JP6656515B2 - Power generation method using osmotic heat cycle - Google Patents

Power generation method using osmotic heat cycle Download PDF

Info

Publication number
JP6656515B2
JP6656515B2 JP2018079425A JP2018079425A JP6656515B2 JP 6656515 B2 JP6656515 B2 JP 6656515B2 JP 2018079425 A JP2018079425 A JP 2018079425A JP 2018079425 A JP2018079425 A JP 2018079425A JP 6656515 B2 JP6656515 B2 JP 6656515B2
Authority
JP
Japan
Prior art keywords
concentrated liquid
working medium
semipermeable membrane
heat
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018079425A
Other languages
Japanese (ja)
Other versions
JP2019183820A (en
Inventor
紀之 織田
紀之 織田
將義 織田
將義 織田
Original Assignee
オーテック有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーテック有限会社 filed Critical オーテック有限会社
Priority to JP2018079425A priority Critical patent/JP6656515B2/en
Publication of JP2019183820A publication Critical patent/JP2019183820A/en
Application granted granted Critical
Publication of JP6656515B2 publication Critical patent/JP6656515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、熱エネルギーを機械的な仕事に変換するランキンサイクル型熱サイクルであって、半透膜と作動媒体中の溶質の濃度差を利用して持続的、安定的に動力を発生させる「浸透圧熱サイクルを利用する動力発生方法」(以下「浸透圧熱サイクル」という)に関する。 The present invention relates to a Rankine cycle heat cycle for converting thermal energy into mechanical work, sustained, thereby stably generating power by utilizing the density difference of the solute in the semipermeable membrane and the working medium " Power generation method using osmotic heat cycle "(hereinafter referred to as" osmotic heat cycle ").

先行技術として、公開特許公報昭57−73810および公開特許公報昭57−73811(発明者は本願発明者の一人と同一)がある。作動媒体が気相、液相と相変化し、気相の作動媒体が膨張器で膨張して動力を発生するというランキンサイクル型熱サイクルの主系統に、半透膜を使用するという文献は海外を含めて、この二件以外には見当たらない。一方海と川、塩水湖の表層と底層等の塩分濃度差を利用した水力タービンによる動力回収の研究は1980年代後半以降盛んに行われ、試験プラントの運転成果等、多数の発表がなされている。 As prior art, there are JP-A-57-73810 and JP-A-57-73811 (the inventor is the same as one of the present inventors). The literature that uses a semi-permeable membrane for the main system of a Rankine cycle type heat cycle in which the working medium changes its phase to the gas phase and the liquid phase and the gas phase working medium expands with an expander to generate power is overseas. And no other cases. On the other hand, research on power recovery by hydro turbines using the difference in salinity between the surface layer and the bottom layer of the sea, river, and salt lake has been actively conducted since the late 1980s, and many publications such as the operation results of test plants have been made. .

公開特許公報昭57−73810Published Patent Application Sho 57-73810 公開特許公報昭57−73811Published Patent Publication No. 57-73811 米国特許3906250U.S. Pat. No. 3,906,250 米国特許4193267US Patent 4,193,267 特表2010−509540Table 2010-509540 特許第5160552Patent No. 5160552 特許第5295952Patent No. 5295952 特開2009−47012JP 2009-47012 A 特開2015−161280JP-A-2015-161280

谷岡明彦、浸透圧発電、日本海水学会誌(1),4-7Akihiko Tanioka, Osmotic Power Generation, Journal of the Japan Society of Sea Water (1), 4-7 上原春男、海洋温度差発電、応用物理、63、8Haruo Uehara, Ocean Thermal Energy Conversion, Applied Physics, 63, 8

本発明は地熱、海洋表層水、一般排熱等の高熱源から熱を吸収し、大気、海洋深層水等の低熱源に熱を捨てることにより機械的仕事をする熱サイクルに関するものであって、連続して流れる作動媒体が液相、気相、液相とサイクリックに相変化し、液相工程にある作動媒体が溶質の濃度変化をすることにより、半透膜を浸透する作動媒体の流束が維持され、気相工程にある作動媒体が持続的に機械的仕事をすることを可能にした浸透圧熱サイクルに関する。 The present invention is geothermal, ocean surface water, absorbs heat from the high heat source such as general waste heat, air, comprising relates thermocycling you mechanical work by discarding heat to a low heat source such as deep sea water The working medium that flows continuously changes into a liquid phase, a gas phase, and a liquid phase cyclically, and the working medium in the liquid phase process changes the solute concentration, thereby causing the working medium to penetrate the semipermeable membrane. The present invention relates to an osmotic heat cycle in which the flux is maintained and the working medium in the gas phase process can perform continuous mechanical work.

地熱発電については、熱水貯留層といわれる高熱源まで350m以上の深さの生産井を掘削し、噴出してきた熱水を気水分離器でフラッシュさせて蒸気と熱水に分離し、その蒸気でタービンを回し、熱水は生産井から離隔した場所に掘削した、還元井を使って再び地中深くに戻すか河川に流すという方式が一般的である。勿論蒸気のみが噴出して、これで蒸気タービンを回すという例もある。 地中から抜き出した熱水や蒸気の利用、処理にこれまで様々な努力が積み上げられてきたが、熱水や蒸気を取出すことにより地中の状態が変わることは否定できず、熱水貯留層の水位への影響、地震、地滑り等についての説明を完璧にすることは容易ではない。 河川に熱水を冷却したのちに流す場合には、熱水に含まれた成分が長期的に自然環境、生態系に影響を与えないという説明も求められる。 さらに二本の井戸の掘削に要するコストは全体のコストの24%を占めるとの報告もある。 For geothermal power generation, a production well with a depth of 350 m or more is excavated to a high heat source called a hot water reservoir, and the jetted hot water is flashed by a steam-water separator to separate it into steam and hot water. In general, hot water is excavated in a location away from production wells, and hot water is returned deep underground or returned to rivers using return wells. Of course, there is also an example in which only steam is spouted and the steam turbine is turned by this. Various efforts have been made up to the use and treatment of hot water and steam extracted from the ground, but it cannot be denied that extracting hot water or steam will change the state of the ground, and the hot water reservoir It is not easy to completely explain the impact on the water level, earthquakes, and landslides. If hot water is cooled and then flowed into a river, it must be explained that the components contained in the hot water do not affect the natural environment and ecosystems in the long term. It has also been reported that the cost of drilling two wells accounts for 24% of the total cost.

海洋温度差発電は、表層水と深層水との間の20℃程度の温度差を利用してランキンサイクル発電を行うもので、実現すれば比較的安定したエネルギー源である。 しかし海水の採取、特に深層水(冷熱源)の汲み上げには膨大な動力を必要とし、表層水(高熱源)の汲み上げ、ランキンサイクル主系統の作動媒体循環ポンプの動力を合せるとタービン軸出力の3割から5割にも上ることが明らかになっている。 さらに深層水、表層水に限らず大量の海水を汲み出し、別の場所に流すこと自体が環境へ大きな影響を与える可能性がある。 Ocean temperature difference power generation performs Rankine cycle power generation using a temperature difference of about 20 ° C. between surface water and deep water, and is a relatively stable energy source if realized. However, the collection of seawater, especially the pumping of deep water (cold heat source), requires enormous power. It is clear that it can be as high as 30 to 50%. In addition, pumping a large amount of seawater, not only deep water and surface water, and flowing it to another location may itself have a significant impact on the environment.

本発明の第1の発明は、半透膜と、該半透膜の一方の側にある凝縮作動媒体と、該半透膜の他の側にあって前記凝縮作動媒体と同じ物質からなる溶媒および溶質とからなる濃液とがあり、前記凝縮作動媒体が前記半透膜の他の側の濃液に浸透圧によって引込まれる工程と、前記濃液が受熱して熱的に気化した作動媒体と高濃液とに分離される工程と、該高濃液が前記半透膜の他の側の表面近傍に還流する工程と、前記気化した作動媒体が膨張器に流入して動力を発生する工程と、該膨張器を出た前記作動媒体が放熱して凝縮作動媒体となり、前記半透膜の一方の側の凝縮作動媒体に合流する工程を含むことを特徴とする浸透圧熱サイクルである。 ここで高濃液を半透膜の他の側、すなわち濃液側の表面近傍に還流するのは、溶質を含まない凝縮作動媒体の濃液側への浸み出しによって、濃液側の表面近傍の溶質濃度が希釈されて浸透圧が低下することがないようにするためである。ここで前記溶質は、使用温度範囲内で実質的に不揮発であることが好ましい。 According to a first aspect of the present invention, there is provided a semi-permeable membrane, a condensing working medium on one side of the semi-permeable membrane, and a solvent on the other side of the semi-permeable membrane, which is made of the same substance as the condensing working medium. And a concentrated liquid comprising a solute and a step in which the condensed working medium is drawn into the concentrated liquid on the other side of the semipermeable membrane by osmotic pressure, and an operation in which the concentrated liquid receives heat and is thermally vaporized. A step of separating the concentrated liquid into a medium and a highly concentrated liquid, a step of returning the concentrated liquid to a surface near the other surface of the semipermeable membrane, and a step of generating power by the vaporized working medium flowing into an expander. And an osmotic heat cycle characterized in that the working medium that has exited the expander radiates heat to become a condensing working medium and merges with the condensing working medium on one side of the semipermeable membrane. is there. Here, the high-concentration liquid is refluxed to the other side of the semipermeable membrane, that is, in the vicinity of the surface on the concentrated liquid side, because the condensed working medium containing no solute leaches into the concentrated liquid side, and the surface on the concentrated liquid side This is to prevent the osmotic pressure from decreasing due to the dilution of the solute concentration in the vicinity. Here, it is preferable that the solute is substantially non-volatile within a use temperature range.

