定し、得られた貯蔵弾性率と損失弾性率の値から導き出されるTanδの値をプロットしたグラフから得られるピークトップの温度をガラス転移温度(Tg)とした。
測定条件は、20mm長×5mm幅×1mm厚のサンプル、昇温速度5℃/min、マルチ周波数モード、引っ張りモード、振幅15μmで行った。結果を表1に記載する。実施例1(実線)および比較例1(点線)の硬化物の貯蔵弾性率のグラフおよびTanδのグラフである。図1に、実施例1(実線)および比較例1(点線)の硬化物の貯蔵弾性率のグラフおよびTanδのグラフを示す。
[温度サイクル試験]
Tiger3528パッケージ(信越化学株式会社製)に硬化性組成物をディスペンスし、60℃×1時間、100℃×1時間、150℃×4時間の順でステップキュアして、硬化物でパッケージを封止した試験体を製造した。該試験体の20個について、−50℃〜140℃、1,000回のサーマルサイクル試験(TCT)を行い、封止物にクラックが生じた試験体の数を計測した。結果を表1に記載する。
The following tests were performed on the curable compositions prepared in Examples 1 to 4 and Comparative Examples 1 to 3.
[Viscosity of curable composition]
The viscosity of the curable composition at 23 ° C. was measured using a B-type viscometer according to JIS Z 8803: 2011. The results are shown in Table 1.
[Hardness of cured product]
The prepared curable composition was poured into an aluminum dish having a diameter of 50 mm and a thickness of 10 mm, and was step-cured in the order of 60 ° C. × 1 hour, 100 ° C. × 1 hour, and 150 ° C. × 4 hours to obtain a cured product. The hardness (durometer Shore A or Shore D) of the cured product was measured according to JIS K 6253-3: 2012. The results are shown in Table 1.
[Light transmittance of cured product]
After sandwiching a concave 1 mm thick Teflon (registered trademark) spacer between two 50 mm × 20 mm × 1 mm thick slide glasses and fixing them, the curable composition is poured, and the mixture is poured at 60 ° C. × 1 hour at 100 ° C. × 1. Step curing was performed for 150 hours at 150 ° C. for 4 hours to prepare a transmittance measurement sample. The light transmittance at 450 nm of the obtained sample was measured with a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corporation). The results are shown in Table 1.
[Tensile strength and elongation at break of cured product]
The curable composition prepared was poured into a concave Teflon (registered trademark) mold having a thickness of 150 mm × 200 mm × 2 mm, and step-cured in the order of 60 ° C. × 1 hour, 100 ° C. × 1 hour, 150 ° C. × 4 hours, A sample was prepared. Using EZ TEST (EZ-L, manufactured by Shimadzu Corporation) in accordance with JIS K6251: 2010, the sample was pulled under the conditions of a test speed of 500 mm / min, a distance between grips of 80 mm, and a distance between gauge points of 40 mm. The strength and elongation at break were measured.
The results are shown in Table 1.
[Glass transition temperature of cured product]
The storage elastic modulus (MPa) of the cured product sample prepared as described in the section “Tensile strength and elongation at break” of the cured product was determined at −140 ° C. by DMA Q800 (manufactured by TA Instruments Co., Ltd.). The temperature at the peak top was measured from the range of ~ 150 ° C, and the temperature at the peak top obtained from the graph in which the value of Tanδ derived from the obtained values of the storage elastic modulus and the loss elastic modulus was plotted was taken as the glass transition temperature (Tg).
The measurement conditions were as follows: a sample of 20 mm length × 5 mm width × 1 mm thickness, a heating rate of 5 ° C./min, a multi-frequency mode, a tensile mode, and an amplitude of 15 μm. The results are shown in Table 1. 4 is a graph of the storage elastic modulus and a graph of Tan δ of the cured products of Example 1 (solid line) and Comparative Example 1 (dotted line). FIG. 1 shows a graph of the storage elastic modulus and a graph of Tan δ of the cured products of Example 1 (solid line) and Comparative Example 1 (dotted line).
[Temperature cycle test]
The curable composition is dispensed into a Tiger 3528 package (manufactured by Shin-Etsu Chemical Co., Ltd.), and step-cured in the order of 60 ° C. × 1 hour, 100 ° C. × 1 hour, 150 ° C. × 4 hours, and the package is sealed with the cured product. Specimens were manufactured. A thermal cycle test (TCT) of 1,000 times at −50 ° C. to 140 ° C. was performed on 20 of the test pieces, and the number of test pieces having cracks in the sealed product was measured. The results are shown in Table 1.