本発明の第2の発明は、前記の各工程が連通した密閉経路内で行われることを特徴とする浸透圧熱サイクルである。一部を系外に放出することは系内へ予期せぬ化学物質が混入するリスクを生ずる。 時間の経過とともに半透膜の前記一方の側の表面で濃度分極を起こし、浸透圧、浸透流束ともに低下する等である。 全工程を密閉した経路内で行えば、管理が簡単で、問題が起きてもその原因を特定しやすい。 特に本発明による浸透圧熱サイクルを発電プラントとして使用する場合には、安定した発電、送電が非常に重要視される。 しかし本発明の第1の発明は全工程を必ずしも密閉経路で行わなくても本発明による浸透圧熱サイクルとして機能する。 例えばタービンの中間段から水蒸気を抜き出して、食品加工に使用する等である。 ただしこのためには常にその蒸気分の水を外部から導入する必要がある。 A second invention of the present invention is an osmotic pressure heat cycle, wherein each of the above-described steps is performed in a closed closed path. Partial release outside the system poses the risk of unexpected chemical contamination into the system. With the passage of time, concentration polarization occurs on the surface on the one side of the semipermeable membrane, and both the osmotic pressure and the osmotic flux decrease. If all processes are performed in a closed route, management is easy, and if a problem occurs, its cause can be easily identified. In particular, when the osmotic heat cycle according to the present invention is used as a power plant, stable power generation and transmission are very important. However, the first invention of the present invention functions as an osmotic heat cycle according to the present invention even if not all steps are performed in a closed path. For example from the turbine of the intermediate stage by extracting steam, and the like for use in food processing. However, for this purpose, it is necessary to always introduce the water of the steam from the outside.

本発明の第3の発明は密閉経路が高熱源にまで延びていることを特徴とする浸透圧熱サイクルである。 この意味するところは、熱を持った“物”を移動させずに熱のみを移動させて浸透圧熱サイクルを実現するものである。 地熱発電を例にとれば、地下の熱水貯留層から熱水や蒸気を抜き出す従来の方法では、熱とともに生態系に好ましくない多種多様な物質が地上に出てくること、既存の温泉、地盤への影響等多岐にわたる問題も生じてくる。 ここで、熱のみを移動させることができれば、そのような懸念は殆どなくなり、停滞している地熱利用が一気に進み始めると考えられる。 A third invention of the present invention is the osmotic heat cycle, wherein the closed path extends to the high heat source. This means that an osmotic heat cycle is realized by moving only heat without moving a heated "thing". Taking geothermal power generation as an example, conventional methods of extracting hot water and steam from underground hot water reservoirs lead to the release of various substances that are unfavorable to ecosystems along with heat, as well as existing hot springs and ground. A wide variety of problems will arise, including the impact on the environment. Here, if only the heat can be moved, such a concern is almost eliminated, and it is considered that the stagnant use of geothermal energy starts to progress at a stretch.

本発明の第4の発明は密閉経路が低熱源にまで延びていることを特徴とする浸透圧熱サイクルである。 この意味するところは、上記第3の発明と同じである。 熱を持った“物”を移動させずに熱のみを移動させるということである。 この場合の熱は冷熱、言い換えるとマイナスの熱である。 海洋温度差発電を例にとれば、従来は数100mの深さの海中から低温の深層水を抜き出すという方法である。冷熱と一緒にマグロの子もうなぎのシラスもアワビの卵もポンプで吸い上げるというやり方である。 高圧ポンプに巻き込まれると、生物は生きてはおれない。 また海流も乱し兼ねない。 冷熱だけを移動すれば、このようなことは起きない。 According to a fourth aspect of the present invention, there is provided an osmotic pressure cycle, wherein the closed path extends to a low heat source. This means the same as in the third invention. This means that only the heat is moved without moving the heated "thing". The heat in this case is cold, in other words, minus heat. Taking the ocean temperature difference power generation as an example, a conventional method is to extract low-temperature deep water from the sea at a depth of several hundred meters. The method is to pump up the tuna pups and the abalone eggs together with the cold heat. Creatures do not survive when caught in a high-pressure pump. Sea currents can also be disturbed. This would not happen if only cold heat was transferred.

本発明の第5の発明は前記半透膜の他の側において、該半透膜の表面に沿う流れを生起し、浸透圧によって引込まれる工程を促進する、濃液の循環系統を設けたことを特徴とする浸透圧熱サイクルである。 表面に沿う流れを生起させ、促進させる理由は、半透膜の濃液側において、前記凝縮作動媒体の浸みだしによって、濃液側表面で溶質の分子やイオンの濃度が小さくなることを防ぐためである。 言い換えると濃度分極を起こさせないためである。 濃液側の濃度分極を防ぐには、半透膜の当該表面で、溶質の供給を絶やさない、浸み出した溶媒を滞留させない、流れに偏りを作らないことが重要である。 第5の発明は浸み出した溶媒を滞留させないことを目的とするもので、第1の発明における高濃液の半透膜の濃液側表面近傍への還流に加えて、第2の内部循環ラインを設けて第1の発明をサポートして、より好ましい浸透圧熱サイクルを提供するものである。 According to a fifth aspect of the present invention, a concentrated liquid circulating system is provided on the other side of the semipermeable membrane, which generates a flow along the surface of the semipermeable membrane and promotes a step of being drawn by osmotic pressure. An osmotic heat cycle characterized in that: The reason for generating and promoting the flow along the surface is to prevent the concentration of the solute molecules and ions from being reduced on the concentrated liquid side surface due to the seepage of the condensing working medium on the concentrated liquid side of the semipermeable membrane. It is. In other words, concentration polarization is not caused. In order to prevent concentration polarization on the concentrated liquid side, it is important that the supply of the solute is not interrupted, the leached solvent is not retained, and the flow is not biased on the surface of the semipermeable membrane. The fifth invention aims at preventing the leached solvent from staying therein. In addition to the reflux of the highly concentrated liquid to the vicinity of the concentrated liquid side surface of the semipermeable membrane according to the first invention, the second internal liquid A circulation line is provided to support the first invention to provide a more preferable osmotic heat cycle.

本発明による浸透圧熱サイクルを、
1) 地熱発電に使用すれば、熱輸送管によって高温の熱のみを地上に運ぶことができるので、
(1) 地下の熱水貯留層の水位に影響を与えることはない。 したがって既存の温泉へ影響を及ぼすことはなく、地盤への影響もない。
(2) 熱水、蒸気とともに地上に漏れ出していた化学物質は出なくなり、自然環境にもほとんど影響を与えない。
2)海洋温度差発電に使用すれば、
(1)深層水および表層水の汲み上げ用、および主系統の作動媒体駆動用のポンプ動力を、濃溶液の濃度維持のための熱量で置換えることができる。 これらのポンプは全て不要となり、タービン軸出力に発電機の効率を乗じた数値が正味出力となる。
(2)深層水、表層水の汲み上げがなくなるので、貴重な海洋生物の生態に悪影響を与える懸念がなくなる。
The osmotic heat cycle according to the present invention,
1) When used for geothermal power generation, only high-temperature heat can be carried to the ground by heat transport pipes.
(1) It does not affect the water level of the underground hydrothermal reservoir. Therefore, there is no effect on existing hot springs and no effect on the ground.
(2) Chemical substances that have leaked to the ground along with hot water and steam will not be emitted, and will have little effect on the natural environment.
2) If used for ocean thermal energy conversion,
(1) The pump power for pumping deep water and surface water and for driving the working medium in the main system can be replaced with heat for maintaining the concentration of the concentrated solution. All of these pumps are not required, and the net output is the value obtained by multiplying the turbine shaft output by the generator efficiency.
(2) Since there is no pumping of deep water and surface water, there is no fear of adversely affecting the ecology of valuable marine life.

図1は本発明の実施態様の浸透圧熱サイクルの第1実施例で、地熱発電に適用した概略構成図である。FIG. 1 is a schematic configuration diagram of a first example of an osmotic heat cycle according to an embodiment of the present invention applied to geothermal power generation. 図2は図1の半透膜周りの部分拡大図である。FIG. 2 is a partially enlarged view around the semipermeable membrane of FIG. 図3は本発明の実施態様の浸透圧熱サイクルを地熱発電に適用した場合の作動媒体の状態変化を温度−エントロピー線図(T−S線図)で表した概略図である。FIG. 3 is a schematic diagram showing a temperature-entropy diagram (TS diagram) showing a state change of a working medium when the osmotic heat cycle of the embodiment of the present invention is applied to geothermal power generation. 図4は本発明の実施態様の浸透圧熱サイクルの第2実施例で、海洋温度差発電に適用した概略構成図である。FIG. 4 is a schematic diagram showing a second embodiment of the osmotic heat cycle according to the embodiment of the present invention, which is applied to ocean thermal energy conversion. 図5は図4の半透膜周りの部分拡大図である。FIG. 5 is a partially enlarged view around the semipermeable membrane of FIG. 図6は図4の第2の内部循環ライン周りの部分拡大図である。FIG. 6 is a partially enlarged view around the second internal circulation line in FIG. 図7は本発明の実施態様の浸透圧熱サイクルの第3実施例で、熱輸送管を水平に配設したものである。FIG. 7 shows a third embodiment of the osmotic pressure heat cycle according to the embodiment of the present invention, in which heat transport pipes are horizontally arranged. 図8は本発明の実施態様の浸透圧熱サイクルで、第3実施例において、熱輸送管を二重管とせず、曲り管とした平面図である。FIG. 8 is a plan view showing an osmotic heat cycle according to an embodiment of the present invention, in which the heat transport pipe is not a double pipe but a bent pipe in the third embodiment .

本発明の第1実施例について、図1、図2、図3を用いて説明する。なお、図は本発明の方法を説明するための概略図で、詳細設計図ではない。
50は密閉経路内を連続して流れる作動媒体で、浸透圧熱サイクルの密閉経路内の区間に応じて、気相(気化した作動媒体50S)、液相(50L)と状態変化し、気相状態にある気化した作動媒体50Sは膨張器であるタービン3を介して外部に機械的仕事をし(図3の(1)(2)の状態変化)、凝縮器232で大気に放熱し、凝縮して凝縮液、すなわち凝縮作動媒体50Lpとなる(図3の(2)(3)の状態変化)。
First Embodiment A first embodiment of the present invention will be described with reference to FIGS. Note that the figure is a schematic diagram for explaining the method of the present invention, and is not a detailed design drawing.
Reference numeral 50 denotes a working medium continuously flowing in the closed path, which changes its state into a gas phase (vaporized working medium 50S) and a liquid phase (50L) in accordance with the section in the closed path of the osmotic pressure heat cycle. The vaporized working medium 50S in the state performs mechanical work to the outside via the turbine 3 which is an expander ( state change from (1) to (2) in FIG. 3), and releases heat to the atmosphere in the condenser 232, The condensed liquid becomes condensed liquid, that is, the condensed working medium 50Lp ( the state change from (2) to (3) in FIG. 3).

作動媒体が液相の状態にあるとき、作動媒体の濃度は50Lp(凝縮作動媒体)、50Lm(濃液、溶質を含む溶液)、50Lc(高濃液)と変化している。 本実施例では溶媒は水、溶質は塩化ナトリウムとされ、凝縮作動媒体50Lpの濃度は0%、濃液50Lmの濃度は8.3%、高濃液50Lcの濃度は21%である。高濃液50Lcは半透膜の前記他の側、すなわち濃液側表面で、浸透流である凝縮作動媒体50Lpと完全に混合し、濃液50Lmが形成される。 したがって、半透膜1の下流で吸い込まれる、第2の内部循環ラインを流れる溶液の濃度も50Lmとなる。濃液50Lmは熱輸送管2を通って、ヘッド圧を高めながら最深部に移行し、地熱貯留層に浸漬されている受熱ゾーン(本発明による浸透圧熱サイクルの加熱器)で熱を摂取して一部沸騰が始まる。 ヘッド圧を低めながら地上に移行して、気液分離器で気液分離され、蒸気は膨張器であるタービン3に流入し、8.3%から21%に濃度を増した高濃液は気液分離槽を経由して、半透膜室の前記他の側、すなわち濃液側の表面近傍に還流する。
ここで濃度を21%としたのは、塩化ナトリウム溶液は溶質濃度が28%になると析出を始めるので、余裕を見て21%に抑えたものである。8.3%塩化ナトリウム溶液は、乾き度0.6の蒸気が気液分離されると、溶液の溶質の濃度は8.3/(1−0.6)=20.75となるからである。
乾き度を決定するのは高熱源からの入熱量で、図1の受熱ゾーン231の深さで決定される。 プラント計画時予め熱源を調査し、熱水貯留層内の温度および対流の状況を把握して伝熱計算に必要なデータを採取した後に前記231の深さを決定する。 この場合、熱輸送管を上下に動かして受熱ゾーンの深さをジャッキ等で調整できるように構成することが好ましい。より好ましくは熱輸送管と地面との隙間には耐熱シール材が充填されている。
When the working medium is in the liquid phase, the concentration of the working medium changes to 50 Lp (condensed working medium), 50 Lm (concentrated liquid, solution containing solute), and 50 Lc (highly concentrated liquid). In this embodiment, the solvent is water and the solute is sodium chloride. The concentration of the condensed working medium 50Lp is 0%, the concentration of the concentrated liquid 50Lm is 8.3%, and the concentration of the highly concentrated liquid 50Lc is 21%. The highly concentrated liquid 50Lc is completely mixed with the condensed working medium 50Lp, which is a permeate flow, on the other side of the semipermeable membrane, that is, on the concentrated liquid side surface, to form a concentrated liquid 50Lm. Therefore, the concentration of the solution sucked downstream of the semipermeable membrane 1 and flowing through the second internal circulation line also becomes 50 Lm. The concentrated liquid 50Lm passes through the heat transport pipe 2, moves to the deepest part while increasing the head pressure, and ingests heat in the heat receiving zone (heater of the osmotic heat cycle according to the present invention) immersed in the geothermal reservoir. Some boiling begins. After moving to the ground while lowering the head pressure, gas-liquid separation was performed by the gas-liquid separator, and the steam flowed into the turbine 3, which was an expander, and the highly concentrated liquid, whose concentration increased from 8.3% to 21%, was vaporized. The liquid is returned to the other side of the semipermeable membrane chamber, that is, near the surface on the concentrated liquid side, via the liquid separation tank.
Here, the reason why the concentration is set to 21% is that the sodium chloride solution starts to precipitate when the solute concentration becomes 28%, so that the concentration is suppressed to 21% with a margin. The 8.3% sodium chloride solution has a solute concentration of 8.3 / (1-0.6) = 20.75 % when vapor having a dryness of 0.6 is subjected to gas-liquid separation. is there.
The degree of dryness is determined by the amount of heat input from the high heat source, and is determined by the depth of the heat receiving zone 231 in FIG. At the time of plant planning, the heat source is investigated in advance, the temperature and convection in the hot water reservoir are grasped, and data necessary for heat transfer calculation is collected, and then the depth of the 231 is determined. In this case, it is preferable that the heat transport pipe be moved up and down to adjust the depth of the heat receiving zone with a jack or the like. More preferably, the gap between the heat transport pipe and the ground is filled with a heat-resistant sealing material.

液相の状態にある作動媒体の役割は場所と濃度に応じて次のように変化する。
1)作動媒体の駆動(場所:半透膜1、半透膜室233)
半透膜、濃度0% の凝縮作動媒体、濃度8.3%の濃液の組合せによって、浸透圧が発生し、凝縮作動媒体が濃液側に引込まれる流束が生じる。ここで駆動とは作動媒体を加圧し流動させることを言う。
2)駆動力の源である濃度差の維持(図1、図2参照)
(1) 半透膜の濃液側表面へ高濃液を補給する:濃液である作動媒体50Lmが、加熱器(受熱ゾーンともいう)231で受熱して、気液分離器5で蒸気50Sと、濃縮された濃液、すなわち高濃液50Lcに分離され、高濃液50Lcは戻り管6を経て半透膜1の濃液側表面に還流する。凝縮作動媒体50Lpの該半透膜からの浸みだし(浸透流)と濃液側表面上で混合し、濃液側の表面の希釈、すなわち濃度分極を防ぐ。
(2) 第2の循環ラインによる循環流量の増大により濃度0%の溶媒の浸透流を半透膜の濃液側表面から流し去る:循環ライン7のポンプ7aにより、半透膜の濃液側表面に沿う濃液の流量、流速を増大して、半透膜表面に停滞しがちな溶媒を濃液で流し去り、混合する。
以下図1、図2および図3を用いて、半透膜1を出発点として、作動媒体50の流れに沿って、順を追って説明する。
The role of the working medium in the liquid phase changes according to the location and concentration as follows.
1) Drive of working medium (location: semipermeable membrane 1, semipermeable membrane chamber 233)
The combination of the semi-permeable membrane, the 0% condensed working medium and the 8.3% concentrated liquid creates an osmotic pressure and creates a flux where the condensing working medium is drawn to the concentrated side. Here, driving means pressurizing and flowing the working medium.
2) Maintaining the density difference, which is the source of the driving force (see FIGS. 1 and 2)
(1) Replenish the highly concentrated liquid to the concentrated liquid side surface of the semipermeable membrane: 50 Lm of the working fluid, which is a concentrated liquid, receives heat in a heater (also referred to as a heat receiving zone) 231, and vapor 50 S in the gas-liquid separator 5. Then, the concentrated liquid, that is, the concentrated liquid 50Lc is separated, and the concentrated liquid 50Lc is returned to the concentrated liquid side surface of the semipermeable membrane 1 through the return pipe 6. The leaching (permeation flow) of 50 Lp of the condensed working medium from the semipermeable membrane is mixed with the concentrated liquid surface to prevent dilution of the concentrated liquid surface, that is, concentration polarization.
(2) The permeate flow of the solvent having a concentration of 0% is caused to flow off from the concentrated liquid side surface of the semipermeable membrane by increasing the circulating flow rate by the second circulation line: the concentrated liquid side of the semipermeable membrane is pumped by the pump 7a of the circulation line 7. The flow rate and flow rate of the concentrated solution along the surface are increased, and the solvent that tends to stagnate on the semipermeable membrane surface is flowed away by the concentrated solution and mixed.
Hereinafter, with reference to FIGS. 1, 2 and 3, the description will be given step by step along the flow of the working medium 50 starting from the semipermeable membrane 1.