Figure 0006657037
H/Vi=(組成物中のSiH基のmol)/(組成物中のVi基のmol)
NGの数=封止物にクラックが生じた試験体の数
Figure 0006657037
H / Vi = (mol of SiH group in composition) / (mol of Vi group in composition)
Number of NG = Number of specimens with cracks in the seal

表1に示されるように、本発明の分岐状オルガノポリシロキサンを用いた硬化性シリコーン樹脂組成物は、本発明の(A)成分に代えて直鎖状のオルガノポリシロキサンを用いた組成物に比較し、ガラス転移温度が低く、耐クラック性に優れた硬化物を与える。また、樹脂組成物の粘度は十分に低く、作業効率が良い。   As shown in Table 1, the curable silicone resin composition using the branched organopolysiloxane of the present invention is different from the composition using the linear organopolysiloxane in place of the component (A) of the present invention. By comparison, a cured product having a low glass transition temperature and excellent crack resistance is provided. Further, the viscosity of the resin composition is sufficiently low, and the working efficiency is good.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   Note that the present invention is not limited to the above embodiment. The above embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and has the same effect. Within the technical scope of

本発明は、低温特性が良好であり温度変化耐性に優れる硬化物を与える付加硬化型シリコーン組成物、および該組成物の硬化物によって半導体素子が封止された高信頼性を有する半導体装置を提供する。



The present invention provides an addition-curable silicone composition that provides a cured product having good low-temperature characteristics and excellent temperature change resistance, and a highly reliable semiconductor device in which a semiconductor element is sealed with a cured product of the composition. I do.



Claims (10)