1は半透膜、233は半透膜室、233aは入口溜り、233bは出口溜りである。 入口溜り233aおよび出口溜り233bでは一旦溶液の速度が下がることにより、流れが整流され、半透膜の濃液側表面に沿う流れが一様にされている。半透膜の前記一方の側の濃度0% の凝縮作動媒体50Lpは半透膜を通過して前記他の側、すなわち濃液側に流量Gtで流入する(図3では半透膜は(3)で、実質的に一点となる)。 1 is a semipermeable membrane, 233 is a semipermeable membrane chamber, 233a is an inlet pool, and 233b is an outlet pool. In the inlet reservoir 233a and the outlet reservoir 233b, once the velocity of the solution is reduced, the flow is rectified, and the flow along the concentrated liquid side surface of the semipermeable membrane is made uniform. The condensed working medium 50Lp having a concentration of 0% on one side of the semipermeable membrane passes through the semipermeable membrane and flows into the other side, that is, the concentrated liquid side at a flow rate Gt (in FIG. 3, the semipermeable membrane is (3 ) , Which is essentially one point).

半透膜室233には前記のように内部循環戻り管6および第2内部循環ライン7が取り付けられており、本実施例では内部循環戻り管6の拡径部6bに第2内部循環ライン7の吹き出しノズル7cが取付けられている。内部循環戻り流れとノズル7cからの吹き出し流れの方向を合せたのはエジェクター効果を意図したものである。 内部循環戻り流の流量はGcである。 一方第2内部循環流は半透膜室の出口溜りからノズル7bによって流量Gfで吸い込まれている。 模式的に説明するためノズル7bを用いているが、好ましくは内管22の内側にスクープを設けて、半透膜室から流れ出る主流の圧力損失を最小にしながら濃液を吸い込むようにすればポンプ7aの動力は小さくなるので好ましい。 濃液側の濃度は前記のように半透膜の濃液側表面上で維持されているので、出口溜り233bから吸込む濃液の濃度は50Lmである。 この構成により、半透膜の濃液側表面の濃度分極が防止され、浸透圧が安定し、浸透流の流束が変化することがないので、作動流体50の循環流量(タービン内作動媒体流量)Gtも安定的に維持される。 このように半透膜室では圧力変化、混合、濃度変化、温度変化が行われており、ランキンサイクルのボイラー給水ポンプように等エントロピー変化とはとても言えないが、図3のような概略図では実質的に一点にしかならない。 濃度、流量の変化については図2に図示したとおりである。   The internal circulation return pipe 6 and the second internal circulation line 7 are attached to the semipermeable membrane chamber 233 as described above, and in the present embodiment, the second internal circulation line 7 is connected to the enlarged diameter portion 6 b of the internal circulation return pipe 6. Is provided. The purpose of matching the direction of the internal circulation return flow with the direction of the blowout flow from the nozzle 7c is intended for the ejector effect. The flow rate of the internal circulation return flow is Gc. On the other hand, the second internal circulation flow is sucked at the flow rate Gf from the outlet pool of the semipermeable membrane chamber by the nozzle 7b. Although the nozzle 7b is used for the purpose of a schematic description, it is preferable that a scoop be provided inside the inner tube 22 so that the concentrated liquid is sucked while minimizing the pressure loss of the main flow flowing out of the semipermeable membrane chamber. 7a is preferable because the power is small. Since the concentration on the concentrated liquid side is maintained on the surface on the concentrated liquid side of the semipermeable membrane as described above, the concentration of the concentrated liquid sucked from the outlet reservoir 233b is 50 Lm. With this configuration, concentration polarization on the concentrated liquid side surface of the semipermeable membrane is prevented, the osmotic pressure is stabilized, and the flux of the osmotic flow does not change, so that the circulating flow rate of the working fluid 50 (the working medium flow rate in the turbine) ) Gt is also stably maintained. As described above, pressure change, mixing, concentration change, and temperature change are performed in the semipermeable membrane chamber, and it cannot be said that it is very isentropic change unlike the boiler feed pump of the Rankine cycle. Practically only one point. Changes in concentration and flow rate are as shown in FIG.

濃液50Lmは熱輸送管2の内管22の内側通路22aを下降し、下端部で先細ノズル221から二重管通路23aに噴出する。内管22の外側には必要に応じて断熱ライニングが施される。 ノズル221を先細とした理由は、高負荷時に外管下端部内側空間231aで沸騰が起こった時の対策で、発生した気泡の内管22への流入阻止を意図したものである。気泡の内管22への流入対策としてはこの他内管先端部を曲げるとか、邪魔板を設けるとかの対策を行うことも好ましい。 半透膜を通過後この時点までの作動媒体の状態変化は、ヘッド圧の増加と熱輸送管内管内側通路22aでの多少の受熱を考慮すると、図3の(3)(4)で表される。 The concentrated liquid 50Lm descends through the inner passage 22a of the inner tube 22 of the heat transport tube 2 and is jetted from the tapered nozzle 221 to the double tube passage 23a at the lower end. A heat insulating lining is provided on the outside of the inner tube 22 as necessary. The reason why the nozzle 221 is tapered is to prevent the generated bubbles from flowing into the inner tube 22 in order to prevent boiling in the inner space 231a at the lower end of the outer tube under a high load. As a countermeasure against air bubbles flowing into the inner tube 22, it is also preferable to take measures such as bending the tip of the inner tube or providing a baffle plate. The state change of the working medium up to this point after passing through the semipermeable membrane is represented by (3)(4) in FIG. 3 in consideration of an increase in the head pressure and some heat reception in the inner tube 22a of the heat transport pipe. Is done.

熱輸送管の二重管通路23aの外管下端部内側空間231aから50m上の範囲が加熱器で受熱ゾーンである。 熱輸送管2の熱水貯留層HWへの浸漬深さ231は本実施例の場合50mとされている。 本実施例では浸漬深さを説明の便宜上一例として50mとしたが、実際にはこの深さは外部(熱源HW)と熱輸送管23との伝熱計算によって決定され、50mに固定されるものではない。 また本実施例においては該下端部内側空間231aの深度は半透膜1から364mとしたが、本発明はこれに限定されるものではない。 A range of 50 m above the inner space 231a at the lower end of the outer tube of the double tube passage 23a of the heat transport tube is a heater and is a heat receiving zone. The immersion depth 231 of the heat transport pipe 2 in the hot water storage layer HW is set to 50 m in this embodiment. In this embodiment, the immersion depth is set to 50 m as an example for convenience of description, but this depth is actually determined by heat transfer calculation between the outside (heat source HW) and the heat transport pipe 23 and is fixed at 50 m. is not. Further, in the present embodiment, the depth of the lower end inner space 231a is 364 m from the semipermeable membrane 1, but the present invention is not limited to this.

加熱された濃液50Lmは受熱ゾーンを通過する時点で既に一部蒸発域に入っている。 受熱ゾーン内の状態変化を図3で説明すれば、冷態起動時には(4)→Q→(5)で、定常時になると(4)→P→(6)に近くなるものと考える。 定常運転時には二重管通路23aの中で混相流が発達し、ヘッド圧の影響が殆どなくなるからである。 ただし蒸気量の増大で圧力損失が増えるので、P点がQ点の方へ近づき、P→(6)の変化は図3のようにS軸に平行にはならないのではないかと考える。 The heated concentrated liquid 50Lm has already partially entered the evaporation zone when passing through the heat receiving zone. If the state change in the heat receiving zone is described with reference to FIG. 3, it is considered that (4) → Q → (5) at the time of cold start, and close to (4) → P → (6) in the steady state. This is because during the steady operation, a multiphase flow develops in the double pipe passage 23a, and the influence of the head pressure is almost eliminated. However, since the pressure loss increases due to the increase in the amount of steam, the point P approaches the point Q, and it is considered that the change of P → (6) may not be parallel to the S axis as shown in FIG.

作動媒体50は受熱ゾーン231から出て、上昇する過程でヘッド圧が下がり、液相、気相からなる混相流が発達する。 すなわち濃液の濃度は徐々に増大し、分離される蒸気量も増えてくる。 熱輸送管外管上端部から連結管25に到ると、管内は体積的には蒸気が支配的となる。 この過程での作動媒体50の状態変化は等エンタルピー変化と断熱変化の間の経路を辿り、(5)(6)で表される。液相が気相に変化する割合が増えれば断熱変化に近づくものと考える。 The working medium 50 exits from the heat receiving zone 231, and the head pressure decreases in the process of ascending, and a multiphase flow composed of a liquid phase and a gaseous phase develops. That is, the concentration of the concentrated liquid gradually increases, and the amount of separated steam also increases. When reaching the connection pipe 25 from the upper end of the outer pipe of the heat transport pipe, the inside of the pipe is dominated by steam in volume. State change of the working medium 50 in the process follows a path between the isenthalpic change and adiabatic change is expressed by (5) (6). It is considered that an adiabatic change is approached when the rate at which the liquid phase changes to the gas phase increases.

作動媒体50は混相流となって、気液分離槽5aに入り、気相50Sと液相50Lcに気液分離される。 50Sはサイクロン5b内で随伴していた液滴を分離された後タービン3に流入する。ここで分離された液滴はサイクロン戻り管5cから気水分離槽の下部にヘッド差で流れ落ちる。気液分離器内部での状態変化を図3で説明すれば(6)(1)である。乾き度0.6の湿り蒸気が水分を除去されて、飽和蒸気となる過程である。 The working medium 50 becomes a multi-phase flow, enters the gas-liquid separation tank 5a, and is separated into a gas phase 50S and a liquid phase 50Lc. 50S flows into the turbine 3 after the droplets entrained in the cyclone 5b are separated. The droplets separated here flow down from the cyclone return pipe 5c to the lower part of the steam separator with a head difference. The state change inside the gas-liquid separator will be described with reference to FIG. 3 as (6)(1) . This is a process in which wet steam having a dryness of 0.6 is removed from water to become saturated steam.

気液分離槽に入った高濃液(本実施例の場合には濃度21%)は、前記の通り内部循環戻り管6を通って半透膜1の濃液側表面に還流する。ここで、本実施例では、逆浸透膜として実績が多く、耐薬品性に優れた架橋全芳香族ポリアミド系複合膜を半透膜として使用する前提で説明している。 この材料は連続使用最高温度45℃なので、前記内部循環戻り管6の外表面にフィンを設けて、200℃の高濃液を45℃〜 50℃にまで大気に放熱している。 本発明による浸透圧熱サイクルはこの冷却手段を使うことに限定されるものではなく、タービンを複列として、前の段のタービン出口蒸気をサイクロン等で気液分離した後高濃液と熱交換して、過熱蒸気にして次の段に導くという方法も好ましく適用できる。また本発明の浸透圧熱サイクルは半透膜の材質、膜構造、取付方法等を限定されるものではない。 The highly concentrated liquid (concentration 21% in this embodiment) entering the gas-liquid separation tank is returned to the concentrated liquid side surface of the semipermeable membrane 1 through the internal circulation return pipe 6 as described above. Here, the present embodiment is described on the premise that a cross-linked wholly aromatic polyamide-based composite membrane which has many achievements as a reverse osmosis membrane and has excellent chemical resistance is used as a semipermeable membrane. Since this material has a maximum continuous use temperature of 45 ° C., fins are provided on the outer surface of the internal circulation return pipe 6 to radiate a highly concentrated solution of 200 ° C. to the atmosphere of 45 ° C. to 50 ° C. The osmotic pressure heat cycle according to the present invention is not limited to the use of this cooling means. The turbine is arranged in a double row, and the steam at the turbine outlet of the previous stage is subjected to gas-liquid separation using a cyclone or the like, followed by heat exchange with the concentrated solution. Then, a method of forming superheated steam and leading it to the next stage is also preferably applicable. The osmotic heat cycle of the present invention is not limited to the material, membrane structure, mounting method, etc. of the semipermeable membrane.

タービンに流入した蒸気は膨張仕事をして動力を発生し、発電機4を駆動する。 この発電機は、圧縮機であってもポンプであっても、本発明は動力の使い道を何ら限定するものではない。タービン内の50Sの状態変化を図3で説明すると、等エントロピー変化で(1)(2)で表される。現実にはエントロピーは増大するので、(1)(2)のエンタルピー差にタービン効率0.8を乗じてタービン軸出力とする。 タービン効率はタービンの設計によって変わるので、0.8に限定されるものではない。 The steam flowing into the turbine performs expansion work to generate power, and drives the generator 4. Whether the generator is a compressor or a pump, the present invention does not limit the use of power at all. The state change of the 50S in the turbine will be described with reference to FIG. 3, and isentropy change is represented by (1)(2) . Since entropy actually increases, the turbine shaft output is obtained by multiplying the enthalpy difference between (1) and (2) by a turbine efficiency of 0.8. The turbine efficiency is not limited to 0.8 as it depends on the turbine design.

本発明による浸透圧熱サイクルは膨張器をタービンに限定されるものではなく、また膨張器内部のシステム、構造を限定されるものではない。 The osmotic heat cycle according to the present invention does not limit the expander to a turbine, and does not limit the system and structure inside the expander.

タービンを出た気化した作動媒体50Sは凝縮器に流入して凝縮作動媒体50Lpとなり、サイクルは一巡する。 The vaporized working medium 50S exiting the turbine flows into the condenser and becomes the condensed working medium 50Lp, and the cycle goes around.

半透膜1を境にして、一方の側に濃度0 %の凝縮作動媒体50Lp、半透膜1の他の側に濃液50Lmが安定的に存在し、加熱器を通して作動媒体が安定的に熱水貯留層から熱を摂取し、凝縮器で作動媒体が安定的に冷却されるならば、このサイクルは安定して持続し、本発明による浸透圧熱サイクルは動力を発生し続ける。 With the semipermeable membrane 1 as a boundary, 50 Lp of a condensed working medium having a concentration of 0% is present on one side, and 50 Lm of a concentrated liquid is present on the other side of the semipermeable membrane 1 stably. If the heat is taken from the hot water reservoir and the working medium is steadily cooled in the condenser, this cycle will be stable and the osmotic heat cycle according to the invention will continue to generate power.

本実施例の場合、作動媒体に水、溶質に塩化ナトリウムを使用しているが、適用対象によって様々な組合せがあり、本発明による浸透圧熱サイクルは本実施例の組合せに限定されるものではない。 In the case of this embodiment, water is used as the working medium, and sodium chloride is used as the solute.There are various combinations depending on the application object, and the osmotic heat cycle according to the present invention is not limited to the combination of this embodiment. Absent.

ここで、本発明による浸透圧熱サイクルでは必ずしも第2の循環ラインを必要とするものではない。第1の発明で示している高濃液の還流だけで機能させることは十分可能である。 Here, the osmotic heat cycle according to the present invention does not necessarily require the second circulation line. It is sufficiently possible to function only by the reflux of the highly concentrated liquid shown in the first invention.

その場合戻り管6からの還流量を増やす必要があれば、戻り管6からの放熱量が増えので、この熱量を使ってタービンを複列としてタービンの再熱化を図ることが好ましい。 具体的には、前の段のタービン出口蒸気をまずサイクロンに通して飽和蒸気とし、この飽和蒸気と高濃液を熱交換して飽和蒸気を過熱蒸気として次の段に導けばタービンの出力が増大する。 当該サイクロンで除去された液滴は気液分離槽5aにヘッド差で戻すことが好ましい。 If it is necessary to increase the recirculation amount from the case return pipe 6, because the amount of heat released from the return pipe 6 is Ru increases, it is preferable to increase the reheat of the turbine turbine using this heat as double row. Specifically, the turbine outlet steam of the previous stage is first passed through a cyclone to become saturated steam, heat exchange between the saturated steam and the highly concentrated liquid is performed, and the saturated steam is superheated to the next stage. Increase. The droplets removed by the cyclone are preferably returned to the gas-liquid separation tank 5a by head difference.

図4は本発明の実施態様の浸透圧熱サイクルの第2実施例で、海洋温度差発電に適用したものである。 作動流体50の流れ、相変化、濃度変化、濃度分極防止のための内部循環および第2内部循環の方法、働きについては基本的に第1実施例と変わりはない。 しかし、地熱発電と違って海洋温度差発電では高熱源、低熱源の場所が上下違いとなるので、それに伴う構成の変更がなされている。 FIG. 4 shows a second embodiment of the osmotic heat cycle according to the embodiment of the present invention, which is applied to ocean thermal energy conversion. The flow of the working fluid 50, the phase change, the concentration change, the internal circulation for preventing concentration polarization and the second internal circulation, and the operation thereof are basically the same as those of the first embodiment. However, unlike the geothermal power generation, in the ocean temperature difference power generation, the location of the high heat source and the location of the low heat source are different from each other, so the configuration has been changed accordingly.

第1実施例と同様に、50は密閉経路内を連続して巡回する作動媒体で、浸透圧熱サイクルの密閉経路内の区間に応じて、気相(気化した作動媒体50S)、液相(50L)と状態変化し、気相状態にある気化した作動媒体50Sは膨張器であるタービン3を介して外部に機械的仕事をし、凝縮器232で深層水1100に放熱して凝縮し、凝縮液、すなわち凝縮作動媒体50Lpとなる。図4、図5および図6参照。 Similarly to the first embodiment, reference numeral 50 denotes a working medium that continuously circulates in the closed path, and a gas phase (vaporized working medium 50S) and a liquid phase ( 50L), the vaporized working medium 50S in a gaseous state performs mechanical work to the outside through a turbine 3 as an expander, and releases heat to the deep water 1100 in a condenser 232 to condense. The liquid, that is, the condensed working medium 50Lp. See FIG. 4, FIG. 5 and FIG.

作動媒体が液相の状態にあるとき、作動媒体の濃度は50Lp(凝縮作動媒体)、50Lm(濃液、溶質を含む溶液)、50Lc(高濃液)と変化している。 When the working medium is in the liquid phase, the concentration of the working medium changes to 50 Lp (condensed working medium), 50 Lm (concentrated liquid, solution containing solute), and 50 Lc (highly concentrated liquid).