(A)下記式(1)
Figure 0006657037
(式中、Rは、互いに独立に、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基から選ばれる基であり、Rは、互いに独立に、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基、炭素数2から10のアルケニル基から選ばれる基であり、各々のR、Rは同一であっても異なっていても良く、ただし該オルガノポリシロキサンは前記アルケニル基を主鎖の両末端のみに有し、aは2〜100の整数、bは5〜100の整数、cは5〜100の整数、0.03≦a/(a+b)<1.0、(R SiO1/2)単位の数/(RSiO3/2)単位の数≦2であり、a、bおよびcのシロキサン鎖の並びはランダムであってもブロックであっても良い)
で示される分岐状オルガノポリシロキサン、
(B)下記式(2)
(R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2 (2)
(式中、Rの定義は上記と同じであり、Rの少なくとも2つはアルケニル基であり、rは0から100の整数、sは0から300の整数、tは0から200の整数、uは0から200の整数であり、1≦t+u≦400、2≦r+s+t+u≦800である)
で示されるオルガノポリシロキサン
(A)成分100質量部に対して5〜900質量部の量、
(C)ヒドロシリル基を分子内に少なくとも2つ有するオルガノポリシロキサン
(A)成分と(B)成分中のアルケニル基の合計数に対して(C)成分中のヒドロシリル基の数が0.4〜4.0となる量、および
(D)ヒドロシリル化触媒
ヒドロシリル化反応を進行させるのに十分な量
を含む、半導体素子封止用付加硬化性シリコーン樹脂組成物。
(A) Formula (1) below
Figure 0006657037
(Wherein, R 1 s are each independently a group selected from a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms. , R 2 are each independently a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms. Wherein each of R 1 and R 2 may be the same or different, provided that the organopolysiloxane has the alkenyl group only at both ends of the main chain, 100 integers, b is 5 to 100 integer, c is 5-100 integer, 0.03 ≦ a / (a + b) <1.0, (R 1 2 R 2 SiO 1/2) units of several / (R 2 SiO 3/2 ) The number of units ≦ 2, and a, b, and c siloxanes (The arrangement of chains may be random or block.)
A branched organopolysiloxane represented by
(B) The following formula (2)
(R 2 3 SiO 1/2) r (R 2 2 SiO 2/2) s (R 2 SiO 3/2) t (SiO 4/2) u (2)
(Wherein, R 2 is the same as defined above, at least two of R 2 are alkenyl groups, r is an integer of 0 to 100, s is an integer of 0 to 300, and t is an integer of 0 to 200. , U is an integer from 0 to 200, and 1 ≦ t + u ≦ 400 and 2 ≦ r + s + t + u ≦ 800)
An amount of 5 to 900 parts by mass per 100 parts by mass of the organopolysiloxane (A) component represented by
(C) Organopolysiloxane having at least two hydrosilyl groups in the molecule The number of hydrosilyl groups in the component (C) is from 0.4 to the total number of alkenyl groups in the component (A) and the component (B). 4.0, and
(D) Hydrosilylation catalyst An addition-curable silicone resin composition for encapsulating a semiconductor element , comprising an amount sufficient to allow the hydrosilylation reaction to proceed.
式(1)において、0.09≦a/(a+b)≦0.9である、請求項1に記載の半導体素子封止用付加硬化性シリコーン樹脂組成物。 The addition-curable silicone resin composition for sealing a semiconductor element according to claim 1, wherein in the formula (1), 0.09 ≦ a / (a + b) ≦ 0.9. 式(1)において、Rの少なくとも1つが炭素数6から12の芳香族炭化水素基である、請求項1〜2のいずれか1項に記載の半導体素子封止用付加硬化性シリコーン樹脂組成物。 3. The addition-curable silicone resin composition for sealing a semiconductor element according to claim 1, wherein in the formula (1), at least one of R 1 is an aromatic hydrocarbon group having 6 to 12 carbon atoms. 4. object. (A)成分において、ケイ素原子に結合する全置換基の数の内、1価芳香族炭化水素基の数の割合が3%以上、90%以下であることを特徴とする請求項1〜3のいずれか1項に記載の半導体素子封止用付加硬化性シリコーン樹脂組成物。 In the component (A), the ratio of the number of monovalent aromatic hydrocarbon groups to the total number of substituents bonded to silicon atoms is 3% or more and 90% or less. The addition-curable silicone resin composition for semiconductor element sealing according to any one of the above. (C)成分が下記式(3)
(R SiO1/2r’(R SiO2/2s’(RSiO3/2t’(SiO4/2u’ (3)
(式中、Rは、互いに独立に、水素原子、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基であるが、Rの少なくとも2つは水素原子であり、r’は0から100整数、s’は0から300の整数、t’は0から200の整数、u’は0から200の整数であり、2≦r’+s’+t’+u’≦800である)
で示される、請求項1〜4のいずれか1項に記載の半導体素子封止用付加硬化性シリコーン樹脂組成物。
The component (C) has the following formula (3)
(R 3 3 SiO 1/2) r '(R 3 2 SiO 2/2) s' (R 3 SiO 3/2) t '(SiO 4/2) u' (3)
(Wherein, R 3 is independently a hydrogen atom, a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, , R 3 is a hydrogen atom, r ′ is an integer from 0 to 100, s ′ is an integer from 0 to 300, t ′ is an integer from 0 to 200, u ′ is an integer from 0 to 200, 2 ≦ r ′ + s ′ + t ′ + u ′ ≦ 800)
The addition-curable silicone resin composition for semiconductor element encapsulation according to any one of claims 1 to 4, which is represented by:
請求項1〜5のいずれか1項記載の半導体素子封止用付加硬化性シリコーン樹脂組成物の硬化物によって半導体素子が封止されていることを特徴とする半導体装置。 A semiconductor device wherein a semiconductor element is encapsulated by a cured product of the addition-curable silicone resin composition for encapsulating a semiconductor element according to claim 1. 半導体素子が発光素子であることを特徴とする、請求項6記載の半導体装置。 The semiconductor device according to claim 6, wherein the semiconductor element is a light emitting element. 下記式(4)
Figure 0006657037
(式中、Rは、互いに独立に、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基から選ばれる基であり、Rは、互いに独立に、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基であり、各々のR、Rは同一であっても異なっていても良く、cは5〜100の整数であり、Rは水素原子または炭素数1〜6の飽和炭化水素基である)で示されるオルガノポリシロキサンと、下記式(5)
Figure 0006657037
(式中、R、Rは上記と同じであり、b’は1以上かつb以下であり、bは5〜100の整数である)で示される、両末端にアルコキシシリル基またはヒドロキシシリル基(シラノール基)を有するオルガノポリシロキサンとを共縮合させ、次に下記式(6)
Figure 0006657037
(式中、R 上記と同じであり、 は炭素数2から10のアルケニル基であり、Xはハロゲン原子またはRO−[Rは上記と同じである]で示される基である)で示される加水分解性基含有シラン化合物によって末端封鎖を行う工程、及び、前記工程により製造された反応生成物(A)と、
(B)下記式(2)
(R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2 (2)
(式中、Rの定義は上記と同じであり、Rの少なくとも2つはアルケニル基であり、rは0から100の整数、sは0から300の整数、tは0から200の整数、uは0から200の整数であり、1≦t+u≦400、2≦r+s+t+u≦800である)
で示されるオルガノポリシロキサン
(A)成分100質量部に対して5〜900質量部の量、
(C)ヒドロシリル基を分子内に少なくとも2つ有するオルガノポリシロキサン
(A)成分と(B)成分中のアルケニル基の合計数に対して(C)成分中のヒドロシリル基の数が0.4〜4.0となる量、および
(D)ヒドロシリル化触媒
ヒドロシリル化反応を進行させるのに十分な量
とを混合する工程を含む、半導体素子封止用付加硬化性シリコーン樹脂組成物を製造する方法。
The following equation (4)
Figure 0006657037
(Wherein, R 1 s are each independently a group selected from a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms. , R 2 are each independently a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms , and each R 1 , R 2 2 may be the same or different; c is an integer of 5 to 100; R 3 is a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms); The following equation (5)
Figure 0006657037
(Wherein, R 2 and R 3 are the same as above, b ′ is 1 or more and b or less, and b is an integer of 5 to 100). Co-condensation with an organopolysiloxane having a group (silanol group), and then the following formula (6)
Figure 0006657037
(Wherein, R 1 is the same as described above, R 2 is an alkenyl group having 2 to 10 carbon atoms , X is a halogen atom or a group represented by R 3 O— wherein R 3 is the same as above.) as engineering performing end-capped by a hydrolyzable group-containing silane compound represented by the a), and the reaction product produced by the process and (a),