第1実施例と第2実施例の構成の相違点は次のとおりである。
第2実施例では、
1) 溶媒は無水アンモニア、溶質は塩化アンモニウムで、塩化アンモニウムのアンモニア溶液の濃度は12.8%である。ここで本発明は溶媒がアンモニアの場合、この濃度に限定されるものではない。 この溶液が第1実施例の濃液50Lmに対応し、以下第1実施例と同様に濃液50Lmという。 海洋温度差発電では、高熱源の温度が高々34℃、平均的には28℃〜30℃である。 溶媒には低沸点媒体で、水に近い性質を有するアンモニアが選定されている。 水の分子量18に対してアンモニアの分子量は17であるので、海水淡水化用RO膜を使用すれば透過係数が水より大きくなるので好ましい。 溶質にアンモニウム塩を用いているのは、アンモニアへの溶解度が大きいこと、アンモニア溶液中のアンモニウム塩はアンモニアの溶液のPHを酸性側に移動させるためである。 ちなみに無水アンモニアのPHは11で、この数値では市場性があり、性能が検証されている架橋全芳香族ポリアミド系複合膜の使用限度をやっと満足している状態である。同様の理由で酢酸アンモニウム、硝酸アンモニウムもアンモニア用の溶質として好ましく使用できる。
2) 高熱源、すなわち表層水の温度は30℃として、加熱器での熱交換の余裕を見てタービン入口条件を温度22℃の飽和蒸気(圧力9.3kg/cm2)と設定している。塩化アンモニウムと液体アンモニアの組合せの場合、塩化アンモニウムの溶解度は非常に高く、この温度域では析出しないと考えられるので、飽和蒸気になるまで加熱するという前提とした。
3) 作動媒体50の温度が低いので、内部循環戻り管6冷却されていない。
4) 低温源、すなわち深層水の温度は6℃とし、タービン出口条件を8.66℃(圧力6kg/cm2の飽和蒸気)としている。
5) 低熱源が深海にあるので、熱輸送管2が深海まで延ばされて、凝縮器(凝縮ゾーン)232が低熱源である海洋深層水1100に暴露された配置になっている。 図4参照。
6) 熱輸送管は三重管構造になっており、外管23と内管22の間に高濃液の還流のため、仕切り管26が設けられている。
7) 半透膜1は図4、図5に示すように、仕切り管26の最下部に取付けられている。
以下半透膜1を出発点として、作動媒体50の流れに沿って、概要を説明する。
The differences between the configurations of the first embodiment and the second embodiment are as follows.
In the second embodiment,
1) The solvent is anhydrous ammonia, the solute is ammonium chloride, and the concentration of ammonium chloride in ammonia solution is 12.8%. Here, the present invention is not limited to this concentration when the solvent is ammonia. This solution corresponds to the concentrated liquid 50Lm of the first embodiment, and is hereinafter referred to as the concentrated liquid 50Lm as in the first embodiment. In ocean thermal energy conversion, the temperature of the high heat source is at most 34 ° C, and on average 28 ° C to 30 ° C. Ammonia having a property close to that of water is selected as the solvent as a low boiling point medium. Since the molecular weight of ammonia is 17 with respect to the molecular weight of water, it is preferable to use a seawater desalination RO membrane because the permeability coefficient becomes larger than that of water. The ammonium salt is used as the solute because it has a high solubility in ammonia and the ammonium salt in the ammonia solution shifts the pH of the ammonia solution to the acidic side. Incidentally, the pH of anhydrous ammonia is 11, which is marketable at this value, and is in a state of finally meeting the use limit of the crosslinked wholly aromatic polyamide-based composite membrane whose performance has been verified. For the same reason, ammonium acetate and ammonium nitrate can be preferably used as a solute for ammonia.
2) High heat source, i.e. a temperature of 30 ° C. of surface water, and with a margin of heat exchange in the heater setting the turbine inlet conditions to the temperature 22 ° C. in saturated steam (pressure 9.3 kg / cm 2) . In the case of a combination of ammonium chloride and liquid ammonia, the solubility of ammonium chloride is very high, and it is considered that it does not precipitate in this temperature range.
3) Since the temperature of the working medium 50 is low, the internal circulation return pipe 6 is not cooled.
4) The temperature of the low-temperature source, that is, the depth water is 6 ° C., and the turbine outlet condition is 8.66 ° C. (saturated steam at a pressure of 6 kg / cm 2 ).
5) Since the low heat source is in the deep sea, the heat transport pipe 2 is extended to the deep sea, and the condenser (condensing zone) 232 is arranged to be exposed to the deep sea water 1100 which is the low heat source. See FIG.
6) The heat transport pipe has a triple pipe structure, and a partition pipe 26 is provided between the outer pipe 23 and the inner pipe 22 for refluxing the highly concentrated liquid.
7) The semipermeable membrane 1 is attached to the lowermost part of the partition pipe 26 as shown in FIGS.
The outline will be described below along the flow of the working medium 50 with the semipermeable membrane 1 as a starting point.

図5において、半透膜の前記一方の側の、凝縮作動媒体50Lp(濃度0%の溶媒、液体アンモニア)は半透膜1に浸透して前記他の側、すなわち濃液側(濃度12.8%、塩化アンモニウムのアンモニア溶液)に達するや、高濃液50Lcと混合されて濃液50Lmが形成される。還流濃液50Lcおよび50Lm(このように分かれて存在するわけではなく、混合された濃液で、濃度は50Lcと50Lmの間の数値で、具体的には両者の配合割合で決定される)。 混合の態様は図5に示されているように、半透膜からの浸透流の方向と濃液の流れ方向が直交しており、高濃度の濃液の流れの中に浸透流が吸い込まれるような混合の仕方である。 高濃液は半透膜室入口溜りで十分整流されて半透膜に入るよう構成されている。 In FIG. 5, 50 Lp of the condensed working medium (solvent having a concentration of 0%, liquid ammonia) on the one side of the semipermeable membrane penetrates the semipermeable membrane 1 and the other side, that is, the concentrated liquid side (concentration of 12. (8% ammonia solution of ammonium chloride), it is mixed with the highly concentrated solution 50Lc to form a concentrated solution 50Lm. Refluxed concentrates 50Lc and 50Lm (these do not exist separately, but in a mixed concentrated solution, the concentration is a value between 50Lc and 50Lm, specifically determined by the mixing ratio of both). In the mixing mode, as shown in FIG. 5, the direction of the permeate flow from the semipermeable membrane and the flow direction of the concentrated liquid are orthogonal, and the permeate flow is sucked into the flow of the highly concentrated liquid. It is a way of mixing like this. The highly concentrated liquid is configured to be sufficiently rectified in the semi-permeable membrane chamber inlet reservoir and enter the semi-permeable membrane.

図6に示すように、第1実施例と同様に本実施例でも内部循環戻り管6の拡径部6bに、第2内部循環ライン7の吹き出しノズル7が取付けられている。内部循環戻り流れとノズル7cからの吹き出し流れの方向を合せたのはエジェクター効果を意図したものである。 内部循環戻り流の流量はGcである。 一方第2内部循環流は内管22に配設したノズル7bによって流量Gfで吸い込まれている。 ノズル7bから第2内部循環ラインに入る溶液の濃度は、当該溶液が50Lcと50Lpの混合後のものであるので、50Lmである。 内管通路22aを上昇する該溶液の流量はノズル7bの前で、タービン通過流量Gt、内部循環流量Gc、上記第2循環流量Gfの合計である。 図5および図6参照。
模式的に説明するためノズル7bを用いているが、好ましくは内管22の内側にスクープを設けて、内管通路22aの圧力損失を最小にしながら濃液を吸い込むようにすればポンプ7aの動力を少なくすることができる。
As shown in FIG. 6, the enlarged diameter portion 6b of the internal circulation return pipe 6 in the present embodiment as in the first embodiment, blowout nozzle 7 c of the second internal circulation line 7 is attached. The purpose of matching the direction of the internal circulation return flow with the direction of the blowout flow from the nozzle 7c is intended for the ejector effect. The flow rate of the internal circulation return flow is Gc. On the other hand, the second internal circulation flow is sucked at a flow rate Gf by the nozzle 7b disposed in the inner pipe 22. The concentration of the solution from the nozzle 7b entering the second internal circulation line, so the solution is that after mixing the 50Lc and 50 lp, is 50 lm. The flow rate of the solution rising through the inner pipe passage 22a is the sum of the turbine passage flow rate Gt, the internal circulation flow rate Gc, and the second circulation flow rate Gf before the nozzle 7b . See FIG. 5 and FIG.
Although the nozzle 7b is used for the purpose of a schematic description, it is preferable to provide a scoop inside the inner pipe 22 so as to suck the concentrated liquid while minimizing the pressure loss in the inner pipe passage 22a. Can be reduced.

図6においてポンプ7aが停止している状態、すなわち第2の内部循環が機能していない場合でも、第1の発明に示した高濃液が半透膜の濃液側に還流する機能は働いている。この循環経路は図4において、気液分離槽→戻り管6→仕切り管通路26a→半透膜の濃液側→内管通路22a→気液分離槽入口、である。 連通した経路である。 しかるに気液分離槽→戻り管6→仕切り管通路26aの経路は高濃液で満たされ、内管通路2aは濃液で満たされている。 例えば両者の温度が20℃で同一として、20%の塩化アンモニウムのアンモニア溶液と10%の塩化アンモニウムのアンモニア溶液の比重量を比較すると、前者710kg/m3に対し後者664kg/m3である。 したがって、常に比重量の大きい高濃液が、比重量の小さい内管通路22aの濃液を押し上げている状態である。言い換えれば、高濃液が常に半透膜の濃液側に還流しているということである。 In FIG. 6, even when the pump 7a is stopped, that is, when the second internal circulation is not functioning, the function of returning the highly concentrated liquid to the concentrated liquid side of the semipermeable membrane shown in the first invention works. ing. In FIG. 4, this circulation path is as follows : gas-liquid separation tank → return pipe 6 → partition pipe passage 26a → concentrated liquid side of semipermeable membrane → inner pipe passage 22a → gas-liquid separation tank entrance. It is a communicating route. However, the path from the gas-liquid separation tank to the return pipe 6 to the partition pipe passage 26a is filled with the highly concentrated liquid, and the inner pipe passage 22a is filled with the concentrated liquid. For example as the same at a temperature of both 20 ° C., a comparison of specific weight ammonia solution of 20% ammonia solution and 10% ammonium chloride ammonium chloride, the latter 664kg / m 3 to the former 710 kg / m 3. Therefore, the highly concentrated liquid having a large specific weight is constantly pushing up the concentrated liquid in the inner pipe passage 22a having a small specific weight. In other words, the highly concentrated liquid is always flowing back to the concentrated liquid side of the semipermeable membrane.

ここで、ポンプ7aを起動してみよう。 ポンプ7aはヘッド圧の負荷はなく、循環流量増分、すなわち内管通路22aから吸込む流量Gfに見合う、経路の流動抵抗だけを負担すればよいことが分かる。 図6、図5、図4参照。 すなわち第5の発明で示した第2の循環であるが、ポンプ動力はいわば循環経路内を空回りさせているだけで、消費動力は流体抵抗動力だけである。 ヘッド圧が作用する深層水、表層水の汲み上げや、タービン駆動用の給液ポンプ動力と比較すると無視しうる動力である。 Here, let's start the pump 7a. It can be seen that the pump 7a does not have a head pressure load, and only has to bear the flow resistance of the path corresponding to the circulating flow rate increase, that is, the flow rate Gf sucked from the inner pipe passage 22a. See FIG. 6, FIG. 5, and FIG. That is, in the second circulation shown in the fifth aspect of the invention, the pump power is merely idling in the circulation path, and the consumed power is only the fluid resistance power. This power is negligible compared to the pumping of deep water and surface water to which the head pressure acts and the power of a liquid supply pump for driving a turbine.

加熱器231に到ると加熱によって、濃液50Lmは沸騰を始めて飽和状態となり、連結管25を経由して気液分離槽5aに流入する。 前記濃液の濃度では3.4℃沸点上昇をするので、蒸気は計算上過熱域に入っているが、連結管25の中の速度が大きいため濃液の随伴が多く、混相状態で気液分離槽に入るものと考えられる。 Upon reaching the heater 231, the concentrated liquid 50 Lm starts boiling and becomes saturated by heating, and flows into the gas-liquid separation tank 5 a via the connecting pipe 25. At the concentration of the concentrated liquid, the boiling point rises by 3.4 ° C., so that the vapor enters the superheated region in calculation. However, since the velocity in the connecting pipe 25 is large, the concentrated liquid accompanies much, and the vapor-liquid state in the mixed phase state It is considered to enter the separation tank.

気液分離槽5aで気相50Sと液相50Lcに気液分離されるが、蒸気の勢いが強く、好ましくは気液分離槽の高さを液面レベルの5倍以上とし、より好ましくはルーバー等を内部に設ける。次いで気化した作動媒体50Sはサイクロン5b内で随伴していた液滴を分離され、タービン3に流入する。ここで分離された液滴はサイクロン戻り管5cから気水分離槽の下部にヘッド差で流れ落ちる。 Gas-liquid separation is performed in the gas-liquid separation tank 5a into the gas phase 50S and the liquid phase 50Lc. The steam is strong, and the height of the gas-liquid separation tank is preferably five times or more the liquid level, more preferably the louver. Etc. are provided inside. Next, the vaporized working medium 50S is separated from the accompanying droplets in the cyclone 5b and flows into the turbine 3. The droplets separated here flow down from the cyclone return pipe 5c to the lower part of the steam separator with a head difference.

気液分離槽で分離された濃度20%の高濃液は、内部循環戻り管6、熱輸送管の仕切り管通路26aを経由して半透膜室233aに到り、半透膜1の濃液側入口に均等に分配され、半透膜1の濃液側表面に還流する。 The high-concentration liquid having a concentration of 20% separated in the gas-liquid separation tank reaches the semipermeable membrane chamber 233a via the internal circulation return pipe 6, the partition pipe passage 26a of the heat transport pipe, and the concentration of the semipermeable membrane 1. The liquid is evenly distributed to the liquid-side inlet, and is returned to the concentrated liquid-side surface of the semipermeable membrane 1.

一方タービンに流入した気化した作動媒体50Sは、膨張仕事をして動力を発生し、発電機4を駆動する。 発電機ではなく、圧縮機であってもポンプであっても、本発明は動力の使い道を何ら限定するものではない。 On the other hand, the vaporized working medium 50S that has flowed into the turbine performs expansion work to generate power, and drives the generator 4. The present invention does not limit the use of power at all, whether it is a compressor or a pump, not a generator.

本発明浸透圧熱サイクルは膨張器をタービンに限定されるものではなく、また膨張器内部のシステム、構造を限定されるものではない。 In the osmotic heat cycle of the present invention, the expander is not limited to the turbine, and the system and structure inside the expander are not limited.

タービンを出た気化した作動媒体50Sは凝縮器に流入して凝縮作動媒体50Lpとなり、サイクルは一巡する。 The vaporized working medium 50S exiting the turbine flows into the condenser and becomes the condensed working medium 50Lp, and the cycle goes around.

半透膜1を境にして、一方の側に濃度0%の凝縮作動媒体50Lp、半透膜1の他の側に濃液50Lmが安定的に存在し、加熱器を通して作動媒体が安定的に表層水から熱を摂取し、凝縮器で作動媒体が安定的に冷却されるならば、このサイクルは安定して持続し、本発明による浸透圧熱サイクルは動力を発生し続ける。 With the semipermeable membrane 1 as a boundary, 50 Lp of a condensed working medium having a concentration of 0% is present on one side and 50 Lm of a concentrated liquid is stably present on the other side of the semipermeable membrane 1, and the working medium is stably passed through a heater. If heat is taken from the surface water and the working medium is stably cooled in the condenser, this cycle will continue stably and the osmotic heat cycle according to the invention will continue to generate power.

ここで重要なことは、深層水および表層水の汲み上げ用、および主系統の作動媒体駆動用のポンプを使用していないことである。 本実施例の第2の内部循環ライン用ポンプ動力は、前記のようにヘッド圧を負荷とするものではないので実質的に無視できるレベルである。 したがってタービン軸出力に発電機の効率を乗じた数値が正味出力となる。 深層水および表層水の汲み上げ用、および主系統の作動媒体駆動用のポンプ動力は濃溶液の濃度維持のための高熱源からの入熱で置換えられている。 また深層水、表層水の汲み上げがなくなるので、貴重な海洋生物の生態に悪影響を与える懸念がなくなる。 What is important here is that it does not use for pumping deep water and surface water, and the main system pump working medium for driving. The pump power for the second internal circulation line of this embodiment is at a substantially negligible level because the head pressure is not applied as described above. Therefore, a value obtained by multiplying the turbine shaft output by the generator efficiency is the net output. The pump power for pumping deep water and surface water, and for driving the working medium in the main system has been replaced by heat input from a high heat source for maintaining the concentration of the concentrated solution. Also, since there is no pumping of deep water and surface water, there is no fear of adversely affecting the ecology of valuable marine life.

図7は本発明の実施態様の浸透圧熱サイクルの第3実施例で、熱輸送管2を水平に配設したものである。 このように熱輸送管を配設しても本発明の浸透圧熱サイクルは好ましく使用できる。 これまでの熱輸送管は管構造を二重管もしくは三重管構造としているが、図8のような曲がり管構造も好ましく適用できる。この構成は太陽熱発電、自家用車、トラック等に適用可能である。 自家用車、トラック等の場合には、熱源を排気管もしくはリチウムイオン電池としてもよい。 太陽熱利用の場合、曲がり管と曲がり管の隙間にはソーラパネルを配設することもできる。 FIG. 7 shows a third embodiment of the osmotic heat cycle according to the embodiment of the present invention, in which the heat transport pipe 2 is horizontally arranged. The osmotic heat cycle of the present invention can be preferably used even when the heat transport pipe is provided in this manner. Although the conventional heat transport pipe has a double pipe or triple pipe structure, a bent pipe structure as shown in FIG. 8 can also be preferably applied. This configuration is applicable to solar thermal power generation, private cars, trucks, and the like. In the case of a private car, truck, or the like, the heat source may be an exhaust pipe or a lithium ion battery. In the case of using solar heat, a solar panel can be provided in the gap between the bent pipes.