(B) The following formula (2)
(R 2 3 SiO 1/2) r (R 2 2 SiO 2/2) s (R 2 SiO 3/2) t (SiO 4/2) u (2)
(Wherein, R 2 is the same as defined above, at least two of R 2 are alkenyl groups, r is an integer of 0 to 100, s is an integer of 0 to 300, and t is an integer of 0 to 200. , U is an integer from 0 to 200, and 1 ≦ t + u ≦ 400 and 2 ≦ r + s + t + u ≦ 800)
An amount of 5 to 900 parts by mass with respect to 100 parts by mass of the organopolysiloxane (A) component represented by
(C) Organopolysiloxane having at least two hydrosilyl groups in the molecule The number of hydrosilyl groups in the component (C) is from 0.4 to the total number of alkenyl groups in the component (A) and the component (B). 4.0, and
(D) Hydrosilylation catalyst A method for producing an addition-curable silicone resin composition for encapsulating a semiconductor element , comprising a step of mixing the hydrosilylation reaction with an amount sufficient to allow the hydrosilylation reaction to proceed.
(A)反応生成物において、ケイ素原子に結合する全置換基の数の内、1価芳香族炭化水素基の数の割合が3%以上、90%以下であることを特徴とする請求項8に記載の、半導体素子封止用付加硬化性オルガノポリシロキサン組成物を製造する方法。 (A) In the reaction product, the ratio of the number of monovalent aromatic hydrocarbon groups to the total number of substituents bonded to silicon atoms is 3% or more and 90% or less. 3. The method for producing an addition-curable organopolysiloxane composition for encapsulating a semiconductor device according to item 1. (C)成分が下記式(3)
(R SiO1/2r’(R SiO2/2s’(RSiO3/2t’(SiO4/2u’ (3)
(式中、Rは、互いに独立に、水素原子、炭素数1から12の置換または非置換の飽和炭化水素基もしくは炭素数6から12の置換または非置換の芳香族炭化水素基であるが、Rの少なくとも2つは水素原子であり、r’は0から100整数、s’は0から300の整数、t’は0から200の整数、u’は0から200の整数であり、2≦r’+s’+t’+u’≦800である)
で示される、請求項8〜9のいずれか1項に記載の、半導体素子封止用付加硬化性シリコーン樹脂組成物を製造する方法。
The component (C) has the following formula (3)
(R 3 3 SiO 1/2) r '(R 3 2 SiO 2/2) s' (R 3 SiO 3/2) t '(SiO 4/2) u' (3)
(Wherein, R 3 is independently a hydrogen atom, a substituted or unsubstituted saturated hydrocarbon group having 1 to 12 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, , R 3 is a hydrogen atom, r ′ is an integer from 0 to 100, s ′ is an integer from 0 to 300, t ′ is an integer from 0 to 200, u ′ is an integer from 0 to 200, 2 ≦ r ′ + s ′ + t ′ + u ′ ≦ 800)
The method for producing an addition-curable silicone resin composition for encapsulating a semiconductor element according to any one of claims 8 to 9, which is represented by the following formula:
JP2016128007A 2015-12-22 2016-06-28 Addition-curable silicone resin composition and semiconductor device Active JP6657037B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16205132.0A EP3184589B1 (en) 2015-12-22 2016-12-19 Addition-curable silicone resin composition and a semiconductor device
EP18204697.9A EP3473675A1 (en) 2015-12-22 2016-12-19 Addition-curable silicone resin composition and a semiconductor device
US15/387,019 US10253139B2 (en) 2015-12-22 2016-12-21 Addition-curable silicone resin composition and a semiconductor device
CN201611196873.XA CN106947258B (en) 2015-12-22 2016-12-22 Addition-curable silicone resin composition and semiconductor device
US16/197,567 US10696794B2 (en) 2015-12-22 2018-11-21 Addition-curable silicone resin composition and a semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015249457 2015-12-22
JP2015249457 2015-12-22

Publications (2)

Publication Number Publication Date
JP2017115116A JP2017115116A (en) 2017-06-29
JP6657037B2 true JP6657037B2 (en) 2020-03-04

Family

ID=59233442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128007A Active JP6657037B2 (en) 2015-12-22 2016-06-28 Addition-curable silicone resin composition and semiconductor device

Country Status (2)

Country Link
JP (1) JP6657037B2 (en)
CN (1) CN106947258B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190053874A (en) * 2016-09-07 2019-05-20 스미또모 가가꾸 가부시키가이샤 A cured product, a wavelength converting sheet, a light emitting device, a sealing member, and a semiconductor light emitting device
JP7249954B2 (en) * 2017-05-05 2023-03-31 ダウ シリコーンズ コーポレーション Hydrosilylation-curable silicone resin
WO2019181381A1 (en) * 2018-03-20 2019-09-26 信越化学工業株式会社 Silicone gel composition, cured product thereof, and power module
US20210246337A1 (en) * 2018-06-29 2021-08-12 Dow Silicones Corporation Solventless silicone pressure sensitive adhesive and methods for making and using same
JP7170450B2 (en) * 2018-07-31 2022-11-14 信越化学工業株式会社 Addition-curable silicone resin composition and semiconductor device
JP7390962B2 (en) * 2020-04-14 2023-12-04 信越化学工業株式会社 Curable organosilicon resin composition
JP7301018B2 (en) * 2020-04-14 2023-06-30 信越化学工業株式会社 Mixture of silylated isocyanurate compounds and metal corrosion inhibitor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327560A (en) * 1986-07-21 1988-02-05 Shin Etsu Chem Co Ltd Releasing silicone composition
JP2004359756A (en) * 2003-06-03 2004-12-24 Wacker Asahikasei Silicone Co Ltd Sealant composition for led
JP4586967B2 (en) * 2003-07-09 2010-11-24 信越化学工業株式会社 Light emitting semiconductor coating protective material and light emitting semiconductor device
US20060058486A1 (en) * 2004-09-16 2006-03-16 Wacker-Chemie Gmbh Alkenyl-functional organopolysiloxanes
JP4707531B2 (en) * 2004-10-29 2011-06-22 信越化学工業株式会社 Curable silicone release agent composition and release paper using the same
JP4761020B2 (en) * 2004-12-08 2011-08-31 信越化学工業株式会社 Solvent-free silicone adhesive composition
JP4697405B2 (en) * 2005-05-23 2011-06-08 信越化学工業株式会社 Silicone resin composition for lens molding and silicone lens
JP4994292B2 (en) * 2008-04-09 2012-08-08 信越化学工業株式会社 Solvent-free silicone release agent composition for film and release film using the same
JP4993135B2 (en) * 2008-07-08 2012-08-08 信越化学工業株式会社 Thermally conductive silicone composition
EP2530740B1 (en) * 2010-01-25 2018-08-01 LG Chem, Ltd. Photovoltaic module
WO2012050105A1 (en) * 2010-10-14 2012-04-19 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Curable polyorganosiloxane composition
JP5533552B2 (en) * 2010-10-25 2014-06-25 信越化学工業株式会社 Silicone emulsion composition for release paper or release film, release paper or release film and method for producing the same
JP5819787B2 (en) * 2012-07-19 2015-11-24 信越化学工業株式会社 Curable silicone resin composition
JP6313722B2 (en) * 2015-04-15 2018-04-18 信越化学工業株式会社 Addition-curing silicone composition and semiconductor device

Also Published As

Publication number Publication date
JP2017115116A (en) 2017-06-29
CN106947258A (en) 2017-07-14
CN106947258B (en) 2021-06-25

Similar Documents

Publication Publication Date Title
JP6657037B2 (en) Addition-curable silicone resin composition and semiconductor device
EP1873211B1 (en) Phosphor-filled curable silicone resin composition and cured product thereof
JP5526823B2 (en) Optical semiconductor device sealed with silicone resin
JP6565818B2 (en) Hydrosilyl group-containing organopolysiloxane, method for producing the same, and addition-curable silicone composition
EP1980591A1 (en) Phosphor-containing adhesive silicone composition, composition sheet formed of the composition, and method of producing light emitting device using the sheet
US10696794B2 (en) Addition-curable silicone resin composition and a semiconductor device
CN106467669B (en) Addition-curable organopolysiloxane composition and semiconductor package
JP6313722B2 (en) Addition-curing silicone composition and semiconductor device
JP6302866B2 (en) Addition-curing silicone composition and semiconductor device
TWI728074B (en) Addition curable silicone resin composition
JP6307465B2 (en) Condensation-curable silicone composition and semiconductor device
CN107298862B (en) Addition-curable silicone resin composition
JP2015113348A (en) Curable composition and optical semiconductor device
JP2021042274A (en) Curable organosilicon resin composition
JP6428595B2 (en) Addition-curable resin composition and semiconductor device
JP6393659B2 (en) Addition-curing silicone composition and semiconductor device
JP7170450B2 (en) Addition-curable silicone resin composition and semiconductor device
CN108727829B (en) Curable resin composition
JP7100600B2 (en) Curable organosilicon resin composition
JP6307470B2 (en) Addition-curing silicone composition and semiconductor device
JP2023132309A (en) curable silicone composition
JP2018165348A (en) Highly heat-resistant addition-curable silicone resin composition
JP2020143206A (en) Curable organosilicon resin composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200205

R150 Certificate of patent or registration of utility model

Ref document number: 6657037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150