1:半透膜
2:熱輸送管
22:熱輸送管内管
22a:熱輸送管内管通路
221:熱輸送管内管先細ノズル
23:熱輸送管外管
23a:熱輸送管通路
231:加熱器(受熱ゾーンともいう)
231a:熱輸送管下端部内側空間
232:凝縮器
232a:放熱フィン
233:半透膜室
233a:半透膜室入口溜り
233b:半透膜室出口溜り
25:連結管
26:仕切り管
26a:仕切り管通路
3:膨張器
4:発電機
5:気液分離器
5a:気液分離槽
5b:サイクロン
5c:サイクロン戻り管
50:作動媒体
50L:液相状態の作動媒体、下記50Lc,50Lm,50Lpの総称
図面の中には煩雑になるため50Lの記載はない。
50Lc:高濃液(凝縮作動媒体に高濃度の溶質が溶解している溶液)
50Lm:濃液(凝縮作動媒体に溶質が溶解している溶液)
50Lp:凝縮作動媒体(凝縮液、濃度0%の溶液、溶媒)
50S:気化した作動媒体
6:内部循環戻り管
6a:空冷フィン
7: 第2内部循環ライン
7a:ポンプ
8:清水ライン
8a:止め弁
9:蒸気逃がし弁
10:乾き度計
1000:表層水
1100:深層水
FF:台船
GL:地面
Gc:内部循環戻り重量流量
Gf:第2内部循環ライン重量流量
Gt:作動媒体(50S)の重量流量
HW:熱水貯留層
Hb:半透膜と気液分離槽液面までの距離
Hp:半透膜と凝縮器液面までの距離
Hsw:気液分離槽液面から熱輸送管下端部までの距離
Pp:半透膜の凝縮液側の圧力
Psw:半透膜の濃液側の圧力
SB:海底
SL:海面
1: semi-permeable membrane 2: heat transport tube 22: heat transport tube inner tube 22a: heat transport tube inner tube passage 221: heat transport tube inner tube taper nozzle 23: heat transport tube outer tube 23a: heat transport tube passage 231: heater (heat receiving) (Also called a zone)
231a: Heat transport pipe lower end inner space 232: Condenser 232a: Radiation fin 233: Semipermeable membrane chamber 233a: Semipermeable membrane chamber inlet pool 233b: Semipermeable membrane chamber outlet pool 25: Connecting pipe 26: Partition pipe 26a: Partition Pipe passage 3: expander 4: generator 5: gas-liquid separator 5a: gas-liquid separation tank 5b: cyclone 5c: cyclone return pipe 50: working medium 50L: working medium in liquid phase, 50Lc, 50Lm, 50Lp below There is no 50L description in the generic drawing because it is complicated.
50Lc: Highly concentrated liquid (solution in which a high concentration of solute is dissolved in the condensing working medium)
50Lm: concentrated liquid (solution in which the solute is dissolved in the condensing working medium)
50Lp: Condensed working medium (condensate, 0% concentration solution, solvent)
50S: Evaporated working medium 6: Internal circulation return pipe 6a: Air cooling fin 7: Second internal circulation line 7a: Pump 8: Fresh water line 8a: Stop valve 9: Steam relief valve 10: Dryness meter 1000: Surface water 1100: Deep water FF: Barge GL: Ground Gc: Internal circulation return weight flow rate Gf: Second internal circulation line weight flow rate Gt: Weight flow rate of working medium (50S) HW: Hot water reservoir Hb: Semipermeable membrane and gas-liquid separation Distance to tank liquid level Hp: Distance between semi-permeable membrane and condenser liquid level Hsw: Distance from gas-liquid separation tank liquid level to lower end of heat transport pipe Pp: Pressure on the condensate side of semi-permeable membrane Psw: Half Pressure SB on the concentrated liquid side of the permeable membrane: sea bottom SL: sea surface

Claims (4)

半透膜と、
該半透膜の一方の側にある溶媒(以下凝縮作動媒体という)と、
該半透膜の他の側にあって、前記凝縮作動媒体と同じ物質からなる溶媒と、溶質とからなる溶液(以下濃液という)とを配置し、
前記凝縮作動媒体が前記半透膜の他の側の濃液に浸透圧によって引込まれて浸透流が発生する工程と、
前記濃液が高温熱源(以下高熱源という)から受熱して、熱的に気化した作動媒体と濃縮濃液(以下高濃液という)とに分離される工程と、
該高濃液が前記半透膜の他の側の入口溜りに還流する工程(以下高濃液の還流工程という)と、
前記入口溜りに流入した該高濃液が前記半透膜の他の側の表面に沿って、他の側の出口溜りに向かって流れ、その過程において該高濃液が前記表面上で前記浸透流と混合して、該表面を所定の濃度に保つ工程と、
前記気化した作動媒体が膨張器に流入して動力を発生する工程と、
該膨張器を出た前記作動媒体が、低温熱源(以下低熱源という)に放熱して凝縮作動媒体となり、前記半透膜の一方の側の凝縮作動媒体に合流する工程と、を含み、
前記高濃液の還流工程の経路に高濃液の冷却手段が設けられていることを特徴とする浸透圧熱サイクルを利用する動力発生方法。
A semi-permeable membrane,
A solvent on one side of the semipermeable membrane (hereinafter referred to as a condensing working medium);
On the other side of the semipermeable membrane, a solvent composed of the same substance as the condensed working medium and a solution composed of a solute (hereinafter referred to as a concentrated liquid) are arranged.
A step in which the condensed working medium is drawn into the concentrated liquid on the other side of the semipermeable membrane by osmotic pressure to generate an osmotic flow;
A step of receiving the concentrated liquid from a high-temperature heat source (hereinafter, referred to as a high heat source) and separating the concentrated liquid into a thermally vaporized working medium and a concentrated concentrated liquid (hereinafter, referred to as a highly concentrated liquid);
A step of refluxing the highly concentrated liquid to the inlet pool on the other side of the semipermeable membrane (hereinafter referred to as a highly concentrated liquid reflux step);
The concentrated liquid flowing into the inlet reservoir flows along the surface on the other side of the semipermeable membrane toward the outlet reservoir on the other side, and in the process, the concentrated liquid permeates on the surface. Mixing with a stream to maintain the surface at a predetermined concentration;
A step in which the vaporized working medium flows into an expander to generate power,
The working medium exiting the expander becomes a condensed working medium to the heat radiation to a low temperature heat source (hereinafter referred to as low-temperature heat source), it viewed including the the steps of merging the condensation working medium on one side of the semipermeable membrane,
A power generation method using an osmotic pressure heat cycle, wherein cooling means for the highly concentrated liquid is provided in a path of the highly concentrated liquid reflux step .
前記膨張器が複列のタービンとされ、前記高濃液の冷却手段が該タービンの再熱化に用いられていることを特徴とする請求項の動力発生方法。 The power generation method according to claim 1 , wherein the expander is a double-row turbine, and the high-concentration liquid cooling means is used for reheating the turbine. 前記各工程が連通して含まれている経路が、高熱源もしくは低熱源、あるいは両方にまで延びていることを特徴とする請求項1の動力発生方法。 2. The power generation method according to claim 1, wherein a path in which the respective steps are communicated includes a high heat source, a low heat source, or both. 前記出口溜り、もしくはその下流から前記濃液の一部を吸い込み、前記入口溜りまで還流させる外部経路が設けられていることを特徴とする請求項1の動力発生方法。 2. The power generation method according to claim 1, further comprising an external path for sucking a part of the concentrated liquid from the outlet pool or a portion downstream thereof and returning the concentrated liquid to the inlet pool.
JP2018079425A 2018-03-31 2018-03-31 Power generation method using osmotic heat cycle Expired - Fee Related JP6656515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018079425A JP6656515B2 (en) 2018-03-31 2018-03-31 Power generation method using osmotic heat cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018079425A JP6656515B2 (en) 2018-03-31 2018-03-31 Power generation method using osmotic heat cycle

Publications (2)

Publication Number Publication Date
JP2019183820A JP2019183820A (en) 2019-10-24
JP6656515B2 true JP6656515B2 (en) 2020-03-04

Family

ID=68339521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079425A Expired - Fee Related JP6656515B2 (en) 2018-03-31 2018-03-31 Power generation method using osmotic heat cycle

Country Status (1)

Country Link
JP (1) JP6656515B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936083B2 (en) * 1980-10-23 1984-09-01 日立造船株式会社 Power generation method
JPS5773810A (en) * 1980-10-23 1982-05-08 Hitachi Zosen Corp Generation of powder
JPS5773811A (en) * 1980-10-23 1982-05-08 Hitachi Zosen Corp Generation of powder
JP5941629B2 (en) * 2011-07-01 2016-06-29 株式会社日立製作所 Water purification system and water purification method
JP2015098833A (en) * 2013-11-19 2015-05-28 株式会社東芝 Cyclic osmotic power generation system and work medium

Also Published As

Publication number Publication date
JP2019183820A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
Ortega-Delgado et al. Boosting the performance of a Reverse Electrodialysis–Multi-Effect Distillation Heat Engine by novel solutions and operating conditions
US8328996B2 (en) Method and apparatus for desalinating water combined with power generation
Valdimarsson Geothermal power plant cycles and main components
US20160363114A1 (en) Thermal gradient hydroelectric power system and method
JP5738110B2 (en) Double pressure radial turbine system
EP2846008A1 (en) Steam turbine plant
JP2014058903A (en) System combining power generator and desalination device
JP2020518767A (en) System for the production of non-conventional electricity from geothermal sources and associated plants
US8893496B2 (en) Sea water desalination and thermal energy conversion
KR101683714B1 (en) Supercritical carbon dioxide rankine cycle for binary geothermal power plant
JP6656515B2 (en) Power generation method using osmotic heat cycle
Dambly et al. The Organic Rankine Cycle for Geothermal Power Generation
JP2011157855A (en) Power generation facility and operating method for power generation facility
Wright Selection of a working fluid for an organic Rankine cycle coupled to a salt-gradient solar pond by direct-contact heat exchange
TWM520089U (en) Geothermal power generation steam complex circulation system
US12092086B2 (en) Geopressure and geothermal power system
CN103806967A (en) Power cycle system based on low-temperature heat source
US10577986B2 (en) Systems and methods for improving power plant efficiency
JP2015090147A (en) Geothermal power generation system and geothermal power generation system scale prevention method
US20230042799A1 (en) Underground hydraulic system
JP6053952B2 (en) Heat exchange system and method for starting the heat exchange system
US11111906B1 (en) Onshore equipped ocean thermal and hydraulic energy conversion system and method
Azmi et al. Basic design optimization of power and desalinated water for hybrid cycle ocean thermal energy conversion system integrated with desalination plant
RU2701973C1 (en) Organic rankine cycle for conversion of waste heat of heat source into mechanical energy and cooling system using such cycle
Khaghani Dual thermal system for power and fresh water production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191128

R150 Certificate of patent or registration of utility model

Ref document number: 6656515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees